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Motivation

Most real (e.g. biological) complex systems are formed or modelled by elementary objects that 
locally interact with each other. Local properties can often be measured, assessed or partially 
observed. On the other hand, global properties that stem from these local interactions are 
difficult to comprehend. It is now acknowledged that a mathematical modelling is an adequate 
framework to understand, be able to control or to predict the behaviour of  complex systems, 
such as gene regulatory networks or contact networks in epidemiology. More precisely, graphical 
models (GM), which are formed by variables bound to their interactors by deterministic or 
stochastic relationships, allow researchers to model possibly high-dimensional heterogeneous 
data and to capture uncertainty. Analysis, optimal control, inference or prediction about 
complex systems benefit from the formalisation proposed by GM. To achieve such tasks, a key 
factor is to be able to answer general queries: what is the probability to observe such event in 
this situation ? Which model best represents my data ? What is the most acceptable solution to 
a query of  interest that satisfies a list of  given constraints ? Often, an exact resolution cannot 
be achieved either because of  computational limits, or because of  the intractability of  the 
problem.

Objective

The aim of  this workshop is to bridge the gap between Statistics and Artificial Intelligence 
communities where approximate inference methods for GM are developped.  We are primarily 
interested in algorithmic aspects of  probabilistic (e.g. Markov random fields, Bayesian 
networks, influence diagrams), deterministic (e.g. Constraint Satisfaction Problems, SAT, 
weighted variants, Generalized Additive Independence models) or hybrid (e.g. Markov logic 
networks) models. We expect both (i) reviews that analyze similarities and differences betwen 
approaches developped by computer scientists and statisticians in these areas, and (ii) original 
papers that propose new algorithms and show their performance on data sets as compared to 
state-of-the-art methods.
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Researchers from the fields of  Machine Learning, Constraint satisfaction and optimisation, 
decision theory, Probability and Statistics
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Provisional Program

• 9h15 Workshop introduction

• 9h30 – 10h30 Invited talk: J. Larrosa and E. Rollon. Algorithms for Graphical 
Models: Mapping the global picture.

• 10h30 – 11h00 break

• 11h00 – 11h30 D. Allouche, C. Bessiere, P. Boizumault, S. de Givry, P. Gutierrez, S. 
Loudni, JP. Metivier, T. Schiex. Filtering Decomposable Global Cost Functions

• 11h30 - 12h00 J. Larrosa and E. Rollon. Improved Bounded Max-Sum for 
Distributed Constraint Optimization

• 12h00 – 12h30 W. Probert, E. McDonald-Madden, N. Peyrard, R. 
Sabbadin. Computational issues surrounding the dynamic optimisation of  
management of  an ecological food web

• 12h30 – 14h00 lunch break

• 14h00 – 15h00 Invited talk: A. Globerson. Linear Programming Relaxations for 
Graphical Models - Learning and Inference

• 15h00 – 15h30 J. Cussens.An upper bound for BDeu local scores

• 15h30 - 15h45 break

• 15h45 – 16h15 J. Vandel, B. Mangin, S. de Givry. New local move operators for 
learning the structure of  Bayesian networks

• 16h15 – 16h45 P. Zhang, F. Krzakala, J. Reichardt and L. Zdeborova. Comparative 
Study for Inference of  Hidden Classes in Stochastic Block Models 

http://carlit.toulouse.inra.fr/wikiz/images/6/69/CussensAIGM12_final.pdf
http://carlit.toulouse.inra.fr/wikiz/images/e/e1/Probert_ecai2012.pdf
http://carlit.toulouse.inra.fr/wikiz/images/e/e1/Probert_ecai2012.pdf
http://carlit.toulouse.inra.fr/wikiz/images/e/e6/ZdeborovaAIGM12_final.pdf
http://carlit.toulouse.inra.fr/wikiz/images/e/e6/ZdeborovaAIGM12_final.pdf
http://carlit.toulouse.inra.fr/wikiz/images/8/83/VandelAIGM12.pdf
http://carlit.toulouse.inra.fr/wikiz/images/8/83/VandelAIGM12.pdf
http://carlit.toulouse.inra.fr/wikiz/images/e/e7/Ibms.pdf
http://carlit.toulouse.inra.fr/wikiz/images/e/e7/Ibms.pdf
http://carlit.toulouse.inra.fr/wikiz/images/b/b5/Thomas_final.pdf


Invited talks

Javier Larrosa and Emma Rollon: 
Algorithms for Graphical Models: Mapping the global picture.

Abstract: several fields of  research can be cast into the general framework of  Graphical 
Models. Independent research in the different fields have often developed similar ideas. 
However, this similarity is often hard to realize because of  each field semantics, notation, 
etc. The purpose of  this tutorial is to describe the main common algorithmic techniques 
in the most general terms. We expect that it will facilitate researchers from different 
specific fields to realize where "their" techniques fit and how to benefit from similar ideas 
from different fields. We will do our best to describe general algorithms using standard 
text-books language (e.g. dynamic programming, memoization, greedy algorithms, 
relaxation, etc) and avoiding domain-specific one (e.g. inference, consistency 
enforcement, case-based reasoning, etc). More specific algorithms, mainly from Weighted 
CSPs and Max-SAT, will subsequently described.

Amir Globerson
Linear Programming Relaxations for Graphical Models - Learning and Inference

Abstract: Many probabilistic modeling tasks rely on solving challenging inference 
problems. These combinatorial problems arise, e.g., in predicting likely values for 
variables as in selecting and orienting residues in protein design, parsing in natural 
language processing, or when learning the model structure itself. In many cases, the 
inference problems involve densely connected variables (or higher order dependences) and 
are provably hard. However, recent research has shown that some of  these difficulties 
can be overcome by a careful choice of  approximation schemes and learning algorithms. 
These have yielded very encouraging results in wide array of  fields, from machine vision 
and natural language processing to computational biology and signal processing. The 
tutorial will focus on linear programming (LP) relaxations which have been particularly 
successful in solving inference problems. Intuitively, LP relaxations decompose a 
complex problem into a set of  simpler subproblems that are subsequently encouraged to 
agree. If  the subproblems agree about a solution, then the solution is the optimal one, 
otherwise it is fractional. Geometrically, the relaxation maintains an outer bound 
approximation to a polytope whose vertexes correspond to valid solutions. I will 
introduce and explain key ideas behind recent approaches, discuss when they can and 
cannot be applied, how they can be integrated into supervised learning schemes and 
what efficient message passing algorithms exist for solving them. Examples from several 
applications will be provided, including computational biology, natural language 
processing, and structure learning.

http://www.cs.huji.ac.il/~gamir/
http://www.lsi.upc.edu/~erollon/joomla/
http://www.lsi.upc.edu/~larrosa/
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Abstract.

As [18] have shown, weighted constraint satisfaction problems
can benefit from the introduction of global cost functions, lead-
ing to a new Cost Function Programming paradigm. In this
paper, we explore the possibility of decomposing global cost
functions in such a way that enforcing soft local consistencies
on the decomposition achieves the same level of consistency
on the original global cost function. We give conditions under
which directional and virtual arc consistency offer such guaran-
tees. We conclude by experiments on decomposable cost func-
tions showing that decompositions may be very useful to easily
integrate efficient global cost functions in solvers.

Introduction
Graphical model processing is a central problem in artificial intel-
ligence. The optimization of the combined cost of local cost func-
tions, central in the valued/weighted constraint satisfaction problem
frameworks [24] federates a variety of famous problems including
CSP, SAT, Max-SAT, but also the Maximum A posteriori Problem
(MAP) in Random Markov fields, the Maximum Probability Expla-
nation (MPE) problem in Bayes nets [14] and polynomial pseudo-
Boolean optimization [6]. It has applications in resource allocation
or bioinformatics.

The main approach to solve such problems in the most general sit-
uation relies on Branch and Bound combined with dedicated lower
bounds for pruning. Such lower bounds can be provided by enforc-
ing soft local consistencies [7], as in Constraint Programming (CP)
solvers. CP solvers are also equipped with global constraints which
are crucial for solving large difficult problems. Dedicated algorithms
for filtering such constraints have been introduced. For some global
constraints such as REGULAR, CONTIGUITY, AMONG, it has been
shown that a decomposition into a Berge-acyclic network of fixed ar-
ity constraints can lead to simpler implementation, without any loss
in efficiency or effectiveness in filtering [2, 4].

The notion of global constraints has been recently extended to
weighted CSP, defining Global Cost Functions [27, 18] with asso-
ciated efficient filtering algorithms. In this paper, after some prelim-
inaries, we define cost function decomposition and show how de-
composable global constraints can be softened in families of decom-
posable global cost functions with the same decomposition structure.
For Berge-acyclic decomposable global cost functions, we show that

1 This work has been funded by the “Agence nationale de la Recherche”,
reference ANR-10-BLA-0214.

enforcing directional arc consistency or virtual arc consistency on
the decomposition is essentially equivalent to a direct application on
the original global cost function. Finally, we experimentally compare
the efficiency of decomposed and monolithic versions of different
global cost functions and observe important speedups using decom-
positions.

1 Preliminaries

1.1 Cost function network.

A Cost Function Network (CFN) is a pair (X,W ) where X =
{1, . . . , n} is a set of n variables and W is a set of cost functions.
Each variable i ∈ X has a finite domain Di of values that can be as-
signed to it. A value a inDi is denoted (i, a). The maximum domain
size is d. For a set of variables S ⊆ X , DS denotes the Cartesian
product of the domains of the variables in S. For a given tuple of
values t, t[S] denotes the projection of t over S. A cost function
wS ∈W , with scope S ⊆ X , is a function wS : DS 7→ [0, k] where
k is a maximum integer cost (finite or not) used to represent forbid-
den assignments (expressing hard constraints). To faithfully capture
hard constraints, costs are combined using the bounded addition de-
fined by α ⊕ β = min(k, α + β). In this paper, a hard constraint
is therefore represented as a cost function using only costs in {0, k}.
If ∀t ∈ DS , zS(t) ≤ wS(t), we say that the cost function zS is a
relaxation of wS , denoted by zS ≤ wS . A cost β may be subtracted
from a larger cost α using the operation 	 where α 	 β is (α − β)
if α 6= k and k otherwise. Without loss of generality, we assume that
every network contains one unary cost function wi per variable and
a 0-arity (constant) cost function w∅.

The central problem in CFN is to find an optimal solution:
a complete assignment t minimizing the combined cost function⊕

wS∈W
wS(t[S]). This optimization problem has an associated

NP-complete decision problem and restrictions to Boolean variables
and binary constraints are known to be APX-hard [20].

A Constraint Network (CN) is a CFN where all cost functions are
hard constraints (i.e., only using costs in {0, k}). Such cost functions
are simply called constraints.

1.2 Local consistency.

Algorithms searching for solutions in CNs usually enforce local con-
sistency properties to reduce the search space. In CNs, the standard
level of local consistency is generalized arc consistency (GAC). A



constraint cS is GAC iff every value in the domain of every vari-
able in S has a support on cS , where a support on cS is a tuple
t ∈ DS such that cS(t) = 0. Enforcing GAC on cS will often be
called filtering cS . General exact methods for solving the minimiza-
tion problem in CFNs usually rely on branch and bound algorithms
equipped with dedicated lower bounds. We consider here the incre-
mental lower bounds provided by maintaining soft local consisten-
cies such as directed arc consistency (DAC) [8, 17] and virtual arc
consistency (VAC) [7].

1.3 Global cost function.

A global constraint c(S, θ) is a family of constraints with a pre-
cise semantics parameterized by the set of variables S involved and
possible extra parameters represented as θ. Global constraints usu-
ally have efficient associated local consistency enforcing algorithm
(compared to generic filtering algorithms). Global constraints have
been extended to define soft global constraints such as SOFTALLD-
IFF(S) [22] or SOFTREGULAR(S,A, d) [26]).

These ”soft” global constraints are in fact hard global constraints
including one auxiliary variable in their scope representing the
amount of violation of the assignment of the original variables. This
amount of violation depends on the semantics of violation used for
the softening of that global constraint. For several such constraints,
efficient dedicated algorithms for enforcing GAC have been pro-
posed.

Recently, different papers [27, 18] have shown that it is possible to
define soft global constraints as parameterized cost functions z(S, θ)
directly providing the cost of an assignment. This approach allows
to directly enforce soft local consistencies with dedicated algorithms
providing stronger lower bounds. Indeed, compared to the previous
cost variable based approach using constraints and GAC, cost func-
tions and soft local consistencies offer improved filtering, thanks to
the enhanced communication between cost functions enabled by the
use of Equivalence Preserving Transformations [9].

1.4 Hypergraph.

The hypergraph of a CFN (or CN) (X,W ) has one vertex per vari-
able i ∈ X and one hyperedge per scope S such that ∃wS ∈ W .
We consider CFNs with connected hypergraphs. The incidence graph
of an hypergraph (X,H) is a graph G = (X ∪ H,H ′) where
{xi, ej} ∈ H ′ iff xi ∈ X, ej ∈ H and xi belongs to the hyperedge
ej . An hypergraph (X,H) is Berge acyclic iff its incidence graph is
acyclic.

2 Decomposing Global Cost Functions

Some global constraints may be efficiently decomposed into a logi-
cally equivalent subnetwork of constraints of bounded arities [5, 3].
Similarly, global cost functions may be decomposed into a set of
bounded arity cost functions. Notice that the definition below applies
to any cost function, including constraints (cost functions using only
costs in {0, k}).

Definition 1 A decomposition of a global cost function z(T, θ)
is a polynomial transformation δp (p being an integer that
bounds arity) that returns a CFN δp(T, θ) = (T ∪ E,F )
such that ∀wS ∈ F, |S| ≤ p and ∀t ∈ DT , z(T, θ)(t) =
mint′∈DT∪E ,t′[T ]=t

⊕
wS∈F

wS(t′[S]).

We assume, w.l.o.g, that every auxiliary variable i ∈ E is in-
volved in at least two cost functions in the decomposition.2 Clearly,
if z(T, θ) appears in a CFN P = (X,W ) and decomposes into
(T ∪E,F ), then the optimal solutions of P can directly be obtained
by projecting the optimal solutions of the CFN P ′ = (X ∪ E,W \
{z(T, θ)} ∪ F ) on X .

Example Consider the ALLDIFF(S) constraint and its associated
softened variant SOFTALLDIFF(S, dec) using the decomposition
measure [22] where the cost of an assignment is the number of pairs
of variables taking the same value. It is well known that ALLDIFF de-
composes in a set of n.(n−1)

2
binary difference constraints. Similarly,

the SOFTALLDIFF(S, dec) cost functioncan be decomposed in a set
of n.(n−1)

2
soft difference cost functions. A soft difference cost func-

tion takes cost 1 iff the two involved variables have the same value
and 0 otherwise. In these cases, no auxiliary variable is required. No-
tice that the two decompositions have the same hypergraph structure.

2.1 Softening Decomposable Global Constraints
We now show that there is a systematic way of deriving decompos-
able cost functions as specific relaxations of existing decomposable
global constraints.

As the previous ALLDIFF example showed, if we consider a de-
composable global constraint, it is possible to define a softened de-
composable global cost function by relaxing every constraint in the
decomposition.

Theorem 1 Let c(T, θ) be a global constraint that de-
composes in a constraint network (T ∪ E,C) and fθ
a function that maps every cS ∈ C to a cost function
wS such that wS ≤ cS . Then the global cost function
w(T, fθ)(t) = mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C

fθ(cS)(t′[S]) is a
relaxation of c(T, θ).

Proof For any tuple t ∈ DT , if c(T, θ)(t) = 0, then
mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C

cS(t′[S]) = 0 because (T ∪ E,C) is
a decomposition of c(T, θ). Let t′ ∈ DT∪E be the tuple where this
minimum is reached. This implies that ∀cS ∈ C, cS(t′[S]) = 0.
Since fθ(cS) is a relaxation of cS , this implies that fθ(cS)(t′[S]) =
0 too. Therefore

⊕
cS∈C

fθ(cS)(t′[S]) = 0 and w(T, fθ)(t) = 0.
�

By definition, the global cost function w(T, fθ) is decomposable
in (T ∪E,W ) whereW is obtained by mapping fθ on every element
of C. Notice that, since fθ preserves scopes, the hypergraph of the
decomposition is preserved.

This result allows to immediately derive a long list of decom-
positions for global cost functions from existing decompositions
of global constraints such as ALLDIFF, REGULAR, GRAMMAR,
AMONG, STRETCH. The parameterization through fθ allows a lot
of flexibility.

Consider the ALLDIFF(V ) constraint decomposed into a clique
of binary differences. From a graph G = (V,H), one can define
a relaxation function fG that preserves difference constraints i 6=
j when (i, j) ∈ H but otherwise relaxes them to a constant cost
function that is always equal to zero. This gives rise to a global cost
functionw(V, fG) that captures the graph coloring problem onG, an

2 Otherwise, such a variable can be removed by variable elimination: remove
i from E and replace the wS involving i by the cost function mini wS on
S \ {i}. This preserves Berge-acyclicity.



NP-hard problem. Thus, enforcing DAC or VAC on that single global
cost function will be intractable as well, whereas enforcing DAC or
VAC on its decomposition into binary cost functions will obviously
be polynomial but will hinder the level of filtering achieved.

Consider the REGULAR({X1, . . . , Xn},A) global constraint, de-
fined by a finite automaton A = (Q,Σ, δ, q0, F ) where Q is a
set of states, Σ the emission alphabet, δ a transition function from
Σ × Q → 2Q, q0 the initial state and F the set of final states.
As shown in [4], this constraint decomposes into a constraint net-
work ({X1, . . . , Xn}∪{Q0, . . . , Qn}, C) where the auxiliary vari-
ables Qi have Q as their domain. The set of constraints C in
the decomposition contains two unary constraints restricting Q0 to
{q0} and Qn to F and a sequence of identical ternary constraints
c{Qi,Xi+1,Qi+1} which allows a triple (q, s, q′) iff q′ ∈ δ(q, s),
thus capturing δ. An arbitrary relaxation of this decomposition may
relax each of these constraints. The unary constraints on Q0 and
Qn would be replaced by unary cost functions λQ0 and ρQn stat-
ing the cost for using every state as either an initial or final state
while the ternary constraints would be relaxed to ternary cost func-
tions σ{Qi,Xi+1,Qi+1} stating the cost for using any (q, s, q′) transi-
tion. This relaxation precisely corresponds to the use of a weighted
automaton A = (Q,Σ, λ, σ, ρ) [11]. The cost of an assignment in
the decomposition is equal, by definition, to the cost of an optimal
parse of the assignment by the weighted automaton. This defines a
WEIGHTEDREGULAR({X1, . . . , Xn},A) global cost function. As
shown in [13], a weighted automaton can encode the Hamming and
Edit distances to the language of a classical automaton. Contrary to
the ALLDIFF example, we will see that WEIGHTEDREGULAR de-
composition can be handled efficiently and effectively by soft local
consistencies.

3 Local Consistency and Decompositions

The use of decompositions instead of their monolithic variant has
both advantages and drawbacks. Thanks to local reasoning, a decom-
position may be filtered more efficiently but this may also hinder the
level of filtering achieved. In classical CSP, it is known that if the
decomposition is Berge-acyclic, then enforcing GAC on the decom-
position enforces GAC on the global constraint itself [1]. We show
that a similar result can be obtained for cost functions using either
DAC or VAC.

DAC has been originally introduced on binary cost functions us-
ing the notion of full support [7]. For a cost function wS , a tu-
ple t ∈ DS is a full support for a value (i, a) of i ∈ S iff
wi(a) = wS(t)

⊕
j∈S wj(t[j]). Notice that either wi(a) = k and

(i, a) does not participate in any solution or wi(a) < k and there-
fore wS(t)

⊕
j∈S,j 6=i wj(t[j]) = 0. DAC has been extended to non

binary cost functions in [23] and [19] with different definitions that
coincide on binary cost functions. In this paper, we use a simple ex-
tension called T-DAC (for terminal DAC). Given a total order ≺ on
variables, a CFN is said to be T-DAC w.r.t.≺ iff for any cost function
wS , any value (i, a) of the maximum variable i ∈ S according to ≺
has a full support on wS .

VAC is a more recent local consistency property that establishes a
link between a CFN P = (X,W ) and a constraint network denoted
as Bool(P ) with the same set X of domain variables and which
contains, for every cost function wS ∈ W, |S| > 0, a constraint
cS with the same scope which forbids any tuple t ∈ DS such that
wS(t) 6= 0. A CFN P is said to be VAC iff the arc consistent closure
of the constraint network Bool(P ) is non empty [7].

3.1 Enforcing soft local consistencies

Enforcing such soft local consistencies relies on arc level Equiva-
lence Preserving Transformations (EPTs) which apply to one cost
function wS [9]. Instead of deleting domain values, EPTs shift costs
between wS and the unary constraints wi, i ∈ S and therefore oper-
ate on a sub-network of P defined by wS and denoted asNP (wS) =
(S, {wS} ∪ {wi}i∈S). The main EPT is described as Algorithm 1.
This EPT shifts an amount of cost |α| between the unary cost func-
tion wi and the cost function wS . The direction of the cost move is
given by the sign of α. The precondition guarantees that costs remain
non negative in the resulting equivalent network.

Algorithm 1: A cost shifting EPT used to enforce soft arc con-
sistencies. The ⊕,	 operations are extended to handle possibly
negative costs as follows: for non negative costs α, β, we have
α	 (−β) = α⊕ β and for β ≤ α, α⊕ (−β) = α	 β.

Precondition: −wi(a) ≤ α ≤ mint∈DS ,t[i]=a wS(t);1

Procedure Project(wS , i, a, α)2
wi(a)← wi(a)⊕ α;3

foreach (t ∈ DS such that t[i] = a) do4
wS(t)← wS(t)	 α;5

To enforce T-DAC on a cost function wS , it suffices to first
shift the cost of every unary cost function wi, i ∈ S inside
wS by applying Project(wS , i, a,−wi(a)) for every value a ∈
Di. Let j be the maximum variable in S according to ≺, one
can then apply Project(wS , j, b, α) for every value (j, b) and
α = mint∈DS ,t[j]=b wS(t). Let t be a tuple where this min-
imum is reached. t is then a full support for (j, b): wj(b) =
wS(t)

⊕
i∈S wi(t[i]). This support can only be broken if for some

unary cost functions wi, i ∈ S, i 6= j, wi(a) increases for some
value (i, a).

