
8th Workshop on

Knowledge Engineering

and Software Engineering (KESE8)

at the

20th biennial European Conference on Artificial Intelligence (ECAI 2012)

Montpellier, France, August 28, 2012

Grzegorz J. Nalepa, Joaqúın Cañadas, Joachim Baumeister

(Editors)

Technical Report TR-2012/1,

Department of Languages and Computation. University of Almeŕıa,

Almeŕıa, Spain, 2012

The KESE Workshop Series is available online: http://kese.ia.agh.edu.pl

Preface

Grzegorz J. Nalepa, Joaquín Cañadas and Joachim Baumeister

AGH University of Science and Technology

Kraków, Poland

gjn@agh.edu.pl

�

Dept. of Languages and Computation. University of Almeria.

Agrifood Campus of International Excellence, ceiA3. Almeria, Spain

jjcanada@ual.es

�

denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany

joachim.baumeister@denkbares.com

Intelligent knowledge-based systems have been successfully developed in many
domains. They employ techniques and tools from the �elds of knowledge engi-
neering and software engineering. Thus, declarative software engineering tech-
niques have been established in many areas, such as knowledge systems, logic
programming, constraint programming, and lately in the context of the Semantic
Web and business rules.

The eight workshop on Knowledge Engineering and Software Engineering
(KESE8) was held at the ECAI 2012 (The European Conference on Arti�cial
Intelligence) organized by European Coordinating Committee for Arti�cial In-
telligence in Montpellier, France, and wants to bring together researchers and
practitioners from both �elds of software engineering and knowledge engineering,
as well as the Semantic Web community. The intention was to give ample space
for exchanging latest research results as well as knowledge about practical expe-
rience. Moreover the workshop endeavors to promote the use of KE techniques
in SE problems, where signi�cant bene�ts can be derived from their use. The
general goal of the workshop was to show how the KE techniques can provide
practical solutions in SE issues. On the other hand, the in�uence of SE methods
and tools on the practical design of KBS within KE.

The principal focus of the Workshop was on methods of KE rooted in the
symbolic logic-based representations and their novel applications in Software
Engineering. Moreover, a synergistic use and development of these KE methods
together with recent formalized and declarative SE methods, including Model-
Driven Architecture and Development, ontological modelling as well as Business
Process modelling was emphasized. Finally, the studies of the impact of these
SE methods on the classic KE development processes were welcomed.

Topics of the workshop are generally related to the applications of symbolic
KE techniques in SE as well as the use of KE in the SE practice. Speci�c topic
the areas include but are not limited to:

� Knowledge and software engineering for the Semantic Web
� Ontologies in practical knowledge and software engineering
� Business Rules design, management and analysis

� Business Processes modelling in KE and SE
� Practical knowledge representation and discovery techniques in software en-
gineering

� Agent-oriented software engineering
� Knowledge base management in KE systems
� Evaluation and veri�cation of KBS
� Practical tools for KBS engineering
� Process models in KE applications
� Software requirements and design for KBS applications
� Declarative, logic-based, including constraint programming approaches in SE

This year, we received contributions focussing on di�erent aspects of knowl-
edge engineering and software engineering, promoting the in�uence and bene�ts
of their joined use

Hatko et al. present a set of coverage metrics to assess the thoroughness of
testing e�orts for clinical guidelines in Dia�ux language, providing some novel
metrics (coverage metrics) and suggests the use of a graphical method (city
metaphor) to visualize the coverage levels.

Águila and Sagrado introduce a metamodel and an UML pro�le for modeling
of Bayesian Networks, enabling integration with UML diagrams and introducing
such probabilistic graphical models in the MDA context.

The contribution of Giurca et al. elaborates a preference logic framework for
conjoint analysis that can cope with the non-transitivity and inconsistency in
preference data, useful when capturing phycological phenomena such as change
or irrationality (inconsistency) as well as when formal explanations of decisions
need to be computed.

A proposal for classifying errors in ontologies, with the aim of using such
framework to map errors identi�ed in automatic ontology building processes,
is de�ned by Gherasim et al. providing a taxonomy of problems impacting the
quality of automatically built ontologies and a classi�cation with possible anoma-
lies.

Kluza and Kaczor emboss the issue of a normalized Business Process Model
and Notation (BPMN) modelling technique, presenting a survey on BPMN mod-
els' equivalences and several approaches to simplify BPMN models.

Kaczor and Nalepa compare two rule approaches, logically well de�ned rule
processing systems like XTT2 and application driven intuitive popular rule-based
tool such as CLIPS, in order to gain insights with respect to their applicability
for business rule interchange.

Template-based Extensible Prototyping approach is introduced by Freiberg
and Puppe, to perform usability evaluations of user interfaces in knowledge-based
systems, useful for the validation of the collected knowledge.

Lig¦za et al. describe a social platform called Social Threat Monitor (STM)
aimed at improving safety of local communities in urban environment, managing
and monitoring social threats through the collaborative knowledge engineering.

Negreanu and Mocanu present the speci�cation and validation of a multi-
agent system for requesting services using Event-B formal notation, as part of
an intelligent environment for assisting elderly or disable people.

This year we also encouraged to submit tool presentations, i.e., system de-
scriptions that clearly show the interaction between knowledge engineering and
software engineering research and practice. At the workshop, one presentation
about current tools was given: Baumeister et al. present KnowWE, a semantic
wiki providing collaborative platform for knowledge acquisition and testing. It
uses di�erent types of knowledge ranging from semantically annotated text to
strong problem-solving knowledge, adapting continuous integration approach of
software engineering for knowledge engineering.

The organizers would like to thank all who contributed to the success of the
workshop. We thank all authors for submitting papers to the workshop, and we
thank the members of the program committee as well as the external reviewers
for reviewing and collaboratively discussing the submissions. For the submission
and reviewing process we used the EasyChair system, for which the organizers
would like to thank Andrei Voronkov, the developer of the system. Last but not
least, we would like to thank the organizers of the ECAI 2012 conference for
hosting the KESE8 workshop.

Grzegorz J. Nalepa
Joaquín Cañadas

Joachim Baumeister

Workshop Organization

The 8th Workshop on Knowledge Engineering and Software Engineering
(KESE8)

was held as a one-day event at the
20th biennial European Conference on Arti�cial Intelligence

(ECAI 2012)
on August 28, 2012, Montpellier, France.

Workshop Chairs and Organizers

Grzegorz J. Nalepa, AGH UST, Kraków, Poland
Joaquín Cañadas, University of Almeria, Spain
Joachim Baumeister, denkbares GmbH, Germany

Programme Committee

Isabel María del Águila, University of Almeria, Spain
Klaus-Dieter Altho�, University Hildesheim, Germany
Joachim Baumeister, denkbares GmbH, Germany
Joaquín Cañadas, University of Almeria, Spain
Jesualdo Tomás Fernández-Breis, University of Murcia, Spain
Adrian Giurca, BTU Cottbus, Germany
José M. Juarez, University of Murcia, Spain
Jason Jung, Yeungnam University, Korea
Rainer Knauf, TU Ilmenau, Germany
Pascal Molli, University of Nantes - LINA, France
Grzegorz J. Nalepa, AGH UST, Kraków, Poland
José Palma, University of Murcia, Spain
Alvaro E. Prieto, Univesity of Extremadura, Spain
José del Sagrado, University of Almeria, Spain
Dietmar Seipel, University Würzburg, Germany
Rafael Valencia-García, University of Murcia, Spain

External reviewers

Hala Skaf-Molli, University of Nantes - LINA, France
Ludwig Ostermayer, University Würzburg, Germany

Table of Contents

CoverageCity: Test Coverage for Clinical Guidelines 1

Reinhard Hatko, Joachim Baumeister and Frank Puppe

Metamodeling of Bayesian networks for decision-support systems

development . 8

Isabel María del Águila and José del Sagrado

Can Adaptive Conjoint Analysis perform in a Preference Logic Framework? 15

Adrian Giurca, Ingo Schmitt and Daniel Baier

Problems impacting the quality of automatically built ontologies 22

Toader Gherasim, Giuseppe Berio, Mounira Harzallah and Pascale Kuntz

KnowWE � A Wiki for Knowledge Base Development 30

Joachim Baumeister, Jochen Reutelshoefer, Volker Belli, Albrecht Strif-
�er, Reinhard Hatko and Markus Friedrich

Overview of BPMN Model Equivalences. Towards normalization of

BPMN diagrams . 38

Krzysztof Kluza and Krzysztof Kaczor

Critical evaluation of the XTT2 rule representation through comparison

with CLIPS . 46

Krzysztof Kaczor and Grzegorz J. Nalepa

Template-based Extensible Prototyping for Creativity- and

Usability-Oriented Knowledge Systems Development 54

Martina Freiberg and Frank Puppe

Towards Collaborative Knowledge Engineering for Improving Local

Safety in Urban Environment . 58

Antoni Lig¦za, Weronika T. Adrian and Przemysªaw Ci¦»kowski

Formal Veri�cation of Service Requests in a Multi-Agent System using

Event-B Method . 62

Lorina Negreanu and Irina Mocanu

1

CoverageCity: Test Coverage for Clinical Guidelines
Reinhard Hatko1 and Joachim Baumeister2 and Frank Puppe3

Abstract. In this paper, we introduce various metrics for test
coverage of clinical guidelines, modeled in the graphical language
DiaFlux. Additionally, an intuitive visualization method supports the
process of test creation and communicating the reached coverage lev-
els to medical experts involved in the authoring of the guideline. The
goal is to reach a sufficiently high test coverage to assure patient
safety under all circumstances.

1 Introduction

Testing is an important step in the development of any software arti-
fact, be it a program, a knowledge-based system, or a clinical guide-
line. The two most prevalent testing strategies in Software Engineer-
ing are black-box and white-box testing. The former approach is un-
concerned with the actual implementation and derives the test cases
solely from the underlying specification. The latter one, in contrast,
allows to create tests based on the implementation and to examine it
during execution of the tests. This introspection enables to capture
which basic elements of the tested artifact were executed - and thus
covered - by a test suite. Different metrics of Test Coverage were de-
veloped to objectively measure and assess the thoroughness of such
testing efforts. In classic Software Engineering, metrics have been
defined to assess the coverage of, e.g., methods of a program, state-
ments of a method, taken decisions of control-flow, and so on [16].

Hence, the benefit of coverage metrics - and their proper visualiza-
tion - is two-fold, increasing the effectiveness and efficiency of the
test creation process: First, they help to avoid the creation of redun-
dant tests. Second, they can be used to identify untested elements.

Both are also important aspects in the area of knowledge-based
system in general and computerized clinical guidelines in particular.
The creation of test cases for a clinical guideline will most likely in-
volve both parties, the medical expert and the knowledge engineer.
It is thus an expensive task, which should be completed efficiently.
Though, the overall goal is to create a guideline, that assures patient
safety under all circumstances, which can best be guaranteed by a
thorough test suite. This is especially important in the area of au-
tomated guidelines, which are applied by closed-loop devices. They
act autonomously on a patient to improve her state, without requiring
constant supervision by a clinical user.

For the interpretation of coverage metrics a visualization is help-
ful, especially to find untested elements. Test coverage of software
programs most usually is visualized by some kind of syntax high-
lighting, by coloring, e.g., the executed statements. Though also
graphical representations were developed, e.g., [11]. We adopted a

1 University of Wuerzburg, Germany, email: hatko@informatik.uni-
wuerzburg.de

2 denkbares GmbH, Germany, email: joachim.baumeister@denkbares.com
3 University of Wuerzburg, Germany, email: puppe@informatik.uni-

wuerzburg.de

visualization method from a related area in (object-oriented) Soft-
ware Engineering, namely Software Metrics. They are used to as-
sess code quality with respect to structural properties of classes, e.g.,
number of methods, number of members, lines of code, and so forth.
Those metrics are purely static, not involving the execution of the
program itself. They can graphically be visualized as a CodeCity [22]
to determine design flaws.

In this paper, we introduce various metrics to determine the test
coverage of clinical guidelines, modeled in the graphical language
DiaFlux. Furthermore, we adapted the city metaphor by creating a
CoverageCity for communicating the reached coverage levels to the
involved medical experts in an accessible manner.

The rest of this paper is structured as follows: In the next section
we give a short introduction into the graphical language DiaFlux for
clinical guidelines. Section 3 presents coverage metrics for DiaFlux
models. Following, in Section 4, we present the results of a case
study. Finally, we conclude the paper with a summary and an out-
look.

2 The DiaFlux Guideline Language

Clinical guidelines are an accepted means to improve patient out-
come. Therefore, they offer a standardized treatment, based on
evidence-based medicine. They are developed for several decades.
In their beginnings, they were solely text-based documents that re-
lied on the proper application by clinicians. The ongoing comput-
erization and data availability, also in domains with high-frequency
data as, e.g., Intensive Care Units (ICUs), allows for an automation
of guideline application by medical devices.

Several formalisms for Computer-Interpretable Guidelines were
developed, every one with its own focus, like shareability between
institutions [4] or decision support. Most of them are graphical ap-
proaches, that employ a kind of Task-Network-Model to express the
guideline steps [17]. However, in the area of (semi-)closed-loop de-
vices, rule-based approaches are predominant, e.g., [12, 15].

A downside of rule-based representations is their lower compre-
hensibility compared to graphical ones. This especially holds true, as
medical experts are most usually involved in the creation of guide-
lines. Therefore, we have developed a graphical guideline formalism
called DiaFlux [7]. Its main focus lies on the direct applicability and
understandability by domain specialists.

2.1 Application Scenario

The main application area of DiaFlux are mixed-initiative devices
that continuously monitor, diagnose and treat a patient in the setting
of an ICU. Such closed-loop systems interact with the clinical user
during the process of care. Both, the clinician and the device, are able
to initiate actions on the patient. Data is continuously available as a

2

result of the monitoring task. It allows for repeated reasoning about
the patient state, and to carry out appropriate actions to improve her
condition, if necessary.

2.2 Language Description
To specify a clinical guideline, two different types of knowledge
have to be effectively combined, namely declarative and procedu-
ral knowledge [6]. The declarative part contains the facts of a given
domain, i.e., findings, diagnoses, treatments and their interrelation.
The knowledge of how to perform a task, i.e., the correct sequence
of actions, is expressed in the procedural knowledge. It is responsible
for the decision which action to perform next, e.g., asking a question
or carrying out a test, in a given situation. Each of these actions has a
cost (monetary or associated risk) and a benefit (like information gain
or therapeutic effect) associated with it. Therefore, the choice of an
appropriate sequence of actions is mandatory for efficient diagnosis
and treatment.

In DiaFlux models, the declarative knowledge is represented by
a domain-specific ontology, which contains the definition of find-
ings and solutions. This application ontology is an extension of the
task ontology of diagnostic problem solving [3]. The ontology is
strongly formalized and provides the necessary semantics for execut-
ing the guideline. Like most graphical guideline languages, DiaFlux
employs flowcharts as the Task-Network-Model. They describe deci-
sions, actions and constraints about their ordering in a guideline plan.
These flowcharts consist of nodes and connecting edges. Nodes rep-
resent different kinds of actions. Edges connect nodes to create paths
of possible actions. Edges can be guarded by conditions, that evaluate
the state of the current patient session, and thus guide the course of
the care process. Figure 1 shows a module of an exemplary guideline
for diagnosing weight problems.

In the following, we informally describe the most important lan-
guage elements:
• Test node: Test nodes represent an action for the acquisition of

data during runtime. This may trigger a question, the user has to
answer, or data to be automatically obtained by sensors or from a
database.

• Solution node: Solution nodes are used to set the rating of a so-
lution based on the given inputs. Established solutions generate
messages for the clinical user and can, e.g., advice him to conduct
some action.

• Wait node: Upon reaching a wait node, the execution of the pro-
tocol is suspended until the given period of time has elapsed.

• Composed node: DiaFlux models can be hierarchically struc-
tured. Defined models can be reused as modules, represented by a
composed node in the flowchart using it.

• Abstraction node: Abstraction nodes offer the possibility to cre-
ate abstractions from available data. These values can then be used
for therapeutic actions by influencing the settings of the host de-
vice.

2.3 Guideline Execution
The execution engine for DiaFlux models is intended for, but not lim-
ited to, closed-loop devices, that provide data from sensors or man-
ually entered by the clinical user and carry out therapeutic actions
on the patient, i.e., changing device settings in certain ranges. The
architecture of the DiaFlux guideline execution engine consists of
three components. First, a knowledge base, that contains the appli-
cation ontology and the flowcharts. Second, a blackboard, that stores

all findings about the current patient session. Third, a reasoning en-
gine, that executes the guideline and carries out its steps, depending
on the current state as given by the contents of the blackboard. There-
fore, the reasoning engine is notified about all findings, that enter the
blackboard. A more thorough introduction to the DiaFlux language
and its execution engine is given in [7].

The execution of the guideline is time-driven. The reasoning starts
by acquiring data and by interpreting this data. The results are writ-
ten to the blackboard. Then, the guideline is executed. This involves
making decisions and possibly the generation of hints to the user and
therapeutic actions by the device. Finally, the time of the next exe-
cution is scheduled, pausing the execution until that instance in time,
waiting for the effects of the therapeutic interventions to take place.

3 Test Coverage of Clinical Guidelines

Verification and validation of a clinical guideline are important steps
in its development. That way, patient safety shall be assured under
all circumstances. Verification usually consists of formal methods,
proofing, that a given guideline is free of internal inconsistencies and
incompleteness. Normally, these kinds of checks can be performed
without executing the guideline. An overview of verification meth-
ods applied to clinical guidelines is given in [10]. Anomaly detection
for DiaFlux models is described in [8]. In contrast, the validation of
a guideline usually involves its execution by a set of test cases (i.e.
a test suite) and comparing the actual results against the expected
ones [2]. The thoroughness of such empirical testings can be deter-
mined by different metrics of test coverage.

In conventional software engineering (SE), test coverage (also
known as code coverage) is a well-established technique to measure
how well a piece of software is exercised by a test suite. Often, the
reached level of coverage is also used as an indicator for the quality
of the tested program, as tested elements are less likely to contain
errors than untested ones. Coverage criteria have been defined on
different levels of granularity, from the method-level down to single
statements, or even parts of them (so called condition coverage) [16].
In the field of AI research, coverage measures have been proposed
for rule-based systems. In this case, the results of such a coverage
analysis can, e.g., be used to prune the rule base [1]. For graphical
model representations, coverage measures have been proposed, e.g.,
for business processes [14], taking their specifics into account, for
example, the coverage of fault handlers.

In general, employing coverage metrics during the creation of a
test suite may help improving it in terms of minimality and com-
pleteness. While a high coverage of the object under test is worth-
while, this should be accomplished with the possibly minimal set of
test cases, as test creation is a difficult and costly task. This espe-
cially holds true for the test creation of clinical guidelines, as it may
involve knowledge engineers as well as domain specialists like medi-
cal experts. Therefore, adopting the mentioned techniques for clinical
guidelines and their graphical representations, offers the possibility
to improve this process.

In the following, we introduce coverage metrics on different lev-
els of granularity to assess the test coverage of a DiaFlux guideline.
Such a guideline usually is modularized in self-contained modules,
i.e. flowcharts. To represent this modularization also by the cover-
age metrics, we define most of them over the elements of individual
flowcharts, hence the restriction of nodes and edges to those of a
single one. This focusing alleviates the increase of coverage by addi-
tional tests, as deficiencies are easier to spot.

3

Figure 1. A module of a DiaFlux guideline for diagnosing weight problems.

3.1 Flowchart Coverage
Flowchart Coverage is defined as the ratio of the number of
flowcharts that are executed by a test suite and the overall number
of flowcharts in the guideline.

