
Pract ica l gu ide to
Sof tware
Management
P lans

DOI: 10.5281/zenodo.7038280

https://zenodo.org/record/7185371#.Y1e4m-zP1qs

2 Pract ica l gu ide to Sof tware Management P lans 3

Table of content
1. About this Document 4

2. Introduction 6
2.1. Research software supports Open Science 8

3. What is Research Software? 10

4. Benefits of a Software Management Plan 12

5. Core Requirements for Developing a
 Software Management Plan 14

5.1. List of core requirements 14

5.2. Guidance 18

5.3. SMP rubric 19

6. Implementation Examples 20
6.1. Using subsets of the core requirements

to define customised SMP templates 20

6.2. Types of software that require different
levels of management 30

6.3. SMP templates generated for three
software management levels 31

Acknowledgements 34

4 Pract ica l gu ide to Sof tware Management P lans 5

What is a Software Management Plan?

An SMP is a document that describes how a specific software project

is developed, maintained, and curated. The goal of an SMP is to en-

sure that the software is usable and maintainable in the long term. An

SMP is written by the developers, maintainers, and/or other stakehold-

ers of a software project.

An SMP template is a document that prescribes which information is

required or expected in an SMP, in the form of specific questions to be

answered by the project maintainers. An SMP template can be pro-

vided by, for example, research groups, research organisations, and

funding agencies to ensure that researchers consistently adhere to

certain software management standards and policies when developing

research software.

How to read this document

The document is divided into six sections. The introduction in Sec-

tion 2 explains how there is growing recognition of the importance

of research software. Section 3 discusses the definition of research

software used in this guide, and is followed by Section 4, which high-

lights the benefits of SMPs. Section 5 describes core requirements

for SMPs and provides resources to guide researchers and research

support staff in fulfilling these requirements. Finally, Section 6 provides

a framework for implementing the core requirements into SMPs. It also

guides the reader in choosing suitable subsets of requirements to

create SMP templates for different types of software that require dif-

ferent levels of management (low, medium, and high). This section also

includes an example SMP template for each of the three management

levels.This document provides guidance to create a Software Management

Plan (SMP) template. It is intended for anyone who is involved in the

development, support, and/or management of research software,

including researchers, research software engineers, research support-

ers, funders, and policy makers in fields involving research software as

a scholarly output.

1.
About this
Document

6 Pract ica l gu ide to Sof tware Management P lans 7

Many significant scientific discoveries strongly rely upon the use of

software. For example:

• In 2016, a three-dimensional geographic information system (3D GIS)
was used to generate virtual reconstructions of architecture along
the Via Appia, contributing to researchers’ ability to understand and
reconstruct complex archaeological sites.8

• In 2019, the first ever image of a black hole was created by the
Event Horizon Telescope. This breakthrough was made possible by
means of software that combined data from a network of telescopes
around the globe.9

• In 2020, the deep learning programme AlphaFold was used to
predict the 3D structure of proteins based on their amino-acid se-
quence for the first time with an accuracy that approaches exper-
imental structure determinations. This has been called the break-
through of a lifetime for its field.10

8 http://mappingtheviaappia.nl/3dgis/

9 https://numfocus.org/case-studies/first-photograph-black-hole

10 https://www.nature.com/articles/d41586-020-03348-4

Researchers increasingly rely on software in their research.1,2,3 For

example, a survey by the Software Sustainability Institute, carried out

among UK researchers, found that 92% of academics use research

software, and 7 out of 10 researchers deemed it impossible to con-

duct their research without it. Research software comes in many forms

and applications, from scripts that generate and collate data to large

libraries that build complex reports.4,5 Research software is used in all

research domains, from astronomy6 to theology7, and in all phases of

research.

1 https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers

2 https://newscience.org/how-software-in-the-life-sciences-actually-works-and-doesnt-work/

3 https://blog.esciencecenter.nl/evidence-for-the-importance-of-research-software-1cb4a49077f3

4 https://github.com/ESMValGroup/ESMValTool

5 https://github.com/garrettj403/SciencePlots

6 https://www.astropy.org/

7 https://github.com/historical-theology/awesome-theology

2.
Introduction

http://mappingtheviaappia.nl/3dgis/
https://numfocus.org/case-studies/first-photograph-black-hole
https://www.nature.com/articles/d41586-020-03348-4
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-ou
https://newscience.org/how-software-in-the-life-sciences-actually-works-and-doesnt-work/
https://blog.esciencecenter.nl/evidence-for-the-importance-of-research-software-1cb4a49077f3
https://github.com/ESMValGroup/ESMValTool
https://github.com/garrettj403/SciencePlots
https://www.astropy.org/
https://github.com/historical-theology/awesome-theology

8 Pract ica l gu ide to Sof tware Management P lans 9

Multiple initiatives, such as the Research Software Alliance (ReSA), and

the European Open Science Cloud (EOSC), are looking into improving

research software management, reusability, and sustainability,13,14 with

the aim of contributing to Open Science. Meanwhile, research institu-

tions and funders are working on the necessary policies,15 provision

of support, and guidance to include research software as part of the

rewards and recognition system; and to facilitate the adoption of good

practices.