To enforce T-DAC on a complete CFN (X,W ), one can simply
sort W according to ≺ and apply the previous process on each cost
function, successively. When a cost function wS is processed, all the
cost functions whose maximum variable appears before the maxi-
mum variable of S have already been processed which guarantees
that none of the established full supports will be broken in the future.
Enforcing T-DAC is therefore inO(edr) in time, where e = |W | and
r = maxwS∈W |S| . Using the ∆ data-structures introduced in [7],
space can be reduced to O(edr).

The most efficient algorithms for enforcing VAC enforces an ap-
proximation of VAC called VACε with a time complexity inO( ekd

r

ε
)

and a space complexity in O(edr). Alternatively, optimal soft arc
consistency can be used to enforce VAC in O(e6.5d(3r+3.5) logM)
time (where M is the maximum finite cost in the network).

3.2 Berge acyclicity and directional arc consistency

In this section, we show that enforcing T-DAC on a Berge-acyclic de-
composition of a cost function or on the original global cost function
yields the same cost distribution on the last variable and therefore the
same lower bound (obtained by node consistency [16]).

Theorem 2 If a global cost function z(T, θ) decomposes into a
Berge-acyclic CFN N = (T ∪ E,F ) then there is an ordering on
T ∪ E such that the unary cost function win on the last variable in
produced by enforcing T-DAC on the sub-network (T, {z(T, θ)} ∪



{wi}i∈T ) is identical to the unary cost function w′in produced by
enforcing T-DAC on the decompositionN = (T ∪E,F ∪{wi}i∈T ).

Proof Consider the decomposed network N and IN = (T ∪ E ∪
F,EI) its incidence graph. We know that IN is a tree whose ver-
tices are the variables and the cost functions of N . We root IN in a
variable of T . The neighbors (parent and children, if any) of a cost
functions wS are the variables in S. The neighbors of a variable i
are the cost functions involving i. Consider any topological order-
ing of the vertices of IN . This ordering induces a variable ordering
(i1, . . . , in), in ∈ T which is used to enforce T-DAC on N . Notice
that for any cost function wS ∈ F , the parent variable of wS in IN
appears after all the other variables of S.

Consider a value (in, a) of the root. If win(a) = k, then any
complete assignment extending this value has cost win(a). Other-
wise, win(a) < k. Let wS , be any child of in and tS a full support
of (in, a) on wS . We have win(a) = wS(t)

⊕
i∈S wi(t[i]) which

proves that wS(t) = 0 and ∀i ∈ S, i 6= in, wi(t[i]) = 0. IN being
a tree, we can inductively apply the same argument on all the de-
scendants of in until leaves are reached, proving that the assignment
(in, a) can be extended to a complete assignment with cost win(a)
in N . In either case, win(a) is the cost of an optimal extension of
(in, a) in N .

Suppose now that we enforce T-DAC using the previous vari-
able ordering on the undecomposed sub-network (T, {z(T, θ)} ∪
{wi}i∈T ). Let t be a full support of (in, a) on z(T, θ). By definition
win(a) = z(T, θ)

⊕
i∈T wi(t[i]) which proves that win(a) is the

cost of an optimal extension of (in, a) on (T, {z(T, θ)}∪{wi}i∈T ).
By definition of decomposition, and since in 6∈ E, this is equal to
the cost of an optimal extension of (in, a) in N . �

T-DAC has therefore enough power to handle Berge-acyclic de-
compositions without losing any filtering strength, provided a correct
order is used for applying EPTs.

3.3 Berge acyclicity and virtual arc consistency

Virtual Arc Consistency offers a simple and direct link between CNs
and CFNs which allows to directly lift classical CNs properties to
CFNs, under simple conditions.

Theorem 3 In a CFN, if a global cost function z(T, θ) decomposes
into a Berge-acyclic CFN N = (T ∪ E,F ) then enforcing VAC on
either (T, {z(T, θ)}∪{wi}i∈T ) or on (T ∪E,F ∪{wi}i∈T ) yields
the same lower bound w∅.

Proof Enforcing VAC on the CFN P = (T ∪ E,F ∪ {wi}i∈T )
does not modify the set of scopes and yields an equivalent problem
P ′ such thatBool(P ′) is Berge-acyclic, a situation where arc consis-
tency is a decision procedure. We can directly make use of Proposi-
tion 10.5 of [7] which states that if a CFN P is VAC and if Bool(P )
is in a class of CSPs for which arc consistency is a decision proce-
dure, then P has an optimal solution of cost w∅.

Similarly, the network Q = (T, {z(T, θ)} ∪ {wi}i∈T ) contains
just one cost function with arity strictly above 1 andBool(Q) will be
decided by arc consistency. Enforcing VAC will therefore provide a
CFN which also has an optimal solution of cost w∅. The networks P
andQ having the same optimal cost by definition of a decomposition.
�

4 Experimental Results

In this section, we intend to evaluate the practical interest of global
cost function decompositions. Compared to the monolithic cost func-
tion filtering algorithm, these decompositions allow for a simple im-
plementation and will provide effective filtering. But their actual per-
formance needs to be evaluated.

All problems were solved using the CFN solver toulbar2
0.9.53 with pre-processing off (option line -o -e: -f: -dec:
-h: -c: -d: -q:), and a variable assignment and DAC order-
ing compatible with the Berge-acyclic structure of the decomposi-
tions. The dynamic value ordering chooses the existential EAC value
first [15]. No initial upper bound is used. The same level of local con-
sistency (namely (weak) EDGAC*, stronger than T-DAC and which
therefore will produce an optimal w∅ for every global cost function)
was used in all cases. All the experiments were run using several 2.66
Ghz Intel Xeon CPU cores with 64GB RAM.

4.1 Random WEIGHTEDREGULAR

Following [21], we generated random automata with |Q| states
and |Σ| symbols. We randomly selected 30% of all possible pairs
(s, qi) ∈ Σ × Q and randomly chose a state qj ∈ Q to form a tran-
sition δ(s, qi) = qj for each such pair. The set of final states F is
obtained by randomly selecting 50% of states in Q. Random sam-
pling uses a uniform distribution.

From each automaton, we built two CFNs: one using a mono-
lithic SOFTREGULAR cost function using Hamming distance [19]
and another using the Berge-acyclic decomposition of an equivalent
WEIGHTEDREGULAR global cost functions. To make the situation
more realistic, we added to each of these problems the same set
of random unary constraints (one per non-auxiliary variable, unary
costs randomly chosen between 0 and 9). We measured two times:
(1) time for loading and filtering the initial problem and (2) total time
for solving the CFN (including the previous time). The first time is
informative on the filtering complexity while the second emphasizes
the incrementality of the filtering algorithms. Times were averaged
on 100 runs and samples reaching the time limit of one hour were
counted as such.

n |Σ| |Q| Monolithic Decomposed
filter solve filter solve

25 5 10 0.12 0.51 0.00 0.00
80 2.03 9.10 0.08 0.08

25 10 10 0.64 2.56 0.01 0.01
80 10.64 43.52 0.54 0.56

25 20 10 3.60 13.06 0.03 0.03
80 45.94 177.5 1.51 1.55

50 5 10 0.45 3.54 0.00 0.00
80 11.85 101.2 0.17 0.17

50 10 10 3.22 20.97 0.02 0.02
80 51.07 380.5 1.27 1.31

50 20 10 15.91 100.7 0.06 0.07
80 186.2 1,339 3.38 3.47

Looking just to filtering time, it is clear that decomposition offers
impressive improvements despite a much simpler implementation.
Solving times show that it also inherits the excellent incrementality
of usual consistency enforcing algorithms for free.

3 https://mulcyber.toulouse.inra.fr/projects/toulbar2.



4.2 Nonograms

(prob012 in the CSPLib) are NP-complete logic puzzles in which
cells in a grid have to be colored in such a way that a given descrip-
tion for each row and column, giving the lengths of distinct colored
segments, is adhered to.

A n×n nonogram can be represented using n2 Boolean variables
xij specifying the color of the square at position (i, j). The restric-
tions on the lengths of segments in each row or column can be cap-
tured by a REGULAR constraint. In order to evaluate the interest of
filtering decomposable cost functions, we have performed two types
of experiments on nonograms.

Softened nonograms: can be built from classical nonograms by
relaxing the strict adherence to the indicated lengths of colored seg-
ments. For this, we relax the REGULAR constraints on each row and
column in the softened version using the Hamming distance. The
associated cost indicates how many cells need to be modified to sat-
isfy the attached description. This problem contains 2n WEIGHTE-
DREGULAR cost functions, with intersecting scopes. In order to be
able to apply Theorem 2 on each of these global cost functions, one
must build a global variable order which is a topological ordering for
each of these cost functions. Although this requirement seems hard
to meet in general, it is easy to produce in this specific case. The xij
variables can, for example, be ordered in lexicographic order, from
top left to bottom right and auxiliary variables inserted anywhere be-
tween their flanking original variables. Global cost function scopes
are usually expressed to capture properties defined on time (as in
rostering problems) or space (as in nonograms, or text processing
problems). In those cases, the global order defined by time or space
defines a global variable ordering that will often satisfy the condi-
tions of Theorem 2.

Random n × n nonogram instances are generated by uniformly
sampling the number of segments in each row/column between 1 and
bn
3
c. The length of each segment is uniformly and iteratively sam-

pled from 1 to the maximum length that allows remaining segments
to be placed (considering a minimum length of 1).

We solved these problems with toulbar2 as before and mea-
sured the percentage of problems solved as well as the mean cpu-
time (unsolved problems are counted for one hour) on samples of
100 problems.

Size Monolithic Decomposed
Solved Time Solved Time

6× 6 100% 1.98 100% 0.00
8× 8 96% 358 100% 0.52

10× 10 44% 2,941 100% 30.2
12× 12 2% 3,556 82% 1,228
14× 14 0% 3,600 14% 3,316

In this more realistic setting, involving different interacting global
cost functions, decomposition is again the most efficient approach
with orders of magnitude speedups.

White noise images: a random solution grid, with each cell col-
ored with probability 0.5, is generated. A nonogram problem in-
stance is created from the lengths of the segments observed in this
random grid. These problems usually have several solutions, among
which the original grid. We associate random unary costs, uniformly
sampled betwen 0 and 99, with each cell. These costs represent the
price to color the cell. A solution with minimum cost is sought. This
problem has been modeled in choco (rel. 2.1.3, default options) and

toulbar2 (-h: option) using 2n REGULAR global constraints.
In the choco model, a SCALAR constraint involving all variables
is used to define the criteria to optimize. In toulbar2, coloring
costs are captured by unary cost functions and the REGULAR con-
straints are represented by WEIGHTEDREGULAR cost functions with
weights in {0, k}. The monolithic version has been tried but gave
very poor results.

We measured the percentage of problems solved as well as the
mean cpu-time (unsolved problems are counted for 1

2
hour, the time-

limit used) on samples of 50 problems.

Size choco toulbar2
Solved Time Solved Time

20× 20 100% 1.88 100% 0.93
25× 25 100% 14.78 100% 3.84
30× 30 96% 143.6 96% 99.01
35× 35 80% 459.9 94% 218.2
40× 40 46% 1,148 66% 760.8
45× 45 14% 1,627 32% 1.321

On this problem, enforcing soft filtering on decomposed global
cost functions is preferable to traditional bound/GAC filtering of a
pure CP model with cost variables. Using decomposition, the direct
use of soft filtering such as EDAC, which subsumes T-DAC, provides
a better exploitation of costs, with minimal implementation efforts.

Beyond decomposable cost functions
In some cases, problems may contain global cost functions which
are not decomposable just because the bounded arity cost function
decomposition is not polynomial in size. However, if the network
is Berge-acyclic, Theorem 2 still applies. With exponential size net-
works, filtering will take exponential time but may yield strong lower
bounds. The linear equation global constraint

∑n
i=1 aixi = b (a and

b being small integer coefficients) can be easily decomposed intro-
ducing n − 3 intermediate sum variables qi and ternary sum con-
straints of the form qi−1 + aixi = qi with i ∈ [3, n − 2] and
a1x1 + a2x2 = q2, qn−2 + an−1xn−1 + anxn = b. The auxil-
iary variables qi have b values which is exponential in the represen-
tation of b. We consider the Market Split problem defined in [10, 25].
The goal is to minimize

∑n
i=1 oixi such that

∑n
i=1 ai,jxi = bj for

each j ∈ [1,m] and xi are Boolean variables in {0, 1} (o, a and b
being positive integer coefficients). We compared the Berge-acyclic
decomposition in toulbar2 with a direct application of the Integer
Linear Programming solver cplex (version 12.2.0.0). We generated
random instances with random integer coefficients in [0, 99] for o
and a, and bj = b 1

2

∑n
i=1 ai,jc. We used a sample of 50 problems

with m = 4, n = 30 leading to max bj = 918. The mean number
of nodes developed in cplex is 50% higher than in toulbar2.
But cplex was on average 6 times faster than toulbar2 on these
problems. 0/1 knapsack problems probably represent a worst case
situation for toulbar2 given that cplex embeds much of what is
known about 0/1 knapsacks (and only part of these extend to more
complicated domains). Possible avenues to improve toulbar2 re-
sults in this unfavorable situation would be to use a combination of
the m knapsack constraints into one as suggested in [25] and a di-
rect exploitation of the properties of the ternary linear constraints for
more compact representation and more efficient filtering.

Related works
It should be pointed out that T-DAC is closely related to mini-
buckets [12] and Theorem 2 can easily be adapted to this scheme.



Mini-buckets perform a weakened form of variable elimination:
when a variable x is eliminated, the cost functions linking x to the
remaining variables are partitioned into sets containing at most i
variables in their scopes and at most m functions. If we compute
mini-buckets using the same variable ordering, with m = 1 and
unbounded i, we will obtain the same marginal cost function as T-
DAC on the root variable r, with the same time complexity. Mini-
buckets can be used along two main recipes: precomputed (static)
mini-buckets do not require update during search but restrict search
to one static variable ordering; dynamic mini-buckets allow for dy-
namic variable ordering (DVO) but suffer from a lack of incremen-
tality. Soft local consistencies, being based on EPTs, always yield
equivalent problems, providing incrementality during search and are
compatible with DVO. Soft arc consistencies also offer a space com-
plexity in O(edr) while mini-bucket may require space exponential
in i.

Conclusion

In this paper, we have extended constraint decomposition to cost
functions occurring in CFNs. For cost functions having a Berge-
acyclic decomposition, we have shown that a simple filtering, at the
directed arc consistency level, provides a comparable filtering on the
decomposition or on the global cost function itself, provided a suit-
able variable ordering is used for DAC enforcing. For the stronger
Virtual AC filtering, the same result is obtained, without any require-
ment.

The application of this result on the trivial class of Berge-acyclic
global cost functions defined by Berge-acyclic decomposable global
constraints is already significant since it allows to enforce soft local
consistencies on networks containing Berge-acyclic decomposable
global constraints such as REGULAR, GRAMMAR, AMONG,. . .

We have shown that these Berge-acyclic global constraints can
also be relaxed into a Berge-acyclic global cost function using a gen-
eralization of the usual “decomposition” measure. This immediately
provides a long list of Berge-acyclic decomposable global cost func-
tions. Our experimental results based on the application of DAC on
the relaxation of the REGULAR constraint into the WEIGHTEDREG-
ULAR cost function show that the decomposition approach offers im-
pressive speedups and cheap implementation compared to the mono-
lithic cost function algorithms.

To experimentally evaluate the practical interest of the stronger
result on VAC, a technically involved implementation of VAC on non
binary constraints would be needed.

Although it is currently restricted to Berge-acyclic decomposi-
tions, this work paves the way for a more general form of “structural
decompositions” of global cost functions where global cost func-
tions decompose into an acyclic structure of local cost functions,
with bounded separator sizes (but not necessarily of cardinality 1).
These global structurally decomposed cost functions could then be
filtered efficiently through dedicated incremental equivalence pre-
serving transformations capturing non serial dynamic programming
algorithms.
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Improved Bounded Max-Sum for Distributed Constraint
Optimization

Emma Rollon and Javier Larrosa 1

Abstract. Bounded Max-Sum is a message-passing algorithm for
solving Distributed Constraint Optimization Problems able to com-
pute solutions with a guaranteed approximation ratio. Although its
approximate solutions were empirically proved to be within a small
percentage of the optimal solution on low and moderately dense
problems, in this paper we show that its theoretical approximation
ratio is overestimated, thus overshadowing its good performance.
We propose a new algorithm, called Improved Bounded Max-Sum,
whose approximate solutions are at least as good as the ones found
by Bounded Max-Sum and with a tighter approximation ratio. Our
empirical evaluation shows that the new approximation ratio is sig-
nificantly tighter.

1 Introduction

Decentralised coordination techniques are a very important topic of
research. A common approach is to cast the problem as a multi-
agent distributed constraint optimization problem (DCOP), where
the possible actions that agents can take are associated with vari-
ables and the utility for taking joint actions are encoded with (soft)
constraints [10]. The set of constraints define a global utility function
F (x) to be optimized via decentralised coordination of the agents.
In general, complete algorithms [7, 6, 9] (i.e. algorithms that find
the true optimum) exhibit an exponentially increasing coordination
overhead, which makes them useless in many practical situations.

Approximate algorithms constitute a very interesting alternative.
They require little computation and communication at the cost of sac-
rificing optimality. There are several examples showing that they can
provide solutions which are very close to optimality [3, 5]. However,
this observation can only be verified on small toy instances, because
it requires the computation of the true optimal to compare with, and
it is not available in real-size real-world situations.

A significant breakthrough along this line of work was the
Bounded Max-Sum algorithm (BMS) [10]. This algorithm comes
with a guarantee approximation ratio ρ̃, meaning that its approxi-
mate solution x̃ has a utility F (x̃) which is no more than a factor
ρ̃ ≥ 1 away from the optimum (i.e, F (x̃) ≤ F (x∗) ≤ ρ̃F (x̃)).
Clearly, large values of ρ̃ reflect lack of confidence in the solution x̃.
There are two possible reasons for a large ρ̃: i) the algorithm failed
in finding a solution close to the optimal, ii) the approximation ratio
is not tight. Clearly, if we want ρ̃ to be our measure of confidence
about the quality of x̃, we want a tight ρ̃ (i.e, F (x∗) ≈ ρ̃F (x̃)).
Thus, the quality of the approximation ratio is a matter of the utmost
importance.

1 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica
de Catalunya, Spain.

In this paper we propose an improvement of BMS with approxi-
mation ratio ρ. We theoretically show that it is always better than the
previous one (i.e., ρ ≤ ρ̃). Moreover, our experiments show that, in
practice, ρ is much tighter than ρ̃.

2 Preliminaries

In this Section we review the main elements to contextualize our
work. Definitions and notation is borrowed almost directly from [10].
We urge the reader to visit that reference for more details and exam-
ples.

2.1 DCOP

A Distributed Constraint Optimization Problem (DCOP) is a quadru-
ple P = (A,X,D,F), where A = {A1, . . . ,Ar} is a set of agents,
and X = {x1, . . . , xn} and D = {d1, . . . ,dn} are variables and
domains. F = {f1, . . . , fe} is a set of cost functions. The objective
function is,

F (x) =

e∑
j=1

fj(x
j)

where xj ⊆ X is the scope of fj . A solution is a complete assign-
ment x. An optimal solution is a complete assignment x∗ such that
∀x, F (x∗) ≥ F (x). The usual task of interest is to find x∗ through
the coordination of the agents.

In the applications under consideration, the agents search for the
optimum via decentralised coordination. We assume that each agent
can control only its local variable(s) and has knowledge of, and can
directly communicate with, a few neighboring agents. Two agents are
neighbors if there is a relationship connecting variables and functions
that the agents control.

The structure of a DCOP problem P = (A,X,D,F) is repre-
sented by its associated factor graph. A factor graph is a bipartite
graph having a variable node for each variable xi ∈ X, a factor node
for each local function fj ∈ F, and an edge connecting variable node
xi to factor node fj if and only if xi is an argument of fj .

2.2 Max-Sum Algorithm

The Max-Sum algorithm [2, 1] is a message-passing algorithm for
solving DCOP problems. It operates over a factor graph by sending
functions (a.k.a., messages) along its edges. Edge (i, j) has associ-
ated two messages qi→j , from variable node xi to function node fj ,
and rj→i, from function node fj to variable node xi. These messages
are defined as follows:



• From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi)

whereMi is a vector of function indexes, indicating which func-
tion nodes are connected to variable node xi, and αij is a normal-
izing constant to prevent the messages from increasing endlessly
in cyclic graphs.

• From function to variable:

rj→i(xi) = max
xj\xi

{fj(xj) +
∑

k∈Nj\i

qk→i(xi)}

whereNj is a vector of variable indexes, indicating which variable
nodes are connected to function node fj and xj \ xi = {xk | k ∈
Nj \ i}

Max-Sum is a distributed synchronous algorithm, since the agent
controlling node i has to wait to receive messages from all its neigh-
bors but j, to be able to compute (and send) its message to j. When
the factor graph is cycle free, the algorithm is guaranteed to converge
to the global optimal solution. Once the convergence is reached, each
variable node can compute function,

zi(xi) = max
xi

∑
k∈Mi

rk→i(xi)

The optimal solution is maxxi{zi(xi)} and the optimal assignment
x∗i = argmaxxi{zi(xi)}. When the factor graph is cyclic, the al-
gorithm may not converge to the optimum and only provides an ap-
proximation.