Let F be the set of DiaFlux models in guideline G, and F ex
T be

the set of flowcharts executed by test suite T . Then, the Flowchart
Coverage FCT of G is given by:

FCT (G) =
|F ex

T |
|F |

This metric only gives a bird’s eye view of the testing situation. It can
be used to guarantee at least some testing in all areas of the guide-
line during the starting phase of test creation. As it is a very coarse-
grained measurement, a FCT value of 100% should be aimed at.
Otherwise, major parts of the guideline remain untested. In SE, the
equivalent metric is function coverage, which reports, if every func-
tion of a program has been tested.

3.2 Node Coverage
Nodes represent the elementary steps of a guideline. A node being
covered by a test suite, means, that its associated guideline step has
been carried out at least once during the execution of the test suite.

Let Nf , f ∈ F be the set of nodes of the flowchart f , and
Nex

f,T , f ∈ F be the set of nodes of the flowchart f , that are exe-
cuted by test suite T . The according Node Coverage metric NCT of
a flowchart f for a given test suite T can then be calculated as:

NCT (f) =
|Nex

f,T |
|Nf |

, f ∈ F

Similar to Flow Coverage, a NCT level of 100% should be reached
for every flowchart in the guideline, as untested nodes can enact ac-
tions with unforeseen effects. This metric is equivalent to Statement
Coverage in classic SE, which reports, if every statement of a tested
function has been executed.

3.3 Edge Coverage

Edges are used to create the control flow of a flowchart, by defining
paths of possible sequences of guideline steps. Every node can have
several outgoing edges. Each of these edges can be guarded by a
condition, to select the appropriate successor node, depending on the
outcome of each guideline step. Therefore, the Edge Coverage metric
reports, if all possible outcomes of the guideline steps - in terms of
the equivalence classes that are defined by the edge guards - have
been considered within the test suite.

Let Ef , f ∈ F be the set of edges of flowchart f , and Eex
f,T , f ∈

F be the set of edges of the flowchart f , that are executed by test
suite T . Then, ECT is defined as the number of activated edges of a
flowchart f to their overall number, executing a given test suite T :

ECT (f) =
|Eex

f,T |
|Ef |

, f ∈ F

As edges connect nodes, an Edge Coverage subsumes the Node Cov-
erage of the according flowchart. This metric can be compared to
Decision Coverage in SE, that keeps track, if each decision in a pro-
gram under test (e.g., if- and switch-statements) has at least once
been taken and once not.

3.4 Condition Coverage

An edge guard may not be an atomic condition, but consist of sev-
eral sub-conditions, connected by boolean operators. For such non-
atomic guards, Edge Coverage gives no detailed information about
which of its sub-conditions were satisfied and which were not. This is
of special interest, if the sub-conditions are joined by an OR-operator.
In this case, every possible combination of atomic conditions, that
can fulfill the overall condition, have to be tested.

A more detailed view about this issue is given by Condition Cov-
erage. It checks, if every atomic condition has once been satisfied
and once not. In classical SE, several different metrics for this issue
have been developed, e.g. Modified Condition / Decision Coverage

4

[5]. As those can directly be applied to the guarding conditions of
edges, we will not further elaborate on this issue.

3.5 Path Coverage
A path through the guideline consists of consecutive nodes and
edges. Such a path can be seen as the execution of decisions and
actions for a given clinical scenario. In Software Engineering, it usu-
ally is not possible to reach a full path coverage, as soon as loops
are involved, as each number of iterations results in an additional
path. In clinical guidelines, there are no loops of an unlimited num-
ber of iterations, as, for instance, some time has to pass, until an
action can be repeated. Nevertheless, the number of paths through
the complete guideline throughout multiple nested DiaFlux models
most likely exceeds the possibilities of test creation. Given a proper
modularization, each flowchart is responsible for a specific aspect of
a guideline. Each path through such a single flowchart can be seen
as one specific scenario concerning this aspect. Therefore, we assess
each flowchart independently, and define an according Path Cover-
age metric over the paths of each individual flowchart.

Let Pf , f ∈ F be the set of paths through flowchart f , and
P ex
f,T , f ∈ F be the set of paths through flowchart f , that are ex-

ecuted by test suite T . Then, PCT is calculated as the number of
paths taken through flowchart f , by the execution of test suite T ,
divided by the total number of paths:

PCT (f) =
|P ex

f,T |
|Pf |

, f ∈ F

Even with a proper modularization given, not every modeled path
may be enactable, due to implicit dependencies between the guide-
line steps. If certain combinations of decisions and actions on a single
path exist, that can not occur, the targeted value of Path Coverage has
to be decreased accordingly.

As a path consists of consecutive nodes and edges, Path Coverage
satisfies Node Coverage as well as Edge Coverage.

Path Coverage, as defined above, is a rather aggregated measure-
ment and thus gives little advice of how to improve coverage with
further tests. Therefore, Path Coverage can also be restricted to the
paths through a specific node n ∈ N :

Let Pn be the set of paths containing n (∀p ∈ Pn : n ∈ p),
and P ex

n,T be the set of paths containing n exercised by test suite T .
Accordingly, the Path Coverage of node n is defined as:

PCT (n) =
|P ex

n,T |
|Pn|

A node with a low Path Coverage is only tested under a small
fraction of the contexts in which it is contained. Again, further tests
should be created for those scenarios, unless they expose dependen-
cies that makes not every path feasible.

3.6 Value Coverage
The metrics presented so far assess the test coverage with respect
to structural properties, each considering some kind of modeled ele-
ment, like nodes and edges. However, the actual input data, that di-
rects the execution of the guideline, is not assessed by these metrics
in any way.

Beside the mentioned control-flow-based metrics, a second per-
spective on coverage in classic Software Engineering is given by
data-flow-based metrics. Those measure the coverage of definition-
use (du) sequences of variables, i.e., a block of instructions in which

a variable is defined and subsequently used without a redefinition of
the variable, e.g., [19]. Black-box testing strategies concerned with
data usage are Equivalence Partitioning and Boundary Value Anal-
ysis [16]. As an exhaustive testing with all valid input data is most
likely not tractable even for a small program, its specification can
be used to partition the input space into equivalence classes. Under
the assumption that each value of a partition is treated equally by
the program, an arbitrary representative of each class can be chosen
for a test case. As errors are more probable at the boundaries of an
equivalence class, Boundary Value Analysis is often used to derive
additional test cases at these spots [20], for example to find “off-by-
one” errors (e.g., resulting from the use of the operator “≤” rather
than “<” in a numerical comparison).

DiaFlux models do not contain variables as they are common in
procedural programming languages, and the input data is not mod-
ified during guideline execution. Therefore, a definition-use analy-
sis is not applicable. Equivalence Partitioning and Boundary Value
Analysis can also not be used as they are. Explicit equivalence classes
usually can not be stated for inputs. Even thresholds for less deter-
mined assessments (like “low”, “normal”, “high”) are often hard to
specify for a medical expert. Those can furthermore vary between
different types of patients, which, e.g., share an underlying disease.
However, for each numerical input, a contiguous interval of possible
values can typically be given, according to the human body’s phys-
iological system and/or the preconditions of guideline applicability.
To assure a proper coverage of allowed input data regardless of con-
cepts like equivalence classes, we define the metric Input Coverage:
Let the interval [mini;maxi] be the domain Di for numerical input
i, and n ∈ N, n > 0 be the number of equally-sized partitions of Di.
The function cover(i, j) returns 1, iff the j− th partition of Di con-
tains at least one input value in test suite T, and 0 otherwise. Then,
the Input Coverage of i is given by:

ICn,T (i) =

n∑
j=1

cover(i, j)

n

Clearly, the significance of Input Coverage depends on the actual
value of n. It should be chosen to appropriately represent the sensi-
tivity of the outcome of the guideline to changes in values of i. At
later stages of test creation, the value can be increased stepwise to
test more fine-granular in terms of i’s input values.

Similarly, the output of the guideline (which mainly consists of nu-
merical values of the host device’s settings in predefined ranges) can
be assessed by the analog defined metric Output Coverage OCn,T .

3.7 Measuring Test Coverage

Commonly, there are two strategies to gather the data needed for cal-
culating test coverage metrics. The first one is called instrumentation,
which modifies the tested piece of software by including new code
that collects the necessary information. The second strategy is trac-
ing, which traces the executed elements by using some sort of debug-
ging API (Application Programming Interface) of the execution en-
vironment. Clearly, both approaches have an effect on the execution
time of the tests, as additional data has to be gathered. An advantage
of tracing is, that it does not alter the executed artifact. Under certain
circumstances this may also influence its behavior. Under this aspect,
“tracing” seems preferable, if the necessary API is available.

5

3.8 Visualization of Test Coverage
The calculated metrics result in a numerical value representing the
test coverage of the exercised artifact. This may very well be com-
prehensible for software and knowledge engineers, though for non-
technical domain specialists, like medical experts, these sole num-
bers may not be accessible enough. Furthermore, only a proper com-
position of metrics yields a meaningful overall picture, as each metric
represents a different aspect of coverage. Thus, an intuitive visual-
ization as a means for communicating the reached coverage levels
to domain specialists seems preferable. One approach to this need
are so called “Polymetric Views” [13]. They allow to display various
metrics in an aggregated view.

4 Test Coverage for DiaFlux Guidelines
This section describes an implementation of coverage metrics for
DiaFlux guidelines and a small case study.

4.1 Implementation
The development environment for DiaFlux guidelines is integrated
into the Semantic Wiki KnowWE. We created a plugin to calculate
the test coverage of DiaFlux models, when executing a test suite. It
employs the tracing approach to collect the information about exer-
cised elements of the guideline. For each execution of the guideline,
the chosen path according to the input data is recorded. After finish-
ing the test suite, the metrics are calculated and can subsequently be
visualized as CoverageCity, which can freely be scaled and rotated
(cf. Figure 2). For creating the visualization, we used the WebGL4-
based JavaScript library SceneJS5. It is hence accessible with every
(modern) web browser from within KnowWE, not requiring any pro-
prietary software.

4.2 The CoverageCity Visualization
For an accessible visualization of the reached coverage levels, we use
the metaphor of a city. It has been introduced as graphical represen-
tation of static code metrics (e.g. number of methods,. . .) in the con-
text of reverse-engineering of software systems (“CodeCity”) [21].
Such a city consists of districts that represent the nesting structure of
packages and buildings representing classes. Each building is located
in the district corresponding to its package. The actual values of the
metrics of each class determine the visual appearance of the match-
ing building. A building can represent up to four different metrics,
influencing its length, width, height, and color. Besides the package
structure, districts can depict one metric by their color.

We adapted the city metaphor for the visual representation of
test coverage of DiaFlux guidelines. Districts stand for individual
flowcharts. They are nested as given by their call hierarchy. Buildings
correspond to the nodes of the district’s corresponding flowchart.
Edges are not explicitly included but mapped to one of the build-
ings’ dimensions. In particular, we used the following assignment of
metrics to visual properties of buildings:

• Length: The number of outgoing edges of a node determines the
length of the building.

• Width: The width of a building relates to the number of outgoing
edges that are covered by the test suite.

4 http://webgl.org
5 http://scenejs.org

• Height: The height of a building shows how often it was covered
by the test suite.

• Color: The color represents how well the paths, that go through a
particular node, are covered by a test suite. In case a building is
“red”, only few paths are executed. “Green” stands for a high Path
Coverage.

4.3 Interpretation of the Visualization

The complexity that a node introduces into a guideline, mostly comes
from its number of outgoing edges. In case the associated action has
numerous possible outcomes (each represented by an outgoing edge),
it is more likely to contain errors. Thus, one dimension of the base
area of a building is influenced by the number of outgoing edges of
the corresponding node. The increased size makes the building easier
to spot. The other dimension of the base area grows with the num-
ber of covered outgoing edges. As a result, a non-quadratic building
stands for a node, whose outgoing edges are not completely covered.
The lower the aspect ratio, the more uncovered edges exist. This de-
ficiency in test coverage can easily be observed.

The color of a building depicts its Path Coverage. A red one, rep-
resents a node, that is contained in much more paths than were cov-
ered. With increasing Path Coverage, the color becomes green. The
height of a building corresponds to the number of times, it has been
exercised by the test suite. Clearly, those two properties are not in-
dependent. On the one hand, a small building is more likely to be
contained only in a small number of paths, and thus be red. On the
other hand, a building that is tall and red, implies that the correspond-
ing node is often tested under similar circumstances. This can give
hints for creating new test cases, that are not contained so far. Tall,
green buildings have been thoroughly exercised and do not require
additional test cases.

The nesting level of the districts helps in estimating the necessary
effort for testing a specific flowchart or node. Deeply nested module
are probably harder to reach by a test case, as each module may only
be called under certain preconditions.

The aggregated view of CoverageCity makes it easy to spot de-
ficiencies in test coverage quickly. Though, a more detailed view is
necessary to identify the specific nodes and their test deficiencies.
Hence, each building be selected by the user. Then, the correspond-
ing flowchart is shown below the CoverageCity, and the node and its
coverage is highlighted visually.

4.4 Case Study

Currently, we are involved in the implementation of a computerized
guideline for automated mechanical ventilation [9]. The guideline is
intended to run on a mechanical ventilator, and is able to derive new
ventilatory settings in order to improve the ventilation of the patient.
First testing efforts of the guideline were conducted using a physio-
logical simulation. The guideline was run against a software tool that
simulates a mechanically ventilated patient. It employs a physiolog-
ical lung model to determine the effects of the current ventilation
settings to the patient. The simulation is able to deliver the neces-
sary data (ventilation settings and measured patient response) to the
guideline execution engine. Based on this data, the guideline derives
optimized settings and returns them to the simulation environment,
that uses them for the further simulation. The simulation tool was
used by medical experts to generate the test cases and review the de-
rived ventilation settings. The generated test cases are saved to a file,

6

Figure 2. The test coverage visualization using the city metaphor. Nodes are represented by buildings, flowcharts by districts. The visual properties of
building are determined by the coverage metrics of the corresponding node.

and are then uploaded to KnowWE for the introspection of guideline
execution and coverage analysis.

We selected a sample of ten generated test cases. The visualiza-
tion of the acquired coverage levels is shown in Figure 2. Currently,
we are in the process of evaluating our visualization with medical
experts. Furthermore, we identify other meaningful assignments of
metrics to visual properties of the buildings.

5 Conclusion
In this paper, we formally defined different coverage metrics to as-
sess the thoroughness of testing efforts for clinical guidelines. They
can be used to identify insufficiently tested elements, and to improve
the process of test creation in terms of efficiency, as this may involve
domain specialists as well as knowledge engineers. An intuitive vi-
sualization method helps in communicating the acquired coverage
levels to domain specialists, for which numerically expressed met-
rics probably are less helpful than for knowledge engineers.

Additional metrics could be defined over more dynamic aspects of
a guideline. First, the distribution of values could be tracked for each
activated flowchart element. As there clearly are dependencies be-
tween the actual values and the possible ones - given by the context
(i.e. path) of the element - proper preprocessing would be necessary.

Ultimately, this could give insight, if parts of the guideline were only
tested, e.g., for a certain patient type. Second, it would be helpful to
define scenarios with respect to the occurrence of a certain sequence
of input data or therapeutic actions over time and trace their cover-
age by the test suite. In terms of the CoverageCity-visualization, we
will evaluate different mappings of the coverage metrics to the visual
properties of the city, to create new perspectives on test coverage.

One shortcoming of white-box testing in general is, that it is un-
able to detect errors by omission, i.e. some requirement may not have
been included in the implementation under test. An approach to find
this type of errors is Requirements-based Test Coverage [18]. It de-
fines coverage with respect to implementation-independently defined
requirements that are exercised by a test suite. Having formally de-
fined requirements, this approach should be transferable to testing
clinical guidelines.

Acknowledgements

University of Würzburg is funded by the German Federal Min-
istry for Education and Research under the project “WiM-
Vent” (Knowledge- and Model-based Ventilation), grant number
01IB10002E.

7

REFERENCES

[1] Valerie Barr, ‘Applications of rule-base coverage measures to expert
system evaluation’, Knowledge-Based Systems, 12, 27–35, (1999).

[2] Joachim Baumeister, ‘Advanced empirical testing’, Knowledge-Based
Systems, 24(1), 83–94, (2011).

[3] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,
‘KnowWE: A semantic wiki for knowledge engineering’, Applied In-
telligence, 35(3), 323–344, (2011).

[4] Aziz A. Boxwala, Mor Peleg, Samson Tu, Omolola Ogunyemi, Qing T.
Zeng, Dongwen Wang, Vimla L. Patel, Robert A. Greenes, and Ed-
ward H. Shortliffe, ‘GLIF3: a representation format for sharable
computer-interpretable clinical practice guidelines’, J. of Biomedical
Informatics, 37(3), 147–161, (2004).

[5] J.J. Chilenski and S.P. Miller, ‘Applicability of modified condition/deci-
sion coverage to software testing’, Software Engineering Journal, 9(5),
193–200, (1994).

[6] Paul de Clercq, Katharina Kaiser, and Arie Hasman, ‘Computer-
interpretable guideline formalisms’, in Computer-based Medical
Guidelines and Protocols: A Primer and Current Trends, eds., Annette
ten Teije, Silvia Miksch, and Peter Lucas, 22–43, IOS Press, Amster-
dam, The Netherlands, (2008).

[7] Reinhard Hatko, Joachim Baumeister, Volker Belli, and Frank Puppe,
‘DiaFlux: A graphical language for computer-interpretable guidelines’,
in Knowledge Representation for Health-Care, eds., David Riaño, An-
nette ten Teije, and Silvia Miksch, volume 6924 of Lecture Notes in
Computer Science, 94–107, Springer, Berlin / Heidelberg, (2012).

[8] Reinhard Hatko, Joachim Baumeister, Gritje Meinke, Stefan Mers-
mann, and Frank Puppe, ‘Anomaly detection in DiaFlux models’, in
KESE7: 7th Workshop on Knowledge Engineering and Software En-
gineering, San Cristobal de La Laguna, Spain, November 10, 2011,
volume 805 of CEUR Workshop Proceedings, Tenerife, Spain, (2011).
CEUR-WS.org.

[9] Reinhard Hatko, Dirk Schädler, Stefan Mersmann, Joachim Baumeis-
ter, Norbert Weiler, and Frank Puppe, ‘Implementing an automated ven-
tilation guideline using the semantic wiki knowwe’, in EKAW 2012:
18th International Conference on Knowledge Engineering and Knowl-
edge Management, eds., Heiner Stuckenschmidt, Annette ten Teije, and
Johanna Voelker, (2012).

[10] Arjen Hommersom, Perry Groot, Michael Balser, and Peter Lucas,
‘Formal methods for verification of clinical practice guidelines’, in
Computer-based Medical Guidelines and Protocols: A Primer and Cur-
rent Trends, eds., Annette ten Teije, Silvia Miksch, and Peter Lucas,
63–80, IOS Press, Amsterdam, The Netherlands, (2008).

[11] J.A. Jones, M.J. Harrold, and J. Stasko, ‘Visualization of test informa-
tion to assist fault localization’, in Proceedings of the 24th international
conference on Software engineering, pp. 467–477. ACM, (2002).

[12] H.F Kwok, D.A Linkens, M Mahfouf, and G.H Mills, ‘Rule-base
derivation for intensive care ventilator control using ANFIS’, Artificial
Intelligence in Medicine, 29(3), 185 – 201, (2003).

[13] Michele Lanza and Stéphane Ducasse, ‘Polymetric views - a
lightweight visual approach to reverse engineering’, IEEE Trans. Soft-
ware Eng., 29(9), 782–795, (2003).