Ideally, research software should be as open as possible, but as

closed as necessary. All research software, whether open or closed

source (for example, in case of security concerns or commercial inter-

ests), can benefit from using SMPs.

13 https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg

14 https://www.eosc.eu/advisory-groups/infrastructures-quality-research-software

15 TU Delft Research Software Policy: https://doi.org/10.5281/zenodo.4629661

2.1. Research software supports Open Science
There is growing consensus across different stakeholders, from re-

search performing organisations to research funders, that research

software must be recognised as an important output of research.11

Stimulated by technological innovations and the democratisation

of science, researchers, funders, and governments have launched

initiatives to advance transparency under the broad umbrella of the

Open Science movement. In its most basic form, Open Science urges

researchers to make all outputs of research, including primary and the

intermediate outputs, publicly accessible.

The ability to reproduce results in order to assess the reliability of

findings is an integral part of the research process, as is the possibility

of building upon those results. For the sake of research transparency,

reproducibility, reuse, and recognition, research software should be

shared by the authors of a study in such a way that it can be used to

obtain the same results as in the original work or extend that work.

Open Source software has a long history of contribution to the ad-

vancement of research. The values of quality and integrity, and princi-

ples of transparency and reproducibility, sit at the heart of the UNES-

CO Recommendation on Open Science.12 The same Recommendation

identifies Open Source software as one of the key elements of open

scientific knowledge. Open Source software, alongside practices laid

out in the FAIR principles, promotes collaboration among researchers,

stakeholders, and the public. Furthermore, it enables software creators

to extend or expand upon existing software instead of creating (yet

another) stand-alone piece of software. By encouraging researchers to

do so, research organisations and funders can save on investment of

funds and researchers’ time.

11 ‘Software must be recognised as an important output of scholarly research’ arXiv:2011.07571

12 https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en

https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg
https://www.eosc.eu/advisory-groups/infrastructures-quality-research-software
https://doi.org/10.5281/zenodo.4629661
https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en

10 Pract ica l gu ide to Sof tware Management P lans 11

This is admittedly a broad definition of what research software can

include and is provided as a starting point for people involved in

research software projects. Scripts, notebooks, source code, execut-

ables, containers all may be considered research software depending

on the context, but there is no universal agreement. The readers of

this guide may decide for themselves whether this definition suits their

purposes.

There are ongoing efforts to define what research software is.16,17,18,19

Creating a formal definition of research software is beyond the scope

of this document. For the purposes of this document, we will utilise the

definition of research software from the FAIR for Research Software

Working Group (a joint initiative of RDA, ReSA and FORCE11):20

16 The Four Pillars of Research Software Engineering https://doi.org/10.1109/MS.2020.2973362

17 On the evaluation of research software: the CDUR procedure https://doi.org/10.12688/f1000research.19994.2

18 The Research Software Encyclopedia: A Community Framework to Define Research Software http://doi.org/10.5334/jors.359

19 Engineering Academic Software (Dagstuhl Perspectives Workshop 16252) http://doi.org/10.4230/DagMan.6.1.1

20 Defining Research Software: a controversial discussion https://doi.org/10.5281/zenodo.5504015

3.
What is
Research
Software?

Research Software includes source code
files, algorithms, scripts, computational
workflows and executables that were
created during the research process
or for a research purpose. Software
components (e.g., operating systems,
libraries, dependencies, packages,
scripts, etc.) that are used for research
but were not created during or with
a clear research intent should be
considered software in research and not
Research Software.

“
”

https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.12688/f1000research.19994.2
http://doi.org/10.5334/jors.359
http://doi.org/10.4230/DagMan.6.1.1
https://doi.org/10.5281/zenodo.5504015

12 Pract ica l gu ide to Sof tware Management P lans 13

that research software is (and remains) accessible and reusable. More

specifically, an SMP can help to:

• Explain why developing new software is necessary. New software
should not be developed when it would be more cost-efficient and
beneficial for the overall community to contribute to existing soft-
ware.26

• Make the research software reusable and sustainable. An SMP
encourages software developers to think about, for example, tech-
nical choices (such as programming language or operating system
dependencies); whether the right documentation and metadata are
provided (e.g. to allow for reproduction or extension of an analysis);
and to ensure that the software is findable and adequately licensed
for reuse for an extended period of time.