3 Bounded Max-Sum Algorithm
The Bounded Max-Sum algorithm (BMS) [10], is an approximation
algorithm built on the Max-Sum algorithm. From a possibly cyclic
problem P , the idea is to remove cycles in its factor graph by ignor-
ing dependencies between functions and variables which have the
least impact on the solution quality, producing a new acyclic prob-
lem P̃ . Then, Max-Sum is used to optimally solve P̃ while simul-
taneously computing the approximation ratio ρ̃. A more detailed de-
scription follows. For the sake of simplicity, we will restrict ourselves
to the case of binary functions fj(xi, xk). The extension to general
functions is direct. The algorithm works in three phases, each one im-
plementable in a decentralised manner (see [10] for further details):

• Relaxation Phase: First, the algorithm weights each edge (i, j)
of the original factor graph as,

wij = max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

Then, it finds a maximum spanning tree T . Let W be the sum of
weights of the removed edges (i.e, W =

∑
(i,j)/∈T wij). Next,

the original problem P is transformed into an acyclic one P̃ hav-
ing the spanning tree T as factor graph. This is done as follows:
for each edge (i, j) in the original graph that does not belong to
the tree, the cost function fj(xi, xk) is transformed into another
function f̃j(xk) defined as,

f̃j(xk) = min
xi

fj(xi, xk)

Note that the objective function of P̃ is

F̃ (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

f̃j(xk)

• Solving Phase: BMS solves P̃ with Max-Sum. Let x̃ be the solu-
tion of this problem. Since the factor graph of P̃ is acyclic, x̃ is its
optimal assignment.

• Bounding Phase: In [10], it is proved that,

F (x̃) ≤ F (x∗) ≤ F̃ (x̃) +W

We can rewrite the previous upper bound expression as,

F (x∗) ≤ F̃ (x̃) +W

F (x̃)
F (x̃)

Therefore, the algorithm computes ρ̃ = F̃ (x̃)+W
F (x̃)

, which is a guar-
antee approximation ratio.

4 Improved BMS
4.1 Theoretical elements
Consider an edge (i, j) in the original factor graph that does not be-
long to the spanning tree. We define f̂j(xk) as,

f̂j(xk) = max
xi

fj(xi, xk)

Let P̂ denote the problem containing the not modified functions
fj(xi, xk) (for (i, j), (k, j) ∈ T ) and the f̂j(xk) functions (for
(i, j) /∈ T ). Note that P̂ and P̃ have the same acyclic factor graph.
Note as well that the objective function of P̂ is

F̂ (x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

f̂j(xk)

We can solve P̂ with Max-Sum. Let x̂ be the optimal solution of
this problem. It is obvious that F (x̂) is a lower bound of F (x∗).
Furthermore, as we prove next, F̂ (x̂) is an upper bound of F (x∗).
Therefore, ρ̂ = F̂ (x̂)

F (x̂)
is a guarantee approximation ratio.

Theorem 1 F (x∗) ≤ F̂ (x̂).

Proof By definition, F (x∗) =
∑

(i,j),(k,j)∈T fj(x
∗
i ,x
∗
k) +∑

(i,j)/∈T fj(x
∗
i ,x
∗
k). Since for all fj we have that fj(xi, xk) ≤

maxxi fj(xi, xk), then

F (x∗) ≤
∑

(i,j),(k,j)∈T

fj(x
∗
i ,x
∗
k)+

∑
(i,j)/∈T

max
xi

fj(xi,x
∗
k) = F̂ (x∗)

From the optimality of x̂, we know that F̂ (x∗) ≤ F̂ (x̂), which
proves the theorem.

Next, we show that F̂ (x̂) is a tighter upper bound than F̃ (x̃)+W .

Theorem 2 F̂ (x̂) ≤ F̃ (x̃) +W .

Proof The proof is direct once it has been noted that for all
fj(xi, xk),

f̂j(xk) ≤ f̃j(xk) + wij

which we prove next. By definition, the previous equation corre-
sponds to,

max
xi

fj(xi, xk) ≤ min
xi

fj(xi, xk)+max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

which can be rewritten as,

max
xi

fj(xi, xk)−min
xi

fj(xi, xk) ≤ max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}
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Figure 1. Example of a factor graph containing cycles and a spanning tree formed by removing the edge between variable node x2 and function node f1.

which clearly holds.
We cannot establish any dominance relation between ρ̃ and ρ̂ be-

cause there is no dominance between F (x̃) and F (x̂). However, one
way to circumvent this situation is to take ρ = F̂ (x̂)

max{F (x̃),F (x̂)} . The
new ratio ρ dominates ρ̃.

Theorem 3 ρ ≤ ρ̃.

Proof Direct from Theorem 2 and the fact that
max{F (x̃), F (x̂)} ≥ F (x̃).

4.2 IBMS
Improved BMS (IMBS) works, as BMS, in three phases:

• Relaxation Phase: IBMS computes the spanning tree T and the
relaxed problem P̃ exactly as BMS does. Additionally, IBMS
computes the relaxed problem P̂ .

• Solving Phase: IBMS solves P̃ and P̂ with Max-Sum. Let x̃ and
x̂ be the solutions of these problems. The agents will act according
to the best solution (max{F (x̃), F (x̂)}).

• Bounding Phase: IBMS computes the approximation ratio ρ =
F̂ (x̂)

max{F (x̃),F (x̂)} .

The computation, storage and communication effort of IBMS is
essentially twice that of BMS, because it requires solving two re-
laxed problems with Max-Sum. Given the low cost of BMS, dou-
bling it seems acceptable. However, when it is not the case, one can
always run a weaker version of IBMS ignoring P̃ . This weaker ver-
sion will be exactly as costly as BMS. Its disadvantage is that x̂ is
not guaranteed to be better than x̃. In fact, our experiments show that
there is no clear winner among them. Interestingly, the approxima-
tion ratio of the weaker version ρ̂ is systematically better than the
approximation ratio of BMS ρ̃.

Example 1 Consider the problem P given in Figure 1 with two
variables {x1, x2} and two functions {f1, f2}. The spanning tree
of its factor graph is given with solid lines (i.e., edge (x2, f1) has
been removed, shown as a dashed line). Thus, W = 10. Functions
f̃1 and f̂1 in P̃ and P̂ , respectively, are given in the figure. Max-
Sum finds assignments x̃ = x̂ = (x1 = a, x2 = a), with utility
F̃ (x̃) = F̂ (x̂) = 20. Their evaluation on the original problem P is
F (x̃) = F (x̂) = 20. The approximation ratios are ρ̃ = 1.5, ρ̂ = 1,
and ρ = 1.

5 Empirical Evaluation
The purpose of the experiments is to evaluate the improvement of our
upper bound F̂ (x̂) and approximation ratios ρ and ρ̂ over the BMS
upper bound F̃ (x̃)+W and approximation ratio ρ̃, respectively. We
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Figure 2. First and second row, bounds obtained by algorithms IBMS and
BMS varying the number of agents; third row, lower bound detail for

instances with 25 agents and gamma distribution.

consider the same set of problems from the ADOPT repository2 used
in [10]. These problems represent graph colouring problems with two
different link densities (i.e., the average connection per agent) and
different number of nodes. Each agent controls one node (i.e., vari-
able), with domain |di| = 3, and each edge of the graph represents
a pairwise constraint between two agents. Each edge is associated
with a random payoff matrix, specifying the payoff that both agents
will obtain for every possible combination of their variables’ assign-
ments. Each entry of the payoff matrix is a real number sampled
from two different distributions: a gamma distribution with α = 9
and β = 2, and a uniform distribution with range (0, 1). For each
configuration, we report average values over 25 repetitions. For the
sake of comparison, we compute the optimal utility by a complete
centralized algorithm, although this value can only be computed up
to 12 agents by a complete decentralized algorithm, as shown in [10].

Figure 2 (first and second rows) shows the upper and lower bound

2 http://teamcore.usc.edu/dcop
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Figure 3. Percentage of improvement of the approximation ratio of IBMS
ρ and weaker version of IBMS ρ̂ (left y-axe), and percentage of decrease of

the 7-size-bounded-distance criteria using the the minimum maximum
reward bound (S7r) and the minimum fraction bound (S7f ) (right y-axe)

over the approximation ratio of BMS ρ̃.

obtained by IBMS (i.e., F̂ (x̂) and max{F (x̂), F (x̃)}, respectively)
and BMS (i.e., F̃ (x̃) and F (x̃), respectively), along with the opti-
mal utility (i.e., F (x∗)), for the different link densities and payoff
distributions. The behavior of both algorithms is very similar across
all link densities and payoff distributions. IBMS always computes an
upper bound tighter than the one computed by BMS. The improve-
ment is slightly better for the uniform distribution. The lower bounds
computed by both algorithms are very close, although IBMS lower
bound is slightly better.

Figure 2 (bottom row) shows a detail on the lower bounds F (x̂)
and F (x̃) obtained on each instance of a given parameter configu-
ration. Since the behavior across all number of agents, link densities
and payoff distributions is very similar, we only report results on in-
stances with 25 agents and gamma distribution. Both lower bounds
are very close, and none of them is consistently better than the other.

Figure 3 shows the percentage of improvement of the approxi-
mation ratio of IBMS ρ and the weaker version of IBMS ρ̂ over
the approximation ratio of MBS ρ̃ (left y-axe). The figure also re-
ports the percentage of deterioration of the approximation ratio of
the 7-size-bounded-distance criteria introduced in [11] according to
the minimum maximum reward bound (S7r) and the minimum frac-
tion bound (S7f ) presented in [12] over the approximation ratio of
MBS ρ̃ (right y-axe). Since the relation between the optimal solu-
tion of the problem F (x∗) and an approximation ratio ρ of a given
solution x is 1 ≤ F (x∗)

F (x)
≤ ρ, we compute the improvement of an

approximation ratio ρ over ρ̃ as,

(ρ̃− 1)− (ρ− 1)

ρ̃− 1
∗ 100

The improvement of ρ is always higher than 37%, and up to almost
50%. Its mean improvement for the gamma and uniform distributions
is higher than 40% and 45%, respectively. The improvement of ρ̂ is
always higher than 32%, and up to almost 46%. Its mean improve-
ment for the gamma and uniform distributions is higher than 35%
and 37%, respectively. Therefore, both IBMS and its weaker version

always significantly outperforms BMS. Recall that the weaker ver-
sion of IBMS has the same communication demands as BMS. Both
approximation ratios S7r and S7f are worse than the approximation
ratio of BMS ρ̃ (the percentage is always negative). Their quality
decreases as the number of agents increases for both distributions.

6 Related Work
There are other two incomplete algorithms that can provide guaran-
tees on the worst-case solution quality of their solutions at design
time: k-optimality [8] and t-optimality [4]. The idea of these algo-
rithms is to form coalitions of agents and to find the local optima
solutions for all agents within the coalitions. This local optima is
guaranteed to be within a predefined distance from the global opti-
mal solution. Very recently, [11] proposed a framework were differ-
ent coallition-based local optimality schemes can be described and
defined a new criteria called s-size bounded optimality. The complex-
ity of these algorithms depend on the number of coalitions and their
size. Therefore, in practice, these algorithms are used with relatively
small values of their control parameter.

In [10], it was shown that k-optimality provided significantly worst
quality guarantees than BMS for different values of k. As stated in
the following proposition, the quality guarantee provided by the 2-
size-bounded optimality for binary DCOPs is always higher than 2.

Proposition 1 Let P = (A,X,D,F) be a binary DCOP (i.e., the
arity of the functions is at most 2) such that |X| > 2. The quality
guarantee ρ satisfies:

2 ≤ ρ ≤ |F|

for all its 2-size-bounded optimal assignments.

Proof According to [11],

ρ =
|C| − nc∗
cc∗

where:

• C is a multi-set of subsets of X, where C ∈ C is a coalition;
• cc∗ = minf∈F{nc(f, C)}, where cc(f, C) = |{C ∈ C |
var(f) ⊆ C}|;

• nc∗ = minf∈F{cc(f, C)}, where nc(f, C) = |{C ∈ C |
var(f) ∩ C = ∅}|;

Let fij be a function with scope {xi, xj}. In a binary DCOP, its 2-
size-bounded region is C = {var(f) | f ∈ F} (i.e., |C| = |F|),
cc(f, C) = 1 for all f ∈ F, and nc(fij , C) = |F| − |{fik ∈ F |
j 6= k}| − |{flj ∈ F | l 6= i}| + 1 for all fij ∈ F. The minimum
nc∗ is when the DCOP constraint graph is a star because nc∗ = 0,
so that ρ = |C| is maximum. Note that on a star with |X| = 3,
ρ = |C| = 2. The maximum nc∗ is when the DCOP constraint graph
is a chain with |X| > 3 (note that a chain with |X| = 3 is a star),
because nc∗ = |F| − 3 so that its ρ = 3. Note that a DCOP with
two variables is trivially solved to optimality by the 2-bounded size
optimality scheme.

Note that for all instances in the empirical evaluation, the qual-
ity guarantees of both IBMS and BMS were smaller than 1.4. For
those instances, the s-size-bounded-distance provided worse approx-
imation ratios than IBMS and BMS even using the improved min-
imum maximum reward and minimum fraction bounds and a rela-
tively high value of the parameter s. We leave as future work a more
extensive empirical comparison of the different algorithms.



7 Conclusions
In this paper we introduced a new algorithm, called Improved
Bounded Max-Sum (IBMS), based on the Bounded Max-Sum algo-
rithm. We theoretically proved that its approximation ratio is always
better than the previous one, at the only cost of doubling the com-
munication requirements. We also introduced a weaker version of
IBMS having the same communication demands as Bounded Max-
Sum. Our experiments show that the approximation ratio of both al-
gorithms is significatively tighter.
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Computational issues surrounding the dynamic
optimisation of management of an ecological food web

William J M Probert 123 and Eve McDonald-Madden1 and Nathalie Peyrard2 and Régis Sabbadin2

Abstract. We discuss computational issues surrounding current re-
search that investigates the relevance of graph centrality metrics to
the management of ecological food webs. Ecological food webs can
be viewed as directed acyclic graphs and we use Markov decision
processes to model management. Using dynamic programming we
optimally solve the management of an Alaskan food web through
time so as to maximise the expected number of species surviving. To
generalise our results we investigate policies on generated food webs
of varying size. For large food webs the state and action spaces are
too large for dynamic programming to be computationally feasible
and we use heuristical methods to approximate the optimal policy.

1 INTRODUCTION
Artificial intelligence has been proven to be a useful field for tack-
ling the highly complex and uncertain nature of ecological systems
[4, 20]. Management of such ecological systems, with the aim of pre-
serving the world’s natural resources in all forms, is the concern of
conservation biology.

One area of ecological research in which artificial intelligence
can contribute is in the application of graphical models to ecolog-
ical food webs. In this context, ecological systems are represented
mathematically as directed acyclic graphs. Nodes represent ‘trophic
species’, which may be groups of plant or animal species, macro-
scopic or microscopic, that have a common set of predators and prey
[26]. The term ‘trophic’ relates to the consumption of another species
for energy. We will refer to these nodes of ‘trophic species’ as just
‘species’. The basal species in a graph usually represent a ubiquitous
food source such as zooplankton or kelp. Edges represent the trophic
interactions between species. The terminating node of an edge rep-
resents the predator in the interaction (that is, the terminating node
eats the source node).

In a reasonably general form, it is possible to frame the problem
of managing a food web for conservation purposes as a Markov deci-
sion process (MDP). An MDP is an appealing choice because man-
agement is then explicitly part of the framework and solution algo-
rithms exist [22]. The MDP framework has been used extensively
within ecology and conservation [5, 21]. Solution policies, that pre-
scribe an optimal action given a state and time step for a given reward
structure, are specific to the structure of each food web in question
and, due to the complexity of food webs, may only be solved using
generous assumptions to simplify the system and available actions.
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Even then, solutions are only possible for moderately sized food
webs of less than about 15 species. Such a constraint on finding exact
solutions is considerable given that some documented food webs in
the ecological literature have over 200 species groups (nodes), such
as the Caribbean food web described in Bascompte et al (2005) [2].
It is therefore of interest to investigate heuristical policies that ap-
proximate the exact solution in small food webs so that approximate
policies may be applied to manage larger food webs of more realistic
sizes.

A myriad graph metrics have been applied to study ecological
food webs and these provide a suitable starting point for investigat-
ing heuristic policies. Previous ecological and conservation research
on food webs has mainly focused on measures of how the structure
(trophic interactions between species) of a food web persists through
species extinctions [15]. This ‘stability’ has numerous definitions,
generally (and traditionally) referring to the stability of the character-
istic polynomial from the square, real interaction matrix that defines
the species interactions (as defined below) [9, 18].

Typically, the suggested metrics are calculated for each node and,
thus, a ranking scheme of nodes is implicit. Research has yet to in-
vestigate the use and relevance of said metrics for the purposes of
managing ecological systems [6, 1, 15, 13]. Our research compares
management of a simple model of an ecological system using the op-
timal solution with management that is guided by ranking implied by
graph metrics. If it is possible to identify metrics that provide man-
agement benefits (for a given reward function) that are close to the
optimal solution for small scale food webs then such metrics may
provide use in guiding management of larger networks.

Initial research has investigated the use of Bayesian networks to
model this problem over one time step [19]. Bayesian networks are
probability distributions with a structure defined on them [14, 16].
By ‘structure’, we mean that transition probabilities between differ-
ent states can be factorised into a product of ‘local’ transition proba-
bilities defined by the edges between nodes in a graph (and rewards
may similarly be decomposed into a summation of local rewards).
We extend the previous approach to the multiple time-step case us-
ing a finite-horizon Markov decision process (MDP).

An MDP is not just a Bayesian network that is extrapolated to the
multiple time-step case and that includes modelling of decisions and
rewards; this would usually be called an ‘influence diagram’ [12].
Figure 1 illustrates the relationship between different optimisation
and modelling frameworks and the commonly used names for these
techniques. The arrows indicate axes that add additional components
to the framework: either time, structure or decisions and rewards. For
instance, a Markov chain may be thought of as a one-dimensional
random variable that includes a temporal component, similarly if one
wishes to add a time component to a Bayesian network, the resultant



model is typically called a dynamic Bayesian network, or if one has a
one-dimensional random variable to which they wish to add a frame-
work for decisions and rewards then the resultant framework is gen-
erally called stochastic optimisation. This diagram is only concerned
with finite time horizons and the structure axis is not strictly one-
way, in that, some of those techniques with structure may be mod-
elled using those without formally defined structure (for instance, an
influence diagram may be modelled as a Markov decision process).
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Figure 1. Relationships between modelling techniques with a finite time
horizon

By modelling this decision making problem as an MDP, we risk
facing the curse of dimensionality when trying to find an optimal so-
lution; the state and action spaces can become combinatorially large
as the number of species in the food web increases. Hence, it is
necessary to investigate heuristical approaches to approximate ex-
act solutions if results are to be extrapolated to food webs of realistic
size. The exact solution and the heuristical solutions are compared
via total expected rewards and using statistical analyses to search for
patterns in the optimal policy. This is the first research to investi-
gate the use of graph metrics for conservation management purposes
over multiple time steps. The extension to multiple time steps also
allows comparison of adaptive policies with the myopic policies of
the graph heuristics. This manuscript focuses on the computational
issues in calculating the exact solution algorithm and therefore some
details of the current analysis are omitted.

2 FRAMEWORK & METHODS
We briefly outline the model used and then the computational issues
and suggested work-arounds.

We have a directed acyclic graph, G = 〈V,E〉, representing a
food web (figure 2). V respresents a set of species (vertices) and E
represents a set of trophic interactions (oriented edges) between those
species. There are n species in our food web, | V |= n. Species i
is a prey of (is eaten by) species j if there is an edge from i to j,
(i, j) ∈ E. We denote the adjacency matrix defining the food web
with G, where Gi,j = 1 if (i, j) ∈ E, otherwise 0.

Markov decision process. A Markov decision process (MDP) may
be used to model the decision making problem of managing an eco-
logical food web. An MDP is a common framework for sequential
decision making problems and is composed of a tuple, 〈X ,A, P,R〉,
consisting of the state space, action space, state transition probabil-
ities and rewards, respectively [22]. We model this system for a set
of time steps, t ∈ {1, . . . , T}, where we have a finite time horizon,

T <∞. A superscript of t represents the state or action at time step
t. The state of each species can take one of two values, extant (1) or
extinct (0), xti ∈ {0, 1}, ∀i ∈ V . The set xt then represents the state
of all species in the food web at time t, xt ∈ {0, 1}n. Management
actions that represent a species’ protection status are available for
each species. Simply, a species may or may not be protected, that is,
ati ∈ {0, 1}, ∀i ∈ V , where protection takes the value 1. The term
at then represents the set of actions chosen for all species in the food
web at time t, at ∈ {0, 1}n. To recognise limitations in conservation
funding, we introduce a budget constraint on the choice of actions at
each time step, c(at) =

P
cia

t
i ≤ Bt, for a per-time-step budget

Bt, summation is over i ∈ V , and for a cost of protecting species i
of ci (i ∈ V ).

To incorporate local interactions and dependencies in the food web
we define neighbourhood functions. The assumption of a neighbour-
hood allows the factorisation of state transition probabilities into the
product of species’ local state transitions (and the respective decom-
position of rewards into a sum of local rewards) [23]. We define a
species’ neighbourhood to include all prey species and the species it-
self,N(i) = {j ∈ V | (j, i) ∈ E}∪{i}. The set xtN(i) then denotes
the states of all species in the set N(i) at time t.