[14] Daniel Lübke, Leif Singer, and Alex Salnikow, ‘Calculating bpel test
coverage through instrumentation’, in AST, eds., Dimitris Dranidis,
Stephen P. Masticola, and Paul A. Strooper, pp. 115–122. IEEE, (2009).

[15] Stefan Mersmann and Michel Dojat, ‘SmartCaretm - automated clini-
cal guidelines in critical care’, in ECAI’04/PAIS’04: Proceedings of the
16th European Conference on Artificial Intelligence, including Presti-
gious Applications of Intelligent Systems, pp. 745–749, Valencia, Spain,
(2004). IOS Press.

[16] Glenford J. Myers, Corey Sandler, and Tom Badgett, The art of software
testing, John Wiley & Sons, Hoboken, N.J., 3 edn., 2011.

[17] Mor Peleg, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox,
Robert A Greenes, Silvia Miksch, Silvana Quaglini, Andreas Sey-
fang, Edward H Shortliffe, Mario Stefanelli, and et al., ‘Compar-
ing computer-interpretable guideline models: A case-study approach’,
JAMIA, 10, (2003).

[18] A. Rajan, ‘Coverage metrics to measure adequacy of black-box test
suites’, in Automated Software Engineering, 2006. ASE ’06. 21st
IEEE/ACM International Conference on, pp. 335 –338, (sept. 2006).

[19] Sandra Rapps and Elaine J. Weyuker, ‘Selecting software test data using
data flow information’, IEEE Trans. Softw. Eng., 11(4), 367–375, (April
1985).

[20] S.C. Reid, ‘An empirical analysis of equivalence partitioning, bound-
ary value analysis and random testing’, in Software Metrics Sympo-
sium, 1997. Proceedings., Fourth International, pp. 64 –73, (November
1997).

[21] Richard Wettel and Michele Lanza, ‘Visualizing software systems as
cities’, in VISSOFT, eds., Jonathan I. Maletic, Alexandru Telea, and
Andrian Marcus, pp. 92–99. IEEE Computer Society, (2007).

[22] Richard Wettel and Michele Lanza, ‘CodeCity: 3D visualization of
large-scale software’, in ICSE Companion, eds., Wilhelm Schäfer,
Matthew B. Dwyer, and Volker Gruhn, pp. 921–922. ACM, (2008).

8

Metamodeling of Bayesian networks for decision-support
systems development

Isabel M. del Águila and José del Sagrado 1

Abstract. The knowledge modeling and software modeling phases
in Knowledge-Based System development are not integrable, in
terms of representation, due to the different languages needed at the
steps of the development. This paper focuses on bring closer these
languages. By one hand, we define a meta model which contains
the key concepts used in the definition of a knowledge model as
a Bayesian network. On the other hand, we define an extension
of UML using profiles that can bridge the gap in representation
and facilitate the seamless incorporation of a knowledge model, as
Bayesian network, in the context of a knowledge-based software
development.

1 Introduction
Knowledge-based systems (KBSs) are characterized by their high
risk, loose definition, poor structure and subjective requirements.
These software systems were introduced in the early 1970s as
expert systems from the field of artificial intelligence (AI) research.
Originally their goal was to transfer expertise from domain experts
to a some kind of knowledge base that may be integrable in a
software system. However, nowadays knowledge engineering is
changing as it turns towards the modeling approach. A KBS can
be defined as ”software that has some knowledge or expertise about
specific, narrow domain, and is implemented such that Knowledge
base and the control architecture are separated. Knowledge-Based
Systems have capabilities that often include inferential processing
(as opposed to algorithmic processing), explaining rationale to users
an generating non-unique results” [19]. From this definition is easy
to see the many roles played by the knowledge model (knowledge
bases). Models provide an abstraction about reality and through this
knowledge models the human experts problem solving approaches
in order to be used in the development of software solutions.
Knowledge models usually are described in a specific purpose
language. There is not a standard, because it depends heavily on
knowledge representation mechanisms (i.e. rules, semantic networks,
frames). However, from a commercial point of view, the development
of a software system focuses on customers, that is, in order to
develop any software solution we need to gather requirements from
customers and translate it into software functionalities. All the
desired functionalities do not have to apply artificial intelligence
techniques.Thus, software systems usually integrate a KBS with
other needed software enterprise components.

These not knowledge based components are described using
modeling languages from the software engineering domain (UML
is the most used standard). This lead us to combine several modeling

1 Department of Languages and Computation, University of Almerı́a, Spain,
email: imaguila@ual.es

Figure 1. Different views of a software development project

languages in the same project. Figure 1 shows the vision of a
software development project from the points of view of a customer,
a software engineer and a knowledge engineer. The knowledge
engineer (Figure 1A) uses knowledge engineering methods to define
the project’s task, relegating to the background the tasks defined by
software engineering. The software product that results from this
process is a KBS. From another perspective, the software engineer
(Figure 1B) systematically applies its skills, tools and software
engineering methods to develop a software product (system), where
knowledge is only another element. Finally, the customer’s view
of the project (Figure 1C) focuses on quality and the need of
cooperation between the two engineerings and their own modeling
languages [2, 3], so that the final software product properly covers
all her/his needs. In other words, software components based and
not based on knowledge must be integrated in shaping the software
system for the end user.

The use of different modeling languages limits the applicability
of one of the software development schemes more widespread in
our day, Model-Driven Architecture (MDA) [13]. This approach, to
information software systems development, separates specification
of the system functions from implementation of these functions in a
given platform, focusing on models as a higher level of abstraction
during systems construction [5]. This fact leads developers to
a significant decoupling between platform-independent models
(PIMs) and platform-specific models (PSMs). Separation between
specification and implementation is also a basic feature in KBS (see

9

[19]). Our problem is putting together different modeling language
notations into a single platform independent model, so that the
knowledge model and the UML model are expressed in a compatible
format. Therefore, we need a extended PIM that include algorithmic
and inference functionalities. A single language allows a great level
of abstraction and makes easy the implementation process. The same
PIM model can be translated to different platforms: the core goal of
MDA.

This work propose a extension of UML when Bayesian Networks
(BN) [21, 15, 16] are the representation selected by knowledge
engineers to model the knowledge. We focus on BN because among
all the knowledge modeling languages, Bayesian networks can be
successfully used to represent expert knowledge on an uncertain
domain. Today, BNs are expressed by applying its own algebraic
notation, but if we want a BNs to be part of a software solution,
we must be able to express themselves in the same language that
is commonly used to model general purpose software (i.e. UML).
In this paper we propose an approach which aims to improve the
development of decision support system, reinforcing the aspects of
BNs modeling. In order to achieve this goal, we introduce a BN
metamodel and a UML profile as means to build the PIM for a KBS
that represents knowledge based on a BN.

The rest of this paper is structured as follows. Section 2 introduces
the basic fundamentals of Bayesian networks. The general MDA
translation schema for BNs is explained in Section 3. Section 4
describe a basic metamodel for BNs (BayNet) that provides a specific
and intuitive notation for modeling BN-based KBS. The extension
of UML taking as basis the BN metamodel BayNet to create an
UML profile for BNs (UBN) is studied in Section 5. Then, Section 6
shows how to apply UBN profile to the development of a simple pest
control BN-based KBS. Finally, the conclusions and future works are
exposed in Section 7.

2 Bayesian Networks Basics
A Bayesian network is a probabilistic graphical model that represents
a set of random variables and their conditional dependencies via a
directed acyclic graph. Because a Bayesian network is a complete
model for the variables and their relationships, it can be used to
answer probabilistic queries about them.

Formally, a BN [21, 15, 16] is a pair (G,P) where

• G = (V,E) is a directed acyclic graph whose set of nodes V =
{X1,X2, · · · ,Xn} represents the system variables and whose set
of arcs E represents direct dependence relationships among the
variables, and

• P is a set of conditional probability distributions containing
a conditional probability distribution P (Xi|pa(Xi)) for each
variable Xi given its set of parents pa(Xi) in the graph.

The joint probability distribution over V can be recovered from this
set P of conditional probability distributions applying the chain rule
as:

P (X1, · · · , Xn) =

n∏
i=1

P (Xi | pa(Xi)). (1)

The process of obtaining the graph and the probabilities of a BN can
be done either manually, from experts’ knowledge on the domain,
or automatically, from databases. In the first case, the elicitation of
probabilities constitutes a bottleneck in the development of BNs [9].

A BN-based KBS needs to translate this algebraic notation to
environments, such as Elvira [10], that consists of software packages

for the edition, use and evaluation of BN. These environments
provide class libraries that can be integrated as any other component
into a software application (i.e. BN-based KBS). This application
will be released to the end user and will contain an implementation
of the network itself and network capabilities, such that inference
from observed values of some variables.

In particular, the Elvira system [10] is tool to construct
probabilistic decision support systems. Elvira works with Bayesian
networks and influence diagrams and can operate with discrete,
continuous and temporal variables. It has an easy to use Graphical
User Interface (GUI) (see Figure 2). In addition you can edit, easily,
the ASCII format of the Elvira systems to introduce your models. It
has methods for inference, learning, abduction, fusion of knowledge
and making decisions, and some tools to check the efficiency of the
algorithms.

Figure 2. Elvira’s main interface

The program Elvira has its own format for storing models,
a parser, exact and approximate (stochastic and deterministic)
algorithms for inference on both discrete and continuous variables,
a graphical interface for building and evaluating Bayesian networks
and influence diagrams, with specific options for canonical models
(OR, AND, MAX, etc.), explanation of reasoning, decision making
algorithms, learning (model building) from databases, fusion of
networks, etc. Elvira is written and compiled in Java, which allows
the program to run on different platforms and operating systems:
Linux, MS-DOS/Windows, Solaris, etc.

2.1 Reasoning with Bayesian Networks
Probabilistic reasoning in BNs consists in computing the posterior
probability distributions of some variables of interest vI ∈ VI

given some observed variables VE (this sets of findings is called
evidence), P (vI |VE). This process is performed via a flow of
information through the network in any direction. If we give a causal
interpretation to the links in the network (i.e. for an arc Xi → Xj

we say that Xi is a cause of Xj and Xj is the effect of Xi), we can
perform several types of reasoning [17]:

• Diagnostic reasoning, the evidence flows in the opposite direction
to the arcs, from effects to cause (i.e. some effects receive evidence
and some of their causes are the variables of interest).

10

• Predictive reasoning, the evidence flows in the direction of the
arcs, from cause to effect (i.e. some causes receive evidence and
their effects are the variable of interests).

• Intercausal reasoning, the evidence flows in all directions. This
type of reasoning involves reasoning about mutual causes of a
common effect (i.e. the effect and some of the causes receive
evidence and some of the causes are the variables of interests).

Sometimes reasoning does not match into these three types, because
any variable can be an interest variable and may be an evidence
variable and information flows in either direction (i.e. the effects
of a causes and the causes of the second receive evidence and the
central cause is the variable of interest). This situation occurs when
diagnostic and predictive reasoning are used simultaneously.

3 Bayesian Network as PIM
In terms of MDA vocabulary, a BN is a PIM, Elvira is a platform
model into which a BN has to be translated in order to define the
final PSM. Elvira software also offers Java support for the BN, that
is to say, it provides the last level of the MDA approach (i.e. the
code).

Figure 3. MDA for BN-based KBS

Figure 3 shows the translation model proposed. Both, the
transactional (or interaction) PSM and the knowledge (or BN) PSM
are expresed in terms of object-oriented design languages coming
from Software Engineering (i.e. UML) and their translation into code
is solved by means of a m2c translation. Many CASE tools, like
Visual Paradigm, Microsoft Visual Studio or Enterprise Architect,
already incorporate, at least to some degree, this kind of translation.
But to use the power of MDA, is also necessary to express the
PIM of these two parts of the software solution. There are modeling
languages in the Software Engineering area that allow to express the
PIM, but what about the BN? What is its language model? Is it UML
compatible?

The MDA approach has been applied in other forms of knowledge
representation as rules [7, 1]. From the metamodel of the rule-based
languages have been defined UML profiles and automated tools, that
translate the rules of PIM models into rules-based web-systems by
combining Java Server Faces with Jess rule engine [6]. But, BNs
lack of a modeling language compatible with UML that allows the
application of MDA. Model transformation consists on the process
of converting one model to another model of the same system in a
different abstraction level: from PIM to PSM and from PSM to code.
MDA tools allow these transformations to be automated and executed
automatically.

Our goal is to create an UML-compatible modeling language
for BNs. The Object Management Group (OMG) has defined two
extension mechanisms for UML: metamodel model and profile
extensions [14]. First extension mechanism involves the process

of defining a new metamodel on which to build an entirely
new language defined through the Meta-Object Facility (MOF)
specification. But if we do not want to change UML semantics and
only particularize some concepts, we can extend UML using a series
of mechanism offered by the language itself: the profiles. [12].

We know that all the knowledge representation mechanisms are in
themselves languages. So we can choose to build a totally new MOF
language, but it may not respect the standard UML metamodel. This
fact will prevent existing UML tools to manage the new language
concepts in a natural way. To offer a proposal that also gives support
to UML, leads to a greater number of users and reduce the learning
curve in the new language. For all these reasons and agreeing with
the proposals of several authors [18, 22, 4], we also propose the use
of UML profiles. In any case, according to several studies [11, 12],
the starting point for developing a UML profile is the metamodel for
the platform or of the domain of the application that is going to be
modeled. In our case, the starting point is a BN metamodel (called
BayNet) that will allow us to specify how BN concepts are related to
and represented in standard UML. Visual Paradigm is the CASE tool
used to define this metamodel and its associated profile.

Figure 4. BayNet metamodel’s basic structure

4 Metamodel for Bayesian Network
A metamodel includes domain entities, retrictions between them
and limitations on the use of entities and relationships. BNs are
complex in nature, beside its structure we have to face with complex
concepts, as inference and learning, that have to be approached by
successive approximations. This is the reason why we have split
the metamodel in several packages as it is shown in Figure 4. The
BayNet metamodel is the basis for providing a specific and intuitive
notation for modeling BN-based KBS.

In a first approximation to BayNet, we only focus on BayNet
structure (as we need to define the BN structure to define a model)
and BayNet reasoning (as we need to carry out inference in order to
reasoning with a BN) packages (see Figure 5). The BayNet structure
package represents the basic components of a BN (BNet class): its
qualitative (i.e. directed acyclic graph) and quantitative (i.e. set of
probability distributions) parts. The qualitative part is represented by
the class Variable and its self-association. An Assignment consists in
assigning a State to a Variable modifying, accordingly, its marginal
probability. The quantitative part is represented by means of the
classes Configuration and Relation. For each given child-father
association (Configuration) in the directed acyclic graph is assigned
a conditional probability value (Relation). That is, we assign a

11

Figure 5. BayNet metamodel

probability value to each combination of values of a variable Xi and
its parents pa(Xi) in the graph, to define the conditional probability
distribution P (Xi|pa(Xi)).

In BayNet reasoning, an inference can be view as a process
(I Process), a class able to carry out inferences (I entity) or an
operation inside a class (I task). These three views allows to model
different levels of abstraction in the decision tasks associated to a
BN-based KBS. An Inference is an aggregation of the observed
variables (Evidence) together with the execution of the operations
needed to make evidence flow on the network and to compute
the posterior probability distributions of the variables of interest
(Propagation).

5 UBN profile

UML offers the possibility to extend and adapt its metamodel to
a specific area of application through the creation of profiles. The
BayNet metamodel is the basis that will provide a specific and
intuitive notation for modeling BN-based KBS and including it in an
UML project. UML profiles are UML packages with the stereotype
<< profile >>. A profile can extend a metamodel or another
profile while preserving the syntax and semantic of existing UML
elements. It adds elements which extend existing classes. UML
profiles consist of Stereotypes, Constraints and Tagged Values.

• A stereotype is a model element defined by its name and by the
base class(es) to which it is assigned. Base classes are usually
metaclasses from the UML metamodel, for instance the metaclass
<< Class >>, but can also be stereotypes from another profile.

• Constraints are applied to stereotypes in order to indicate
restrictions. They specify pre- or post conditions, invariants,
etc., and must comply with the restrictions of the base
class. Constraints can be expressed in any language, such as

programming languages, natural language or Object Constraint
Language (OCL).

• Tagged values are additional meta-attributes assigned to a
stereotype, specified as name-value pairs. They have a name and
a type and can be used to attach arbitrary information to model
elements.

Figure 6. UBN stereotypes and icons

We use UML profile to define a UML Bayesian network profile
(UBN). The aim of UBN is to define a language for designing,
visualizing, specifying, analyzing, constructing and documenting the
artifacts of knowledge-based systems, that represents it knowledge
as a BN. The next step is to map the BayNet metamodel, described
in the above section, to UML metaclases and make the necessary
extensions. The mapping is a non-trivial task, because we need to
know in deep how to apply the UML language. Most of concepts
will map to stereotypes on a selected UML metaclass. Also we can
define icons for most of the stereotypes, that allows the modeler to
use intuitive symbols instead of UML shapes. Figure 6 shows the
actual mapping with UML metaclasses.

Once the UBN is defined, it can be used in the software
development of a particular application by defining a stereotyped
dependency (<< applyProfile >>) between the UBN package
an the package that is being under development for the application,
as Figure 7 shows. A partial view of the class model of Elvira
is included as it is needed in order to define the m2m translation
between PIM and PSM (see Figure 3).

6 Case Study: A pest control BN-based KBS
This section shows how to apply UBN in an specific KBS
development project. The project follows a development
methodology described in [3], the process model proposed
allows the seamless inclusion of Bayesian networks into the final
software solution for an organizational environment. Let us begin
with a brief description of the project to assist decision making in
an agricultural domain. Our problem is related to pest control in
a given crop under the regulation of Integrated Production. The

12

Figure 7. Bayesian network KBS modeling packages: pest control
application

Integrated Production Quality standard is adopted by a group of
growers in order to achieve a quality production certification. The
adoption of this standard forces growers to be disciplined in growing
which involves intervention by technicians, marketing controls, and
periodical inspection by the standard certification agencies.

The three main steps in the development of software systems that
embed functionalities based and not based on knowledge, concerning
the decision support process and the information management
processes, are: Requirement modeling (RM), Expert modeling (EM)
and Specification of the software solution (SSS)[3]. The first two are
in charge of the definition on the PIM model according MDA (see
Figure 3), and here is where UBN gets its value, because we can use
only UML in order to execute RM and EM.

Software project development starts with business and RM
modeling. The first activity consists of collecting, structuring
and organizing all the relevant data for a concise and accurate
definition of the problem to be solved by the software system.
Integrated production involves handling and storing a huge amount
of information about crops, and making decisions about all the tasks
that have to be performed to fulfill the quality regulations.

We model the processes that are represented as use cases.
The typical processes in an integrated production problem are
shown in Figure 8. All tasks related to information required for
quality management standards, without needing any knowledge
based approach, are: Market Production, Act in Crop, Certify Crop
Quality, and Finish Growing. All tasks related to pest control are
performed by growers and agronomists in the Monitor crop process
and represents the inference tasks that we need to model by means of
a Bayesian network. The decision process when monitoring a crop
is made at two levels. First, a decision is made on whether crop
control action is necessary by sampling pests and estimating risk of
attack. Then if it is decided that crop control action is required, the
product (chemical or biological) to be applied has to be selected. The
treatment advised has to respect natural enemies and other biological
products previously used.

