MAGPIE TUTORIAL

Application to real workload

Abdoulaye Gamatié, Pierre-Yves Péneau

LIRMM / CNRS-UM, Montpellier

ComPAS Conference, June 2017, Sophia-Antipolis

Other contributors: S. Senni, T. Delobelle, Florent Bruguier, L. Torres, G. Sassatelli

Application to real workload

- At this stage, you are able to:
 - Cross-compile an application
 - Create a disk image with this application
 - Automate the application execution with a rcs file
 - Configure MAGPIE to define your architecture
 - Run MAGPIE and analyze the outputs
- Let's try this with two well-known benchmark suites
 - Polybench¹
 - NAS parallel benchmark²

Polybench configuration with laptop

• Prepare the compilation

\$ cd \$POLY && perl utilities/makefile-gen.pl -cfg

- Edit config.mk with appropriate changes (compiler, static flag)
 - Add -DMINI_DATASET in CFLAGS= to speedup the simulation
- Compile with \$ perl utililies/run-all.pl \$POLY
- Copy few applications on your disk image in \$HOME/disks
- Write your own rcs in \$HOME/app
- Take a new checkpoint in \$Снкрт

Name	2mm	covariance	heat-3d	lu	nussinov
Sim. time (minutes)	3'	3'	2'30	2'30	2'

Polybench configuration without laptop

- For those without laptop, we provide a disk image with pre-compiled binaries
 - \$M5_PATH/disks/linux-aarch32-ael-filled.img
- Applications are in /benchmark/polybench-c-4.2
- Applications' names are listed in the table below
- Write your own rcS in \$HOME/app
- Take a new checkpoint in \$Снкрт

Name	2mm	covariance	heat-3d	lu	nussinov
Sim. time (minutes)	3'	3'	2'30	2'30	2'

Explorations with Polybench

- 1 core, Cortex-A15, full SRAM L1 caches, no L2, no L3,
- Same with L1 instruction and data in STTRAM 45nm
- Observe the execution time and EDP
- Add a L2 cache

NAS parallel benchmark configuration

- Prepare the compilation
- \$ cd \$NAS && cp config/make.def.template config/make.def
- Edit \$NAS/config/make.def with appropriate compiler and flags
 - Add —fopenmp in *_INC and *_LIB to for OpenMP support
 - Don't forget —static !
- Compile IS application:

\$ make CLASS=S is # Output in \$NAS/bin

Modify the disk image

NAS parallel benchmark configuration (no laptop)

- Pre-filled disk image in \$M5_PATH/disks/linuxaarch32-ael-filled.img
- Binaries are in /benchmark/NPB3.3.1
- Application' name: is.S.x
- Execution time : around 30 minutes

Explorations with NAS

- Take two checkpoints in \$Снкрт:
 - 2 cores
 - 4 cores
- Heterogeneous exploration:
 - 1 big core (A15) + 1 LITTLE core (A7)
 - 2 big core (A15) + 2 LITTLE core (A7)
 - Activate L2 cache for both
- Retry with NVM on caches