The transition probability function is defined as follows:

P t(xt+1 | xt, at) =

nY
i=1

P ti (x
t+1
i | xtN(i), a

t
i). (1)

For simplicity, we assume transition probabilities are the same across
time, P ti (·) = Pi(·) ∀t. We define individual species’ transition
probabilities from one state to the next, for a given action, as some
baseline probability of survival, p0

i , times the ratio of the number of
prey species that are extant (f?,t) to the total number of prey species
(f ),

Pi(x
t+1
i = 1 | xti = 1, xN(i)\i, a

t
i = 0) = p0

i

„
f?,t

f

«
Pi(x

t+1
i = 0 | xti = 1, xN(i)\i, a

t
i = 0) = 1− p0

i

„
f?,t

f

«
Such a probability is subject to the following conditions:

• For basal species, the probability of transitioning from extant to
extinct is solely equal to some baseline probability of survival, p0

i .
• For any species, extinction (death) is an absorbing state,

Pi(x
t+1
i = 0 | xti = 0, ati) = 1,∀ati

• To survive, a species must have at least one prey species extant,

Pi(x
t+1
i = 0 |

X
k∈N(i)

xtk < 2, ati) = 1, ∀ati

• A species’ is guaranteed to survive if it is protected, ati = 1, and
the above conditions hold,

Pi(x
t+1
i = 1 | xti = 1,

X
k∈N(i)

xtk ≥ 2, ati = 1) = 1.

Transition probabilities are simplistic in this research project to avoid
complexity in computation. Species demographics are not directly
taken into account but they may be used in calculations to contribute
to an overall probability of species extinction. Note that although
basal species may be secured indefinitely by protecting them, this



does not guarantee that species further up the food chain will not go
extinct and thus may not lead to the most desirable outcome for a
given choice of reward function.

We denote the array of transition probabilities as P, where Pi,i′,a

is the probability of transitioning from state i to state i′ when action
a is taken.

Our objective is to maximise the number of species surviving at
the end of the project. Rewards are assumed stationary through time
(with the exception of rewards in the final time step). We use a final
time-step reward function of the number of extant species,

RT (xT ) =

nX
i=1

xTi (2)

and per-time-step rewards are zero,Rt(xt) = 0, t < T . Various dif-
ferent reward functions may be investigated, including rewards that
acknowledge the presence of ecologically meaningful structure in the
state of the food web, but for conciseness we only mention one basic
reward function here.
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Oceanic
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otter
11

Bald
eagle

13

Star
fish
8

Figure 2. Example food web based on an Alaskan trophic network with 13
species and 21 trophic edges. The numbers underneath the names of the

species represent the species index, i, which are referred to in the subsequent
tables.

Policies. Let δr = (d1, . . . , dT−1) represent a policy according to
rule r, that designates an action, at = dt(xt), to take at each time
step according to the current state, xt, and decision rule dt(xt). The
total expected reward of any policy, δ, is defined as

υTδ (x1) = E
"
TX
t=1

Rt(xt)

˛̨̨̨
˛ x1, δ

#
(3)

Optimal policy. Solving the above MDP involves finding the opti-
mal policy, δ∗, that provides the highest total expected reward. This

maximum total expected reward is called the ‘value’. For food webs
with 13 species or less, we may solve the above MDP using the back-
wards induction algorithm as follows [22]:

1. Set the current time-step to t = T and the value in the final time-
step to υT∗ (xT ) = RT (xT ) ∀xT ∈ X

2. Set t = t− 1 and calculate υt∗(xt) for each state using

vt∗(x
t) = max

at∈A
Qt(xt, at)

at∗ = arg max
at∈A

Qt(xt, at)

where

Qt(xt, at) = Rt(xt) +
X
xt+1

P (xt+1 | xt, at) υt+1
∗ (xt+1)

3. If t = 1 then stop, otherwise return to step 2.

For our problem, this is initialised by setting the optimal value in the
final time step equal to the final rewards in equation (3) and setting
per-time step rewards to zero.

Graph based policies. We generate policies guided by ranking
schemes that are defined by several graph metrics, outlined below.
Graph metrics map nodes to integer or real values. Policies that are
defined on graph metrics will manage nodes in descending order of
the graph metric. Ties in graph metrics are determined by randomi-
sation and isolated species, for instance if the current state causes the
food web to become disconnected, have metric values of zero (which
means they are managed last).

The total expected rewards of a graph based policy is evaluated
using the following finite horizon metric-policy evaluation algorithm
with inputs δ = (d1, · · · , dT−1) and the interaction matrix, G [22]:

1. Set the current time-step to t = T and the terminal rewards in the
final time-step to υTδ (xT ) = RT (xT ) ∀ xT ∈ X

2. Set t = t− 1 and calculate υtδ(x
t) for each state using

vtδ(x
t) = Qt(xt, d(xt))

where

Qt(xt, d(xt)) = Rt(xt) + (4)X
xt+1

P (xt+1 | xt, dt(xt)) υt+1
δ (xt+1)

3. If t = 1 then stop, otherwise return to step 2.

This algorithm is also initialised by setting final time step rewards
equal to equation (3) and setting per-time step rewards to zero.

Below we define several graph metrics. From the social or math-
ematical sciences we define degree centrality, betweenness central-
ity and closeness centrality. From the ecological literature we define
prey degree, predator degree, keystone index, bottom-up prioritisa-
tion and trophic level. Metric values for each species in the 13 species
Alaskan food web of figure 2 are presented in tables 3 and 4.

Degree centrality

The degree of a species is the number of connections (in any direc-
tion) to a particular species [25]. This can be normalised by the size
of the food web so that degree centrality can be compared between
graphs of different sizes (note that n− 1 is the maximum number of



connections a species can have in any graph). The degree of species i
is the sum of the number of prey and predators that it has, normalised
by the size of the food web,

Di =
D←i +D→i
| V | −1

(5)

where D←i and D→i are respectively the prey degree and preda-
tor degree of species i. More specifically, D←i is the size of the set
V←i = {j ∈ V : (j, i) ∈ E} of all prey of species i, and D→i is the
size of the set V→i = {j ∈ V : (i, j) ∈ E}, the set of all predators
of species i.

Betweenness centrality

The betweenness centrality of a species reflects how central a species
is in the transmission of energy that links other species in the food
web. It is the proportion of shortest paths between any two species
that pass through a particular species, normalised by the size of a
network [25]. Betweenness centrality is calculated as

BCi =

P
j<k

gjk(i)

gjk

(| V | −1)(| V | −2)
, (6)

where gjk denotes the number of shortest paths (geodesics) between
species j and k, and gjk(i) denotes the number of shortest paths
between species j and species k which pass through species i.

Closeness centrality

Closeness centrality is a function of the sum of distances between a
node and all other nodes in the graph [3, 7, 8]. Specifically it is the
ratio of 1) the sum of distances from a particular species to every
other species in the network to 2) the minimum possible value that
this sum may take (which is n− 1 for a network of size n).

The closeness centrality for species k is

CCk =

2664
nP
i=1

d(i, k)

n− 1

3775
−1

(7)

This is a relative measure and can be compared between networks
of different sizes. The distance between two species, d(i, j), is the
smallest number of trophic connections between species i and j
(geodesic). Note that the sum of distances from a species to all other
species will grow with the distance between species (hence the in-
verse is taken) and distances ignore direction of the trophic interac-
tion.

Keystone index

The keystone index is based on the idea of ‘status’ and ‘contrastatus’
of an organisation by Hararay [10, 11, 15]. This measure is only for
directed, acyclic graphs. Using the definitions of V→i and V←i from
the degree centrality description the keystone index may be com-
posed of two sets of two components:

Ki = K↓i +K↑i (8)

K↓i =
X
c∈V←i

1

D←c
(1 +K↓c )

K↑i =
X
e∈V→i

1

D→e
(1 +K↑e )

i Di D←i D→i BCi CCi
1 3 0 3 0 0.48
2 2 0 2 0 0.364
3 1 0 1 0 0.353
4 6 1 5 0.035 0.632
5 3 1 2 0.008 0.462
6 3 1 2 0.01 0.429
7 4 3 1 0.011 0.5
8 2 1 1 0.015 0.444
9 3 2 1 0.008 0.5

10 3 2 1 0.008 0.5
11 5 3 2 0.04 0.6
12 4 4 0 0 0.522
13 3 3 0 0 0.522

Mean 3.231 1.615 1.615 0.01 0.485
SD 1.25 1.273 1.273 0.013 0.076
Min 1 0 0 0 0.353
Max 6 4 5 0.04 0.632

Figure 3. Graph metrics for each species in the full Alaskan food web of
figure 2. Metrics are respectively (L to R in columns 2 to 6) degree, prey
degree, predator degree, betweenness centrality, and closeness centrality.

Index numbers, i, for each species are labelled in figure 2.

where K↓i and K↑i represent the top-down and bottom-up keystone
indices of node i respectively. Alternatively, equation (8) can be rear-
ranged to express the keystone index as a sum of direct and indirect
effects on node i,

Ki = Kdir
i +Kundir

i

Kdir
i =

X
c∈V←i

1

D←c
+
X
e∈V→i

1

D→e

Kundir
i =

X
c∈V←i

K↑c
D←c

+
X
e∈V→i

K↓e
D→e

Bottom-up prioritisation

Bottom-up prioritisation (BUP) ranks species firstly according to
trophic level, Li, which is calculated from the complete food web,
and then secondly by the number of extant predators in the current
state. Let L1 define the set of basal species in a food web with a
trophic level of 1, that is, all those species which do not have prey in
the complete food web,

L1 = {k ∈ V : D←k = 0} (9)

We then define the subgraph food web, Gi = (Vi, Ei), as that which
excludes species in trophic level i and all trophic levels below i,
where

Vi = V \
[
k<i

Lk (10)

and Ei is the corresponding edges between these vertices from the
original graph. All species with trophic level i are then those which
belong to the set

Li =
n
k ∈ Vi : D←,ik = 0

o
(11)



i Ki Kdir
i K indir

i Kbu
i K td

i Li
1 8.5 3 5.5 8.5 0 1
2 1.25 1 0.25 1.25 0 1
3 0.25 0.25 0 0.25 0 1
4 2.889 2.333 0.556 2.556 0.333 2
5 1.306 1 0.306 0.972 0.333 2
6 2.306 1.667 0.639 1.972 0.333 2
7 1.933 1.533 0.4 0.333 1.6 3
8 1.194 0.833 0.361 0.528 0.667 3
9 1.017 0.95 0.067 0.25 0.767 3

10 1.017 0.95 0.067 0.25 0.767 3
11 3.183 2.283 0.9 0.583 2.6 4
12 6.333 3.5 2.833 0 6.333 5
13 4.667 1.7 2.967 0 4.667 5

Mean 2.757 1.615 1.142 1.342 1.415 2.692
SD 2.315 0.902 1.572 2.196 1.904 1.323
Min 0.25 0.25 0 0 0 1
Max 8.5 3.5 5.5 8.5 6.333 5

Figure 4. Graph metrics for each species in the full Alaskan food web of
figure 2. Metrics are respectively (L to R in columns 2 to 7) keystone index,

directed keystone index, indirected keystone index, bottom-up keystone
index, top-down keystone index and trophic level. Index numbers, i, for each

species are drawn in figure 2.

where D←,ik is the prey degree of species k in the food web defined
by Gi. In other words, a species is in trophic level 3, for example, if
it has no prey species present after removing species in trophic levels
1 and 2. The bottom-up prioritisation ranks species first by ascending
trophic level, and then by descending number of predators.

Policies and comparisons. In addition to the policies defined by
graph metrics and the optimal policy, we also include the policy that
manages nothing and a policy that chooses extant species to protect
at random. The total expected reward of policies, calculated from
the metric-policy evaluation algorithm, will be compared with the
optimal value (the maximum total expected reward) from the exact
solution, using the backwards induction algorithm, to find which ap-
proximation methods are the best.

Computational issues and remedies. To utilise the backwards
induction algorithm, transition probabilities must be calculated for
the current problem. The number of probabilities to calculate will
be | S | × | S | × | A |. For a small real food web with 13 species
and a budget with the capacity to protect 4 species at each time step,
we have 213.213.C13

4 = 47, 982, 837, 760 transition probabilities to
calculate (over 40 billion). With 25 species and a budget capacity
to protect 8 species, this is more than 1.2 × 1021 transition prob-
abilities, illustrating the need to use approximations to the optimal
dynamic programming solution when dealing with larger food webs.
Our modelling framework already uses generous assumptions to sim-
plify the model and uses transition probabilities that do not change
through time. Previously studied food webs have included over 150
different groups of organisms [17, 2] which is out of reach for the
optimal solution in the current investigation.

Figure 5 plots the average CPU time over 10 different food
webs for calculating four metrics against the food web size, of up
to 25 species. Computations were performed using Matlab version
7.7.0.471 (Mathworks, 2009). A selection of 10 food webs of each
size were randomly generated using a published method for generat-
ing food webs, the cascade model, and using a ‘connectance’ value,

C = |E|/|V |2, of 0.1 [24, 26]. A cascade model is one which is
constructed by first assigning each species a uniform random number
and secondly setting the probability that a species predates on species
with a random uniform value less than its own to 2.C.n/(n − 1)
[24, 26]. Connectance values in real, observed food webs range be-
tween 0.1 and 0.2 [17, 26]. Calculations were performed under Ma-
cOS 10.6.8 on a 2.53GhZ, mid-2009 Macbook Pro with 4Gb of
1067MHz DDR3 RAM.
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Figure 5. Average CPU time for calculation of four different metrics as a
function of food web size.

A couple of steps can be used to remedy the curse of dimension-
ality. As mentioned, we assumed transition probabilities may be fac-
torised into a product of species’ local transitions. This means it is
only necessary to calculate the probability of all possible local tran-
sitions for any species. Furthermore, various transitions in states can
be set to zero based on the conditions of the transition probabilities.
Concretely, consider the matrix M = SG, where S : X → 2X , is
a 2n × n Boolean matrix that indicates for each possible state which
species is extant (one row for each state, columns index species) and
G is the n×n adjacency matrix of the food web in question. That is,
Gij = 1 if species i is a prey of species j and otherwise 0; cannibal-
ism is not allowed Gii = 0 ∀ i. The elements of the 2n × n matrix
M are then

Mi,j = Number of extant prey of species j when the state is Si,:

where Si,: is the ith row of S. It is not necessary for basal species
to have prey to survive so we set Mi,j = 1 if species j is a basal
species. Further, defining Q = M � S, where � defines element-
wise multiplication (the Hadamard product), we have a matrix that
has elements

Qi,j =

8<:
0 if species j is extinct or has no prey in state i

(and is not a basal species)
{1, 2, · · · } otherwise

and thus Pi,i′,a = 0 if Qi,j = 0 ∀j s.t. Si′,j > 0.



3 Results

Despite the methods described above for speeding up computation
time, the calculation of transition probabilities still takes a consid-
erable amount of time. For illustrative purposes, we present initial
results (table 6) for the Alaskan food web with only 10 species (by
removing the Great whale, star fish and mussels/barnacles from the
13 species food web). It is possible to solve the exact solution to the
10 species web in several minutes on the computer described above.

Policy υδ(x
1)

Optimal 5.92
K↑ 5.52
BUP 5.52
D→ 5.51
K 4.99
K indir 4.97
Kdir 4.76
BC 4.00
D 3.84
CC 3.72
Random 3.66
K↓ 3.49
D← 3.45
None 1.10

Figure 6. Preliminary results for the 10 species Alaskan food web (with
Great whale, star fish and mussels/barnacles removed) over 10 time steps
with p0

i = 0.9, ∀i, and budget of 4 protected species at each time step.
Column 2 is the total expected number of species surviving in the final time
step when using each policy to manage the full 10 species Alaskan food web

for 10 years (higher is better). Rows are arranged in descending order of
their values in column 2.

We present the total expected reward (and respectively the value
in the exact policy) in the first time step for the 10 species food web
for a project of 10 years, with an underlying probability of survival
of p0

i = 0.9, ∀i, and budget capacity to protect 4 species at each time
step. Terminal rewards are the final number of species surviving and
per-time-step rewards are zero. The policies presented are based on
the eleven metrics described above, the random policy, the policy of
protecting no species, and the optimal policy.

Results from the 10 species Alaskan food web suggest that the
heuristic policies that perform well compared to the exact solution
are those which are based on metrics that acknowledge the number
of extant predators that a species has (the bottom-up keystone index,
predator degree, and bottom-up prioritisation). On the other hand,
heuristic policies that prioritise management of species based on the
number of extant prey perform worse than a random strategy (prey
degree, top-down keystone index).

4 Discussion

We have discussed both exact methods for solving a Markov decision
processes with an underlying graphical structure and the potential
of heuristics, based on graph metrics, for guiding decision making
when exact methods are not computationally feasible. Preliminary
results have been presented for a 10 species food web and suggest
that heuristic policies that prioritise species according to the number
of extant predators perform the best. Results suggest management

preference for species of a lower trophic level which may be associ-
ated with the assumption of guaranteed survival for protected basal
species.

Ten species is relatively small for an ecological food web and,
thus, findings should be taken cautiously at this early stage of re-
search. Future research will compare the exact solution with heuris-
tic policies for additional food webs in the ecological literature and
use statistical analyses to search for patterns in the optimal policies
that may be predicted by either graph metrics or local features of the
food web. Heuristic policies that are found to approximate the op-
timal solution consistently will be used to simulate management of
larger food webs. Future research will also investigate the potential
of more sophisticated methods of approximating the exact method
to ecological food-web management, similar to those used in graph-
based MDPs [23].
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An upper bound for BDeu local scores
James Cussens1

Abstract. An upper bound on BDeu log local scores is derived using
an existing upper bound on the beta function with r variables. Two
bounds on this bound are derived, one of which is suitable for pruning
the search for optimal parent sets of a variable in Bayesian network
learning. Empirical results concerning the tightness of bounds are
given.

1 BDeu log local scores

If Dirichlet parameters are used for the parameters of a BN and the
data D is complete then the log marginal likelihood for BN structure
G with variables i = 1, . . . , p is:

logP (G|D) =

p∑
i=1

zi(G)

where

zi(G) =

qi(G)∑
j=1

(
log

Γ(αij)

Γ(nij + αij)
+

ri∑
k=1

log
Γ(nijk + αijk)

Γ(αijk)

)
(1)

Defining notation in (1): qi(G) is the number of joint instantiations
of the parents of i in G; ri is the number of values variable i can
take; nijk is the count of how often in the data variable i takes its
kth value when its parents in G take their jth joint instantiation; and
αijk is the Dirichlet parameter corresponding to nijk. We also have
nij =

∑ri
k=1

nijk and αij =
∑ri

k=1
αijk. This equation (in non-log

form) is given in [7] and was first derived by Cooper and Herskovits
[2]. In this paper the parameters αijk will be set to α/(riqi(G))
where α (known as the equivalent sample size) is set by the user. This
variant is known as the log BDeu score (Bayesian Dirichlet equiva-
lent uniform score) where the “uniform” reflects that αijk is the same
for all values k of i. With this restriction, and abbreviating qi(G) to
qi, (1) becomes:

zi(G) =

qi∑
j=1

(
log

Γ( α
qi

)

Γ(nij + α
qi

)
+

ri∑
k=1

log
Γ(nijk + α

qiri
)

Γ( α
qiri

)

)
(2)

zi(G) is the BDeu log local score for variable i and is determined
by the parents i has inG (as well as by the data). Note that if nij = 0
for some j then also nijk = 0 for all k and the summand for j in
(2) is zero. Let q(0) be the number of values of j where nij = 0
and q(+) be the number of values of j where nij ≥ 1 (so that qi =
q(0) +q(+)). Suppose, without loss of generality, that j = 1, . . . q(+)

1 Dept. of Computer Science & York Centre for Complex Systems Analysis,
University of York, York, UK email:james.cussens@york.ac.uk

are the values of j where nij ≥ 1, then we have that:

zi(G) =

q(+)∑
j=1

(
log

Γ( α
qi

)

Γ(nij + α
qi

)
+

ri∑
k=1

log
Γ(nijk + α

qiri
)

Γ( α
qiri

)

)
(3)

Since the log BDeu score exclusively is used here BDeu log local
score will be abbreviated to local score. A more compact formulation
of (3) is possible using the beta function of r variables. This function
B(x1, . . . , xr) is defined in (4).

B(x1, . . . , xr) =
Γ(x1) . . .Γ(xr)

Γ(x1 + . . .+ xr)
(4)

so that

logB(x1, . . . , xr) =

(
r∑
k=1

log Γ(xk)

)
− log Γ

(
r∑
k=1

xk

)
Noting that

ri∑
k=1

(
nijk +

α

qiri

)
= nij +

α

qi

we have

zi(G) =

q(+)∑
j=1

(
log

Γ( α
qi

)

Γ(nij + α
qi

)
+

ri∑
k=1

log
Γ(nijk + α

riqi
)

Γ( α
qiri

)

)

=

q(+)∑
j=1

[
log Γ

(
α

qi

)
−

(
ri∑
k=1

log Γ

(
α

qiri

))

+

(
ri∑
k=1

log Γ

(
nijk +

α

qiri

))
− log Γ

(
nij +

α

qi

)]

= q(+) log Γ

(
α

qi

)
− q(+)ri log Γ

(
α

qiri

)

+

q(+)∑
j=1

logB

(
nij1 +

α

qiri
, . . . nijri +

α

qiri

)
(5)

2 Computational benefits of bounding BDeu scores
An important problem is to identify a BN structure with maximal
BDeu score for a given data set. Upper bounds on local scores can
help in this task. To see this first note that the local score zi(G) de-
pends only on the parents that i has in the graph G (that is what
makes it ‘local’), so it is clearer to write the local score as zi(W )
whereW ⊆ {1, . . . p}\{i} are the parents of i. We have the follow-
ing useful result:



Theorem 1 If W ⊂ W ′ and zi(W ) > zi(W
′) then W ′ cannot be

a parent set for i in an optimal BN.

This is because any BN where W ′ were the parents of i would have
a worse score than one where the edges from W ′ \ W to i were
removed.

This simple result has been used by many working on BN learning
[8, 3, 5, 4], but it has been exploited most fruitfully by de Campos and
Ji [6]. Let qi(W ′) be the number of joint instantiations of variables in
the set W ′, and let q(+)(W ′) be the number of associated non-zero
counts. Translating the results of de Campos and Ji to the notation of
the current paper they show that if (i)W ⊂W ′ and (ii) α/qi(W ′) ≤
0.8349 and (iii) zi(W ) > −q(+)(W ′) log ri then neither W ′ nor
and any superset of W ′ can be an optimal parent set for i. (Their
result is actually more general since they consider any BDe score,
not just as here, the BDeu score.)