The next steep is to finish the PIM, using UML and UBN in order
to define the system without considering platform level details. That
is, from use cases we need to define the conceptual models. In this
section, as specific case, we focus on the Monitor crop use case that

Figure 8. Use cases

can be described as the following informal scenario: Each week,
the agricultural expert samples the crops condition and makes an
estimate of the risk of pest attack. Crop sampling consists of direct
observation and count of harmful agents in randomly selected plants.
Where imbalance is detected, the expert advises treatment meeting
the integrated production standard.

A crop is a complex system consisting of a plot of land, plants,
a set of diseases and pests, and natural enemies that may be able to
control them. The problem is to decide what treatment to apply, in
order to maintain a balanced system. Figure 9, shows the UML class
diagram obtained. Some of the classes in the model are variables of
the Bayesian network (EM).

Within the scope of integrated production systems, when an
agricultural expert visits a greenhouse, he writes down the date of
the visit and samples the crop, including information about fauna,
weather (wind, rain, etc.) and environment (weeds). The general
schema for a crop-harmful agent pair consists of observing the
crops condition and fauna. Crop condition is measured in terms of
its phenology. The presence of fauna is important to estimate the
intensity of the attack. The crop condition, along with the intensity of
pest attack, determines the need for applying a plant health treatment
or not. Periodical inspections of this kind are performed weekly.
Figure 10 shows the BN structure elicited from the knowledge of
the domain expert. Once the BN structure has been established, the
probabilities are estimated completing the construction of the BN
model. This expert modelling process has been successfully applied
to determine the need of applying a treatment for olives’ fly [8].

In order to select the set of relevant variables, we start from the
initial conceptual model of the project that has to be refined. A first
version of the PIM is shown in figure 9. Some of the modeling
elements are stereotyped, using UBN, as nodes in a BN, Crop
condition is measured in terms of its phenology. The presence of
fauna is important to estimate the intensity of the attack. The crop
condition, along with the intensity of pest attack, determines the need
for applying a plant health treatment or not. Periodical inspections
of this kind are performed weekly. Relationship that complete the
qualitative part of the BN are shown as stereotyped associations of

13

Figure 9. Partial view of the PIM

type << father >>. Once the BN structure has been established,
the probabilities are estimated (quantitative elicitation activity) based
on a local government database of cases, completing the construction
of the BN model. This expert modeling process has been successfully
applied to determine the need of applying a treatment for the olives’
fly (dacus olae) [20].

Finally, the specification of the software solution (SSS) represent a
m2m translation that produces the PSM. Based on the PSM obtained,
a m2c translation can be used to obtain a BN-based KBS in order to
assists grower and technicians in pest control decision support tasks.

Figure 10. A BN structure for a crop-harmful agent pair

7 Conclusions
In this work we have presented a metamodel (BayNet) and an
UML profile (UBN) for BN-based KBS modeling. This metamodel
covers several important aspects for achieving the seamless inclusion
of BN models into a final software solution for an organizational
environment. The applicability of our solution has been tested in a
simplified version of a real world problem: integrated production in
agriculture.

Our proposal allows to manage a domain-specific language for
BN without changing UML semantics. This can be view as a
general framework to apply Model Driven Development, extending
it to the BN-based KBS case. Developing a profile is a difficult
task that implies to perform many steps. The next steps of this
research will consist in defining an specification of constraints and
operations using OCL, validate the profile using a CASE tool as
Visual Paradigm and test it in a real-life development project that
includes knowledge-base features.

ACKNOWLEDGEMENTS
This research has been funded by the Control crop Project (PIO-TEP-
6174) from the Counseling of Economy, Innovation and Science,
Government of Andalusia (Spain) and the Spanish Ministry of
Education, Culture and Sport under project TIN2010-20900-C04-02.

REFERENCES
[1] Mohd Abdullah, Ian Benest, Richard Paige, and Chris Kimble, ‘Using

unified modeling language for conceptual modelling of knowledge-
based systems’, in Conceptual Modeling - ER 2007, eds., Christine
Parent, Klaus-Dieter Schewe, Veda Storey, and Bernhard Thalheim,
volume 4801 of Lecture Notes in Computer Science, 438–453, Springer
Berlin-Heidelberg, (2007).

14

[2] Isabel Marı́a del Águila, Joaquı́n Cañadas, José Palma, and Samuel
Túnez, ‘Towards a methodology for hybrid systems software
development’, in SEKE, eds., Kang Zhang, George Spanoudakis, and
Giuseppe Visaggio, pp. 188–193, (2006).

[3] Isabel Marı́a del Águila, José del Sagrado, Samuel Túnez, and
Francisco Javier Orellana, ‘Seamless software development for systems
based on bayesian networks - an agricultural pest control system
example’, in ICSOFT (2), eds., José A. Moinhos Cordeiro, Maria
Virvou, and Boris Shishkov, pp. 456–461. SciTePress, (2010).

[4] Saartje Brockmans, Robert Colomb, Peter Haase, Elisa Kendall, Evan
Wallace, Chris Welty, and Guo Xie, ‘A model driven approach for
building owl dl and owl full ontologies’, in The Semantic Web - ISWC
2006, eds., Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Mike Uschold, and Lora Aroyo, volume
4273 of Lecture Notes in Computer Science, 187–200, Springer Berlin
/ Heidelberg, (2006).

[5] Alan W. Brown, ‘Model driven architecture: Principles and practice’,
Software and System Modeling, 3(4), 314–327, (2004).

[6] Joaquı́n Cañadas, José Palma, and Samuel Túnez, ‘A tool for mdd of
rule-based web applications based on owl and swrl’, in KESE, eds.,
Grzegorz J. Nalepa and Joachim Baumeister, volume 636 of CEUR
Workshop Proceedings. CEUR-WS.org, (2010).

[7] Joaquı́n Cañadas, José Palma, and Samuel Túnez, ‘Defining the
semantics of rule-based web applications through model-driven
development’, Applied Mathematics and Computer Science, 21(1), 41–
55, (2011).

[8] José del Sagrado and Isabel del Águila, ‘Olive fly infestation prediction
using machine learning techniques’, in Current Topics in Artificial
Intelligence, eds., Daniel Borrajo, Luis Castillo, and Juan Corchado,
volume 4788 of Lecture Notes in Computer Science, 229–238, Springer
Berlin / Heidelberg, (2007).

[9] Marek J. Druzdzel and Roger R. Flynn, ‘Decision support systems’,
in Encyclopedia of Library and Information Science, ed., Allen Kent,
volume 67, 120–133, Marcel Dekker, Inc., New York, NY, (2000).

[10] T. Elvira Consortium, ‘Elvira: An environment for creating and using
probabilistic graphical models’, in Proceedings of the First European
Workshop on Probabilistic Graphical Models (PGM-02, eds., J. Gómez
and A. Salmerón, pp. 1–11, (2002).

[11] Lidia Fuentes and Antonio Vallecillo, ‘An Introduction to UML
Profiles’, The European Journal for the Informatics Professional, 5(2),
(April 2004).

[12] Giovanni Giachetti, Francisco Valverde, and Oscar Pastor, ‘Improving
automatic uml2 profile generation for mda industrial development’,
in ER Workshops, eds., Il-Yeol Song, Mario Piattini, Yi-Ping Phoebe
Chen, Sven Hartmann, Fabio Grandi, Juan Trujillo, Andreas L. Opdahl,
Fernando Ferri, Patrizia Grifoni, Maria Chiara Caschera, Colette
Rolland, Carson Woo, Camille Salinesi, Esteban Zimányi, Christophe
Claramunt, Flavius Frasincar, Geert-Jan Houben, and Philippe Thiran,
volume 5232 of Lecture Notes in Computer Science, pp. 113–122.
Springer, (2008).

[13] O. M. G. Group, MDA Guide Version 1.0.1, document omg/03-06-01
edn., june 2003. http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[14] O. M. G. Group, UML Specification, Version 2.0, 2005.
http://www.omg.org/spec/UML/.

[15] Finn V. Jensen and Thomas D. Nielsen, Bayesian Networks and
Decision Graphs, Springer Publishing Company, Incorporated, 2nd
edn., 2007.

[16] Uffe B Kjrulff and Anders L Madsen, Bayesian Networks and Influence
Diagrams, Springer New York, 2008.

[17] K. Korb and A. Nicholson, Bayesian Artificial Intelligence, Chapman
and Hall, 2nd edn., 2010.

[18] François Lagarde, Huáscar Espinoza, François Terrier, and Sébastien
Gérard, ‘Improving uml profile design practices by leveraging
conceptual domain models’, in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, ASE ’07, pp. 445–448, New York, NY, USA, (2007).
ACM.

[19] Mary Lou Maher and R. H. Allen, Expert System Components,
American Society of Civil Engineering, 1987.

[20] Francisco Javier Orellana, José del Sagrado, and Isabel Marı́a del
Águila, ‘Saifa: A web-based system for integrated production of olive
cultivation’, Comput. Electron. Agric., 78(2), 231–237, (September
2011).

[21] Judea Pearl, Probabilistic reasoning in intelligent systems: networks of

plausible inference, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[22] Bran Selic, ‘A Systematic Approach to Domain-Specific Language
Design Using UML’, , IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 2–9, (May 2007).

15

Can Adaptive Conjoint Analysis perform in a
Preference Logic Framework?1

Adrian Giurca, Ingo Schmitt and Daniel Baier
{giurca, schmitt, daniel.baier }@tu-cottbus.de

Abstract. Research on conjoint analysis/preference aggre-
gation/social choice aggregation is performed by more than
forty years by various communities. However, many proposed
mathematical models understand preferences as irreflexive,
transitive and statical relations while there is human psy-
chology research work questioning these properties as being
not enough motivated. This works propose to position the
conjoint analysis inside a logical framework allowing for non-
transitive and globally inconsistent preferences. Using a pref-
erence logics one can define a logic-based utility allowing to
obtain an aggregate semantics of the collective choice.

1 Introduction and Motivation

Conjoint Analysis (CA) in marketing research was introduced
forty years ago [26] being influenced by economics ([36], [35])
and mathematical psychology ([39], [40], [7]). While the begin-
ning was devoted mostly to understand how individuals evalu-
ate products/services and form preferences (see, [26], [34], [43]
and possibly others), in the last thirty years the CA litera-
ture focused more on predicting behavioral outcomes by using
statistical methods and techniques ([8]) and this resulted in
a widespread variation in CA practice. Recently, applications
in innovation market were developed ([9]).

The traditional conjoint task is related to the rational econ-
omy model where agents tend to action towards maximizing
their utilities.

While traditional models obtain significant results when
processing complete, transitive and acyclic (consistent) prefer-
ences, many communities mention that such models are quite
far from the real life. When asking people about thing they
like, then they may not answer (incompleteness), or they may
change their initial preferences due to reception of new infor-
mation (preference change). In addition, while it seems that
the preference system of one respondent must be non contra-
dictory, when processing preferences from many respondents
this assumption does not remain valid. Some of our previous
work argued towards a logic-based model for conjoint analy-
sis.

1 This research is supported by (1)DFG Project SQ-System: En-
twicklung von Konzepten für ein quantenlogikbasiertes Retrieval-
Datenbank-Anfragesystem: Anfragesprache, interaktive Suchfor-
mulierungsowie effiziente Anfrageauswertung and (2) German
Federal Ministry of Education and Research, ForMaT project
(Forschung für den Markt im Team), Phase II, Innovationslabor:

Multimediale Ähnlichkeitssuche zum Matchen, Typologisieren
und Segmentieren

The research reported by [46] proposed a mathematical op-
timization approach by translating ratings into algebraic con-
straints, but such solution requires acyclicity and transitivity
and not changing preferences. New debates on solution pro-
posed by [46] were reported by [31] in the context of non-
additive utility aggregations such as Choquet integral. How-
ever, none of these approaches consider non-transitive and/or
cyclic preferences, [48].

[23] introduced a logic-based utility but the approach was
limited by a number of assumptions such as consistency
(acyclic preferences) ignorance (of neutral rated questions),
transitivity and the restriction of using only 2 stimuli choice
pair comparisons. Moreover, while it argued on the logical
nature of the users ratings and rankings, it does not consider
preference change and interview adaptation. Many of these
restrictions were introduced by the method of computing the
logic-based utility, basically adaptation of the weighted ma-
jority learning algorithm allowing only binary preference as
input.

As discussed by [24], computing beliefs from ratings and
rankings is much close to the mental expectations of respon-
dents and identified three kinds of beliefs that can be obtained
from question answers. The proposed framework considers
consistent respondent belief sets but on belief sets aggrega-
tion there is no need to require consistency: moreover this is
inline with the Arrow’s impossibility theorem (see [5] and [6]).

Although traditional non-adaptive conjoint solutions re-
quire static, non-changing, preferences, when data collection
is interactive one may experience preference change. More-
over, the actual online solutions on data collection show many
cases when the data is collected over days and not by a stan-
dard survey in a contiguous manner. As such, respondents
may remake-up their mind therefore change is frequently ex-
pected. Also, [24] pointed that may be useful to use weighted
beliefs due to the imprecise nature of the user ratings. In
addition, among other distinctions it was emphasized that
while individual beliefs are consistent (no assumption of user
irrationality), collective beliefs may not be consistent. In ad-
dition, while the AGM model [4] considered consolidation as
a maintenance operation of removing some dispensable be-
liefs resulting in a consistent knowledge base, we would like
to avoid such approach due to missing of motivated criteria
with respect of belief elimination.

The goal of this paper is to argue on the opportunity to
use a preference logics framework allowing non-transitivity
and inconsistency in preference data.

16

2 Related Work

The classical model of computing an utility function is the ad-
ditive linear model (see [8] for details). Basically, the overall
utility is an additive linear combination on value scores ad-
justed with attribute scores and compensated with a constant
depending on interview i.e.,

U(oj) = µ+

N∑
k=1

ni∑
l=1

βkl · xjkl

where
U(oj) – is the total score on product profile oj ,
βkl = Uk(akl) – is the user preference on value akl of attribute
Ak, and

xjkl =

{
1, if oj .Ak = akl
0, otherwise

,

µ is a calibration constant (mean preference value across all
objects). Usually Uk() is called part-utility function or part-
worth function and its specification depends of the attribute
type (categorical and quantitative).

In practice a conjoint study may contain both types of
attributes. Significant examples of categorical attributes are
brand names or verbal descriptions containing levels such as
”high”, ”medium”, ”low” while quantitative attributes are the
ones which are measurable on either an interval scale or a ra-
tio scale (e.g., speed of a processor, size of a screen). While
there were proposed many models to encode the part-worth
functions, two models are representative:

1. the vector model, Uk(akl) = wkθkl, where wk is the weight
of attribute Ak, and θkl is the weight of the value akl ∈
dom(Ak)) and

2. the ideal point model, Uk(akl) = wk(θkl − θk0)2, where θk0
is the weight of the ideal value ak0 of attribute Ak.

In overall the standard conjoint problem reduces to find all
βkl and µ by using training data of user-rated utilities for a
training object dataset.

2.1 Machine Learning Approaches

During the last thirty years, Machine Learning research devel-
oped very similar problems, offering either statistically-based
or logic-based solutions. As in traditional conjoint analysis,
the difficulty relates to the fact that the set of all possible
behaviors given all possible inputs is too large to be covered
by the set of observed examples (training data). Hence the
learner must generalize from the training data. Learning from
examples towards forecasting the future behavior is one large
field of research.

2.1.1 Support Vector Machines

Support Vector Machines, [10], [47] was proposed as a clas-
sification methodology by machine learning community. Ba-
sically, the standard model takes a set of input data and,
classify each given input as being part of one of two possi-
ble categories (such as ”like” and ”unlike”). There is research
proposing to use this model on conjoint analysis too (e.g.,
[16]).

The main assumptions of this method are: (a) there is pref-
erence data for a set of objects O and (b) the utility function
is linear. Each preference data (e.g., o1 � o2) is translated
into an inequality between corresponding utilities of the cor-
responding objects (u(o1) ≤ u(o2)). The method then involves
minimizing the sum of errors for the inequalities and the sum
of of the squares of the weights in the utility function.

As usual, each attribute value aij ∈ dom(Ai), i = 1, ...n has

weight θij . We denote θ
(k)
j the weights vector corresponding

to the k-th object o
(k)
j . The goal is to estimate the individ-

ual partworths w = (w1, ..., wn) considering a linear utility
function (e.g., the vector model) U(o) = w · θ for each θ cor-
responding to an object o ∈ O.

We encode preference data by respondent interviews: at the
k-th question we show a subset Ok = {o(k)1 , ..., o

(k)
nk } ⊂ O

asking the respondent to choose one object as ”the most
liked”. Without loosing the generality (via reordering) we can
assume that the respondent choose first object as the pre-
ferred one. This choice is encoded as the set of constraints,
w(θ

(k)
1 − θ

(k)
i) ≤ 0, i = 2, ..., nk, and reduce the conjoint prob-

lem to a classification problem. [16] proposes to train a L2-soft
margin classifier only with positive examples obtained from
respondent ratings, using a with a hyperplane through the ori-
gin and modeling the answering noise with dummy variables
ε
(k)
i . It trains one algorithm per respondent to get individual

vector weights w(p) for each respondent p and then to com-
pute individual partworths by calibration with the aggregated

partworths i.e. w̃ = 1
|P|
∑
p∈P w

(p) and then w
(p)
∗ = w(p)+w̃

2
.

The training conditions are:{
Minimize : w2 + C

∑
pk∈P

∑nk
i=2(ε

(k)
i)2

suchthat : w(θ
(k)
1 − θ(k)i) ≤ 1− ε(k)i

where C is a constant depending on the respondents set.

2.1.2 Learning from Preferences

Recall the learning problem similar with most of conjoint
analysis tasks:

Given a (very large) set of objects (each object repre-
sented as a set of attribute-value pairs), and a set of
evaluation instances (each object is evaluated by experts
obtaining a score, typically a real number) find a learning
algorithm being able to evaluate any subset of the initial
set of objects being compliant with expert evaluations.

As learning algorithms use evaluated training data it looks
straightforward to input the learner with a database of ex-
amples in which the human expert has entered scores for
each possible choice. However, similar with traditional con-
joint analysis, there are two critical issues of this approach:
(a) many domains have very large set of possible objects there-
fore is would be a tremendously time consuming for the ex-
pert to create the complete evaluation rank. Moreover, the
training dataset must also contain enough ”bad” alternatives
otherwise the expert will be tempted to produce only high
scores for everything and as such, to obtain a rank which is
not useful; (b) in many cases experts do not think in terms
of absolute scoring functions therefore will be very difficult,

17

sometimes impossible, to create training data containing ab-
solute scores. These reasons yields many researchers to con-
sider pair comparisons rather than scoring individual alter-
natives(there is a large literature concerning the way users
create preferences. The reader may consider [37], [12], [40],
[17] and probably many other). Preference learning was pio-
neered by [53] and continued by [55], [33], [20] and possibly
others. Basically, given a set of (partial) profiles and a pref-
erence function of these profiles we want be able to train a
computer program to classify new (so far unseen) profiles by
assigning a correct rank to each profile. The ratio of correctly
classified data points is called the accuracy of the system.

As such conjoint analysis is similar with a learning task:
learning utility functions from respondent preferences. The
conjoint problem can be seen as learning to rank a set of
objects by combining a given collection of initial rankings
or preference functions. In machine learning community this
problem of combining preferences arises in several applica-
tions, such as that of combining the results of different search
engines, or the collaborative filtering problem. During the last
20 years a number of algorithm were developed: a pioneering
algorithm is described in [14] and [15] as an extension of the
early work reported by [38]. Advances in learning from pref-
erences were reported by [19], [20], and [30]. As described by
[20], the task of learning object preferences is:

Let O = {(a1, ..., an)|ai ∈ dom(Ai)} be the set of all pos-
sible product representations and let S = {o1, ..., on} ⊆
O be a set of training objects (aka full profiles, product
representations). Let P be a set of respondents and
{PS,p : S × S −→ {0, 1}|p ∈ P} the set of pairwise
preferences on training data. Learn a utility function
U : O −→ R that ranks any subset of O.