• Plan for the necessary resources. Various types of resources exist:
financial, human, infrastructure, etc. Whenever reusing, creating or
building upon research software in a research project, additional
resources might be needed. The questions in an SMP can help to
predict which resources will be needed for developing and maintai-
ning the software (e.g., hiring research software engineers, training),
for making the software available to others (e.g., infrastructure) and
for making and keeping the software accessible over time.

• Allow for verification of work that went into software implementati-
on. When a project is funded to build software, the funders and the
community at large should be able to know if the project’s plans
regarding the software have been carried out.

Ideally an SMP should be drafted at the beginning of a research pro-

ject. However, even for existing projects, it is valuable to create an

SMP as it helps to summarise established practices and stimulate re-

flection and evaluation in software development. Drafting an SMP with

multiple stakeholders in larger projects can help develop or strengthen

common ways of working.

26 A Guide for Publishing, Using, and Licensing Research Software in Germany, https://doi.org/10.5281/zenodo.4327147

Research software is an integral part of the research process and sev-

eral aspects of its development, maintenance and curation should be

planned for. Data Management Plans (DMPs) have been used for many

years to ensure that good data management practices are followed.21,22

In recent years, SMPs are also becoming increasingly common.23,24,25

An SMP is a document detailing how research software will be man-

aged, usually as part of a project. An SMP makes explicit what research

software does, who it is for, what the outputs are, who is responsible

for the release and to ensure that the software stays available to the

community (and for how long).

An SMP can help to establish a structured way of developing research

software. By asking relevant questions, an SMP can also help to ensure

21 Practical Guide to the International Alignment of Research Data Management, https://doi.org/10.5281/zenodo.4915861

22 Data Management Plan Catalogue, https://libereurope.eu/working-group/research-data-management/plans/

23 Checklist for a Software Management Plan, https://doi.org/10.5281/zenodo.1422656

24 Checklist for a Software Management Plan, https://doi.org/10.5281/zenodo.1422656

25 ELIXIR Software Management Plan for Life Sciences, https://doi.org/10.37044/osf.io/k8znb

4.
Benefits of
a Software
Management
Plan

https://doi.org/10.5281/zenodo.4327147
https://doi.org/10.5281/zenodo.4915861
https://libereurope.eu/working-group/research-data-management/plans/
https://doi.org/10.5281/zenodo.1422656
https://doi.org/10.5281/zenodo.1422656
https://doi.org/10.37044/osf.io/k8znb

14 Pract ica l gu ide to Sof tware Management P lans 15

The requirements for an SMP are:

• Purpose - clearly state the purpose of the software. Provide ge-
neral information such as: what problem does it solve, who is the
intended audience, what are its advantages and limitations, etc. A
clear explanation of the purpose of the software helps the develo-
per focus on its specific needs.

• Version control - use a version control system. Adequate versioning
of research software facilitates management of research software,
allowing for the identification of specific versions of the software.

• Repository - deposit releases of your software in an appropriate
repository. This should preferably be a publicly accessible reposito-
ry, providing globally unique, persistent, and resolvable identifiers
to each release.27 The most important consideration is that potential
users of the software are able to get a copy they can use.28

• User documentation - explain clearly what the software does and
how it should be used.

• Software licensing and compatibility - assign a licence specifying
conditions of use for your software, including patenting information
(if relevant). Preferably the licence should be as open as possible,
and as closed as necessary. Software licences must be compatible
with the licence of external components (dependencies, libraries,
etc.) that the software uses.

• Deployment documentation - explain system requirements (e.g. de-
pendencies) for deploying the software and instructions for installa-
tion and testing.

• Citation - include relevant information indicating how your software
should be cited.

• Developer documentation - explain how the software can be modi-
fied (docstrings, in-line comments, etc.), tested, and contributed to
(governance, code of conduct, contributing guidelines, etc.).

27 A Persistent Identifier (PID) policy for the European Open Science Cloud (EOSC) https://doi.org/10.2777/926037

28 This satisfies the F1.1, F1.2 and A1.1, A1.2 FAIR principles for Research software

Depending on their specific context (e.g. institutional policies and reg-

ulations), the creators of SMP templates may choose which of these re-

quirements will help them to adequately manage the research software

that they are responsible for. Different levels of management will need

different sets of requirements (see Section 6 for further details).

5.1. List of core requirements

This section lists the requirements that an SMP should include. These

requirements cover different aspects that research software needs in

order to fulfil its purpose.

5.
Core
Requirements
for Developing
a Software
Management
Plan

https://doi.org/10.2777/926037

16 Pract ica l gu ide to Sof tware Management P lans 17

Figure 1. Software Management Plan requirements grouped by their focus.

• Testing - incorporate tests to ensure your software continues to
work as intended. Different types of testing (unit, functional, inte-
gration, linting, typing, regression, etc.) could be used. Tests in turn
should also be documented. Coverage tools should also be used to
assess the extent of the tested code.

• Software Engineering quality - make sure your software adheres to
relevant code quality standards (styling, modularity, etc.) and uses
tools for collaborative development to measure code quality.