This is a tremendously useful result. Before computing the local
score of a candidate parent set W ′ for i, de Campos and Ji inspect
the scores of any previously computed zi(W ) whereW ⊂W ′ to see
if conditions (ii)-(iii) are satisfied. If so, there is no need to compute
zi(W

′). More importantly, all supersets of W ′ can be ruled out as
optimal parent sets for i. Note that the required quantities for this
check are either readily available or appropriately bounded:α is fixed
by the user, log ri requires a simple look-up, qi(W ′) ≥ qi(W ) and
q(+)(W ′) ≥ q(+)(W ).

de Campos and Ji establish their result by considering upper
bounds on BDe scores. The goals of the current paper are the same
(restricted to BDeu). For an upper bound to be useful it important
that (i) it allows all supersets of some W ′ to ruled out as parents set
for i and (ii) it is defined in terms of cheaply computable quantities.
The next section derives a promising upper bound for this.

3 Exploiting Alzer’s bound
The key contribution of this paper is that we can obtain a useful upper
bound on (BDeu log) local scores using an upper bound on the beta
function discovered by Alzer [1]. Here is Alzer’s result in its general
form.

Theorem 2 (From [1]). Let c > 0 be a real number and let r ≥ 2 be
an integer. Then we have for all real numbers xk ≥ c (k = 1, . . . , r):

B(x1, . . . , xr) ≤ βr(c)
∏r

k=1
x
−1/2+xk
k(∑r

k=1
xk
)−1/2+

∑r

k=1
xk

with the best possible constant βr(c) = rrc−1/2c(r−1)/2 (Γ(c))r

Γ(rc)
.

It will be convenient to work with Alzer’s bound in its log form:

logB(x1, . . . , xr)

≤ log βr(c) +

(
r∑
k=1

(
xk −

1

2

)
log xk

)

−

(
−1

2
+

r∑
k=1

xk

)
log

(
r∑
k=1

xk

)

with the best possible constant log βr(c) = (rc−1/2) log r+((r−
1)/2) log c+ r log Γ(c)− log Γ(rc).

By choosing c = α
qiri

(which is always positive since
α must be) this theorem provides an upper bound for

logB
(
nij1 + α

qiri
, . . . nijri + α

qiri

)
. With this choice of c

we have:

log βri(c) = (
α

qi
− 1/2) log ri + ((ri − 1)/2) log(

α

qiri
)

+ri log Γ(
α

qiri
)− log Γ(

α

qi
)

and so

logB

(
nij1 +

α

qiri
, . . . nijri +

α

qiri

)
≤ (

α

qi
− 1/2) log ri + ((ri − 1)/2) log(

α

qiri
)

+ri log Γ(
α

qiri
)− log Γ(

α

qi
)

+

(
ri∑
k=1

(
nijk +

α

qiri
− 1

2

)
log(nijk +

α

qiri
)

)

−

(
−1

2
+

ri∑
k=1

nijk +
α

qiri

)
log

(
ri∑
k=1

nijk +
α

qiri

)
= (

α

qi
− 1/2) log ri + ((ri − 1)/2) log(

α

qiri
) +

ri log Γ(
α

qiri
)− log Γ(

α

qi
)

+

(
ri∑
k=1

(
nijk +

α

qiri
− 1

2

)
log(nijk +

α

qiri
)

)

−
(
−1

2
+ nij +

α

qi

)
log

(
nij +

α

qi

)
(6)

Plugging (6) into (5) and replacing G with W we get:

zi(W )

≤ q(+) log Γ

(
α

qi

)
− riq(+) log Γ

(
α

qiri

)

+

q(+)∑
j=1

[
(
α

qi
− 1/2) log ri + ((ri − 1)/2) log(

α

qiri
)

+ri log Γ(
α

qiri
)− log Γ(

α

qi
)

+

(
ri∑
k=1

(
nijk +

α

qiri
− 1

2

)
log(nijk +

α

qiri
)

)

−
(
−1

2
+ nij +

α

qi

)
log

(
nij +

α

qi

)]
= q(+)(α/qi − 1/2) log ri + q(+)(ri/2− 1/2) log(

α

qiri
)

+

q(+)∑
j=1

[(
ri∑
k=1

(
nijk +

α

qiri
− 1

2

)
log(nijk +

α

qiri
)

)

−
(
−1

2
+ nij +

α

qi

)
log

(
nij +

α

qi

)]
(7)

= q(+)(α/qi − 1/2) log ri + q(+)(ri/2− 1/2) log(
α

qiri
)

+

q(+)∑
j=1

[(
ri∑
k=1

(
nijk +

α

qiri

)
log(nijk +

α

qiri
)

)



−
(
nij +

α

qi

)
log

(
nij +

α

qi

)]

−1

2

q(+)∑
j=1

(
ri∑
k=1

log(nijk +
α

qiri
)

)
− log

(
nij +

α

qi

)
= q(+)(α/qi − 1/2) log ri + q(+)(ri/2− 1/2) log(

α

qiri
)

+

q(+)∑
j=1

ri∑
k=1

[(
nijk +

α

qiri

)
log(nijk +

α

qiri
)

−
(
nijk +

α

qiri

)
log

(
nij +

α

qi

)]

−1

2

q(+)∑
j=1

(
ri∑
k=1

log(nijk +
α

qiri
)

)
− log

(
nij +

α

qi

)
= q(+)(α/qi − 1/2) log ri + q(+)(ri/2− 1/2) log(

α

qiri
)

+

q(+)∑
j=1

ri∑
k=1

(
nijk +

α

qiri

)
log

nijk + α
qiri

nij + α
qi

+
1

2

q(+)∑
j=1

log

(
nij +

α

qi

)
−

ri∑
k=1

log

(
nijk +

α

qiri

)
(8)

The right-hand side of (8) breaks down naturally into what is al-
most a prior component [ q(+)(α/qi − 1/2) log ri + q(+)(ri/2 −
1/2) log( α

qiri
)] and a strongly data-dependent component (the rest).

Note that this ’almost-prior’ component is not entirely prior to the
data since it depends on the value of q(+), the number of positive
values of nij .

To understand the strongly data-dependent component consider
the following Bayesian approach to parameter estimation in the sat-
urated model (where no conditional independence relations are as-
sumed). Let r =

∏
i
ri be the number of full joint instantiations of

the variables, and associate a Dirichlet parameter α/r with each full
joint instantiation. Imagine now updating this Dirichlet prior with the
observed data. It is not difficult to see that the posterior mean distri-
bution gives probability p̃ι = (nι + α/r)/(N + α) to each full
joint instantiation ι where nι is the observed frequency of ι in the
data, and N is the size of the data. Marginal probabilities are easy
to compute. Let p̃ijk be the joint probability of variable i taking its
kth value and its parents (in some fixed graph) taking their jth in-
stantiation, then clearly p̃ijk = (nijk + α

qiri
)/(N + α). Similarly,

p̃ij = (nij + α
qi

)/(N + α), where p̃ij is the probability that the
parents take their jth instantiation.

From this it is not difficult to see that:
qi∑
j=1

ri∑
k=1

(
nijk +

α

qiri

)
log

nijk + α
qiri

nij + α
qi

= −(N + α)Hp̃(i|W )

whereHp̃(i|W ) is the conditional entropy of variable i given its par-
ents W . (Note that there already exists valuable work linking BDeu
scores to conditional entropy [9].) Since:

q(+)∑
j=1

ri∑
k=1

(
nijk +

α

qiri

)
log

nijk + α
qiri

nij + α
qi

=

qi∑
j=1

ri∑
k=1

(
nijk +

α

qiri

)
log

nijk + α
qiri

nij + α
qi

−
q(0)∑
j=1

ri∑
k=1

(
nijk +

α

qiri

)
log

nijk + α
qiri

nij + α
qi

= −(N + α)Hp̃(i|W )

−q(0) α

qi
log(1/ri)

(9)

and−q(0) α
qi

log(1/ri) = α log ri−α(q(+)/qi) log ri, plugging (9)
into (8) and rearranging we have:

zi(W )

≤ α log ri + q(+)[(ri − 1) log(α/qiri)− log(ri)]/2

−(N + α)Hp̃(i|W )

+
1

2

q(+)∑
j=1

log

(
nij +

α

qi

)
−

ri∑
k=1

log

(
nijk +

α

qiri

)
(10)

It remains to obtain a easily computable upper bound on the term
in square brackets in (10). We have:

q(+)∑
j=1

log

(
nij +

α

qi

)
= q(+) logG(nij +

α

qi
)j

where G(nij + α
qi

)j is the geometric mean of the set {nij + α
qi

:

j = 1, ..q(+)}. Since the geometric mean is never greater than the
arithmetic mean we have:

q(+)∑
j=1

log

(
nij +

α

qi

)
≤ q(+) log(N/q(+) + α/qi)

Finally a lower bound on
∑q(+)

j=1

∑ri
k=1

log
(
nijk + α

qiri

)
is

needed. Suppose s(+) of the q(+)ri terms are positive, then

q(+)∑
j=1

ri∑
k=1

log

(
nijk +

α

qiri

)
= (q(+)ri − s(+)) log

α

qiri
+

∑
jk:nijk≥1

log

(
nijk +

α

qiri

)
where |{jk : nijk ≥ 1}| = s(+). The quantity∑

jk:nijk≥1
log
(
nijk + α

qiri

)
is minimised when the distribution

of the nijk is as ‘uneven’ as possible, with one of these values hav-
ing the value N − s(+) and all others with the value 1. So we have:∑
jk:nijk≥1

log

(
nijk +

α

qiri

)

≥ (s(+) − 1) log

(
1 +

α

qiri

)
+ log

(
N − s(+) +

α

qiri

)
and therefore:

−
q(+)∑
j=1

ri∑
k=1

log

(
nijk +

α

qiri

)



≤ −(q(+)ri − s(+)) log
α

qiri

−(s(+) − 1) log

(
1 +

α

qiri

)
− log

(
N − s(+) +

α

qiri

)
(11)

Applying (11) gives the following upper bound on zi(W ):

zi(W )

≤ α log ri + q(+)[(ri − 1) log(α/qiri)− log ri]/2

−(N + α)Hp̃(i|W )

+
1

2
q(+) log(N/q(+) + α/qi)

−1

2
(q(+)ri − s(+)) log

α

qiri

−1

2
(s(+) − 1) log

(
1 +

α

qiri

)
−1

2
log

(
N − s(+) +

α

qiri

)

which can be rearranged to give:

2zi(W )

≤ 2[α log ri − (N + α)Hp̃(i|W )]

+
(
s(+) − q(+)

)
log

(
α

qiri

)
+q(+) log

(
N

q(+)ri
+

α

qiri

)
−
(
s(+) − 1

)
log

(
1 +

α

qiri

)
− log

(
N − s(+) +

α

qiri

)
(12)

From (12) it is clear that α
qiri

is a key quantity. Since qi grows ex-
ponentially with the number of parents, α

qiri
will be very small for

large parent sets and in such cases log
(

α
qiri

)
will be a highly neg-

ative number. Consider now the term
(
s(+) − q(+)

)
log
(

α
qiri

)
. We

have that s(+)−q(+) ≥ 0 since for each positive nij there must be at
least one positive nijk. We have s(+)−q(+) = 0 only in the extreme
case where, for each parent instantiation for which we have observed
data (nij > 0), all the associated datapoints have the same value for
the child i. In other words, in the observed data, the joint value of the
parents determines that of the child. In this unusual case even a very
negative value of log

(
α
qiri

)
does not drive the upper bound down.

When the data rule out a deterministic relation between parents and
child we have s(+)−q(+) > 0 and log

(
α
qiri

)
will push down the up-

per bound. In summary, the term
(
s(+) − q(+)

)
log
(

α
qiri

)
penalises

parent sets according to how much the values of the parents fail to
determine that of the child.

Further insight into this issue can be gained by rewriting (7) as:

zi(W )

≤ q(+)(α/qi − 1/2) log ri + q(+)(ri/2− 1/2) log

(
α

qiri

)

+

q(+)∑
j=1

ri∑
k=1

[(
nijk +

1

ri

(
α

qi
− 1

2

))
log

(
nijk + α

qiri

nij + α
qi

)
−1

2

(
1− 1

ri

)
log

(
nijk +

α

qiri

)]
(13)

For each nijk, if nijk > 0 then nijk ≥ 1 > ((1/2) − (α/qi))/ri
and both terms of the summand for nijk are negative, driving down
the upper bound. (So if all nijk are positive a simple upper bound
on zi(W ) is obtained by deleting the double summation in (13)).
However for each nijk where nijk = 0, nij > 0 the second term is
positive if α/qi < ri and the first term also if α/qi < 1/2. Both of
these conditions will hold for typical choices of α (α = 1, for ex-
ample) and the upper bound will be pushed up. Each nijk for which
nijk = 0, nij > 0 is an example of ‘determinism in the data’: the
kth child value never occurs when the parents are in their jth config-
uration (and this jth configuration occurs at least once in the data).
The parents are ‘rewarded’ each time this occurs by a positive boost
to the upper bound on their score.

4 How tight are the bounds?

In this section local scores are compared against their upper bounds
as computed by the direct application of Azler’s bound (8) and also
using the less data-dependent bound given in (12). A selection of
such comparisons is presented here with the aim of exemplifying the
main points.

In one experiment 100 datapoints were sampled from the well-
known ‘Asia’ network and local scores for all possible parent sets
were computed for the variable Dyspnea with α set to 1. Fig 1 shows
the 128 local scores ordered by their value together with the upper
bound computed by (8) and by (12), labelled true, alzer and
easy respectively. Figs 2–8 shows results in the same form, for
different numbers of datapoints, values of α and Bayesian network.
See figure captions for details. The most strking finding is that both
bounds become much tighter as the amount of data increases. This is
as expected, since from (12) we can see that the entropy dominates as
N increases. Such asymptotic behaviour has been analysed in some
detail by Ueno [9].

5 Potential for pruning the search for local scores

A key motivation for obtaining bounds on BDeu local scores is to be
able to (cheaply) prune the search for optimal parent sets. de Campos
and Ji [6] have already achieved impressive pruning results.
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Figure 1. Local scores and upper bounds for parent sets of the variable
Dyspnea in the ‘Asia’ network. Using 100 datapoints sampled from the

‘Asia’ network and α = 1
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Figure 2. Local scores and upper bounds for parent sets of the variable
Dyspnea in the ‘Asia’ network. Using 10000 datapoints sampled from the

‘Asia’ network and α = 1
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Figure 3. Local scores and upper bounds for parent sets of the variable
Dyspnea in the ‘Asia’ network. Using 100 datapoints sampled from the

‘Asia’ network and α = 0.01
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Figure 4. Local scores and upper bounds for parent sets of the variable
Dyspnea in the ‘Asia’ network. Using 10000 datapoints sampled from the

‘Asia’ network and α = 0.01
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Figure 5. Local scores and upper bounds for parent sets of the variable
Dyspnea in the ‘Asia’ network. Using 100 datapoints sampled from the

‘Asia’ network and α = 100
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Figure 6. Local scores and upper bounds for parent sets of the variable
Dyspnea in the ‘Asia’ network. Using 10000 datapoints sampled from the

‘Asia’ network and α = 100
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Figure 7. Local scores and upper bounds for small parent sets of the
variable HYPOVOLEMIA in the ‘alarm’ network. Using 100 datapoints

sampled from the ‘alarm’ network and α = 1

-5500

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

 0  100  200  300  400  500  600  700

true
alzer
easy

Figure 8. Local scores and upper bounds for small parent sets of the
variable HYPOVOLEMIA in the ‘alarm’ network. Using 10000 datapoints

sampled from the ‘alarm’ network and α = 1



The bound (8), equivalent to (10), is tight but not appro-
priate for pruning. The looser bound (12) depends only on:
q(+)(W ), s(+)(W ), qi and Hp̃(i|W ). These quantities can be
bounded by the corresponding quantities for subsets and super-
sets. Let L and U be such that L ⊂ W ⊂ U . Abbreviate
(mini′∈W\L ri′)qi(L) to q′i(L) and (mini′∈U\W ri′)

−1qi(U) to
q′i(U). We have

• q′i(L) ≤ qi(W ) ≤ q′i(U)
• q(+)(L) ≤ q(+)(W ) ≤ q(+)(U)
• s(+)(L) ≤ s(+)(W ) ≤ s(+)(U)
• s(+)(L)−q(+)(L) ≤ s(+)(W )−q(+)(W ) ≤ s(+)(U)−q(+)(U)
• −Hp̃(i|L) ≤ −Hp̃(i|W ) ≤ −Hp̃(i|U)

Note that the last double inequality is the well-known result that con-
ditional entropy is always non-increasing as variables are added to
the conditioning set. Conditional entropy only remains constant if
the relevant conditional independence relation obtains.

If α
qiri
≤ 1 there is the following bound:

2zi(W )

≤ 2[α log ri − (N + α)Hp̃(i|U)]

+
(
s(+)(L)− q(+)(L)

)
log

(
α

q′i(L)ri

)
+q(+)(U) log

(
N

q(+)(L)ri
+

α

q′i(L)ri

)
−
(
s(+)(L)− 1

)
log

(
1 +

α

q′i(U)ri

)
− log

(
N − s(+)(U) +

α

q′i(U)ri

)
(14)

If the bound for zi(W ) given by (14) is less than zi(L) it follows that
W cannot be an optimal parent set for variable i. An obvious choice
for U is {1, . . . , p} \ {i}. The next step in this work is to see to what
extent (14) provides effective pruning and compare to the existing
method of de Campos and Ji [6].
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Abstract. We propose new local move operators incorporated into
a score-based stochastic greedy search algorithm to efficiently escape
from local optima in the search space of directed acyclic graphs. We
extend the classical set of arc addition, arc deletion, and arc reversal
operators with a new operator replacing or swapping one parent to
another for a given node, i.e. combining two elementary operations
(arc addition and arc deletion) in one move. The old and new opera-
tors are further extended by doing more operations in a move in order
to overcome the acyclicity constraint of Bayesian networks. These
extra operations are temporally performed in the space of directed
cyclic graphs. At the end acyclicity is restored and newly defined
operators actually lead to a gain in graph score. Our experimental
results on standard Bayesian networks and challenging gene regula-
tory networks show large BDeu score and recall value improvements
compared to state-of-the-art structure learning algorithms when the
sample size is small.

1 Introduction

Learning the structure of Bayesian networks from fully observed
data is known to be an NP-hard problem [5] which has received
a lot of attention from researchers during the last two decades [8].
Due to its difficulty, heuristic methods have been widely used to
learn Bayesian network structures. Two main approaches have been
studied: constraint-based methods and score-based methods [18].
Constraint-based methods aim at satisfying as much independence
present in the data as possible using conditional independence tests.
Unfortunately, these methods can be sensitive to failures in individ-
ual independence tests. Score-based methods use a scoring function
f to score a network structure with respect to the data. They score the
whole network at once, being therefore less sensitive to individual
failures. Different Bayesian and non-Bayesian scoring metrics can
be used such as the Bayesian Information Criterion (BIC) [26] or the
Bayesian Dirichlet criterion (BDeu) [16]. Score-based methods ex-
plore the space of network structures to find the highest-scoring net-
work. This space being superexponential in the number of variables,
local search methods are used such as greedy ascent search (also
called hill-climbing), tabu search, simulated-annealing, and other
complex metaheuristics like ant colony optimization [7]. In spite of
its simplicity, the (repeated randomized or stochastic) greedy search
method reveals to be a competitive method compared to more com-
plex algorithms [12]. Starting from an initial network structure, it
performs a series of local moves until a local optimum is found. Each
move selects and applies the best elementary operation(s) on the cur-
rent network structure. The set of candidate neighboring structures

is called the neighborhood in the sequel. A classical neighborhood
is composed of single arc additions, deletions, and reversals. Using
larger neighborhoods efficiently allows to find better local optima,
and thus better network structures.

[20] proposed an optimal reinsertion of a target node by remov-
ing all its edges and reinserting it optimally. However this approach
is limited to small problems only. [17] used a restricted form of
look ahead called LAGD, combining several operations in a sin-
gle move. In this paper, we follow a similar approach by focusing
our local operations on a target node and combining several opera-
tions guided by the global acyclicity constraint of Bayesian networks.
By doing so, we are able to exploit large neighborhoods efficiently.
Other approaches use a compact representation of a set of network
structures. They explore either the search space of variable order-
ings (an optimal structure compatible with the order being easier to
find) [6, 28, 25, 2], or the search space of Markov-equivalent network
classes like Greedy Equivalence Search (GES) [3, 21, 7].

In Section 2, we give Bayesian network background. Next, we de-
fine a specific stochastic greedy search algorithm and introduce the
new local move operators in Section 3. We report experimental re-
sults in Section 4 and conclude.

2 Bayesian network structure learning

A Bayesian network [18] denoted by B = (G,PG) is composed of
a directed acyclic graph (DAG) G = (X,E) with nodes represent-
ing p random discrete variables X = {X1, . . . , Xp}, linked by a set of
directed edges or arcs E1, and a set of conditional probability dis-
tributions PG = {P1, . . . , Pp} defined by the topology of the graph:
Pi = �(Xi|Pa(Xi)) where Pa(Xi) = {X j ∈ X | (X j → Xi) ∈ E} is the set
of parent nodes of Xi in G. A Bayesian network B represents a joint
probability distribution on X such that: �(X) =

∏p
i=1 �(Xi|Pa(Xi)).

Conditional probability distributions PG are determined by a set
of parameters. Given the network structure G, and the fully observed
data D, parameters can be estimated by simple counting, following
the maximum likelihood principle.