Notable, while conjoint analysis typically assume a linear util-
ity function (see details by [8]), learning from preferences does
not require utility linearity but many strategies on learning
from preferences still assume linear combinations as potential
ranking functions. A significant solution introduced by [14]
and improved in [15] considers learning a global preference as
a weighted linear combination of all respondent preferences,
and then derive a final ordering which is maximal consistent
with this preference. Other research ([53], [30]) uses a differ-
ent strategy, specifically direct learning of the utility func-
tion directly from the respondent preferences. [53] introduces
a two-state symmetric neural network architecture that can
be trained with representations of states and a training sig-
nal (corresponding to the user preferences) indicated the pre-
ferred state. Subsequent works on this solution were reported
by [55], [29], [33], and [27].

2.1.3 Logic-based Approaches

A logic-based approach was proposed by [46]by replacing the
utility function with a logical formula best fulfilling a set of al-
gebraic constraints derived from preference processing. They
use Commuting Quantum Query Language (CQQL, [45]) a
logical language based on combinations between Boolean con-
ditions and proximity/similarity conditions over specialized
variants of logical operators producing weighted formulas.
The problem is formulated as below:

Let O = {(a1, ..., an)|ai ∈ dom(Ai)} be the set of all
possible object representations and S ⊆ O a set of train-
ing objects. � denotes the preference relation on train-
ing data S. Find a weighted full DNF CQQL formula
U =

∨
j wjmj (mj is the j-th minterm and wj ∈ [0, 1]

its weight) such that U best fulfills the user preferences
i.e. when CQQL evaluation is performed over objects in
O then the obtained rank is consistent with user initial
preferences.

If oi2 � oi1 then the following constraint is considered

evalCQQL(U, oi1)− evalCQQL(U, oi2) ≥ 0

Because CQQL evaluation has simple arithmetic rules for
formula evaluation, from the computational point of view
the problem reduces to a linear optimization: Maximize :∑
oi2�oi1

(evalCQQL(U, oi1) − evalCQQL(U, oi2)) under the

above described constraints. The readers may consider [46] for
details on problem solving strategies (such as simplex com-
putations, feasible and unfeasible states, solutions to avoid
overfitting and more.)

Automated extraction of rules from evidences was largely
discussed by connectionist learning community (early work
by [41], pioneered by [21] and subsequently discussed by [51],
[25], [52], [11], [49], and possibly others) under the umbrella
of a much general task:

How can we extract models from the training data in an
automated manner and use these models as the basis of
an autonomous rational agent in the given domain.

One of the most important features of such an approach is
that it combines the computational advantages of connec-
tionist models with the qualitative knowledge representation
proposed by the AI community.

It is obvious that a solution of this problem must consider
two stages: (1) Learning the model and (2)Performing infer-
ence using this model. This work follows only the first stage
of the problem – if there is a learned ruleset then there are
many opportunities to perform inference according with var-
ious semantics (crisp, probabilistic, fuzzy and so on) and a
discussion of appropriateness of each of them should be large.

Inside a rule framework the conjoint problem is to find out
a set of rules that best model the respondent preferences.
One can consider learning of various kinds of rules (possibly
weighted), each of them supporting various semantics includ-
ing probabilistic models [42], incomplete/imprecise informa-
tion, [54], plausibility-based models [18], [22] or quantum logic
semantics [45]:

1. Simple rules (propositional rules):

[(¬)Ai1 ∧ ...,∧(¬)Aik Aik+1]

where (¬)A denotes a possibly negated attribute;
2. Positive attribute-value rules:

[Ai1 ' vi1 ∧ ...,∧Aik ' vik Aik+1 ' vik+1]

where vij ∈ dom(Aij), Aij ' vij means that Aij takes a
value around vij (The reader should notice that ' includes
ordinal values, e.g., Aij = vij);

18

3. Attribute-value rules with negation:

[(¬)Ai1 ' vi1 ∧ ...,∧(¬)Aik ' vik Aik+1 ' vik+1]

where ¬Aij = vij means Aij 6= vij ;
4. General attribute-value rules:

[(¬)Ai1 ' vi1 ∧ ...,∧(¬)Aik ' vik (¬)Aik+1 ' vik+1]

The first three kinds of rules were largely addressed by
data mining community when learning association rules.
Researchers developed different kinds of association rules:
Boolean (crisp) association rules, quantitative association
rules, fuzzy association rules. Association rules were pioneered
by [44] and then established by [2], and [3]). Standard associ-
ation rules consider two measures of interestingness: support
and confidence although other models may add two more:
lift and conviction or adopt non-standard ones, [32]. Learn-
ing association rules is usually performed under both a user-
specified minimum support and a user-specified minimum
confidence requirements.

There were developed many algorithms starting with the
most known one, Apriori ([3]) and continuing with many oth-
ers (Eclat, FP-growth and so on.) A significant step is the
Assoc algorithm [28] which enables mining for generalized as-
sociation rules (including negation i.e. attribute-value rules
with negation) and does not restrict for minimum support
and confidence.

However, on our knowledge, none of this research consid-
ering the conjoint analysis task: basically the training data
set for learning association rules does not distinguish vari-
ous users. All the data is uniform (mostly, it comes from e-
commerce transactions) and it may refer to one user (such as
in recommender systems, [1]) or to many but not consider-
ing distinct training data for each of them, therefore the con-
joint task is somehow hidden. In addition the conjoint analysis
problem in the context of learning association rules does not
directly performs from preferences: using transactional data
as input, there should be some algorithm computing binary
preferences.

The first kind of rules were considered, in context of adap-
tive conjoint analysis, by [23] in conjunction with weighted
CQQL (see [45] for language description), an extension of the
relational calculus using quantum logic paradigm which de-
fines metric(or similarity) predicates, weighted conjunction
(∧θ1,θ2), weighted disjunction (∨θ1,θ2) and quantum negation.
Clearly (as explained by [25] and [52]) there is a need for
both a preference measure to rank the rules and a learning
algorithm which uses the preference measure to find the best
k rules. The work reported by [23] describes a heuristic and
learning approach to use the respondent preferences on stimuli
to compute a rule preference relation (called minterm prefer-
ence because the rules were learned as weighted minterms of
the CQQL full disjunctive normal form) and then use a learn-
ing algorithm to compute a ranking on the minterms set.

3 Conjoint Analysis using Preference
Logics

This section introduces a logical framework allowing (a) en-
coding of preferences as choice formulas, (b) defining a logic-
based utility inside a preference logic to allow creation of col-

lective beliefs and (c) performing rule extraction and expla-
nation and formal interpretation.

3.1 Preference Logics

We follow the approach defined by [50] on preference logic
introduced as a special case of logic by defining a preference
relation between the interpretations of the underlining logic as
we consider this approach being simple and powerful. Below
we recall some of the [50] results.

Let L be a standard logic and @ a strict partial order on
interpretations (we say I2 is preferred to I1 and denote I1 @
I2). Then, L@ = (L,@) is a new logic, a preference logic. The
basic artifacts such as satisfaction, validity and entailment
are defined by [50]. Recall that while the standard logics are
monotonic2. Recall the definitions of satisfiability, validity and
entailment:

Definition 1 ([50])
Let F,G ∈ L. Let I be an interpretation.
I preferentially satisfies F (denoted I |=@ F) if I |= F and
there is no I′ such that I @ I′ and I′ |= F . As usual, I is
called the model of F .
F preferentially entails G (denoted F |=@ G) if

∀I, I |=@ F ⇒ I |=@ G

That is the preferred models of G are also preferred models
of F .

As described by [50], L@ is a non-monotonic logic because
there may be formulas F,G ∈ L@ such that both F |=@ G and
F |=@ ¬G. Moreover, it is not necessary that F is inconsistent,
it is just sufficient that F do not have preferred models.

A significant case of preference logics was introduced by [13]
under the name of choice logic. Basically, choice logic defines
the ordered disjunction (denoted ×) as a special kind of stan-
dard disjunction (∨) as such introducing a preference relation
between the interpretations and models. The ordered disjunc-
tion has the same models as regular disjunction but there is
a preference relation between these models. For example, if
A × B is a disjunction between two atoms. Then I1 = {A},
I2 = {A,B} and I3 = {B} are its models. Then I3 @ I2 and
I3 @ I1 meaning that I1 and I2 are preferred models.

Intuitively, as [13] reports, the ordered disjunction means
that when F1 × ...Fn we prefer models that first satisfies F1

and if this is not possible then we prefer models satisfying F2,
and so on. Choice logic defines the degree of satisfaction for
all logic formulas

Definition 2 ([13])
The optionality of a formula (the number of choices to satisfy
a formula) is opt(A) = 1 if A is an atom.
opt(¬F) = 1
opt(F1 ∨ F2) = max(opt(F1), opt(F2))
opt(F1 ∧ F2) = max(opt(F1), opt(F2))
opt(F1 × F2) = opt(F1) + opt(F2)

[13] defines the preference relation (@) between models of logic
formulas and consequently the entailment. It is shown that

2 In the sense that if F1, F2, F3 ∈ L, if F1 |= F3 then F1∧F2 |= F3.

19

the entailment satisfies cautious monotony and cumulative
transitivity:

Proposition 1 ([13])
Let S be a set of choice logic formulas and A,B be classical
formulas.
S |=@ A and S |=@ B ⇒ S ∪ {A} |=@ B
S |=@ A and S ∪ {A} |=@ B ⇒ S |=@ B

From the computational point of view, choice logic can be
translated to stratified knowledge bases.

4 Modeling Conjoint Analysis

Conjoint analysis collects preferences from user interviews us-
ing a variety of question types but the most used ones are
trade-off matrices and pair-comparisons. A trade-off matrix
([34]) asks a respondent to consider a pair of attributes. It
displays all combinations of values for those attributes, ask-
ing the respondents to provide a ranking for the combinations.
The Table 1 show an example of a trade-off matrix related to
attributes OperatingSystem and Battery life. While trade-off

12 hours 6 hours 4 hours 2 hours
Android 1 2 7 5

WinPhone 3 4 6 11
other OS 8 9 10 12

Table 1. A trade-off matrix with respondent ranking

matrix are quite efficient on ranking binary stimuli, trade-off
matrices cannot be used if we consider stimuli with more than
two attributes. A solution to these limitations is to use pair
comparisons. Pair comparisons are seen as choice questions

Left side OR Right side
Android Windows Phone,...

AND Left AND
≥ 500EUR, ... ≤ 3.5” screen, ...
≥ 4” screen,... And,...

AND Neutral AND
Battery life 6h WIFI, ...
≥ 4” screen,... Battery life 10h,...

AND Left AND
other OS no WIFI, ...

Table 2. Pair Comparisons and Ratings

evaluated by favoring either ”the left side” or ”the right side”
or ”neutral”.

4.1 Preferences as Choice Formulas

Let A1, ..., An be a set of attributes (unary predi-
cates) with dom(Ai) the domain of values. Let O =
{(a1, ..., an)|ai ∈ dom(Ai)} be the set of all possible
product representations. The choice logic ordered disjunc-
tion operator makes this logic suitable candidate to en-
code user ratings as choice formulas. The trade-off ma-
trices introduces a rank between choices e.g., the matrix

from Table 1 say that OS(”Android”) ∧ Battery(”12h”)
is preferred to OS(”Android) ∧ Battery(”6h”) as well
as OS(”WinPhone”) ∧ Battery(”12h”) is preferred to
OS(”Android) ∧Battery(”4h”) and so on.

Definition 3 (Mapping trade-off matrices)
Let a trade-off matrix based on predicates A1 and A2.
If A1(u)∧A2(v) is preferred to A1(u′)∧A2(v′) then this pref-
erence is encoded into the choice formula:

A1(u) ∧A2(v)×A1(u′) ∧A2(v′)

that is preferring models that, if possible first satisfy
A1(u) ∧A2(v)3.

Definition 4 (Mapping pair comparisons)
Let q be the pair comparison
q = A(a) and B(b) OR C(c) and D(d).
If the left side is preferred then this preference is encoded into
the choice formula:

A(a) ∧B(b)× C(c) ∧D(d)

If q is rated neutral then this preference is encoded into the
formula:

A(a) ∧B(b) ∨ C(c) ∧D(d)

Similarly, if the right side is preferred then this preference is
encoded into the choice formula:

C(c) ∧D(d)×A(a) ∧B(b)

4.2 Towards Logic-based Conjoint Analysis

Let A = {A1, ..., An} be a set of unary predicates with
dom(Ai) the domain of values. Let O = {(a1, ..., an)|ai ∈
dom(Ai)} be the set of all possible product representations.

Definition 5 (Normal Form)
A full ordered disjunctive normal form (ODNF) over choice
logic defined by the language A is a formula

U = ×j(L1(lj1) ∧ ... ∧ Ln(ljn))

where L
(
kl
j
k) is a literal corresponding to the predicate Ak (ei-

ther Ak(ljk) or ¬Ak(ljk)) and ljk ∈ dom(Ak).

Let C the set of all choice formulas derived from user prefer-
ences. Then, the generic conjoint analysis task is described as
below:

Find U = ×j(L1(lj1) ∧ ... ∧ Ln(ljn)) such that U best
fulfills the user preferences i.e. there is a maximal set of
constraints C′ ⊆ C such that U |=@ C for all C ∈ C′.

Of course, the economics community does not really need the
complete DNF but, most of the cases only a subset of the
ODNF (the most important clauses). In addition, sometimes
the constraints may come weighted (using some weight w ∈
(0, 1]) and then the concept of maximal set can be replaced
by a subset of constraints with a sum of weights greater than
a specified threshold.

3 This corresponds completely to the psychological meaning of
trade-off matrices where the respondent does not reject any of
the alternatives

20

Rule extraction from a computed ODNF (or a subset) is
straightforward as the experts like to understand the depen-
dencies of a specific predicate value with respect of the re-
maining predicates. As such rules are obtained by transform-
ing U to conjunctive normal form (CNF) and then deriving
rules from each clause according with specific predicates as
conclusions.

Let R be a the derived ruleset as described above. Then,
all preferred models of R corresponds to preferred objects in
O.

As such we propose an updated process chain of adaptive
logic-based conjoint analysis as depicted by Figure 1.

Learning
Logic-based utility

Ratings

Rules

no

Inference and Explanation
Belief Updates

yes New
Question

Adaptive Preferences

Belief Creation (constraints)

Logic-based Conjoint Analysis

Figure 1. Logic-Based Adaptive Conjoint Analysis Chain

5 Conclusion

We proposed a model of logic-based conjoint analysis by con-
sidering encoding respondent preferences as beliefs (as such
allowing belief change) and encoding this beliefs to choice for-
mulas. While the individual beliefs translates into consistent
constraints set the collective beliefs (all constraints collected
from all respondents) may not be a consistent set. The Table
3 describes the kind of preferences used by the analyzed mod-
els. As seen the proposed approach is useful when the model
intends to capture phycological phenomena such as change or
irrationality (inconsistency) as well as when formal explana-
tions of decisions need to be computed. This work is at its be-
ginnings: beside fine tuning and debugging, obtaining feasible
algorithms to compute the logic-based utility is a mandatory
next step. Analyzing such algorithms may open discussion on
improvements of the preference logic too as traditional pro-
cessing of pair comparisons also consider Likert scales as rat-
ing methods. In addition, a close look on the necessary belief
framework (a discussion was started by [24]) is necessary.

Aggregation Require Require Allow Static
Models Irreflexive Transitive Indifference Preference
CA (econ.) yes yes yes yes
SVM yes yes no yes
Preference yes yes no yes
Learning
Rule yes yes no yes
Learning
Preference yes no yes no
Logic (belief rev)

Table 3. Conjoint Analysis Preference Requirements

REFERENCES

[1] G. Adomavicius, and A. Tuzhilin, Toward the Next Genera-
tion of Recommender Systems: A Survey of the State-of-the-
Art and Possible Extensions, IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 17, No. 6, June 2005, pp.
734-749.

[2] R. Agrawal, T. Imielinski, and A.N. Swami. Mining associa-
tion rules between sets of items in large databases. In P. Bune-
man and S. Jajodia (Eds.), Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data,
Washington, D.C., pp. 207-216, May 26-28, 1993.

[3] R. Agrawal, and R. Srikant. Fast algorithms for mining asso-
ciation rules. In J. B. Bocca, M. Jarke, and C. Zaniolo (Eds.),
Proc. 20th Int. Conf. Very Large Data Bases, (VLDB), pp.
487-499, Morgan Kaufmann, 1994.

[4] C.E. Alchourron, P. Gärdenfors and D. Makinson. On the
Logic of Theory Change: Partial Meet Contraction and Revi-
sion Functions. Journal of Symbolic Logic, 50: 510-530, 1985.

[5] K.J. Arrow. A Difficulty in the Concept of Social Welfare.
Journal of Political Economy 58(4) (August, 1950), pp. 328-
346.

[6] K. J. Arrow. Social Choice and Individual Values. 2nd ed.,
1963.

[7] N.H. Anderson. Foundations of information integration the-
ory. Academic Press, 1981.

[8] D. Baier and M. Brusch (Eds.) Conjointanalyse, Methoden -
Anwendungen - Praxisbeispiele, Springer, Berlin, 2009.

[9] D. Baier. Conjoint Measurement in der Innovationsmarkt-
forschung, in: Baaken, Thomas; Höft, Uwe; Kesting, Tobias
(Hrsg.), Marketing für Innovationen - Wie innovative Un-
ternehmen die Bedürfnisse ihrer Kunden erfüllen, Harland
Media, Münster, ISBN-13 978-3-938363-42-3.

[10] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training al-
gorithm for optimal margin classifiers. In Proc. 5th Annu.
Workshop on Comput. Learning Theory, 1992.

[11] O. Boz. Knowledge Integration and Rule Extraction. Neural
Networks, University of Leigh, 1995.

[12] R.A. Bradley and M.E. Terry. Rank analysis of incomplete
block designs: the method of paired comparisons. Biometrika,
39 (3-4), 1952, pp.324-345.

[13] G. Brewka, S. Benferhat and D. Le Berre. Qualitative Choice
Logic. Proceedings of the Eights International Conference
on Principles and Knowledge Representation and Reasoning
(KR-02), Toulouse, France, April 22-25, 2002, pp.158-169.

[14] W. Cohen, R.E. Schapire and Y. Singer. Learning to Order
Things. Advances in Neural Information Processing Systems
10, Morgan Kaufmann, 1998.

[15] W. Cohen, R.E. Schapire and Y. Singer. Learning to Order
Things. Journal of Artificial Intelligence Research 10, pp. 213-
270, 1999.

[16] T. Evgeniou, C. Boussios, and G. Zacharia. Generalized ro-
bust conjoint estimation. Marketing Science, 25, 2005.

[17] J. Eliashberg. Consumer Preference Judgments: An Exposi-
tion with Empirical Applications. Management Science, 26,
1, (January), 1980, pp.60-77.

[18] N. Friedman, and J.Y. Halpern. Plausibility measures and
default reasoning. Journal of the ACM, 48, 2001, pp.648-685.

21

[19] J. Fürnkranz and E. Hüllermeier. Pairwise preference learn-
ing and ranking. Procs. of the 14th European Conference on
Machine Learning (ECML-03), LNAI 2837, 2003, pp.145-156,
Springer Verlag, 2003.

[20] J. Fürnkranz and E. Hüllermeier. Preference learning.
Künstliche Intelligenz, 19(1), pp. 60-61, 2005.