• Packaging - use appropriate package managers to allow users to
install/deploy your software with ease.

• Maintenance - make sure there are arrangements in place for the
maintenance and reuse of your software. This could be through a
community of developers who will continue to maintain it, or by in-
cluding the maintenance of software as part of future projects, or by
increasing the user base. Whenever suitable, develop a retirement
strategy for your software.

• Support (during the project) – plan resources for support-rela-
ted activities such as training, hiring research software engineers,
infrastructure, hardware, etc. The level of support should be in line
with promises made regarding the level of service provided by your
software (e.g. service level agreements).

• Risk analysis - consider other factors that could have an impact on
your software. For example compliance with privacy policies, secu-
rity considerations, reliability requirements, portability / vendor lock,
etc.

These requirements are not presented in any particular order. There

are many ways of ordering, grouping, and prioritising them; that is a

task left to the creators of SMP templates. As an example, Figure 1

shows how these requirements could be grouped by their focus.

Purpose

User
documentation

Deployment
documentation

Developer
documentation

Risk
analysis

Support/
Resources
(during the

project)

Maintenance

Software
licensing

and
compatibility

CitationRepository

Sotware
Enginering

quality

Testing

Packaging

Version
control

Project management
focus

Enginering Focus

Documentation

18 Pract ica l gu ide to Sof tware Management P lans 19

5.3. SMP rubric

In addition to the SMP template, it is recommended to produce an

“SMP assessment rubric.” Here you give examples of acceptable

responses and unacceptable responses, per question. Rubrics pro-

vide guidance and an opportunity to reach out for support and/or

learn about the subject. It takes effort to make a rubric (because it

must match a template 1:1), but they are very helpful as guidance for

researchers and for SMP evaluators. Examples of rubrics (for data man-

agement plans) can be found in the Science Europe Guide29 and NWO

DMP assessment rubric.30

29 https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-research-data-management/

30 https://zenodo.org/record/3629157#.Yw5o8HZBwuU

5.2. Guidance

Detailed guidance on how to fulfil these requirements may depend on

the specific needs of each research domain or institution. For exam-

ple, each institution may have a specific licensing policy. The following

table provides some useful resources, but it is only meant as a starting

point and it should be adapted to the specific needs of each SMP.

Requirement Reference resources

Version control The Turing Way guide on Version Control

Repository and registries List of software registries,

Software Heritage

Licensing Free Software Foundation,

choosealicence.com and The Turing

Way guides on Software licences and

Licence Compatibility

Citation The Turing Way guide on Software citation

User documentation The eScience Center’s guide on writing

documentation, How to Respond to Code

of Conduct Reports and Code of Conduct

Facilitators

Deployment documentation

Developer documentation

Testing The Turing Way guide on Code testing

Packaging The Turing Way guides on packaging

systems (language specific guidance such

as Python Packages and R Packages) and

containers

Table 2. Reference resources for different SMP requirements.

Other resources:

Cookiecutter Data Science, Productivity and Sustainability Improve-

ment Planning, Five Recommendations for FAIR Software.

https://www.scienceeurope.org/our-resources/practical-guide-to-the-international-alignment-of-resear
https://zenodo.org/record/3629157#.Yw5o8HZBwuU
https://the-turing-way.netlify.app/reproducible-research/vcs.html
https://github.com/NLeSC/awesome-research-software-registries
https://www.softwareheritage.org/howto-archive-and-reference-your-code/
https://www.fsf.org/licensing/
http://choosealicence.com
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-software.html
https://the-turing-way.netlify.app/reproducible-research/licensing/licensing-compatibility.html
https://the-turing-way.netlify.app/communication/citable/citable-cff.html#cm-citable-cff
https://guide.esciencecenter.nl/#/best_practices/documentation
https://guide.esciencecenter.nl/#/best_practices/documentation
https://files.frameshiftconsulting.com/books/cocguide.pdf
https://files.frameshiftconsulting.com/books/cocguide.pdf
https://malvikasharan.github.io/blogs/coc-facilitators/
https://malvikasharan.github.io/blogs/coc-facilitators/
https://the-turing-way.netlify.app/reproducible-research/testing/testing-guidance.html
https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html
https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html
https://py-pkgs.org/
https://r-pkgs.org/
https://drivendata.github.io/cookiecutter-data-science/
https://bssw-psip.github.io/
https://bssw-psip.github.io/
https://fair-software.eu/

20 Pract ica l gu ide to Sof tware Management P lans 21

A software management level consists of a set of the core require-

ments that should be considered when developing a certain type of

software. These requirements can be applicable before, during, and

after the formal software development (project) period. Software man-

agement levels provide a recipe for grouping the core requirements

into subsets and generating an appropriate SMP template. To deter-

mine which set of core requirements are relevant to a software man-

agement level, three important factors should be considered:

1. Purpose. What is the current reason or expected end-use for de-

veloping the software?