Learning the structure of a Bayesian network consists in finding
a DAG G maximizing the posterior distribution �(G|D). We have
�(G|D) ∝ �(D|G)�(G) since �(D) is independent of G. Under spe-
cific assumptions, the marginal loglikelihood log(�(D|G)) can be ex-
pressed as a consistent decomposable scoring function f , such as the
BIC and BDeu criteria [3] :

1 In the paper, we use G = E when the set of nodes is implicit.



f (D,G) =

p∑
i=1

fXi (D,G) =

p∑
i=1

fXi (D, Pa(Xi)) (1)

As f is consistent, maximizing f when the sample size tends to
infinity leads to select the true structure or one among the Markov-
equivalent structures set. A set of Bayesian networks are Markov-
equivalent if they imply exactly the same set or map of independence
constraints among variables2. Next, we describe a novel greedy
search method maximizing f in the space of DAGs.

3 Stochastic Greedy Search

We define the Stochastic Greedy Search (SGS) algorithm3 for struc-
tural learning of Bayesian networks in Algorithm 1. It collects the
best DAG found by r randomized hill climbing algorithms. Stochas-
ticity comes from two random draws. The first one, common in the
structure learning community, is due to InitGraph that returns a
random DAG used by the inner greedy search loop. The second is
more original. It is the random DAG drawn among the best neighbors
in the neighborhood of the current DAG G ( SelectRandom at line 1
of Algorithm 1). The neighborhood of G, returned by Neighbors, is
composed of the usual elementary operations on DAGs: arc addition
(ADD), arc deletion (DELETE), and arc reversal (REVERSE). This
classical neighborhood is denoted NADR in the sequel. Only feasible
operations are considered, which do not create cycles. In the next
subsections, we are going to extend this set of operations. We empir-
ically observe that the first random draw may be counter-productive
and starting from an empty graph is often better than from a random
DAG, as also observed in [19].

Algorithm 1: Stochastic Greedy Search algorithm.
Input : An iid sample D, a scoring function f , number of

repeats of different GS r
Output : A directed acyclic graph
G∗ ← ∅ /* Best DAG initialized with the empty graph */ ;
s∗ ← f (D,G∗) /* score of the empty graph */ ;
/* Repeat r randomized greedy searches */ ;
for i← 1 to r do

G ←InitGraph() /* Choose an initial DAG */ ;
s← f (D,G) ;
repeat

improvement ← false ;
smax ← maxG′∈Neighbors(G) f (D,G′);
if smax > s then

/* Select at random among the best neighbors */ ;
Gmax

← {G′ ∈Neighbors(G)| f (D,G′) = smax} ;
G ←SelectRandom(Gmax) ;1
s← smax ;
improvement ← true ;

until ¬ improvement ;
/* Keep the best DAG of r greedy searches */ ;
if s > s∗ then2

G∗ ← G ;
s∗ ← s ;

return G∗ ;

Proposition 1. Let D be a dataset of n records that are identically
and independently sampled from some distribution �(·). Let f be a

2 BIC/BDeu give the same score for Markov-equivalent DAGs.
3 Don’t mistake for the SGS algorithm in [27] which is a constraint-based

algorithm, but ours is score-based.

locally consistent scoring function. The inner loop of the SGS algo-
rithm returns a minimal independence map of �(·) as the sample size
n grows large.

The local consistency of f ensures that adding any arc that elim-
inates an independence constraint that does not hold in the gener-
ative distribution �(·) increases the score. Conversely, deleting any
arc that results in a new independence constraint that holds in �(·)
also increases the score. Hence, starting from any DAG, by select-
ing strictly improving moves, the algorithm terminates (because of
a finite number of DAGs) and returns an independence map of �(·)
(I-map of �(·): every independence implied by the resulting DAG is
verified in �(·), in the worst case it can be a complete graph) which
is minimal thanks to arc deletion operations and local consistency.

The main interest of our randomization approach is to sim-
ulate a search in the space of score-equivalent networks. Each
greedy search moves from a randomly-selected DAG instance of a
Markov-equivalence class E(G) to another randomly-selected DAG
of an adjacent4 Markov-equivalence class E(G′) thanks to our
SelectRandom function. It results in a stronger property:

Proposition 2. Let D be a dataset of n iid fully observed samples of
some faithful distribution �(·). Let f be a locally consistent scoring
function. SGS returns a perfect map of �(·) as both the sample size n
and the number of restarts r grow large.

Recall that a faithful distribution admits a unique perfect map cor-
responding to the optimal structure. Compared to the GES algorithm
[3], which offers the same optimality guarantee within a two-phase
greedy search, SGS chooses the orientation of some compelled arcs5

of the true DAG at random, whereas GES waits while no v-structures
impose orientation constraints. See an example in Figure 1.

Notice that neither GES nor SGS find an optimal structure in poly-
nomial time in the worst case, even when using a constant time con-
sistent scoring function and a faithful distribution6. In general, with-
out the faithfulness assumption, learning the optimal structure is NP-
hard even when the sample size is large and when each node has at
most k parents, for all k ≥ 3 [4].

We observe in the experiments that a small number of restarts r
allows to find DAGs with better scores than GES, especially when the
sample size n is limited, in this case GES found a local optimum and
SGS is able to find other better local optima thanks to randomization.
This was also observed in [21].

When the sample size is small the learning problem becomes more
difficult: the empirical distribution may be far from a perfect map
resulting in many local optima and the scoring function is no more
consistent, i.e. the likelihood does not dominate the penalty term of
the scoring function which increases with the parent variable domain
sizes [3]. In this complex situation, we propose a new operator to
escape from some local optima.

3.1 SWAP operator
Consider the 3-variable example in Figure 2 with observed data D,
scoring function f , and initial DAG G0 = {X2 → X3}. Let assume
f (D, {X1 → X3}) > f (D, {X2 → X3}) > f (D, {X1 → X3, X2 →

4 Two equivalence classes E(G), E(G′) are adjacent iff G is an I-map of G′ or
vice-versa and the number of edges in the graphs G and G′ differs by one.

5 An arc X → Y in G is compelled if that arc exists in every DAG of E(G),
otherwise it is said reversible.

6 The number of possible sets S in the GES operator ADD(E,S ) is exponential
in the maximum degree d of the current graph in the worst case and r is
unbounded for SGS.



Figure 1. Four adjacent Markov-equivalence classes found by GES during its first phase of edge and v-structure insertions. (a) GES and SGS start from the
empty graph . (d) The true DAG is found after three moves. The orientation of X3→ X4 and X1→ X3 edges are chosen at random by SGS, whereas GES
waits until its third move to decide on edge orientations based on DAG score comparisons (enforcing the v-structure X1→ X3← X2 as stated by the extra

ADD parameter {X1}, and forbidding X1→ X3← X4 in its second move).

→

Figure 2. The operator SWAP(X2|X1→ X3) applied to a 3-variable
problem.

X3}) > f (D, {X3 → X1, X2 → X3}) > f (D, {X2 → X1, X2 →
X3}) > f (D, ∅). Then G0 is a local minimum for the classical neigh-
borhood NADR. Our new operator, denoted SWAP(X|Y → Z), con-
sists in changing one parent X to another parent Y for one tar-
get node Z. This is equivalent to a simultaneous pair of ADD and
DELETE operators restricted to the same target node. In our exam-
ple, applying SWAP(X2|X1 → X3) corresponds to DELETE(X2 →
X3),ADD(X1 → X3), resulting in the better DAG G1 = {X1 → X3}
as shown in Figure 2. The extended neighborhood using the four op-
erators is denotedNADRS and SGS usingNADRS (respectivelyNADR)
is denoted SGS2 (Stochastic Greedy Search with Swap) (resp. SGS1)
in the sequel.

A typical suboptimality problem that we observed in our exper-
iments happens when two nodes have the same parents. Figure 3
shows such an example with four variables. Because child nodes X3
and X4 are highly correlated due to their common parents X1 and
X2, the first arc usually added is either X3 → X4 or X4 → X3 espe-
cially if the conditional probability distributions of X3 and X4 given
X1 and X2 are close. Then adding a first parent to X3 and further-
more a second parent to X4 and X3 give the DAG G4. Here deleting
X3 → X4 is going to decrease the score and the same negative ef-
fect results when adding X1 → X4 because it leads to a three-parent
node. For this node, the increase in likelihood may not overcome the
penalization term. But doing both operations simultaneously thanks
to our SWAP operator results in a better local optimum DAG.

Let p be the number of variables in the current DAG and k be
the maximum number of parents per node. Assuming a sparse graph,
p � k, the number of SWAP operations is bounded by O(kp2) in
the extended neighborhood NADRS , whereas it is bounded by O(p2)
for ADD and O(kp) for DELETE and REVERSE. The complexity

of NADRS is therefore in O(kp2), whereas it is in O(p2) for the clas-
sical neighborhood NADR. Notice that other approaches using larger
neighborhoods such as h-look ahead in l good directions (LAGD)
has a worst-case complexity in O(lh−1 p2) [17] and optimal reinsertion
(OR) neighborhood is in O(2k pk+1) [20]. In particular, LAGD com-
plexity does not benefit from sparsity, lh−1 being constant, whereas
our approach is faster when k decreases. Moreover computing the
score difference of two DAGs before and after a SWAP operation is
easy to do as it remains local to a single target node thanks to score
decomposition.

Another source of suboptimality comes from the global acyclicity
constraint of Bayesian networks.

3.2 Breaking cycles by successive deletions and
swaps

→

Figure 4. Applying an extended SWAP∗ operation breaking a cycle by an
additional SWAP operation:

SWAP∗(X2|X7→ X3) = {SWAP(X2|X7→ X3), SWAP(X4|X5→ X6)}.

Consider the 7-variable DAG example in Figure 4. Swapping the
parent X2 of X3 by X7 in DAG G (Fig. 4.left) introduces a directed
cycle {X7 → X3, X3 → X4, X4 → X6, X6 → X7} and is there-
fore forbidden in our NADRS neighborhood. However it may corre-
spond to a large local score improvement with respect to variable X3.
Let us denote this improvement by ∆X3(G,SWAP(X2|X7 → X3)) =

fX3(D,G′) − fX3(D,G) with G′ obtained by applying the SWAP op-
eration on G (G′ is not a valid DAG), and D and f being the sample
and scoring function. Our idea is to heuristically guide the search
for a second (or more) local operator to be applied on G′ in order



Figure 3. Problems with the classical neighborhood NADR when two nodes (here X3 and X4) have the same parents. True DAG is G6. Starting from the
empty graph (not shown), G4 can be locally optimum for NADR when the sample size is small (score of G5 lower than G4), whereas in NADRS ,

SWAP(X3|X1→ X4) moves directly from G4 to G6.

to restore graph acyclicity (G′ becomes valid) and such that the true
score of the final DAG is greater than the score of the original one.
In Figure 4, it is obtained by applying a second SWAP.

Algorithm 2: SWAP∗(X|Y → Z) operator.
Input : operation X|Y → Z, sample D, score f , DAG G(X,E)
Output : a set of local operations L
L← ∅ /* Initialize output operations to the empty set */ ;
X’← X /* Candidate parent set for future swaps */ ;
G′ ← G /* Copy of input DAG */ ;
∆ = ∆Z(G′,SWAP(X|Y → Z)) /* Putative score improvement */ ;3
if ∆ > 0 then

L← L ∪ {SWAP(X|Y → Z)} ;
Apply SWAP(X|Y → Z) to G′ ;
/* Repeat deletion or swap operations until no more cycles
*/ while ∆ > 0 ∧ (C←NextCycle(G′)) , ∅ do4

X’← X’ \ nodes(C) ;5
/* Choose the best deletion to break cycle C */ ;
(U∗ → W∗)←6
argmax(U→W)∈C\{Y→Z} ∆W (G′,DELETE(U → W)) ;
/* Test if the sum of local score changes is positive */ ;
if ∆ + ∆W∗ (G′,DELETE(U∗ → W∗)) > 0 then

L← L ∪ {DELETE(U∗ → W∗)} ;
∆← ∆ + ∆W∗ (G′,DELETE(U∗ → W∗)) ;
Apply DELETE(U∗ → W∗) to G′ ;

else
/* Choose the best swap to get a positive change */ ;
(U∗|V∗ → W∗)←7
argmax(U→W)∈C,V∈X’ ∆W (G′,SWAP(U |V → W)) ;
∆← ∆ + ∆W∗ (G′,SWAP(U∗|V∗ → W∗)) ;
if ∆ > 0 then

L← L ∪ {SWAP(U∗|V∗ → W∗)} ;
Apply SWAP(U∗|V∗ → W∗) to G′ ;

else
L← ∅ /* Abort all local operations */ ;8

return L ;

For that purpose, we define an extended SWAP operator, denoted
SWAP∗, able to break all directed cycles by performing a succession
of deletion or swap operations. It can be seen as a kind of greedy
descent search in the space of directed cyclic graphs, trying to re-
move the less important arcs or to swap them in order to compen-
sate for their loss, until a better valid DAG is found. We use lo-
cal score changes to guide the search: ∆Xi(G,OP) = fXi(D,G′) −
fXi(D,G), with G′ the result of applying the local move operator
OP ∈ {DELET E, S WAP} to G. A negative sum of local changes
aborts the search. Recall that finding a minimum number of arc dele-

tions in order to restore acyclicity is NP-hard, see minimum feed-
back arc set problem in [10]. We use a greedy approach instead. The
pseudo-code of SWAP∗ is given in Algorithm 2. The local score im-
provement of the initial SWAP operation is evaluated at line 3. It
corresponds to a putative gain on the current score. If it is positive
then this operation is applied to a copy of the input DAG G, checking
next if it creates some directed cycles. Each cycle is retrieved by the
NextCycle function7 and the algorithm searches for an arc deletion
in this cycle with minimum deterioration of the local score at line 6.
If the combined local score change of the SWAP and DELETE op-
erations is positive then it applies the selected arc deletion and con-
tinues to test if there are no more directed cycles at line 4. If the
combined local score change is negative then it tries to swap an arc
of the cycle such that the combined local score change is maximized
(line 7) and positive. If it fails to find such an operation then it stops
breaking cycles and returns an empty operation set. Finally if it suc-
ceeds, breaking all cycles, then it returns a feasible set of SWAP and
DELETE operations resulting into a new valid DAG G′ with a better
score than G. The true score improvement is equal to ∆.

Algorithm 2 terminates because there are at most O(pk) directed
cycles to break, assuming p nodes and k maximum number of parents
per node. Arcs newly created by swap operations cannot be swapped
again more than p times thanks to our restricted list of alternative
candidate parent nodes X’ used at line 7, initialized to all the vari-
ables at the beginning, and updated by the list of nodes present in the
current cycle at line 5.

We apply the same approach to extend the other operators ADD∗

and REVERSE∗, breaking cycles with deletions or swaps. Because
REVERSE∗(X → Y) = ADD∗(Y → X), we use only ADD∗. The re-
sulting neighborhood exploiting these extended operators is denoted
NA∗DS ∗ and SGS using this neighborhood is denoted SGS3 (Stochas-
tic Greedy Search with Successive Swaps) in the experiments.

4 Experimental Results

In this section, we describe a set of experiments aimed at test-
ing the performance of SGSi algorithms compared with state-of-
the-art Bayesian network structure learning algorithms on standard
Bayesian networks and challenging gene regulatory networks.

7 We implemented an incremental acyclicity test [14] which returns a shortest
directed cycle using breadth first search.



4.1 Results on Standard Bayesian Networks

We used four gold-standard networks from the Bayesian Network
Repository8 whose main properties are shown in Table 1. In this ta-
ble, Nodes and Arcs specify the number of nodes and arcs respec-
tively in the DAG. The Max in-degree is the maximum number of
parents of a node. The Min-max states are the minimum and max-
imum number of states in the domain of a variable associated to a
node. Finally, Longest path is the length of the longest directed path
between any pair of nodes in the DAG. 100 samples of size n = 500
and n = 5000 were generated for each network using Causal Ex-
plorer [1].

Table 1. Bayesian network properties

Alarm Insurance Hailfinder Pigs
Nodes 37 27 56 441
Arcs 46 52 66 592
Max in-degree 4 3 4 2
Min-max states 2-4 2-5 2-11 3-3
Longest path 11 10 14 6

We compared SGSi algorithms with LAGD [17], available in the
WEKA software [15] and GES [3] implemented in Tetrad 4.4.0 [24].
LAGD was shown to outperform repeated hill-climbing, order-based
search, tabu search, and simulated annealing in [23]. GES, which is
considered the reference algorithm for Bayesian network structure
learning, was reported having similar performance to the most re-
cent order-based search algorithms in [2]. Recall that SGS1 is similar
to repeated hill-climbing, SGS2 uses the SWAP operator, and SGS3

breaks cycles by successive DELETE and SWAP operators. Experi-
ments were performed on a 3 GHz Intel Core2 computer with 4GB
running Linux 2.6.

We fixed the maximum number of parents per node at k = 5 for
SGSi and LAGD. LAGD exploits a h = 2-look ahead in l = 5 max-
imum improving directions. GES was restricted on the number of
adjacent nodes: d = 7 for Hailfinder and d = 10 for Pigs network
as done in [2]. All methods were initialized by an empty graph and
optimized the BDeu score with equivalent sample size α = 1 and
no prior on the network structures. For each sample, we recorded
the best score obtained by GES, and by r = 10 randomized greedy
searches for SGSi (Algorithm 1 at line 2) as for LAGD9.

In order to test the statistical significance of the difference in BDeu
score between two methods, we applied a non-parametric paired test,
the Wilcoxon signed-rank test [32]. Table 2 presents the test results
for all the pairs of methods by using an unilateral alternative (no dif-
ference versus better), the pairwise type I error is fixed to 6.2510−4

which corresponds to a familywise error rate of 5% with Bonferroni
correction for multiple comparisons. The above results were summa-
rized in Table 3, in a summarized Wilcoxon score for each method,
obtained by summing the positive comparisons and subtracting the
negative ones. The non significant comparisons were ignored.

SGS3 was the best method for the four networks, except for Pigs
network with n = 5000 which is more accurately estimated by GES.
We conjecture that in this case, GES was closed to its asymptotic op-
timal behavior, which may be due to the smallest network features
of Pigs network among all. SGS2 improved over SGS1 and reached
the second position especially for small sample sizes, probably for

8 http://www.cs.huji.ac.il/site//labs/compbio/Repository/
9 We randomly permute the input variables at each run.

Table 2. Wilcoxon test comparing pairs of algorithms (familywise error
rate = 5%). For Method1 versus Method2, + means that Method1 is

significantly better than Method2, − means that Method1 is significantly
worse than Method2 and ∼ means there is no significant result

Alarm Insurance
Sample size 500 5 000 500 5 000
SGS3 vs SGS1 + + + +

SGS3 vs SGS2 + + + +

SGS2 vs SGS1 + ∼ ∼ ∼

SGS3 vs GES + + + +

SGS3 vs LAGD + + + +

SGS2 vs GES + ∼ + +

SGS2 vs LAGD ∼ ∼ + +

SGS1 vs GES + ∼ + +

SGS1 vs LAGD ∼ ∼ + +

LAGD vs GES + ∼ + +

Hailfinder Pigs
SGS3 vs SGS1 ∼ + + +

SGS3 vs SGS2 ∼ + + +

SGS2 vs SGS1 ∼ ∼ ∼ ∼

SGS3 vs GES + + + -
SGS3 vs LAGD ∼ + n/a n/a
SGS2 vs GES + + ∼ -
SGS2 vs LAGD ∼ + n/a n/a
SGS1 vs GES + + ∼ -
SGS1 vs LAGD ∼ + n/a n/a
LAGD vs GES + + n/a n/a

Table 3. Summarized Wilcoxon scores (the higher the score, the better the
method)

Alarm Insurance Hailfinder Pigs
SGS3 8 8 5 4
SGS2 0 2 2 -3
SGS1 -2 2 2 -3
LAGD -1 -4 -1 n/a
GES -5 -8 -8 2

Table 4. Number of spurious edges (+) and missing edges (-) to sum for
the structural Hamming distance. Both scores are in bold when giving the

best distance per configuration

Alarm Insurance
Sample size 500 5 000 500 5 000

SGS3 + 8 6 4 2
− 3 2 20 8

LAGD + 11 8 4 5
− 4 2 20 11

GES + 6 4 2 3
− 5 2 23 12

Hailfinder Pigs

SGS3 + 17 16 32 41
− 24 13 0 0

LAGD + 21 20 n/a n/a
− 26 19 n/a n/a

GES + 15 11 2 0
− 24 22 7 0



reasons commented in Figure 3. LAGD got poor results, the differ-
ence with SGS1 can be explained by a better randomization in SGS1

(Algorithm 1 at line 1). LAGD failed on the Pigs network due to the
large number of variables p = 441 that makes the exploration of 2-
look ahead neighborhoods infeasible in a reasonable time. GES was
the worst method of this evaluation (except for Pigs) due to limited
sample sizes.

Although the algorithms are designed to maximize a (BDeu) score,
we generally look for a network structure as close as possible to the
true one. When the sample size grows large, improving the BDeu
score leads to reduce the structural Hamming distance (SHD) be-
tween the learned and the true network. We report in Table 4 the
means over 100 datasets (rounded values to the nearest integer) of
the missing and spurious edges without taking into account the edge
orientations. The SHD is the sum of the above values. We do not
report SGS1 and SGS2 results that are outperformed by SGS3. SGS3

(resp. GES) got the best SHD in 4 (resp. 5) configurations and outper-
formed LAGD (which performed as SGS3 in 1 configuration). GES
performed extremely well on the Pigs network, finding the true net-
work with 5,000 samples, whereas SGS3 learned too many edges but
recovered all the true edges (even with n = 500). The spurious edges
learned by SGS3 are exclusively due to random orientations of com-
pelled arcs in v-structures (see Figure 1). Assuming X1→ X3← X2
in the true network (v-structures are very frequent in the Pigs net-
work) and a large sample size, if during its greedy search SGS3 adds
first X1 ← X3 and X3 → X2 then it will add next a covering edge
X1→ X2 or X1← X2 in order to find a minimal independence map
(see Proposition 1). We corrected this fault by comparing for each
covered v-structure the 3 possible non-covered v-structures indepen-
dently from the other variables and selecting the highest score con-
figuration. After this post-processing step on Pigs network, we had
only 1 (resp. 2) spurious edges for SGS3 with 500 (resp. 5000) sam-
ples without increasing the missing edges number. The same post-
processing had no effect on the other smaller networks.