[21] S.I. Galant. Connectionist Expert Systems. Communications
of ACM, 31, 1988, pp.152-169.

[22] A. Giurca. A Logic with Plausibility. Annales of Craiova Uni-
versity, Mathematics and Computer Science Series, XXVII,
pp.105-115, 2000.

[23] A. Giurca, I. Schmitt, and D. Baier. Performing Conjoint
Analysis within a Logic-based Framework. Proc of IEEE
Federated Conference on Computer Science and Information
Systems, (FedCSIS2011), Szczecin, Poland, 18-21 September,
2011.

[24] A. Giurca, I. Schmitt, and D. Baier. Adaptive Conjoint Anal-
ysis. Training Data: Knowledge or Beliefs? A Logical Perspec-
tive of Preferences as Beliefs, KAM’2012 - 18th Conference on
Knowledge Acquisition and Management, at FEDCSIS 2012,
Wroclaw, Poland.

[25] R. M. Goodman, C. M. Higgins, J. W. Miller, and P. Smyth.
Rule-Based Neural Networks for Classification and Probabil-
ity Estimation. Neural Computation 4(6), pp.781-804, 1992.

[26] P. E. Green and V. Rao. Conjoint measurement for quantify-
ing judgmental data. Journal of Marketing Research, 8, 1971,
pp.355-363.

[27] P. Haddawy, V. Ha, A. Restificar, B. Geisler, and J.
Miyamoto. Preference elicitation via theory refinement. Jour-
nal of Machine Learning Research, 4, pp. 317-337, 2003.

[28] P. Hájek. The new version of the GUHA procedure ASSOC,
COMPSTAT 1984, pp.360-365.

[29] Ralf Herbrich, Thore Graepel, Peter Bollmann-Sdorra, and
Klaus Obermayer. Supervised learning of preference relations.
Procs. des Fachgruppentreffens Maschinelles Lernen (FGML-
98), 1998, pp. 43-47.

[30] E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker. La-
bel ranking by learning pairwise preferences, Artificial Intel-
ligence, Volume 172, Issues 16-17, pp. 1897-1916, 2008.

[31] E. Hüllermeier and I. Schmitt. Non-Additive Utility Func-
tions: Choquet Integral versus Weighted DNF Formulas,
The 4th Japanese-German Symposium on Classification
(JGSC2012),March 9-10, 2012, Kyoto, Japan.

[32] I. Iancu, M. Gabroveanu and A. Giurca. A Pair of Confi-
dence Measures for Association Rules, 30th Annual Confer-
ence of the German Classification Society, GfKl2006, March
8-10, 2006, Berlin, Germany.

[33] T. Joachims. Optimizing search engines using clickthrough
data. Procs. of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-02),
pp. 133-142. ACM Press, 2002.

[34] R. M. Johnson. Tradeoff Analysis of Consumer Values. Jour-
nal of Marketing Research, 1974, pp. 121-127.

[35] R.L. Keeney and H. Raiffa. Decisions with multiple objec-
tives: Preferences and value tradeoffs. Wiley Series in Proba-
bility and Mathematical Statistics. NY: John Wiley & Sons,
1976.

[36] K. Lancaster. A new approach to consumer theory. Journal
of Political Economy, 74, 1966, pp.132-157.

[37] R. Likert. A Technique for the Measurement of Attitudes.
Archives of Psychology 140, 1932, pp.1-55.

[38] N. Littlestone and M. Warmuth. The weighted majority al-
gorithm. Information and Computation, 108 (2), 1994, pp.
212-261.

[39] R.D. Luce and J. W. Tukey. Simultaneous Conjoint Measure-
ment: A New Type of Fundamental Measurement. Journal of
Mathematical Psychology, 1, 1964, pp.1-27.

[40] R.D. Luce and P. Suppes. Preference, utility and subjec-
tive probability. in Luce, R.D., Bush, R.R., and Galanter,
E. (Eds.), Handbook of Mathematical Psychology, III, New
York: Wiley, 1965, pp.235-406.

[41] M. C. Mozer. RAMBOT: A Connectionist Expert System
That Learns by Example. Tech. Report. California Univ., San
Diego, La Jolla. Inst. for Cognitive Science, 1986.

[42] N. J. Nilsson. Probabilistic logic. Artificial Intelligence 28(1),
pp.71-87, 1986.

[43] K.L. Norman and J.J. Louviere. Integration of attributes in
public bus transportation: two modeling approaches. Journal
of Applied Psychology, 59, 6, 1974, pp.753-758.

[44] G. Piatetsky-Shapiro. Discovery, analysis, and presentation
of strong rules, in G. Piatetsky-Shapiro and W. J. Frawley
(eds): Knowledge Discovery in Databases. AAAI/MIT Press,
Cambridge, MA, 1991.

[45] I. Schmitt. QQL: A DB&IR Query Language. VLDB Journal,
17(1), pp.39-56, 2008.

[46] I. Schmitt, and D. Baier. Logic Based Conjoint Analysis using
the Commuting Quantum Query Language, Proc. of Confer-
ence of the German Classification Society (GfKl2011), August
31 to September 2, 2011, Frankfurt am Main, Germany.

[47] B. Schölkopf and A. Smola. Learning with kernels. MIT Press,
2002.

[48] G.F. Schumm. Transitivity, Preference and Indifference.
Philosophical Studies, 52: 435-437, 1987.

[49] J. Sima. Neural Expert System. Journal of Neural Networks,
vol. 8, no. 2, pp. 261-271, 1995.

[50] Y. Shoham. Nonmonotonic Logics: meaning and utility. Pro-
ceedings of 10th IJCAI, pp.388-393, Milan, 1987.

[51] P. Smyth, and R. M. Goodman. An Information Theoretic
Approach to Rule Induction from Databases. IEEE Trans.
Knowl. Data Eng. 4(4), pp.301-316, 1992.

[52] R. Sun. Integrating rules and connectionism for robust com-
monsense reasoning. Hoboken, N.J: Wiley & Sons, 1994, ISBN
0-471-59324-9.

[53] G. Tesario. Connectionist learning of expert preferences by
comparison training. Advances in Neural Information Pro-
cessing Systems, 1, pp. 99-106, Morgan Kaufmann, 1989.

[54] G. Wagner. Logic Programming with Strong Negation and
Inexact Predicates. Journal of Logic and Computation 1(6),
pp. 835-859, 1991.

[55] J. Wang. Artificial neural networks versus natural neural net-
works:A connectionist paradigm for preference assessment.
Decision Support Systems, 11, pp. 415-429, 1994.

22

Problems impacting the quality of automatically built
ontologies

Toader GHERASIM1 and Giuseppe BERIO2 and Mounira HARZALLAH3 and Pascale KUNTZ4

Abstract. Building ontologies and debugging them is a time-
consuming task. Over the recent years, several approaches and tools
for the automatic construction of ontologies from textual resources
have been proposed. But, due to the limitations highlighted by ex-
perimentations in real-life applications, different researches focused
on the identification and classification of the errors that affect the on-
tology quality. However, these classifications are incomplete and the
error description is not yet standardized. In this paper we introduce
a new framework providing standardized definitions which leads to
a new error classification that removes ambiguities of the previous
ones. Then, we focus on the quality of automatically built ontologies
and we present experimental results of our analysis on an ontology
automatically built by Text2Onto for the domain of composite mate-
rials manufacturing.

1 Introduction

Since the pioneering works of Gruber [15], ontologies play a ma-
jor role in knowledge engineering whose importance is growing with
the rise of the semantic Web. Today they are an essential component
in numerous applications in various fields: e.g. information retrieval
[22, 20], knowledge management [26], analysis of social semantic
networks [8] and business intelligence [27]. However, despite the
maturity level reached in ontology engineering, important problems
remain open and are still widely discussed in the literature. The most
challenging issues concern the automation of ontology construction
and their evaluation.

The increasing popularity of ontologies and the scaling changes of
this last decade have motivated the development of ontology learn-
ing techniques. Promising results have been obtained [6, 5]. And,
although these techniques have been often experimentally proved to
be not sufficient enough for constructing ready-to-use ontology [5],
their interest is not questioned in particular in technical domains [17].
Few recent works recommend an integration between ontology learn-
ing techniques and manual intervention [27].

Whatever their use, it is essential to assess their quality through-
out their development. Several ontology quality criteria and dif-
ferent evaluation methods have been proposed in the literature
[19, 4, 11, 21, 1]. However, as mentioned by [28], defining ”a good
ontology” remains a difficult problem and the different approaches
only permit to ”recognize problematic parts of an ontology”. From
an operational point of view, error identification is a very important
step for the ontology integration in real-life complex systems. And,

1 LINA, UMR 6241 CNRS, e-mail: toader.gherasim@univ-nantes.fr
2 LABSTICC, UMR 6285 CNRS, email: giuseppe.berio@univ-ubs.fr
3 LINA, UMR 6241 CNRS, e-mail: mounira.harzallah@univ-nantes.fr
4 LINA, UMR 6241 CNRS, e-mail: pascale.kuntz@polytech.univ-nantes.fr

different researches recently focused on that issue [13, 2, 24]. How-
ever, as far as we know, a generic standardized description of these
errors does not still exist. It seems however a preliminary step for the
development of assisted construction method.

In this paper, we focus on the most important errors that affect
the quality of semi-automatically built ontologies. To get closer the
operational concerns we propose a detailed typology of the different
types of problems that can be identified when evaluating an ontology.
Our typology is inspired from a generic standardized description of
the notion of quality in conceptual modeling [18]. And, our analysis
is applied on a real-life situation concerning the manufacturing of
pieces in composite materials for the aerospace industry.

The rest of this paper is organized as follows. Section 2 is a state-
of-the art of the ontology errors. Section 3 describes a framework
which provides a standardized description of the errors and draws
correspondences between our new classification and the main errors
previously identified in the literature. Section 4 presents our experi-
mental results in the domain of composite materials manufacturing.
More precisely, we analyze errors affecting an ontology produced by
an automatic construction tool (here Text2Onto) from a set of tech-
nical textual resources.

2 State-of-the art on ontological errors
In the literature, the notion of ”ontological error” is often used in a
broad sense covering a wide variety of problems which affect the on-
tology quality. But, from several studies published this last decade,
we have identified four major denominations associated to comple-
mentary definitions: (1) ”taxonomic errors” [14, 13, 9, 2], (2) ”design
anomalies” or ”deficiencies” [2, 3], (3) ”anti-patterns” [7, 25, 23],
and (4) ”pitfalls” or ”worst practices [23, 24].

2.1 Taxonomic errors
From the pioneering works of Gomez-Perrez [14], the denomination
”taxonomic error” is used to refer to three types of errors that affect
the taxonomic structure of ontologies: inconsistency, incompleteness
and redundancy. Recently, extensions have been proposed to non-
taxonomic properties [3], but in this synthesis we focus on taxonomic
errors.

Inconsistencies in the ontology may be logical or semantic. More
precisely, three classes of inconsistencies in the taxonomic structure
have been detailed: circularity errors (e.g. a concept that is a special-
ization or a generalization of itself), partitioning errors which pro-
duce logical inconsistencies (e.g. a concept defined as a specializa-
tion of two disjoint concepts), and semantic errors (e.g. a taxonomic
relationship between two concepts that is not consistent with the se-
mantics of the latter).

23

Incompleteness is met when concepts or relations of specialization
are missing, or when some distributions of the instances of a concept
between its sons are not stated as exhaustive and/or disjoint.

In the opposite way, redundancy errors are met when a taxonomic
relationship can be directly deduced by logical inference from the
other relationships of the ontology, or when concepts with the same
father in the taxonomy do not share any common information (no
instances, no children, no axioms, etc.) and can be only differentiated
by their names.

2.2 Design anomalies

Roughly speaking, design anomalies mainly focus on ontology un-
derstanding and maintainability. They are not necessarily errors but
undesirable situations. Five classes of design anomalies have been
described: (1) ”lazy concepts” (leaf concepts in the taxonomy not
implied in any axiom and without any instances); (2) ”chains of in-
heritance” (long chains composed of intermediate concepts with a
single child); (3) ”lonely disjoint” concepts (superfluous disjunction
axiom between distant concepts in the taxonomy which may disrupt
inference reasoning); (4) ”over-specific property range” (too specific
property range which should be replaced by a coarser range which
fits the considered domain better); (5) ”property clumps” (duplica-
tion of the same properties for a large set of concepts instead of the
inheritance of these properties from a more general concept).

2.3 Anti-patterns

Ontology design patterns (ODP) are formal models of solutions com-
monly used by domain experts to solve recurrent modeling problems.
Anti-patterns are ODP that are a priori known to produce incon-
sistencies or unsuitable behaviors. [23] also called anti-patterns ad-
hoc solutions specifically designed for a problem even if well-known
ODP are available. Three classes of anti-patterns have been described
[7, 25, 23]: (1) ”logical anti-patterns” that can be detected by logi-
cal reasoning; (2) ”cognitive anti-patterns” (possible modeling errors
due to misunderstanding of the logical consequences of the used ex-
pression); (3) ”guidelines” (complex expressions valid from a logical
and a cognitive point of view but for which simpler or more accurate
alternatives exist).

2.4 Pitfalls

Pitfalls are complementary to ODPs. Their broad definition covers
problems affecting the ontology quality for which ODPs are not
available. Poveda et al. [24] described 24 types of experimentally
identified pitfalls as, for instance, forgetting the declaration of an in-
verse relation when this latter exists or of the attribute range. And
they proposed a pitfall classification which follows the three evalu-
able dimensions of an ontology proposed by Gangemi et al. [11]:
(1) structural dimension (aspects related to syntax and logical prop-
erties), (2) functional dimension (how well the ontology fits a pre-
defined function), (3) the usability dimension (to which extent the
ontology is easy to be understood and used). Four pitfall classes cor-
respond to the structural dimension: ”modeling decisions” (MD, sit-
uations where OWL primitives are not used properly), ”wrong infer-
ence” (WI, e.g. relationships or axioms that allow false reasoning),
”no inference” (NI, gaps in the ontology which do not allow infer-
ences required to produce new desirable knowledge), ”real world
modeling” (RWM, when commonsense knowledge is missing in the

ontology). One class corresponds to the functional dimension: ”re-
quirement completeness” (RC, when the ontology does not cover its
specifications). And, two classes correspond to the usability dimen-
sion: ”ontology understanding” (OU, information that makes under-
standability more difficult e.g. concept label polysemy or label syn-
onymy for distinct concepts, non explicit declaration of inverse rela-
tions or equivalent properties) and ”ontology clarity” (OC, e.g. vari-
ations of writing-rule and typography for the labels).

It is easy to deduce from this classification that some pitfalls
should belong to different classes associated to different dimensions
(e.g. the fact that two inverse relations are not stated as inverse is
both a ”no inference” (NI) pitfall and an ”ontology understanding”
(OU) pitfall). Another attempt [24] proposed a classification of the
24 identified pitfalls in the three error classes (inconsistency, incom-
pleteness and redundancy) given by Gomez-Perrez et al. [14]. But,
these classes are concerned by the ontology structure and content,
and consequently four pitfalls associated with the ontology context
do not fit with this classification.

In order to highlight the links between the different classifications,
Poveda et al. tried to define a mapping between the classification in 7
classes deduced from the dimensions defined by Gangemi et al. [11]
and the 3 error classes proposed by Gomez-Perrez et al. [14]. How-
ever, this task turned out to be very complex, and only four pitfall
classes exactly fit with one of the error classes. For the other, there is
overlapping or no possible fitting.

3 The framework
The state of the art briefly presented in the previous section shows
that the terminology used for describing the different problems im-
pacting on the quality of ontologies is not yet standardized and that
existing classifications do not cover the whole diversity of problems
described in the literature.

In this section we present a framework providing standardized def-
initions for quality problems of ontologies and leading to a new clas-
sification of these problems. The framework comprises two distinct
and orthogonal dimensions: errors vs. unsuitable situations (first di-
mension) and logical facet vs. social facet of problems (second di-
mension).

Unsuitable situations identify problems which do not prevent the
usage of an ontology (within specific targeted domain and applica-
tions). On the contrary, errors identify problems preventing the usage
of an ontology.

It is well known that one ontology has two distinct facets: an on-
tology can be processed by machines (according to its logical speci-
fication) and can be used by humans (including an implicit reference
to a social sharing).

The remainder of the section is organized alongside the second di-
mension (i.e. logic vs. social facet) and within each facet, errors and
unsuitable situations are defined. The framework is based on ”nat-
ural” analogies between respectively social and logical errors and
social and logical unsuitable situations.

3.1 Problem classification
3.1.1 Logical ground problems

The logical ground problems can be formally defined by consider-
ing notions defined by Guarino et al. [16]: e.g. Interpretation (Ex-
tensional first order structure), Intended Model, Language, Ontology
and the two usual relations �, ` provided in any logical language.
The relation � is used to express both that one interpretation I is a

24

model of a logical theory T , written as I � T (i.e. all the formulas
in T are true in I , written for each formula ϕ ∈ T , I � ϕ), and
also for expressing the logical consequence (i.e. that any model of a
logical theory T is also a model of a formula, written as T � ϕ). The
relation ` is used to express the logical calculus i.e. the set of rules
used to prove a theorem (i.e. any formula) ϕ starting from a theory
T , written as T ` ϕ.

Examples and formalizations hereinafter are provided by using a
typical Description Logics notation (but easily transformable in first
order or other logics).

The usual logical ground errors are listed below.

1. Logical inconsistency corresponding to ontologies containing log-
ical contradictions for which a model does not exist (because the
set of intended models is never empty, an ontology without mod-
els does not make sense anyway; formally, given an ontology O
and the logical consequence relation � according to the logical
language L used for building O, there is no interpretation I of
O such that I � O). For example, if an ontology contains the
following axioms B ⊆ A (B is a A), A ∩ B ⊆ > (A and B
are disjoint), c ⊆ B (c is instance of B), then c ⊆ A and
c ⊆ A ∩ B, so there is a logical contradiction in the definition of
this ontology;

2. Unadapted5 ontologies wrt to intended models6 i.e. an ontology
for which something that is false in all (some of) the intended
models of L is true in the ontology; formally, there exists a for-
mula ϕ such that for each (for some) intended model(s) of L, ϕ
is false and O � ϕ. For example, if we have in the ontology two
concepts A and B that are declared as disjoint (O � A ∩ B ⊆⊥)
and in each intended model there exists an instance c that is com-
mon between A and B (i.e. c ⊆ A ∩ B), then the ontology is
unadapted;

3. Incomplete ontologies wrt to intended models i.e. an ontology for
which something that is true in all the intended models of L, is
not necessarily true in all the models of O; formally, there exists
a formula ϕ such that for each intended model of L, ϕ is true and
O 2 ϕ. As an example, if in all the intended models C ∪B = A,
and the ontology O defines B ⊆ A and C ⊆ A, it is not possible
to prove that C ∪B = A;

4. Incorrect (or unsound) reasoning wrt the logical consequence i.e.
when some specific conclusions are derived by using suitable rea-
soning systems for targeted ontology applications even if these
conclusions are not true in the intended models and must not be
derived by any reasoning according to the targeted ontology appli-
cations (formally, when a specific formula ϕ, false in the intended
models O 2 ϕ, can be derived O ` ϕ within any of those suitable
reasoning systems);

5. Incomplete reasoning wrt the logical consequence i.e. when some
specific conclusions cannot be derived by using suitable reasoning
systems for targeted ontology applications even if these conclu-
sions are true in intended models and must be derived by some

5 We use the term ”unadapted” instead of ”incorrect” ontologies because it
remains unclear if intended models are defined for building the ontology
or may also be defined independently. However, if intended models are
defined for building the ontology, the term ”incorrect” may be more appro-
priate.