2. Reliability. The effect of software failure and/or non-maintenance

on:

• Risk of harm to self or others. This includes injury, privacy

violation, bias, and inappropriate content.

• Reputation. For example to self, institution or other.

• Research, either your own or of others. This effect could be

due to an obvious software failure (“crash”) or a hidden one,

for example, returning inconsistent numerical results on differ-

ent operating systems.

3. Maintenance. The long-term effort needed to maintain the soft-

ware as long as it might be used as a standalone tool or depend-

ency. This includes maintenance functions that can extend beyond

the lifespan of the original development project and includes fixing

bugs, dependency management, operating system compatibility,

and security issues.

Using these factors we define three typical management levels (low,

medium, high) that underlie the software examples (Section 6.2) and

example SMP templates (Section 6.3).

6.1. Using subsets of the core requirements to define
customised SMP templates

In Section 5 we defined a set of core requirements that are important

in the software development process and that can, in principle, be in-

cluded in any SMP. However, software exists in many forms - from sin-

gle purpose scripts to mission critical frameworks - which means that

not all requirements are necessarily applicable to every category of

software. In practice, it might be useful to define SMP templates based

on subsets of the core SMP requirements (Section 5.1). In the following

sections we illustrate how to create such SMP templates using soft-

ware management levels.

6.
Implementation
Examples

22 Pract ica l gu ide to Sof tware Management P lans 23

Core requirement
(Section 5.1)

Example SMP question(s)
(Section 6.1)

Purpose Please provide a brief description of your
software, stating its purpose and intended
audience.

Version control How will you manage versioning of your software?

User documentation How will your software be documented for users?
Please provide a link to the documentation if
available.

Deployment
documentation

How will you document the installation
requirements of your software? Please provide a
link to the installation documentation if available.

Software licencing and
compatibility

What licence will you give your software? Does
your software respect the licences of libraries and
dependencies it uses?

Table 1. Core requirements of an SMP and examples of associated questions for

a low level of software management.

It should be noted that, in practice, each organisation is responsible

for defining its own management levels,31 and as a software project

evolves, so can the management level that applies to it. For a low man-

agement level, organisations could also decide to include the SMP as

part of the DMP template.

6.1.1. Management level: low

Purpose. This software is typically developed for a specific analysis

(e.g. drawing a graph) or one-off project (e.g. practical examples in a

course). The developer is the primary user and it is not intended to be

used beyond a defined period or in a different context.

Reliability. This software is generally smaller in terms of lines of code

and due to its restricted scope the output can easily be judged to be

correct, either visually (the graph looks correct) or basic input/output

testing (it gives an expected output for a defined input). Good software

practices (e.g. version control and user documentation) are highly

recommended.

Maintenance. As this software is not intended to be used by others,

either directly or as a dependency, its influence beyond the scope

for which it was intended is likely small. While measures to enable its

reuse (documentation, versioning, archiving) are appropriate, no addi-

tional maintenance planning is required.

31 Examples of alternative software classifications include the German Aerospace Center’s guidelines https://doi.org/10.5281/zeno-

do.1344611 and Konrad Hinsen’s scientific software stack https://hal.archives-ouvertes.fr/hal-02117588.

https://doi.org/10.5281/zenodo.1344611 and Konrad Hinsen’s scientific software stack https://hal.arc
https://doi.org/10.5281/zenodo.1344611 and Konrad Hinsen’s scientific software stack https://hal.arc

24 Pract ica l gu ide to Sof tware Management P lans 25

Core requirement
(Section 5.1)

Example SMP question(s)
(Section 6.1)

Purpose Please provide a brief description of your
software, stating its purpose and intended
audience.

Version control How will you manage versioning of your software?

Repository How will you make your software publicly
available? If you do not plan to make it publicly
available you should provide a justification.

User documentation How will your software be documented for users?
Please provide a link to the documentation if
available.How will you document your software’s
contribution guidelines and governance structure?

Software licencing and
compatibility

What licence will you give your software? How will
you check that it respects the licences of libraries
and dependencies it uses?

Deployment
documentation

How will the installation requirements of your
software be documented? Please provide a link to
the installation documentation if available.

Citation How will users of your software be able to cite
your software? Please provide a link to your
software citation file (CFF) if available.

Developer
documentation

How will your software be documented for future
developers?

Testing How will your software be tested? Please provide
a link to the (automated) testing results.

Software Engineering
quality

Do you follow specific software quality guidelines?
If yes, which ones?

Packaging How will your software be packaged and
distributed? Please provide a link to available
packaging information (e.g. entry in a packaging
registry, if available).

Maintenance How do you plan to procure long term
maintenance of your software?

Table 2. Core requirements of an SMP and examples of associated questions

for a medium level of software management.