4.2 Detailed analysis on the Alarm network
We conducted a series of algorithm analyzes on the Alarm network
with a fixed sample size n = 500.

Table 5. Single greedy search analysis on the Alarm network
(n = 500, r = 1)

BDeu score Iter. BDeu cache Time(s)
SGS3 -5490.53 66 4543 3.2
SGS2 -5513.89 58 4310 2.3
SGS1 -5541.55 55 3305 1.5
LAGD -5544.61 35 4782 3.2
GES -5659.26 72 5531 2.4

Table 5 shows a typical example of the BDeu score reached by the
algorithms for a single greedy search (r = 1) on a particular sample.
It also reports the number of local moves Iter. (Algorithm 1 at line 1),
the number of local score fXi(D,G) computations for different par-
ent configurations, i.e. assuming a perfect BDeu cache, and the CPU
time in seconds. As expected, the number of iterations for LAGD
was less than half that of other methods, since LAGD applies two
local operators (ADD, DELETE, or REVERSE) at each move. The
swap operations used by SGS2 and SGS3 slightly increased the num-
ber of moves allowing to find better local optima. Comparing CPU
times is a difficult task due to the various implementation details (lan-
guage choice, caching strategy, sample compilation techniques, see

for instance Chapter 18.4.3 in [18]). Nevertheless SGSi algorithms
are comparable. In our implementation, SGS3 was twice slower than
SGS1. A fairer comparison is the number of calls to new local score
computations. SGS1 needed the fewest number, whereas GES needed
the most as it tends to explore larger neighborhoods in the space of
Markov-equivalent networks. Notice that SGS2 and SGS3 required
less score computations than LAGD due to graph sparsity (see Sec-
tion 3.1). The greater BDeu cache size of SGS3 compared to SGS2 is
mainly due to the increased number of local moves.
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Figure 5. Best BDeu scores, averaged on 30 Alarm samples (n = 500),
found by SGSi algorithms as the number of restarts r increases and starting

either from an empty (solid line) or a random graph (dashed line). Results of
GES (dotted line) and BDeu score of the true network Gold (dash-dotted

line) are also given. Methods are sorted from the best, SGS3 with an empty
graph, to the worst, SGS1 with a random initial graph, at r = 1.

We further analyzed the impact on performances of the number
of restarts r and the initial graph used by SGSi algorithms (see
InitGraph in Algorithm 1). Figure 5 reports averaged BDeu scores
on 30 Alarm samples (the length of the 95% confidence interval
of the BDeu score mean was around ±30). The 30 initial random
graphs, common for SGSi algorithms, are composed of 71 arcs with
at most two parents per node10. All SGSi methods reached a better
BDeu score than GES in this small sample size situation by the use
of less than r = 4 restarts. SGSi methods converged quite rapidly
as r increases. Only SGS3 found a better score than the true net-
work. Initial random graphs were counter-productive for all the meth-
ods, except for SGS3. It shows that starting from a random graph
is useful if the available operators allow to move efficiently in the
search space, which is illustrated by the following experiment. On
the contrary, using randomness within the greedy selection process
(see SelectRandom in Algorithm 1) was always beneficial.

Finally, we analyzed how often our new local move operators are
used during the search. Table 6 shows the mean number of local
moves using a specific operator averaged on r = 50 greedy searches
over 30 Alarm samples (n = 500). Labels ADD+ and SWAP+ mean
that at least two local operators were successively applied at a given
move in order to break cycles11. The new local move operators are

10 For each node, we randomly select two parents and remove a parent if it
creates a directed cycle.

11 We found at most 4 (resp. 5) successive operations for the 1500 runs start-
ing from an empty (resp. random) graph.



Table 6. Operator usage depending on the initial graph

Empty graph init. Random graph init.
SGS1 SGS2 SGS3 SGS1 SGS2 SGS3

ADD 53 53 52 53 9.5 11.5
DELETE 0.5 0.1 1.4 64 20 43
REVERSE 0.9 1.1 0.7 5.3 3.4 1.9
SWAP 0 1.1 3.2 0 47 33
ADD+ 0 0 2 0 0 14
SWAP+ 0 0 1.6 0 0 9.5

mostly used when starting from a random graph (there are more cy-
cles to break), but when starting from an empty graph, only a few
applications of the extended moves allow to significantly improve
the BDeu score as previously shown in Figure 5 and Table 3.

4.3 Results on Gene Regulatory Networks

Gene regulatory network reconstruction from gene expression data
using Bayesian network structure learning was first proposed in [11].
We used simulated expression datasets of the Systems Genetics
Challenge A from the international reverse enginnering competition
DREAM5 [9]. Genetics data were not used as they require additional
modelling to be taken into account, see e.g. [31]. Expression data
were generated using the SysGenSIM generator [22] based on or-
dinary differential equation simulation. Five datasets are available
for three different sample sizes (n = 100, 300, and 999). The 15
datasets were obtained from different known gene networks com-
posed of 1, 000 variables and containing directed cycles. For each
sample size, the five network structures contain a different number of
edges varying from ≈ 2, 000 (Net1) to more than 5, 000 (Net5). We
discretized gene expression levels into 2 to 4 states using an adaptive
method based on an adapted k-means algorithm and the more general
framework of Gaussian mixture models as described in [31].

With such large networks, we had to adapt the learning procedure
of SGSi algorithms12. We decided to restrict their lists of candidate
parents as done in [13]: we selected for each variable X the set of
parents S such that each element Y of S improves the local BDeu
score when it is considered as a unique parent compared to the or-
phan situation ( fX(D, {Y → X}) > fX(D, ∅)). This filtering process
was done prior to the search13. In these experiments, SGSi algo-
rithms have a maximum number of parents per node fixed at k = 5
and use r = 10 restarts. Instead of LAGD (which was too slow),
we used MMHC [30] having two steps similar to SGSi. It first se-
lects the skeleton of the graph using mutual information measures
(MMPC [29] filtering step) and then orientates edges in a greedy
manner. We recorded the best BDeu score of 10 runs for MMHC,
by randomly permuting the input variables at each run. The skeleton
being built locally for each variable, MMHC can handle large net-
works. All the methods started from an empty graph and optimized
the BDeu score with α = 1 and no prior on the network structures.

It was difficult to perform statistics with the results of this exper-
iment. Indeed, contrary to the standard network experiment, there
were no replicated samples of the same network. We decided to pool
results per sample size and we performed the Wilcoxon test on the
groups. With only five results per group to compare the methods, we
are aware that the power of the test is very low. So, we applied a

12 GES managed in ∼1-hour CPU time each network thanks to its better im-
plementation of caching and heap data structure.

13 It could also be done during the search as in [12].

Table 7. Wilcoxon test (error rate = 5%) for different gene network sample
sizes

100 300 999
SGS3 vs MMHC + + +

SGS3 vs GES + + +
MMHC vs GES - ∼ +

pairwise type I error of 5% and we did not try to correct for multiple
comparisons, see Table 7. However, it is worth noting that SGS3 was
always the best method and that it increased the BDeu score by about
2% in average.

Surprisingly, GES appeared to be better on smaller sample sizes
compared to MMHC. As explained below, MMHC was penalized by
its filtering process, especially on the smallest sample size, whereas
GES had no restrictions on the candidate parent sets.

In these experiments, the structural Hamming distance (SHD) was
not informative due to the poor results reached by all tested algo-
rithms for such large networks. SHD, equal to the sum of spurious
edges (s) and missing edges (m), was greater than the number of
edges (e) of the true graph. In this situation, even the empty struc-
ture appears better. For this reason, we computed another aggregated
structural quality measure based on the precision ( e−m

e−m+s ) and recall
( e−m

e ) measures and took the Euclidean distance to the origin to com-
bine them (

√
precision2 + recall2). Contrary to SHD, a high distance

indicates a better structural quality. We observed in Table 8 con-
trasted performances between the tested methods depending on the
sample size: for n=100, MMHC got the best results, for n = 300, it
was GES, and finally SGS3 performed the best for the largest sample
size. Better BDeu scores are not always synonymous with a better
structural quality, the limited sample size in addition to the non faith-
fulness of the data (generated by ordinary differential equations with
cycles) could explain this behavior. We should notice that the good
optimization behavior of SGS3 in terms of BDeu scores resulted in
a better structural quality than GES and MMHC as sample size in-
creases.

Table 8. Euclidean distances to the origin of the (precision, recall) values.
Best distances per sample size are in bold

n SGS3 MMHC GES
Net1 0.170 0.218 0.196
Net2 0.213 0.295 0.232

100 Net3 0.214 0.266 0.236
Net4 0.201 0.265 0.214
Net5 0.206 0.247 0.243

Net1 0.510 0.483 0.464
Net2 0.342 0.337 0.385

300 Net3 0.484 0.488 0.505
Net4 0.453 0.478 0.498
Net5 0.419 0.397 0.428

Net1 0.578 0.537 0.549
Net2 0.581 0.510 0.505

999 Net3 0.454 0.441 0.484
Net4 0.476 0.450 0.476
Net5 0.479 0.471 0.458

Moreover, we compared the quality of the filtering process used by
MMPC and SGS3. Table 9 reports for the first network (Net1) of each
sample size, the total number of arcs kept by the filtering process
and the recall value, which represents the percentage of true edges
in the filter. Our first observation is the poor recall of both filtering
processes, which indicates strong structural differences between the



true network and the learned network even with n = 999 sample
size. Our filtering approach obtained better recall values with similar
compression sizes than MMPC.

Finally, we tried the same methods as in Section 4.1 on 50 small
gene regulatory networks (Web50 Artificial Gene Networks with 50
nodes and 50 arcs) without doing any filtering process. For a sample
size n = 500, SGS3 was significantly better than GES and LAGD
in terms of BDeu scores and slightly better in terms of Euclidean
distances to the origin of the (precision, recall) values.

Table 9. Total size and recall of candidate parent lists for SGS3 and
MMPC on the most sparse gene network Net1

100 300 999

BDeu test size 2670 2430 5984
recall 9% 18% 35%

MMPC size 2568 3064 3842
recall 5% 12% 23%

5 Conclusion
We have presented in this paper a new greedy search algorithms
called SGSi exploiting stochasticity from two random draws. We
have developed a new local move operator called SWAP and ex-
tended versions for ADD and SWAP operators to overcome frequent
limitations of local search methods which are local maxima and
cyclic situations. We compared SGS3 using SWAP and extended op-
erators to state-of-the-art methods and we obtained significant BDeu
and recall value improvements on classical benchmarks when the
sample size is small. The complexity of SGS3 stays moderate with
sparse networks. In case of large networks with many variables we
applied a filtering process in preprocessing using the same criterion
as for the search. This process kept more edges from the true network
than mutual information-based methods with significant reduction of
the search space.

In the future, we would like to test our new operators with other
local search methods like tabu search.
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Comparative Study for Inference of Hidden
Classes in Stochastic Block Models

Pan Zhang1 and Florent Krzakala2 and Jörg Reichardt3 and Lenka Zdeborová4

Abstract. Inference of hidden classes in stochastic block
model is a classical problem with important applications.
Most commonly used methods for this problem involve näıve
mean field approaches or heuristic spectral methods. Recently,
belief propagation was proposed for this problem. In this con-
tribution we perform a comparative study between the three
methods on synthetically created networks. We show that be-
lief propagation shows much better performance when com-
pared to näıve mean field and spectral approaches. This ap-
plies to accuracy, computational efficiency and the tendency
to overfit the data.

1 Introduction

A large portion of the intriguing emergent phenomena of com-
plex many particle systems is a consequence of the structure
of interactions among their constituents. Bluntly, a soup of
neurons does not have the same capabilities as a specifically
woven neural net. Similar considerations apply to social sys-
tems, information systems, biological systems or economical
systems where the patterns of interaction are far from random
and result in complex system-wide phenomena.

Fueled by a flood of readily available relational data, recent
years have seen a surge of research focused on structural prop-
erties of networks as first step to understanding some of the
properties of complex systems and ultimately their function
[5, 17].

Interestingly, it is often much easier to map the network
of interactions than to explain its function. A prime example
of this phenomenon are protein interaction networks. Mod-
ern biotechnology allows to automatize charting the matrix
of pairwise binding relations for all proteins produced by an
organism, i.e. do two proteins form a stable link or not [23]. As
proteins generally operate in complexes (agglomerates of sev-
eral proteins) such a network of pairwise interactions encodes
latent information about protein function. Hence, it makes
sense to use network structure to make inferences about pro-
tein function or plan and guide other wet-lab experiments
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aimed at elucidating function [19]. Similar considerations ap-
ply to the analysis of social networks where interactions are
recorded in online data streams but information on the prop-
erties of the actual agents remains hidden behind pseudonyms
or avatars [25].

Hence, the hypothesis behind network analysis is that nodes
in a network which have similar patterns of interaction are
likely to have common properties or perform similar function.
Discovering topological similarities and differences thus hints
at the existence of possible latent features of the nodes in the
network that merit further analysis.

Being a first step to more detailed analysis, such ex-
ploratory analysis is often highly consequential. It is impor-
tant to thoroughly understand the algorithms used in every
detail and to be aware of possible limitations and pitfalls.
This contribution aims at raising this awareness using the sim-
ple example of inferring the parameters of a Poisson-mixture
model, the so-called Stochastic-Block-Model (SMB) [9, 6], in
undirected unweighted unipartite networks. The conclusions
we draw, however, extend well beyond this example and we
discuss these consequences at the end of the paper.

Our contribution is then organized as follows: first we intro-
duce the stochastic block model as a way to capture density
fluctuations in relational datasets and infer latent variables.
Next, we discuss the theoretical limitations that any inference
technique for such a model must face: namely a sharp tran-
sition between a parameter region where inference is feasible
and a parameter region where inference is impossible. Third,
we briefly review spectral approaches and the Expectation
Maximization (EM) algorithm in conjunction with the näıve
mean field approach. We then introduce a formulation of the
EM algorithm based on belief propagation. Fourth, we com-
pare the performance of these three approaches on ensembles
of benchmark networks from a region near the above men-
tioned feasible-infeasible transition in the parameter space.
In this region, particularly difficult problem instances can be
found that allow to highlight performance differences. Finally,
we discuss our findings and the possible extensions and con-
sequences to other models and inference tasks.

2 The Stochastic Block Model

The simplest model of a network of N nodes and M undi-
rected unweighted edges between them is a an Erdős-Rényi
graph. It assumes that a link falls between any pair of nodes
(i, j) with constant probability pij = p0 = 2M/[N(N − 1)],
independently of whether links exist between other pairs of



nodes. Consequentially, large networks with low link density
p0 generated by this model have a Poissonian degree distri-
bution with mean degree 〈k〉 = p0(N −1). This model can al-
ready explain two main characteristics of real world networks
- their small world property of short average path lengths
and their connectedness even at low densities. Unfortunately,
it cannot explain much more. In particular, it fails to capture
the large variance of link densities between groups of nodes
observed in many networks.

In real world networks, not all nodes are created equal and
may represent entities of very different properties or functions.
Whether two nodes are linked often depends on these proper-
ties. Consider the example of protein interaction again. Mem-
brane proteins will certainly bind to other membrane proteins
to form stable membranes, but, for example, the enzymes in-
volved in various catalytic reactions should not stick to the
cell membrane since otherwise the interior of the cell would
soon be depleted of these essential molecules [19]. In an en-
tirely different social context, one will certainly observe social
interactions correlated with the agents’ age, gender, possibly
income or education. Social ties will depend on these qualities
an thus network structure is indicative of node properties and
may be used to make corresponding inferences.

One of the simplest models capable of capturing the depen-
dence of link probability on node properties is the Stochastic
Block Model [9]. It assumes that each node i ∈ {1, .., N} is
of one and only one of q classes and ti = r is indicating the
membership of node i in class r ∈ {1, .., q}. As before, nodes
are linked independently, but now, the probability of node i
linking to node j depends on ti and tj alone, i.e. pij = ptitj .
One can easily write down a probabilistic generative model
for this sort of network. First, we assume that nodes are as-
signed into q classes randomly by a multinomial distribution
with parameters P(ti = r) = pr. Next, we specify the matrix
of link probabilities between classes prs ∈ (0, 1)q×q. Our set
of parameter thus comprises of θ = {q, pr, prs}. The proba-
bility of generating a specific {0, 1}N×N adjacency matrix A

together with a specific assignment of nodes into classes t is
then given as:

P(A, t|θ) =
∏

i<j

[

p
Aij

titj
(1− ptitj )

(1−Aij)
]

∏

i

pti (1)

The expected average density of links in such a network is
p0 =

∑

rs prprsps. If we were able to observe the adjacency
matrix A and class memberships t at unknown parameters,
equation (1) would give us the complete data likelihood of the
parameters θ. It is then easy to estimate the parameters θ∗

which maximize (1):

pr =
1
N

∑

i δti,r (2)

prs =
1+δrs

Npr(Nps−δrs)

∑

i<j Aijδti,rδtj ,s

With (1) being a member of the exponential family, these es-
timators are consistent, efficient and the model is identifiable,
i.e. the maxima are unique. In this contribution we always
assume that the correct number of classes q is known.

However, in practical applications as discussed, the situa-
tion is often that we only have access to the adjacency matrix
A but not to the class labels t which are our primary in-
terest for explaining network structure and possibly function.
Fortunately, under certain circumstances we can still draw

conclusions about these hidden variables using the toolbox of
statistical inference. What these circumstances are and how
this is usually done will be discussed in the following two sec-
tions.

3 General Considerations

It is clear that the task of inferring the unobserved latent
variables is only possible if the preference matrix prs shows
sufficient ”contrast”. If all entries were the same, i.e. prs = p0,
then of course no method can perform any inference on the
hidden variables. Conversely, if prs = p0δr,s, then the network
practically consists of several disconnected components and
inference reduces to the trivial task of identifying the compo-
nent to which an individual node belongs. Between these two
extremes of impossible and trivial, there is a sharp phase tran-
sition [20, 3, 2]. It divides the parameter space into a region
where it is provably impossible to infer the latent variables
with an accuracy higher than guessing and a region where it
is possible with high accuracy.

Theoretical analysis has shown that the transition persists
in infinitely large networks when they are sparse, i.e. the av-
erage degree per node does not grow with the system size. In
other words, networks in which the elements of prs scale as
1/N . In contrast, for dense networks in which prs does not
scale with N , considering larger networks means considering
proportionally larger average degrees and this will render even
very small amounts of variance in prs detectable and thus lets
the region of impossible inference vanish [18].

In real applications, we cannot generally increase network
size at constant parameters. We will observe both the region
of impossible and possible inference. However, the parameter
region of impossible inference will be smaller for denser net-
works, i.e. those with higher average degree. Further, it has
been shown that networks with parameters in the vicinity of
the transition point are the instances in which inference is
hardest [3, 2].

As it is our aim to highlight performance differences be-
tween different inference techniques for the SBM, we will focus
our attention on instances in sparse graphs near the transition
from impossible to possible inference. Before we come to this
analysis, however, we will introduce the contestants.

4 Inferring Stochastic Block models

When inferring latent structure in data, one can take the route
of statistical inference if one can justify a statistical model to
fit to the data as we’ve done with the SBM. It may also be
sensible to use a simple dimensionality reducing heuristic. We
consider both of these approaches.

4.1 Spectral Approaches

When dealing with high dimensional data such as networks
and searching for common patterns of interactions, a natural
strategy is to try reducing the dimensionality in such a way
that nodes with similar interaction partners are mapped to
positions in some low dimensional space, while nodes with
very different interaction partners should be positioned far
apart. One then uses standard clustering algorithms, such as
k-means in our case, originally developed for multivariate data



and to analyze the nodes in their low dimensional embedding.
This is the strategy behind all spectral techniques of network
analysis.

Let us consider the adjacency matrix A as a list of N mea-
surements in an N -dimensional feature space, each row de-
scribing one node in N dimensions, namely, its relations to
the other nodes. We could then apply a variant of multidimen-
sional scaling such as principal component analysis (PCA).
We would subtract the means of the measurements in each
dimension, calculate the covariance matrix and find the di-
rections of maximum variance by an eigen-decomposition of
the co-variance matrix. Finally, we would project our data
matrix onto the first q principal components, i.e. those eigen-
vectors of the covariance matrix corresponding to the largest
eigenvalues.

A method similar in spirit has been introduced specifically
for networks [15]. It differs from PCA only slightly in that
it not only removes the means of the rows, but, since A is
symmetric, also the means of the columns. This is to say, the
original matrix A is transformed into a so called modularity
matrix B via

Bij = Aij −
kikj
2M

. (3)

This modularity matrix B now has row-sums and column-
sums zero. Note that the terms kikj/2M ≪ 1 for sparse net-
works. SinceB is symmetric, the eigenvectors of a correspond-
ing “covariance matrix” C = BB

T are the eigenvectors of B
and hence the projection of the modularity matrix onto the
“principal components” is given directly by the components
of the eigenvectors corresponding to the largest magnitude
eigenvectors of B. This approach has recently been claimed
to be no worse than any other approach [13] and we will eval-
uate this claim in this paper.

Another aspect of this method is worth mentioning. It is
known that the best rank-q approximation to a symmetric
matrix is given by its eigen-decomposition retaining only the q
eigenvalues largest in magnitude. “Best” here means in terms
of reconstruction error under the Frobenius norm. If V is a
matrix the columns of which are the eigenvectors of B or-
dered by decreasing magnitude of the corresponding eigen-
value, then the entries of the optimal rank-q approximation
B

′ will be given by

B′
ij =

q
∑

r=1

VirλrVjr. (4)

So we see that B′
ij is large when the rows i and j of V are par-

allel and all the considered λr with r ∈ {1, .., q} are positive.
In contrast, if all λr are negative, rows i and j of V should
be anti-parallel to make B′

ij large. Large positive eigenvalues
are indicative of block models with some prr large while large
negative eigenvalues are indicative of block models with some
prr small in comparison to the average density of the network
p0. We can conclude that when these cases mix, it will gener-
ally be very difficult to find an embedding that maps nodes
from a network with similar interaction patterns to positions
that are close in space using spectral decomposition of the
modularity matrix.