6 Intended models should have been defined fully and independently as in the
case of models representing abstract structures or concepts such as num-
bers, processes, events, time and other ”upper concepts”, often defined ac-
cording to their own properties. If intended models are not available, some
specific entailments can be defined as facts that should necessarily be true
in the targeted domain (or for targeted applications); specific counterexam-
ples can also be defined instead of building entire intended models.

reasoning according to the targeted ontology applications (for-
mally, for some specific formula ϕ, true in the intended models
O � ϕ, cannot be derived O 0 ϕ within those suitable reasoning
systems);

The most common logical ground unsuitable situations are
listed below. These situations impact negatively on the ”non func-
tional qualities” of ontologies such as reusability, maintainability, ef-
ficiency as defined in the ISO 9126 standard for software quality.

6. Logical equivalence of distinct artifacts (concepts / relationships
/ instances) i.e. whenever two distinct artifacts are proved to be
logically equivalent; for example, A and B are two concepts in O
and O � A = B;

7. Symmetrically, logically indistinguishable artifacts i.e. whenever
it is not possible to prove that two distinct artifacts are not equiv-
alent from a logical point of view; in other words, if not possi-
ble to prove anyone of the following statements: (O � A = B),
(O � A ∩ B ⊆⊥) and (O � c ⊆ AandO � c ⊆ B); this case
(7) can be partially covered in the case (3) above whenever in-
tended models provide precise information on the equivalence or
the difference between A and B;

8. OR artifacts i.e. an artifact A equivalent to a disjunction like C∪S,
A 6= C, S but for which, if applicable, it does not exist at least a
common (non optional) role / property for C and S or because C
and S have common instances; in the first case, a simple formal-
ization can be expressed by saying that it does not exist a (non
optional) role R such that O � (C ∪ S) ⊆ ∃R.>; in the second
case, an even simpler formalization is O � c ⊆ C and O � c ⊆ S,
being c one constant not part of O; the first case targets potentially
heterogeneous artifacts such as Car ∪ Person, with probably
no counterpart in the intended models, thus possibly leading to
unadapted ontologies according to case (2) above; the second case
targets potential ambiguities as, for instance, one role (property)
R logically equivalent to a disjunction (R1∪R2) being (R1∩R2)
satisfiable;

9. AND artifacts i.e. one artifact A equivalent to a conjunction like
C ∩ S, A 6= C, S but for which, if applicable, it does not exist
at least a common (non optional) role / property for C and S;
this case is relevant to limit as much as possible some potentially
heterogeneous artifacts such as Car∩Person, possibly leading
to artifact unsatisfiability;

10. While some case of unsatisfiability of ontology artifacts (concepts,
roles, properties etc.) can be covered by (2) because intended mod-
els may not contain void concepts, unsatisfiability tout-court is not
necessarily an error but a situation which is not suitable for ontol-
ogy artifacts (i.e. given an ontology artifact A, O � A ⊆ ⊥); even
if in ontologies it might be possible to define what must not be true
(instead of what must be true), this practice is not encouraged;

11. High complexity of the reasoning task i.e. whenever something
is expressed in a way that complicates the reasoning, while there
exist more simple ways to express the same thing;

12. Ontology not minimal i.e. whenever the ontology contains unnec-
essary information:

• Unnecessary because it can be derived or built7. An example of
such unsuitable situation is the redundancy of taxonomic rela-
tions such as whenever A ⊆ B, B ⊆ C, and A ⊆ C are all
ontology axioms, the last axiom can be derived from the first
two ones;

7 Built means that the artifact can be defined by using other artifacts.

25

• Unnecessary because it is not part of the intended models. For
instance, a concept A being part of the ontology (language) but
not defined by intended models.

3.1.2 Social ground problems

Social ground problems are related to the perception (interpreta-
tion) and the targeted usage of ontologies by social actors (humans,
applications based on social artifacts like WordNet, etc.). Percep-
tion (interpretation) and usage may not be formalized at all. In some
sense, a further distinction between social facet and logical facet is
as the distinction between respectively tacit and explicit knowledge.

There are four social ground errors:

1. Social contradiction i.e. the perception (interpretation) that the so-
cial actor gives to the ontology or to the ontology artifacts is in
contradiction with the ontology axioms and their consequences; a
natural analogy is with unadapted ontologies;

2. Perception of design errors i.e. the social actor perception ac-
counts for some design errors such as modeling instances as con-
cepts; a natural analogy is with unadapted ontologies;

3. Socially meaningless i.e. the social actor is unable to give any in-
terpretation to the ontology or to ontology artifacts as in the case
of artificial labels such as ”XYHG45”; a natural analogy is with
unadapted ontologies;

4. Social incompleteness i.e. the social actor perception is that one or
several artifacts (axioms and/or their consequences) are missing in
the ontology; a natural analogy is with incomplete ontologies;

The social ground unsuitable situations are mostly related to the
difficulties that a social actor has to overcome for using the ontology
especially due to limited understandability, learnability and compli-
ance (as defined in ISO 9126). As for the logical ground unsuitable
situations, it is difficult to dress an exhaustive list; the most common
and important are listed below.

5. Lack of or poor textual explanations i.e. when there are few, no or
poor annotations; prevents understanding by social actors; there
are no natural analogies;

6. Potentially equivalent artifacts i.e. the social actors may identify
as equivalent (similar) distinct artifacts as in the case of artifacts
with synonymous or exactly the same labels assigned to distinct
artifacts; a natural analogy is with logically equivalent artifacts;

7. Socially indistinguishable artifacts i.e. the social actors would not
be able to distinguish two distinct artifacts as, for instance, in the
case of artifacts with polysemic labels assigned to distinct arti-
facts; a natural analogy is with logically indistinguishable arti-
facts;

8. Artifacts with polysemic labels may be interpreted as union or in-
tersection of their several rather distinct meanings associated to
labels; a natural analogy is therefore with OR and AND artifacts.

9. Flatness of the ontology (or non modularity), i.e. ontology pre-
sented as a set of artifacts without any additional structure, espe-
cially if coupled with a important number of artifacts; a natural
analogy is with high complexity of the reasoning task but also pre-
venting effective learning and understanding by social actors;

10. Non-standard formalization of the ontology, using a very specific
logics or theory, requires a specific effort by social actors for un-
derstanding and learning the ontology but also to use the ontology
in standard contexts (reduced compliance); there are no natural
analogies;

11. Lack of adapted and certified versions of the ontology in various
languages requires specific efforts by social actors for understand-
ing and learning the ontology but also to use the ontology in spe-
cific standard contexts (limited compliance); there are no natural
analogies;

12. Socially useless artifacts included in the ontology; a natural anal-
ogy is with ontology not minimal.

3.2 Positioning state of the art relevant problem
classes in to the proposed framework

The precise definitions of the proposed framework allow us to clas-
sify most of the ontology quality problems described in literature. Ta-
ble 1 presents our classification of the different problems mentioned
in Section 2. Some of the problems described in literature may cor-
respond to more than one class of problems from our framework, as
the definitions of these problems are often very large and sometimes
ambiguous.

Table 1 reveals, at a first view, that the proposed framework pro-
vides additional problems that are not directly pointed out, to our
knowledge, in the current literature about ontology quality and eval-
uation (but may be mentioned elsewhere). These problems are No
adapted and certified ontology version, Indistinguishable artifacts,
Socially meaningless, High complexity of the reasoning task and In-
correct reasoning. However, while covered, other problems are, in
our opinion, too much narrowly defined in existing literature about
ontology quality and evaluation. For instance, No standard formal-
ization is specific to very simple situations while we refer to com-
plete non standard theories.

A deeper analysis of Table 1 reveals that the ”logical anti-patterns”
presented in [7, 25] belong to the logical ground category and are
focusing on unadapted ontologies error and unsatisfability unsuit-
able situation. The ”non-logical anti patterns” presented in [7, 25]
partially cover the logical ground unsuitable situations. The ”guide-
lines” presented in [7, 25] span only over unsuitable situations from
both logical and social ground category.

What is qualified as ”inconsistency” in [14] span over errors and
unsuitable situations and also (as in the case of ”semantic incon-
sistency”) over the two dimensions (logical and social), making, in
our opinion, the terminology a little bit confusing. According to our
framework, we perceive ”circularity in taxonomies”, as defined in
[14], as an unsuitable situation (logical equivalence of distinct arti-
facts) because, from a logical point of veiw, this only means that ar-
tifacts are equivalent (not requiring a fixpoint semantics). However,
”circularity in taxonomies” can be seen also within a social contra-
diction if actors assign distinct meanings to the various involved ar-
tifacts. The problems presented as ”incompleteness errors” in [13]
belong to the incomplete ontologies class of logical errors. The ”re-
dundancy errors” fits, in our classification, within the ontology not
minimal class of logical unsuitable situations.

None of the ”design anomalies” presented in [2] is perceived as a
logical error. Two of them correspond to a logical unsuitable situation
(logically undistinguishable artifacts), one to a social error (percep-
tion of design errors) and the last one to a social unsuitable situation
(no standard formalization).

Concerning ”pitfalls” [24], the most remarkable fact concerns
what we call incomplete reasoning. Indeed, introducing ad-hoc re-
lations such as is a, instance of , etc., replacing the ”standard” re-
lations such as subsumption, member of , etc., should not be con-
sidered as a case of incomplete ontologies but as a case of incomplete
reasoning. This is because accepting a specific ontological commit-

26

Table 1. Positioning state of the art relevant problem classes in to the proposed framework.

Framework State of the art problems

L
og

ic
al

gr
ou

nd

E
rr

or
s

1 Logical inconsistency â inconsistency error: ”partition errors - common instances in disjoint decomposition”

2 Unadapted ontologies

â inconsistency errors: ”partition errors - common classes in disjoint decomposition”, ”semantic inconsistency”

â logical anti-patterns: ”OnlynessIsLoneliness”, ”UniversalExistence”, ”AndIsOR”, ”EquivalenceIsDifference”

â pitfalls: P5 (wrong inverse relationship, WI), P14 (misusing ”allValuesFrom”, MD), P15 (misusing ”not

some”/”some not”, WI), P18 (specifying too much the domain / range, WI), P19 (swapping ∩ and ∪, WI)

3 Incomplete ontologies

â incompleteness errors: ”incomplete concept classification”, ”disjoint / exhaustive knowledge omission”

â pitfalls: P3 (”is a” instead of ”subclass-of”, MD), P9 (missing basic information, RC & RWM), P10 (missing

disjointness, RWM), P11 (missing domain / range in prop., NI & OU), P12 (missing equiv. prop., NI & OU), P13

(missing inv. rel., NI & OU), P16 (misusing primitive and defined classes, NI)
4 Incorrect reasoning
5 Incomplete reasoning â pitfalls: P3 (using ”is a” instead of ”subclass-of”, MD), P24 - using recursive def., MD)

U
ns

ui
ta

bl
e

si
tu

at
io

ns

6 Logical equivalence of dis-
tinct artifacts

â inconsistency error: ”circularity”

â pitfall: P6 (cycles in the hierarchy, WI)

â non logical anti-pattern: ”SynonymeOfEquivalence”

7 Logically indistinguishable
artifacts

â pitfall: P4 (unconnected ontology elements, RC)

â design anomalies: ”lazy concepts” and ”chains of inheritance”

8 OR artifacts â pitfall: P7 (merging concepts to form a class, MD & OU)

9 AND artifacts â pitfall: P7 (merging concepts to form a class, MD & OU)

10 Unsatisfiability
inconsistency error: ”partition errors - common classes in disjoint decomposition”

â logical anti-patterns: ”OnlynessIsLoneliness”, ”UniversalExistence”, ”AndIsOR”, ”EquivalenceIsDifference”

11 High complexity of the rea-
soning task

12 Ontology not minimal

â redundancy error: ”redundancy of taxonomic relations”

â pitfalls: P3 (using ”is a” instead of ”subclass-of”, MD), P7 (merging concepts to form a class, MD & OU), P21

(miscellaneous class, MD)

â non logical anti-pattern: ”SomeMeansAtLeastOne”

â guidelines: ”Domain&CardinalityConstraints”, ”MinIsZero”

So
ci

al
gr

ou
nd

E
rr

or
s

1 Social contradiction

â inconsistency error: ”semantic inconsistency”

â logical anti-pattern: ”AndIsOR”

â pitfalls: P1 (polysemic elements, MD), P5 (wrong inv. rel., WI), P14 (misusing ”allValuesFrom”, MD), P15

(misusing ”not some”/”some not”, WI), P19 (swapping ∩ and ∪, WI)

2 Perception of design errors

â pitfalls: P17 (specializing too much the hierarchy, MD), P18 (specifying too much the domain / range, WI), P23

(using incorrectly ontology elements, MD)

â non logical anti-pattern: ”SumOfSome”

â design anomaly: ”lonely disjoints”
3 Socially meaningless

4 Social incompleteness
â pitfalls: P12 (missing equiv. prop., NI & OU), P13 (missing inv. rel., NI & OU), P16 (misusing primitive and

defined classes, NI)

U
ns

ui
ta

bl
e

si
tu

at
io

ns

5 Lack/poor textual explana-
tions

â pitfalls: P8 (missing annotation, OC & OU)

6 Potentially equiv. artifacts â pitfalls: P2 (synonym as classes, MD & OU)

7 Indistinguishable artifacts
8 Polysemic labels â pitfalls: P1 (polysemic elements, MD & OU)

9 Flatness of the ontology

10 No standard formalization
â pitfalls: P20 (swapping label and comment, OU), P22 (using different naming criteria in the ontology, OC)

â guidelines: ”GroupAxioms”, ”DisjointnessOfComplement” and ”Domain&CardinalityConstraints”

â design anomaly: ”property clumps”

11 No adapted and certified
ontology version

12 Useless artifacts â pitfall: P21 (using a miscellaneous class, MD & OU)

27

ment for building intended models, ad-hoc relations can be defined
in the same way as standard relations. However, using standard rea-
soning it is expected (and even proved once fixing the logics) that
reasoning algorithms are incomplete. However, adding artifacts may
also solve some incompleteness and may also be useful for speeding
up reasoning.

Only one of the seven classes of ”pitfalls” [24] perfectly fits in one
class of our typology: the ”real world modeling” pitfalls belong to the
incomplete ontologies logical errors. All the ”ontology clarity” pit-
falls are social unsuitable situations. All the ”requirement complete-
ness” pitfalls are logical problems. The ”no inference” pitfalls are
logical or social incomplete ontologies errors. Most (6/9 and 4/5) of
the ”modeling decisions” and ”wrong inference” pitfalls are consid-
ered as errors. The class of ”ontology understanding” pitfalls spans
over 10 classes of problems, covering logical and social errors and
unsuitable situations.

Most (16/20) of the pitfalls concerning the ”structural dimension”
of the ontology [11] are perceived as errors. All (2/2) the pitfalls
concerning the ”functional dimension” of the ontology are logical
problems.

4 Problems that affect the quality of automatically
built ontologies

Although the proposed framework is general, we are especially con-
cerned by ontologies automatically built from textual resources. We
therefore aim at pointing the problems that are expected in automat-
ically constructed ontologies (i.e. there is evidence of their presence
or they will appear in future enrichments8 of the ontology). We are
also interested by the opposite case, i.e. if there are unexpected prob-
lems in automatically constructed ontologies: it should be noted that
unexpected problems are problems that even if the ontology may suf-
fer of them, there is no evidence of their presence/absence for the
ontology as it is (however, these problems may appear in future en-
richments of the ontology). Our analysis is performed in two steps. In
the first step (Section 4.1), we point out expected/unexpected prob-
lems due to inherent limitations of the tools for automatic ontology
construction. In the second step (Section 4.2), we assess the results
obtained in the first step by discussing our experience with the tool
Text2Onto.

4.1 Expected and unexpected problems in an
automatically built ontology

In a previous work [12] we have deeply studied four approaches (and
associated tools) for the automatic construction of ontologies form
texts and we compared them with a classical methodology for manual
ontology construction (Methontology). This analysis highlighted that
none of the automated approaches (and associated tools) covers all
the tasks and subtasks associated to each step of the classical manual
method. The ignored tasks/subtasks are:

1. The explicit formation of artifacts (concepts, instances and rela-
tionships) from terms9; usually, the automatic tools consider that
each term represents a distinct artifact: they do not group synony-
mous terms and do not choose a single sense for polysemic terms

2. The identification of axioms (e.g. the disjunction axioms)
3. The identification of attributes for concepts
4. The identification of natural language definitions for concepts

8 Enrichment should be understood as adding artifacts to the existing ones.
9 A term corresponds to one or several words found in one text.

Table 2. What problems are expected in automatically built ontologies.

Types of problems Expected (Yes/No) and Why

1. Logical inconsistency
N (no axiom is defined ⇒ contradictions are
unexpected; but they remain possible in the
case of future enrichments)

2. Unadapted ontologies
Y (taxonomic relationships extraction algo-
rithms are syntax based 6= from the intended
models)

3. Incomplete ontologies
Y (automatically extracted knowledge is
limited to concepts and taxonomies 6= from
the intended models)

4. Incorrect reasoning N (they might appear for complete formal-
ization of concepts and relationships)5. Incomplete reasoning

6. Logical equivalence of
distinct artifacts

Y (automatic tools consider that each term
defines a different artifact ⇒ the ontology
may contain logically equivalent & logically
indistinguishable artifacts)

7. Logically indistin-
guishable artifacts

8. OR artifacts Y (polysemy of terms directly affects con-
cepts / relationships: OR / AND concepts /
relationships may appear)9. AND artifacts

10. Unsatisfiability

Y (polysemy of terms directly affects con-
cepts / relationships: these latter may be-
come unsatisfiable if their polysemic senses
are combined)

11. High complexity of
the reasoning task

N (few or no axioms are defined ⇒ reason-
ing remains very basic; but, it can be more
complex if the ontology is further enriched)

12. Ontology not mini-
mal

Y (automatic tools introduce redundancies in
taxonomies)

1. Social contradiction
Y (ontologies are built from limited textual
resources which may introduce contradiction
in taxonomies)

2. Perception of design
errors

Y (the built ontology may contain concepts
that are considered more close to instances
by the social actor.)

3. Social meaningless
Y (several meaningless concepts with ob-
scure labels are often introduced)

4. Social incompleteness Y (probably due to limited textual corpus)

5. Lack of or poor textual
explanations

Y (usually automatic tools do not provide
textual explanations)

6. Potentially equivalent
artifacts

Y (automatic tools consider that each term
defines a different artifact ⇒ distinct con-
cepts can have synonymous labels ⇒ these
latter are perceived as potentially equivalent)

7. Indistinguishable arti-
facts

Y (the ontology is incomplete ⇒ it contains
concepts that can be distinguished only by
their labels; if such concepts have synony-
mous labels, they are indistinguishable)

8. Artifacts with poly-
semic labels

Y (automatic tools consider that each term
defines a different artifact ⇒ it is possible to
have concepts with polysemic labels)

9. Flatness of the ontol-
ogy

Y (the ontology is poorly structured and has
no design constraints - e.g. no disjunction ax-
iom, lazy concepts)

10. No standard formal-
ization

N (automatic tools usually can export their
results in different formalization)

11. No adapted and cer-
tified ontology version

Y (automatically obtained results closely de-
pend on the input texts language (often En-
glish) and certifying them is difficult)

12. Useless artifacts
Y (automatic tools often generate useless ar-
tifacts from additional external resources)

28

Table 2 provides a complete view of expected and unexpected
problems according to our experience and suggest why each prob-
lem is expected or not.