6.1.2. Management level: medium

Purpose. Software of this level is typically developed as part of a re-

search project or is the primary output of a research project. Although

usually developed for a single purpose, it incorporates functionality

that may be of use to others, either as a standalone tool, library, or

module in an existing tool.

Reliability. This software may have a direct influence on other re-

searchers (e.g. project, research group) and/or software even if this

was not the primary intention when it was conceptualised. As the

software is more complicated and/or larger, in terms of lines of code,

than those in the lower management level, good software practices

such as version control using a system such as Git and user/technical

documentation is essential here. More advanced requirements, such

as code auditing, automated testing of major functionality, software

packaging, and distribution also need to be considered.

Maintenance. This software’s functionality is useful to researchers both

in and outside the project, making it suitable for distribution. It will

have a lifespan longer than the project in which it was developed and

therefore long-term sustainability becomes more important. Software

management requirements for this level include providing information

on software archiving and citation as well as strategies for post-project

maintenance and support.

26 Pract ica l gu ide to Sof tware Management P lans 27

Core requirement
(Section 5.1)

Example SMP question(s)
(Section 6.1)

Purpose Please provide a brief description of your
software, stating its purpose and intended
audience.

Version control How will you manage versioning of your software?

Repository How will you make your software publicly
available? If you do not plan to make it publicly
available, you should provide a justification.

User documentation How will your software be documented for users?
Please provide a link to the documentation if
available. How will you document your software’s
contribution guidelines and governance structure?

Software licencing and
compatibility

What type of licence will your software have?
How will you check that it respects the licences of
libraries and dependencies it uses?

Deployment
documentation

How will the installation requirements of your
software be documented? Please provide a link
to the installation documentation if available. This
documentation should include a complete and
unambiguous description of dependencies to
other software, datasets, and hardware.

Citation How will users of your software be able to cite
your software? Please provide a link to your
software citation file (CFF) if available.

Developer
documentation

How will your software be documented for future
developers?

Testing How will your software be tested? Please provide
a link to automated testing results

Software Engineering
quality

Do you use a software quality checklist, such as
https://bestpractices.coreinfrastructure.org/en or
equivalent?

Packaging How will your software be packaged and
distributed? Please provide a link to available
packaging information (e.g. entry in a packaging
registry, if available).

6.1.3. Management level: high

Purpose. There are various types of software that require a high level

of management, for example software developed and distributed for

users other than the developers or software that has a direct (or sys-

tematic) impact on something it interacts with. For instance, research

results could be directly affected by the functioning of simulation

software or training of machine learning models while physical effects

could occur from the use of medical or engineering control software.

Reliability. As software of this level was designed, or has evolved, to

be “mission critical,” reliability is of utmost importance. All possible

actions should be taken to ensure reliability, which includes soft-

ware architecture design, code standards, the use of comprehensive

cross-platform automated unit and functional testing frameworks,

dependency management, and code auditing. In addition, legal

development requirements, such as traceability, right to use, right to

inspect, right to distribute, etc., and process documentation should be

implemented as required (for example, software medical devices may

require ISO or EC certified management processes).

Maintenance. There is no defined maintenance period associated with

this class of software as it must be maintained as long as it is in use.

In order to maintain a high level of reliability, maintenance strategies,

including funding and/or community development plans, should be in

place. Build and release pipelines should be implemented so that not

only source code availability but compiled software is maintained on

evolving software/hardware platforms, OS, CPU, GPU etc.

28 Pract ica l gu ide to Sof tware Management P lans 29

6.1.4. Summary of SMP templates developed for three management
levels

Core requirement
(Section 5.1)

Software management level
(Section 6.1)

Management
level: Low

(6.1.1)

Management
level: Medium

(6.1.2)

Management
level: High

(6.1.3)

Purpose ✕ ✕ ✕

Version control ✕ ✕ ✕

Repository ✕ ✕

User documentation ✕ ✕

Software licencing and
compatibility

✕ ✕

Deployment documen-
tation

✕ ✕

Citation ✕ ✕

Developer documen-
tation

✕ ✕

Testing ✕ ✕

Software Engineering
quality

✕ ✕

Packaging ✕ ✕

Maintenance ✕ ✕

Support ✕

Risk analysis ✕

Table 4. Core requirements of an SMP for software grouped by management

level.

Maintenance What level of support will be provided for users
of the software and how will this support be
organised?

Support How do you plan to procure long term
maintenance of your software?

Risk analysis Describe the main external factors that should
be considered by developers and users of the
software. These could include data privacy,
information security, etc.

Table 3. Core requirements of an SMP and examples of associated questions
for a high level software management.

30 Pract ica l gu ide to Sof tware Management P lans 31

6.3. SMP templates generated for three software ma-
nagement levels

This section contains examples of SMP templates that match the

software management levels defined in Section 6.1. These templates

should be adjusted to match the specific needs of an organisation

using this guide.