Instead of using an embedding that minimizes a reconstruc-
tion error, one can also introduce a pairwise similarity mea-
sure based on the network topology and then find an embed-
ding of the N×N similarity matrix such that “similar nodes”

are “close”. This approach is implemented in the widely used
diffusion-map [11].

Assume a random walker is traversing the network. When
at node i, the walker will then move to any node j 6= i with
probability pj|i = Aij/ki. Here, ki =

∑

j Aij is the number of
neighbors of node i. We can identify in pj|i as the entries of
an N ×N row stochastic transition matrix P = D

−1
A where

D is a diagonal matrix with Dii = ki. The probability that
the random walker, after starting in node i, reaches node j
in exactly t steps is then given as pt(j|i) ≡ P

t
ij . The station-

ary distribution of the random walker on the N nodes of the
network is given by πi0 ≡ limt→∞ pt(i|j) = ki/2M . Equipped
with these definitions, one can define a ”diffusion distance”
between nodes i and j via

D2
t (i, j) =

∑

k

(pt(k|i)− pt(k|j))
2

πk0
. (5)

This is a sensible measure of topological distance between
nodes i and j as it measures a difference in the distributions
of arrival sites when the random walker starts from either i
or j. One can find an optimal embedding such that the Eu-
clidean distance in the low dimensional space matches the
diffusion distance to any desired precision. The coordinates
of this embedding are given by the entries in the eigenvectors
corresponding to the q largest non-trivial right eigenvectors
of P scaled by the corresponding eigenvalue to power t. Since
the largest right eigenvalue of P is always λ1 = 1 and the cor-
responding eigenvector is constant, it is considered trivial. If
a match to relative precision δ is required we must include all
eigenvectors vr of P with |λr|

t > δ|λ2|
t where the λ are the

right eigenvalues of P. As all eigenvalues of P are smaller in
magnitude than 1, λ2 dominates for large t and thus the large
scale structural features. In this case, large negative eigen-
values are not a problem, since the embedding is such that
Euclidian distance between the positions of the nodes in the
low dimensional space approximates the topological distance
and not the scalar product dressed with the eigenvalues as in
the case of the spectral decomposition.

4.2 Expectation Maximization

The goal of maximum likelihood inference aims to estimate
parameters for a generative model such that the observed data
becomes maximally likely under this model. Our generative
model (1) gives us the probability of observing the network
and the node classes. If only the network is observed we need
to trace out the node classes. Specifically, we seek

θ∗ = argmaxθL(θ) ≡ log
∑

t

P(A, t|θ). (6)

The sum over all possible assignments of nodes into latent
classes is computationally intractable and so one resorts defin-
ing a lower bound on the log-likelihood L(θ) which can be
both evaluated and maximized. This bound is know as the
Free Energy

F(P̃(t), θ) ≡
∑

t

P̃(t) logP(A, t|θ)−
∑

t

P̃(t) log P̃(t). (7)

The Free energy F is a functional of a distribution over the
latent variables P̃(t) and the model parameters θ. It is easily



shown that F is indeed a lower bound on L(θ):

F(P̃(t), θ) = −DKL(P̃(t)||P(t|A, θ)) + L(θ). (8)

and that if F has a (global) maximum in (P̃∗(t), θ∗) then
L(θ) also has a (global) maximum in θ∗ [14]. The procedure
for maximizing F in turn with respect to its two arguments is
known as the Expectation Maximization algorithm [4]. Specif-
ically, maximizing F with respect to P̃(t) at fixed θ is known
as the ”E-Step”, while maximizing F with respect to θ at fixed
P̃(t) is known as the ”M-Step”. Ideally, the E-step tightens
the bound by setting P̃(t) = P(t|A, θ), but for our model (1)
the calculation of P(t|A, θ) is also intractable. Note that this
is in contrast to estimating the parameters of a mixture of
Gaussians where, for observed data X, we can easily evaluate
P(t|X, θ).

Two routes of approximation now lie ahead of us: the first
one is to restrict ourselves to a simple factorizable form of
P̃(t) =

∏

i P̃(ti) which leads to the mean field approach. The
second route leads to belief propagation.

4.3 E-Step and M-Steps using the näıve
mean field

We shall start by the mean field equations as used for the
SBM for instance in [1] or [8]. In addition to the assumption
of a factorizing P̃(t), one introduces the following shorthand:
ψir ≡ P̃(ti = r). Then, the free energy in the näıve mean field
approximation is given by

FMF =
∑

i<j,rs

(

Aij log
prs

1−prs
+ log(1− prs)

)

ψirψ
j
s

+
∑

i,r ψ
i
r(log pr − logψir) (9)

This free energy is to be maximized with respect to the ψir by
setting the corresponding derivatives to zero and we obtain
a set of self-consistent equations the ψir have to satisfy at
∇ψF = 0:

ψir =
pre

hi
r

∑
s pse

hi
s

(10)

hir =
∑

j 6=i,sAij log
prs

1−prs
ψjs +

∑

s(N − δrs)ps log(1− prs)

The beauty of this approach is its apparent computational
simplicity as an update of P̃(t) can be carried out in
O(N〈k〉q2) steps. Setting ∇θFMF equal to zero and observ-
ing the constraint that

∑

r pr = 1, we derive the following
equations for the M-step:

pr =
1
N

∑

i ψ
i
r (11)

prs =
∑

i<j Aijψ
i
rψ

j
s

∑
i<j ψ

i
rψ

j
s

Note the similarities between eqns. (11) and (2).

4.4 E-Step and M-Steps using Belief
Propagation

Belief propagation equations for mixture models were used by
several authors, see e.g. [7, 22, 21]. Several important nuances
in the algorithm make us adopt belief propagation algorithm
for SBM as developed in [3, 2], the implementation can be
dowloaded at http://mode net.krzakala.org/.

There are several ways one can derive the Belief Propaga-
tion equations (see for instance [26]). One way is from a re-
cursive computation of the free energy under the assumption
that the graphical model is a tree. Application of the same
equations on loopy graphical models is then often justified by
the fact that correlations between variables induced by loops
decay very fast and are hence negligible in the thermodynamic
limit. In the case treated here, even when the adjacency graph
Aij is sparse, the graphical model representing the probabil-
ity distribution (1) is a fully connected graph on N nodes.
However, for sparse networks the interaction for nodes that
are not connected by an edge is weak 1−prs ≈ 1 and the net-
work of strong interactions is locally tree-like. This puts us
in the favorable situation of decaying correlations. This was
used in [3, 2] to argue heuristically that in the limit of large
N the belief propagation approach estimates asymptotically
exact values of the marginal probabilities ψir and of the log-
likelihood, in a special case of block model parameters this
has been proven rigorously in [12].

To write the belief propagation equations for the likelihood
(1) we define conditional marginal probabilities, or messages,
denoted ψi→j

r ≡ P(ti = r|A\Aij , θ). This is the marginal
probability that the node i belongs to group r in the ab-
sence of node j. In the tree approximation we then assume
that the only correlations between i’s neighbors are mediated
through i, so that if i were missing—or if its group assignment
was fixed—the distribution of its neighbors’ states would be a
product distribution. In that case, we can compute the mes-
sage that i sends j recursively in terms of the messages that
i receives from its other neighbors k [3, 2]:

ψi→j
r = pre

h
i→j
r

∑
s pse

h
i→j
s

(12)

hi→j
r =

∑

k 6=i,j log

[

∑

s

(

prs
1−prs

)Aik

(1− prs)ψ
k→i
s

]

(13)

The marginal probability ψir is then recovered from the mes-
sages using (10) and

hir =
∑

j 6=i

log

[

∑

s

(

prs
1− prs

)Aij

(1− prs)ψ
j→i
s

]

. (14)

Compared with equations (10), updating the belief propaga-
tion equations takes O(N2q2) steps.

Most real world networks, however, are relatively sparse,
i.e. the number of edges is much smaller than N2. For such
cases the BP equations can be simplified. To see this we con-
sider crs = Nprs = O(1), in the limit N → ∞ terms o(N)
can be neglected as in [2], one then needs to keep and update
messages ψi→j

r only when Aij = 1. The update equation for
field hi→j

r then is

hi→j
r =

∑

k∈∂i\j

log

(

∑

s

crsψ
k→i
s

)

−
1

N

N
∑

k=1

∑

s

crsψ
k
s , (15)

where ∂i denotes i’s neighborhood. In order to get the
marginal probability ψir one uses eq. (10) and

hir =
∑

k∈∂i

log

(

∑

s

crsψ
k→i
s

)

−
1

N

N
∑

k=1

∑

s

crsψ
k
s . (16)



Note that it is possible to implement the update of all fields
hir in O(N〈k〉q2) steps, thus making the BP approach as fast
the the näıve mean field. In order to do that, we compute
the second term in eq. (15) once at the beginning and then
we only add and subtract the contributions to this term that
changed.

Once the fixed point of BP equations is found, one uses the
Bethe formula to compute the free energy [26]

FBP =
1

N

∑

(ij)∈E

logZij−
1

N

∑

i

log

(

∑

s

pse
hi
s

)

−
〈k〉

2
, (17)

where
Zij =

∑

r,s

crsψ
i→j
r ψj→i

s

Again the Bethe free energy is exact if the graphical model is a
tree and is a very good approximation to the true free energy
in many practical cases, and often a much better one than
the MF free energy. An important point is that the Bethe free
energy is not guarantied to be a bound on the log-likelihood.

Setting ∇θFBP equal to zero and observing that the BP
equations are stationarity conditions for the Bethe free en-
ergy, one derives the following equations for the M-step of
expectation maximization

pr =
1

N

∑

i

ψir , (18)

crs =
1

N

1

prps

∑

(i,j)∈E

crs(ψ
i→j
r ψj→i

s + ψi→j
s ψj→i

r )

Zij
.

5 Performance Comparison

We will compare the performance of the three approaches pre-
sented in the last section on ensembles of test networks which
have been generated from (1). Hence, we know the true assign-
ment of nodes into classes ti for all nodes i ∈ {1, .., N}. Let
us denote by t∗i the estimates of group assignment that follow
from the above algorithms. A simple performance measure is
then the “overlap” between {ti} and {t∗i } defined as

Q ≡
1

N
max
π

∑

i

δ(t∗i , π(ti)). (19)

Since the ti can only be recovered up to permutation of the
class labels, the maximum over all possible permutations of π
on q elements is taken. Note that a trivial estimate would be
t∗i = argmaxrpr ∀i. Hence, only values of Q > maxr pr should
be considered as successful inference.

5.1 Belief Propagation vs Mean Field

To make a comparison of BP and MF we will assume in both
approaches that the parameters pr, prs, and the right number
of groups q are known. Both approaches output the estimates
of marginal probabilities ψir. In order to estimate the origi-
nal group assignment, we assign to each node its most-likely
group, i.e.

t∗i = argmaxrψ
i
r . (20)

If the maximum of ψir is not unique, we choose at random from
all the qi achieving the maximum. We refer to this method of

estimating the groups as marginalization. Indeed, a standard
result show that it is the optimal estimator of the original
group assignment {ti} if we seek to maximize the number of
nodes at which ti = t∗i .

In practical situations, when the true assignment is not
known, one can also use the estimates of the marginal prob-
abilities ψir to compute the confidence of the method about
the estimate t∗i defined as

C ≡
1

N

∑

i

ψit∗
i
. (21)

An important remark is that if the marginals ψir were evalu-
ated exactly then in the large N limit the overlap and con-
fidence quantities agree, C = Q. In our tests the quantity
C − Q hence measures the amount of illusive confidence of
the method. Values of C − Q larger than zero are very un-
desirable as they indicate a misleading correlation, and give
an illusive information on the amount of information recon-
structed.

To compare the performance of BP and MF, we generated
networks from the “four groups test” of [16] with a large
number of variables N , four groups q = 4, average degree
c = p0/N , and ratio ǫ between the probability of being con-
nected to a different group and within the same group. In
other words, ǫ = cout/cin. See an example adjacency matrix
in Fig. 1. The results of inference using BP and MF are plot-
ted in Fig. 2. From Fig. 2 we see several important points in
which BP is superior over MF

• BP estimate gives better agreement with the true assign-
ment. In the left and right part of Fig. 2 we see the fol-
lowing. In a region of large overlap, the two methods give
the same result. This can be understood from the form of
the BP and MF equations that become equivalent for very
polarized marginals ψir. In the region of very small overlap
both approaches converge to a fixed point that does not
contain any information about the original group assign-
ment. However, for parameter values close to the possible-
impossible-inference phase transition the BP method gives
larger overlap with the true group assignment than MF.

• BP is not over-confident. In the left and right part of Fig. 2
we compare the true overlap to the confidence value (21).
For BP the two agree, just as they should if the marginals
were evaluated exactly. In the MF approach, however, the
confidence is considerably larger than the true overlap. This
means that in the whole region where C − Q > 0, MF is
misleadingly confident about the quality of the fixed point
it found. The width of this region depends on the parameter
values, but we observed that a good rule of thumb is that
if the overlap reached is not very close to 1, then the MF
method is unreliable.

• BP is faster. As we explained when we exposed the BP
and MF equations, one iteration takes a comparable time
for both methods. In the middle part of Fig. 2 we plot the
number of iterations needed for convergence, we see that
again around the phase transitions region MF needs more
iterations to converge, and hence is overall slower that BP.

• BP does not converge to several different fixed points.
Starting with randomly initialized messages, BP converged
to the same fixed point (up to small fluctuations) in all the
runs we observed. On the other hand in the region where



Figure 1. Adjacency matrices representing the block structure used for generating the various examples of the block model eq. (1) in
this contribution. Rows and columns are ordered such that rows/columns corresponding to nodes with the same ti are next to each

other. From left to right: a q = 2 modular network, a core-periphery structure, and a q = 4 modular network.
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Figure 2. Comparison between the näıve mean field (MF) and belief propagation (BP) approaches to the E-step of expectation
maximization. All datapoints correspond to networks with N = 104 nodes. The networks were generated using q = 4 groups, modular

structure as sketched in left part of Fig. 1, and crr = cin > crs = cout ∀s 6= r. Left: True and illusive overlap Q and C for inference of the
group assignment at different values of ǫ = cout/cin. Note the transition between a phase where inference of class membership is possible
and where it is not at ǫc = 0.43. Also note that MF is overfitting the data, showing large illusive overlap C in the region where inference
is in fact impossible. Middle: The number of iterations needed for convergence of the E-step for the problem instances from the left part
(we set the maximum number of iterations to be 1000). The computational effort is maximal at around ǫc for both methods, but BP
converges faster. Right: True and illusive overlap Q and C at different values of the average connectivity c = 〈k〉 at fixed ǫ = 0.35.

Again, we observe a transition between feasible and infeasible inference at 〈k〉c(ǫ) and the over-confidence of MF in the infeasible region.

the MF value of confidence C differs from the true overlap
QMF converged to several different fixed points depending
on the initial conditions.

To summarize, BP for block model inference is superior to
MF in terms of speed, of quality of the result and does not
suffer from over-confidence the way MF does. Note that sim-
ilar conclusions about BP compared to MF were reached for
other inference problems in e.g. [24, 22].

An important point is that so far, have have discussed the
situation of BP and MF algorithms using the known and cor-
rect values of parameters pr, prs in the E-step of expectation
maximization. Concerning the M-step, we observed without
surprise that the expectation maximization with BP gives bet-
ter results than with MF in the region of parameters where
BP is superior for the E-step. Otherwise the performance
was comparable. Notably, both the approaches suffer from
a strong dependence on the initial conditions of the param-
eters pt=0

rs . This is a known problem in general expectation
maximization algorithms [10]. The problem comes from the
fact that the log-likelihood L(θ) has many local maxima (each
corresponding to a fixed point) in θ in which the expectation
maximization update gets stuck. Fortunately the free energy

serves as an indicator of which fixed point of EM is better.
Hence a solution is to run the EM algorithm from many differ-
ent initial conditions and to consider the fixed point with the
smallest free energy (i.e. largest likelihood). Since the volume
of possible parameters does not grow in the system size N ,
this still leads to an algorithm linear in the system size (for
sparse networks). However, the increase in the running time
is considerable and smarter initializations of the parameters
pt=0
rs are desired. We introduce one such in the next section.

5.2 Spectral methods

Methods based on the eigenvectors of the adjacency matrix
of the network provide one of the most flexible approaches of
graph clustering problems applied in the practice and hence
we compare the BP algorithm to this approach as well. The
comparison of BP with modularity matrix based and random
walker based spectral methods gives the following conclusions:

• In the case when the parameters θ are known and we search
for the best estimate of the original group assignment we
observed that BP is always better than the two spectral
clustering algorithms (that is the random walker based and
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Figure 3. Comparison of the BP (only the E-step) and spectral clustering based on the random walker approach and the modularity
matrix (see text). Datapoints correspond to networks with N = 106 nodes for the two spectral approaches and N = 105 for BP, and

average degree c = 〈k〉 = 3. The networks of q = 2 groups are generated using modular structure as sketched in the left part of Fig. 1. To
ensure the random walk based method to work, we extracted the largest connected component of the network and ran the algorithm on
it. Left: The overlap Q at different values of ǫ = cout/cin. Note how the spectral approaches can only correctly recover the latent class
labels deep in the feasible region of the parameter space. Right: The overlap Q at different values of the connectivity c at fixed ǫ = 0.3.
Again, the spectral methods can only identify the latent class labels for problem instances well within the feasible region and fail on the

hard instances near the critical connectivity.
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Figure 4. Left: An example where the EM with BP when initialized in a random matrix cab does not work, whereas the random
walker spectral method works well. The result of the spectral method serves as a initialization of cab in the EM BP, which then improves
the achieved overlap. Modular network of size N = 105 generated with q = 4 groups and ǫ = 0.35. Right: An example where EM with

BP works well even from random initial condition for the matrix cab, while spectral methods do not work well at all. The network
exhibits a core periphery structure (middle panel of Fig.1) of size N = 104. Here average degree of core variables is equal to average
degree of periphery variables. There are two groups of sizes pa = 2/3 and pb = 1/3, cab matrix is in form of {cin, cio; cio, cout}, with

cin = 9c
8−ǫ

, cout = ǫcin and cio = 1− 0.5ǫ. The modularity based method gives overlap 2/3, because all variables were assigned to group 1.

the modularity based one) that we tested. This is illustrated
in Fig. 3 and 4. In some cases (e.g. Fig. 4 left) the improve-
ment BP provides over spectral methods is marginal. In
other cases, e.g. for the core-periphery network of Fig. 4
right the improvement is drastic.

• A particularly important point we want to make is the fol-
lowing: For the cases tested in this paper the spectral meth-
ods are clearly suboptimal: there are regions where the BP
inference gives large overlap while spectral clustering meth-
ods do not do better than chance. See for instance Fig. 3 left
for 0.1 < ǫ < 0.268. Recently authors of [13] claimed ”No
other method will succeed in the regime where the mod-
ularity method fails”, it was mentioned that their results
may not be valid for networks with small average degree.
Here we clearly show that for networks with small average

degree the spectral methods are indeed not optimal. In our
opinion, the conclusions of [13] apply only when the average
degree diverges with the system size.

• A final point is that the spectral method should thus not
be thought as the end of the story, but rather as the begin-
ning: Indeed, they are extremely useful as a starting point
for initializing EM BP to achieve improved overlap. This is
shown in Fig. 4 left where EM BP starts from parameters
taken from the result of the random walker based spectral
method. This clearly improves the quality of the inference
without having to restart EM BP for many initial condi-
tions.



6 Conclusions

Using the example of latent variable inference in the stochas-
tic block model of complex networks, we have compared belief
propagation based inference techniques with traditional mean
field approaches and classic spectral heuristics. To this end,
we have used the recent discovery of a sharp transition in the
parameter space of the stochastic block model from a phase
where inference is possible to a phase where inference is prov-
ably impossible. In the vicinity of the phase transition, we find
particularly hard problem instances that allow a performance
comparison in a very controlled environment.

We could show that though spectral heuristics are appeal-
ing at first for their speed and uniqueness of the resulting
decompositions, they only work reliably deep within the pa-
rameter region of feasible inference. In particular, very sparse
graphs are difficult for spectral methods, as are block struc-
tures that are more complicated than a mere collection of
cohesive subgraphs or communities. In short, they serve as a
“quick and dirty” approach. We also evaluate if recent claims
on the optimality of spectral methods for block structure de-
tection hold for networks with small average degree [13].

Comparing näıve mean field techniques with belief prop-
agation techniques, we find that the computational burden,
which has so far hindered the wide spread use of belief propa-
gation in fully connected graphical models such as block struc-
ture inference of (sparse or dense) networks, has been lifted
completely. Not only is the computational complexity of the
variable updates the same, belief propagation also exhibits
much better convergence properties and this in particular on
the hard problem instances. Hence, we expect that the pre-
sented formulations of belief propagation equations may find
a wide range of application also in other fields of inference
with fully connected graphical models. Note that the regime
of prs = O(1/N) considered here corresponds to the max-
imally sparse case. BP will still outperform other methods
when prs = O(N−α) with α < 1, albeit the performance dif-
ferences will be much smaller.

Finally, we could show that using spectral decompositions
in order to select initial conditions for learning the parameters
of the stochastic block model can be a viable step in order
to reduce the dependency on initial conditions when used in
conjunction with expectation maximization type algorithms.
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‘Asymptotic analysis of the stochastic block model for modu-
lar networks and its algorithmic applications’, Phys. Rev. E,
84, 066106, (Dec 2011).

[3] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, ‘In-
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