6.3.1. Sample SMP template for Management level: low

This SMP template is for software with low management level.

1. Please provide a brief description of your software, stating its pur-

pose and intended audience.

2. How will you manage versioning of your software?

3. How will your software be documented for users? Please provide a

link to the documentation if available.

4. How will you document the installation requirements of your soft-

ware? Please provide a link to the installation documentation if

available.

5. What type of licence will your software have?

6. Does your software respect the licences of libraries and depend-

encies it uses?

6.3.2. Sample SMP template for Management level: medium

This SMP template is for software with medium management level.

1. Please provide a brief description of your software, stating its pur-

pose and intended audience.

2. How will you manage versioning of your software?

3. How will you make your software publicly available? If you do not

plan to make it publicly available you should provide a justification.

6.2. Types of software that require different levels of
management

This section gives examples of software types and groups them ac-

cording to the software management levels as defined in Section 6.1.

6.2.1. Software that requires low level management

• A script that is used to create and format a single figure for a publi-
cation, for example, when using a plotting package such as ggplot2
(R) or Matplotlib (Python).

• Software written as part of a project to automate an administrative
or routine process, e.g. monitoring a process or generating docu-
ment templates.

• Software written specifically for the analysis of a single experiment,
data processing, and presentation of its results.32

6.2.2. Software that requires medium level management

• Software that implements a new or higher performance algorithm
and can be applied to different input data.

• Simulation software that implements one or more models and/or
numerical methods, e.g. computational fluid dynamics, chemical in-
teractions, planetary evolution, partial differential equation solvers,
numerical integration, etc.

6.2.3. Software that requires high level management software

• Software used in production on which an institute, department, or
instrument depends on for their operation, e.g. software that is used
for pre-processing all data coming from a particular telescope.

• Software that cannot be rewritten during a project’s lifetime. If one
requires functionality from high-impact software, replacing it may
threaten a project.

32 If this is a pipeline usable by others for different experiments it likely requires medium level management.

32 Pract ica l gu ide to Sof tware Management P lans 33

plan to make it publicly available you should provide a justification.

4. How will your software be documented for users? Please provide a

link to the documentation if available.

5. How will contribution guidelines and governance structure of your

software be documented?

6. What licence will your software have? Please provide a valid SP-

DX-Licence-Identifier.

7. How will the installation requirements of your software be docu-

mented? Please provide a link to the installation documentation if

available.

8. How will users of your software be able to cite your software?

Please provide a link to your software citation file (CFF) if available.

9. How will your software be documented for future developers?

10. How will your software be tested? Please provide a link to auto-

mated testing results.

11. How will you check that it respects the licences of libraries and

dependencies it uses?

12. How will your software be packaged and distributed? Please

provide a link to available packaging information (e.g. entry in a

packaging registry, if available).

13. What level of support will be provided for users of the software

and how will this support be organised?

14. How do you plan to procure long term maintenance of your soft-

ware?

15. Describe the main external factors that should be considered by

developers and users of the software. These could include data

privacy, information security, etc.

4. How will your software be documented for users? Please provide a

link to the documentation if available.

5. How will you document your software’s contribution guidelines and

governance structure?

6. What licence will your software have?

7. How will the installation requirements of your software be docu-

mented? Please provide a link to the installation documentation if

available.

8. How will users of your software be able to cite your software?

Please provide a link to your software citation file (CFF) if available.

9. How will your software be documented for future developers?

10. How will your software be tested? Please provide a link to the

automated testing results.

11. How will you check that your software respects the licences of

libraries and dependencies it uses?

12. How will your software be packaged and distributed? Please

provide a link to available packaging information (e.g. entry in a

packaging registry, if available).

13. How do you plan to procure long term maintenance of your soft-

ware?

6.3.3. Sample SMP template for Management level: high

This SMP template is for software with a high management level.

1. Please provide a brief description of your software, stating its pur-

pose and intended audience.

2. How will you manage versioning of your software?

3. How will you make your software publicly available? If you do not

34 Pract ica l gu ide to Sof tware Management P lans 35

The authors would also like to thank the members of the Sounding

Board:

• Anton Akhmerov, TU Delft (https://orcid.org/0000-0001-8031-1340)

• Zoé Ancion, Agence Nationale de la Recherche
(https://orcid.org/0000-0002-6554-8179)

• Jonathan de Bruin, Utrecht University
(https://orcid.org/0000-0002-4297-0502)

• Antica Culina, Ruder Boskovic Institute (IRB) and NIOO-KNAW
(https://orcid.org/0000-0003-2910-8085)

• Christopher Erdmann, American Geophysical Union (AGU)
(https://orcid.org/0000-0003-2554-180X)

• Marjan Grootveld, DANS
(https://orcid.org/0000-0002-2789-322X)

• Fotis E. Psomopoulos, Institute of Applied Biosciences (INAB), Cen-
ter for Research and Technology Hellas (CERTH)
(https://orcid.org/0000-0002-0222-4273)

• Vera Sarkol, CWI (https://orcid.org/0000-0002-8950-3178)

• Caspar Martijn van Leeuwen, SURF
(https://orcid.org/0000-0003-4407-6675)

• Jurgen J. Vinju, CWI and TU Eindhoven
(https://orcid.org/0000-0002-2686-7409)

And everyone who provided input during the consultation rounds: Ablikim
Abudukerim, Renato Alves, Heather Andrews, Jisk Attema, Sandrine Auzoux,
Marianna Avetisyan, Celine Barthelemy, Burcu Beygu, Celine Blitz Frayret, Loek
Brinkman, Hugo Buddelmeijer, Jael Castro, Pascal de Boer, Gerco de Jager, Rick
de Klerk, Jelle de Plaa, Martine de Vos, Fares Dhane, Andrea Frielink-Loing,
Manuel Garcia, Emilio Garcia , Olga Giraldo, Pieter Willem Groen, David Groep,
Patricia Herterich, Maarten Hijzelendoorn, Tom Honeyman, Rob Hooft, Dorien
Huijser, Matus Kalas, Daniel Katz, Adam Kewley, Maurits Kok, Jacko Koster, Arina
Kudriavtseva, Frank Loeffler, Pablo Lopez-Tarifa, Bora Lushaj, Jason Maassen,
Sjoerd Manger, Mattia Mazzucchelli, Margriet Miedema, Jurgen Moers, Neha
Moopen, Elisa Yumi Nakagawa, Raymond Oonk, Robert Oostenveld, Esther
Plomp, Reinder Radersma, David Rogers, Jacob Rousseau, Dan Ruddman,
Vera Sarkol, Douwe Schulte, Anita Schürch, Hugh Shanahan, Russell Shipman,
Sandor Spruit, Alexander Struck, Jan van den Brand, Richard van Hees, Vera
van Noort, Petra van Overveld, Peter Verhaar and Qian Zhang

Acknowledgements
This guide is the result of a joint initiative by the Netherlands eScience

Center and the Dutch Research Council (NWO) to develop (national)

guidelines for software management plans (SMPs). Over the course

of 2022, a working group composed of experts in research software,

representing different research organisations in the Netherlands, de-

veloped the guidelines. An international sounding board, representing

national and international stakeholders in research software, provided

input to the working group throughout the process of creating the

guidelines. The working group also received input from the wider re-

search community via a workshop and an open consultation round.

Working Group members
• Carlos Martinez-Ortiz, Netherlands eScience Center

(https://orcid.org/0000-0001-5565-7577)

• Paula Martinez Lavanchy, TU Delft
(https://orcid.org/0000-0003-1448-0917)

• James Meakin, RadboudUMC

• Brett G. Olivier, Vrije Universiteit Amsterdam
(https://orcid.org/0000-0002-5293-5321)

• Laurents Sesink, Centre for Digital Scholarship, Leiden University
(https://orcid.org/0000-0001-7880-5413)

Working Group coordinators
• Maaike de Jong, Netherlands eScience Center

(https://orcid.org/0000-0003-4803-7411)

• Maria Cruz, NWO (https://orcid.org/0000-0001-9111-182X)

https://orcid.org/0000-0001-8031-1340
https://orcid.org/0000-0002-6554-8179
https://orcid.org/0000-0002-4297-0502
https://orcid.org/0000-0003-2910-8085
https://orcid.org/0000-0003-2554-180X
https://orcid.org/0000-0002-2789-322X
https://orcid.org/0000-0002-0222-4273
https://orcid.org/0000-0002-8950-3178
https://orcid.org/0000-0003-4407-6675
https://orcid.org/0000-0002-2686-7409
https://orcid.org/0000-0001-5565-7577
https://orcid.org/0000-0003-1448-0917
https://orcid.org/0000-0002-5293-5321
https://orcid.org/0000-0001-7880-5413
https://orcid.org/0000-0003-4803-7411
https://orcid.org/0000-0001-9111-182X

DOI: 10.5281/zenodo.7038280

This work is licensed Creative Commons Attribution 4.0 International.

https://zenodo.org/record/7185371#.Y1e4m-zP1qs

	1.
	About this Document
	2.
	Introduction
	2.1. Research software supports Open Science

	3.
	What is Research Software?
	4.
	Benefits of a
	Software Management Plan
	5.
	Core Requirements for Developing a Software Management Plan
	5.2. Guidance
	5.3. SMP rubric

	6.
	Implementation Examples
	6.2. Types of software that require different levels of management
	6.3. SMP templates generated for three software management levels

	Acknowledgements