4.2 Experience with Text2Onto

4.2.1 The experimental setup

During the last two years we were implied in a project called ISTA3
that proposed an ontology based solution for problems related to the
integration of heterogeneous sources of information. The application
domain was the management of the production of composite compo-
nents for the aerospace industry. In this context, we tried to simplify
the process of deploying the interoperability solution in new domains
by using automatic solution for constructing the required ontologies.

The analysis presented in [12] conducted us to choose Text2Onto
[6] for the automatic construction of our ontologies. Text2Onto takes
as input textual resources from which it extracts different ontologi-
cal artifacts (concepts, instances, taxonomic relationships, etc.) that
are structured together to construct an ontology. Text2Onto perfor-
mances for extracting concepts and taxonomical relationships are
better than its performances for extracting other types of ontologi-
cal artifacts; consequently, in our tests we used Text2Onto for con-
structing ontologies containing concepts and taxonomical relation-
ships only.

The textual resource used in the experiment presented in this paper
is a technical glossary composed of 376 definitions of the most im-
portant terms of the domain of composite materials and how are they
used for manufacturing pieces. The glossary contains 9500 words.
For constructing the ontology we resort to the standard configura-
tion for the different parameters of Text2Onto: all the proposed al-
gorithms for concepts (and respectively for taxonomic relations) ex-
tractions have been used and their results have been combined with
the default strategy.

The constructed ontology is an automatically built domain ontol-
ogy that contains 965 concepts and 408 taxonomic relationships.
Some of the central concepts of this ontology are: ”technique”,
”step”, ”compound”, ”fiber”, ”resin”, ”polymerization”, ”laminate”,
”substance”, ”form”.

4.2.2 Identified problems

Table 3 summarizes which types of problems have been identified
in the automatically constructed ontology in our experience with
Text2Onto. It also indicates, when possible, how many problems
have been identified. Most of problems are relatively easy to iden-
tify and to quantify (e.g. the number of cycles in the taxonomical
structure), but there are exceptions (e.g. the number of concepts or
taxonomic relationships that are missing from the ontology).

4.2.3 Discussion

No intended model or use case scenario was available when the ex-
pert analyzed the automatically constructed ontology. Consequently,
it was able only to make a supposition concerning the logical com-
pleteness of the ontology and no logical error (unadapted ontology,
incomplete or incorrect reasoning) was identified.

Few logical unsuitable situations are identified, but it is remarkable
that they were identified automatically.

Unsurprisingly, most of the identified problems are social prob-
lems.

Table 3. Types of problems identified in the automatically constructed
ontology.

Types of problems Identyfied (Yes/No) and How
1. Logical inconsistency No
2. Unadapted ontologies No

3. Incomplete ontologies
Yes: Some relationships are missing to con-
nect the 389 lazy concepts; some of them are
explicitly indicated in the textual corpus

4. Incorrect reasoning No
5. Incomplete reasoning No
6. Logical equivalence of
distinct artifacts

Yes: 3 cycles in the hierarchy; (automatically
detected by reasoners)

7. Logically indistin-
guishable artifacts

Yes:
* 389 lazy concepts (automatically identified
by an ad-hoc algorithm)
*73 groups of ”leaf” concepts; each group is
composed of concepts that are indistinguish-
able; (automatically identified by an ad-hoc
algorithm)

8. OR artifacts No
9. AND artifacts No
10. Unsatisfiability No
11. High complexity of
the reasoning task No

12. Ontology not mini-
mal

Yes: one taxonomical relationship can be de-
duced from two taxonomical relationships
already present in the ontology (automati-
cally identified by an ad-hoc algorithm)

1. Social contradiction
Yes: 15 taxonomic relationships are jugged
semantically inconsistent by the expert

2. Perception of design
errors

Yes: 5 concepts that are interpreted as in-
stances by the expert (units of measure and
proper names)

3. Social meaningless
Yes: 21 concepts that have meaningless la-
bels, for the expert

4. Social incompleteness Yes
5. Lack of or poor textual
explanations

Yes: no annotation associated to the ontology
or to its artifacts

6. Potentially equivalent
artifacts

Yes: 6 pairs of concepts have synonym la-
bels, for the expert

7. Indistinguishable arti-
facts No

8. Artifacts with poly-
semic labels

Yes: 69 concepts with polysemic labels, for
the expert

9. Flatness of the ontol-
ogy

Yes: 389 lazy concepts lead to a poorly struc-
tured ontology

10. No standard formal-
ization No

11. No adapted and cer-
tified ontology version No

12. Useless artifacts
Yes: 28 concepts are not necessary (3 are too
generic, 25 are out of the domain)

29

The analysis in Section 4.1 suggest that most of the problems that
are expected in the automatically constructed ontologies are due to
the fact that the automatic tool do not take into account the synonymy
and the polysemy of terms when constructing concepts. However,
even if Text2Onto, as configured for our test, do not group synonym
terms when forming concepts, and allows polysemic terms to be la-
bels for concepts, our test-case reveals that only two types of prob-
lems (socially indistinguishable artifacts and artifacts with polysemic
labels) may be imputed to this limitation.

Most of the identified problems are related to the fact that the au-
tomatically constructed ontology seems to be incomplete.

5 Conclusion

In this paper, we have introduced a framework providing standard-
ized definitions for different errors that have some impact on the
quality of the ontologies. This framework aims at both unifying var-
ious error descriptions presented in the recent literature and com-
pleting them. It also leads to a new error classification that removes
ambiguities of the previous ones. During ontology evaluation this
framework may be used as a support for verifying in a systematic
way if the ontology contains errors or unsuitable situations.

In the second part of the paper we focused on the quality of au-
tomatically built ontologies and we present experimental results of
our analysis on an ontology automatically built by Text2Onto. The
results show that a large part of the identified errors are linked to
the ontology incompleteness. Moreover, it confirms that the identi-
fication of logical errors other than inconsistency requires intended
models (or at least a set of positive and negative examples) and use
case scenarii.

Due to the increasing complexity of the software, the identification
of the origin of each error in the ontology building process remains an
open question. And a further works consists in associating the iden-
tified errors with the different tasks of an ontology construction (e.g.
the Methontology tasks [10]). This work could help to improve the
quality results of the software by a retro-engineering process and/or
to design assistant to detect and to solve major errors.

REFERENCES
[1] M. Almeida, ‘A proposal to evaluate ontology content’, Journal of Ap-

plied Ontology, 4(3-4), 245–265, (2009).
[2] J. Baumeister and D. Seipel, ‘Smelly owls design anomalies in on-

tologies’, in Proc. of 18th Int. Florida Artificial Intelligence Research
Society Conf. (FLAIRS), pp. 215–220, (2005).

[3] J. Baumeister and D. Seipel, ‘Anomalies in ontologies with rules’, Web
Semantics: Science, Services and Agents on the World Wide Web, 8(1),
55–68, (2010).

[4] A. Burton-Jones, V. Storey, and V. Sugumaran, ‘A semiotic metrics
suite for assessing the quality of ontologies’, Data Knowl. Eng., 55(1),
84–102, (2005).

[5] P. Cimiano, A. Madche, S. Staab, and J. Volker, ‘Ontology learning’, in
Handbook on Ontologies, eds., R. Studer and S. Staab, Int. Handbook
on Inf. Syst., 245–267, Springer, 2 edn., (2009).

[6] P. Cimiano and J. Volker, ‘Text2onto - a framework for ontology learn-
ing and data-driven change discovery’, in 2nd Eur. Semantic Web Conf.,
eds., A. Montoyo, R. Munoz, and E. Metais, volume 3513, pp. 227–238,
(2005).

[7] O. Corcho, C. Roussey, and L. M. V. Blazquez, ‘Catalogue of anti-
patterns for formal ontology debugging’, in Atelier Construction
d’ontologies: vers un guide des bonnes pratiques, AFIA 2009, (2009).

[8] G. Ereteo, M. Buffa, O. Corby, and F. Gandon, ‘Semantic social net-
work analysis: A concrete case’, in Handbook of Research on Methods
and Techniques for Studying Virtual Communities: Paradigms and Phe-
nomena, 122–156, IGI Global, (2010).

[9] M. Fahad and M. Qadir, ‘A framework for ontology evaluation’, in
Proc. of the 16th Int. Conf. on Conceptual Struct. (ICCS2008), volume
354, pp. 149–158, (2008).

[10] M. Fernandez, A. Gomez-Prez, and N. Juristo, ‘Methontology: From
ontological art towards ontological engineering’, in Proc. of the AAAI97
Spring Symposium Series on Ontological Engineering, pp. 33–40,
(1997).

[11] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann, ‘Modelling
ontology evaluation and validation’, in Proc. of Eur. Sem. Web Conf.
(ESWC2006), number 4011 in LNCS, (2006).

[12] T. Gherasim, M. Harzallah, G. Berio, and P. Kuntz, ‘Analyse com-
parative de methodologies et d’outils de construction automatique
d’ontologies a partir de ressources textuelles’, in Proc. of EGC’2011,
pp. 377–388, (2011).

[13] A. Gomez-Perez, ‘Ontology evaluation’, in Handbook on Ontologies,
eds., S. Staab and R. Studer, Int. Handbook on Inf. Syst., pp. 251–274,
Springer, 1 edn., (2004).

[14] A. Gomez-Perez, M.F. Lopez, and O.C. Garcia, Ontological Engineer-
ing: With Examples from the Areas of Knowledge Management, E-
Commerce and the Semantic Web, chapter Chap 3.8.2 Taxonomy eval-
uation, 180–184, Advanced Information and Knowledge Processing,
Springer, 2001.

[15] T. R. Gruber, ‘A translation approach to portable ontology specifica-
tions’, Knowl. Acquisition, 5(2), 199–220, (1993).

[16] N. Guarino, D. Oberle, and S. Staab, ‘What is an ontology?’, in Hand-
book on Ontologies, 1–17, Springer, 2 edn., (2009).

[17] G. Hirst, ‘Ontology and the lexicon’, in Handbook on Ontologies, eds.,
R. Studer and S. Staab, Int. Handbook on Inf. Syst., 269–292, Springer,
2 edn., (2009).

[18] J. Krogstie, O.I. Lindland, and G. Sindre, ‘Defining quality aspects
for conceptual models’, in Proc. of the IFIP8.1 Working Conference
on Information Systems Concepts: Towards a Consolidation of Views
(ISCO3), (1995).

[19] A. Lozano-Tello and A. Gomez-Perez, ‘Ontometric: A method to
choose the appropriate ontology’, Journal of Database Management,
15(2), 1–18, (2004).

[20] N. Ben Mustapha, H. Baazaoui Zghal, M.A. Aufaure, and H. Ben
Ghezala, ‘Enhancing semantic search using case-based modular ontol-
ogy’, in Proc. of the 2010 ACM Symposium on Applied Computing, pp.
1438–1439, (2010).

[21] L. Obrst, B. Ashpole, W. Ceusters, I. Mani, S. Ray, and B. Smith, ‘The
evaluation of ontologies: toward improved semantic interoperability’,
in SemanticWeb: Revolutionizing Knowledge Discovery in the Life Sci-
ences, ed., K.-H. Cheung C. J. O. Baker, 139–158, Springer, (2007).

[22] J.D. Osborne, J. Flatow, M. Holko, S.M. Lin, W.A. Kibbe, L. Zhu, M.I.
Danila, G. Feng, and R. L. Chisholm, ‘Annotating the human genome
with disease ontology’, BMC Genomics, 10, 63–68, (2009).

[23] M. Poveda, M. C. Suarez-Figueroa, and A. Gomez-Perez, ‘Common
pitfalls in ontology development’, in Proc. of the Current topics in ar-
tificial intelligence (CAEPIA09), and 13th conference on Spanish asso-
ciation for artificial intelligence, (2009).

[24] M. Poveda, M. C. Suarez-Figueroa, and A. Gomez-Perez, ‘A double
classification of common pitfalls in ontologies’, in Proc. of Workshop
on Ontology Quality (OntoQual 2010), Co-located with EKAW 2010,
(2010).

[25] C. Roussey, O. Corcho, and L. M. V. Blzquez, ‘A catalogue of owl
ontology antipatterns’, in Proc. of the Fifth Int. Conf. on Know. Capture
KCAP, pp. 205–206, (2009).

[26] N. H. Shah and M. A. Musen, ‘Ontologies for formal representation
of biological systems’, in Handbook on Ontologies, eds., R. Studer and
S. Staab, Int. Handbook on Inf. Syst., 445–462, Springer, 2 edn., (2009).

[27] E. Simperl and Tempich C., ‘Exploring the economical aspects of on-
tology engineering’, in Handbook on Ontologies, eds., R. Studer and
S. Staab, Int. Handbook on Inf. Syst., 445–462, Springer, 2 edn., (2009).

[28] D. Vrandecic, ‘Ontology evaluation’, in Handbook on Ontologies, eds.,
R. Studer and S. Staab, Int. Handbook on Inf. Syst., 293–314, Springer,
2 edn., (2009).

30

KnowWE – A Wiki for Knowledge Base Development
Joachim Baumeister1, Jochen Reutelshoefer1, Volker Belli1,

Albrecht Striffler1, Reinhard Hatko2 and Markus Friedrich1

Abstract. The development of knowledge systems has been driven
by changing approaches, starting with special purpose languages
in the 1960s that evolved later to dedicated editors and environ-
ments. Nowadays, tools for the collaborative creation and mainte-
nance of knowledge became attractive. Such tools allow for the work
on knowledge even for distributed panels of experts and for knowl-
edge at different formalization levels. The paper (tool presentation)
introduces the semantic wiki KnowWE, a collaborative platform for
the acquisition and use of different types of knowledge, ranging from
semantically annotated text to strong problem-solving knowledge.
We also report on some current use cases of KnowWE.

1 Introduction

The utility of decision-support systems proved in numerous exam-
ples over the past years. The actual progression of knowledge-based
systems goes back to the early years of expert systems. Starting with
dedicated AI languages, such as LISP [22] and Prolog [15], task-
driven tools have been developed to construct intelligent systems
more efficiently, e.g., see [6, 7]. Recently, a number of development
tools promoted the creation of knowledge on different formaliza-
tion levels. That way, explicit process knowledge (e.g., rules, deci-
sion trees, fault models) can be linked with ontological relations or
even text and multimedia content. Semantic wikis [21] are a promi-
nent example for supporting such a knowledge formalization contin-
uum [3], e.g., see the systems Semantic MediaWiki[14], PlWiki [16],
and MoKi [8].

In this paper, we introduce the semantic wiki KnowWE that
emphasizes the development of strong problem-solving knowledge
within the knowledge formalization continuum. The system is the
latest successor of a 30-years list of ancestors of diagnostic expert
shell kits. Starting with the system MED1 [19] and MED2 [17] (ini-
tially implemented in INTERLISP, then ported to FRANZLISP) the
knowledge engineers needed to use an internal knowledge represen-
tation syntax to built the knowledge bases. The successor D3 [18]—
an implementation in Allegro Common Lisp—offered a graphical
user interface based on forms, tables, and trees to simplify the
knowledge acquisition and to enable domain specialists to define the
knowledge by themselves. The full reimplementation d3web (started
in 2000 and implemented in Java) brought multi-user and multi-
session capabilities to the reasoning engines and also offered a web-
based user interface for developed knowledge bases for the first time.
As well, the knowledge modeling environment KnowME (Knowl-
edge Modeling Environment) was implemented in Java and copied

1 denkbares GmbH, Friedrich-Bergius-Ring 15, D-97076 Würzburg, Ger-
many, email: name.surname@denkbares.com

2 Department of Intelligent Systems, University of Würzburg, Germany,
email: name.surname@uni-wuerzburg.de

the graphical editors of the shell-kit D3, but also added sophisticated
tools for testing and refactoring the developed knowledge bases [5].

However, all aforementioned systems only support the work of one
knowledge engineer at the same time, thus hindering a collaborative
and distributed development process with many participants. Further-
more, the graphical editors restricted the structuring possibilities of
the knowledge bases by the system-defined structure and expressive-
ness. In consequence, the engineers often needed to fit their knowl-
edge structure into the possibilities of the tool. More importantly, the
mix of different formalization levels was not possible, e.g., by relat-
ing ontological knowledge with solutions of a decision tree.

As the successor of KnowME the system KnowWE (Knowledge
Wiki Environment) [4] offered a web-based wiki front-end for the
knowledge acquisition and supported the collaborative engineer-
ing of knowledge at different formalization levels. Strong problem-
solving knowledge is mixed with corresponding text and multimedia
in a natural manner. The knowledge base can be flexibly structured
by distributing the particular knowledge modules over a collection of
linked wiki articles, each covering a particular aspect of the domain.

In the following sections, we describe notable features and devel-
opments of the system KnowWE and we briefly discuss some current
applications.

2 Applications and Usage of KnowWE

In this section, we first sketch the typical application domains of
KnowWE and then we describe typical practices for knowledge de-
velopment with the system.

2.1 Application Domains

Historically, the typical use of the system was the development of di-
agnostic knowledge bases, since this problem category was the core
domain of d3web and its predecessors. Nowadays, KnowWE is still
used to develop decision-support systems for diagnosis, classifica-
tion, or recommendation tasks. As KnowWE can be also used for
ontology engineering and clinical guideline engineering, however,
the application areas are broadened today. For example, we see ap-
plications for the definition of clinical guidelines [9], the configura-
tion of HCI devices [13], and the ontological formalization of ancient
history [20].

In summary, almost all applications combine formal knowledge
with informal content of the wiki, thus improving the develop-
ment and the use of the knowledge system. In the following sec-
tion we describe basic practices for developing knowledge bases with
KnowWE.

31

2.2 Practices for Knowledge Development

Distribution of Knowledge In form-based tools the knowledge is
typically entered in predefined editor fields. That way, the knowledge
engineer is bound to the given organization strategy of the particular
tool. In a semantic wiki the engineer is free to partition and distribute
the knowledge across the wiki articles. Thus, specific articles can
be created to define the particular aspects of the knowledge base. In
many cases, this freedom is a significant advantage when compared
to form-based tools, since the distribution strategy can be adapted to
the current project requirements and the characteristics of the knowl-
edge. However, in any way the knowledge engineer has the burden to
formulate a distribution strategy for the knowledge in the wiki before
starting with the knowledge engineering task.

In the past, a number of useful distribution patterns have been
identified. It is important to notice that the patterns can/should be
modified according to the project requirements, and that they can be
combined with other patterns.

• Solution-oriented distribution: For each possible system output
(or coherent group of outputs), an article is created in the wiki. The
article contains the definitions of the output and formal knowledge
to derive this particular output. For larger systems, sub-articles can
be defined that are linked from the main article.

• Problem area-oriented distribution: For each problem area (co-
herent and named groups of inputs to the system), an article is
created in the wiki. Each article contains the definitions of the
problem area (e.g., symptoms concerning the problem area) and
links to articles, where derivation knowledge is defined relevant to
the particular problem areas.

• Concept-oriented distribution: For each concept of the applica-
tion domain an article is created. Attributes and relations of this
concept are also defined on this article. Also links to related con-
cepts are included.

Namespaces and Compilation of Knowledge In the past, tools only
allowed the creation of one knowledge base at the same time. Current
environments enable the development of a collection of knowledge
bases within one workspace. Here, coherent parts of knowledge need
to be clustered and labeled by namespaces. For smaller knowledge
bases, namespaces are often used to tag the knowledge relevant for
this knowledge base.

A dedicated article is used as a sink for the definition of a knowl-
edge base, i.e., to collect the knowledge packages for the specified
namespaces. That way, a wiki can be used to create different vari-
ants of a knowledge base, i.e., by having an article compiling all
knowledge labeled with namespaces n1, and by having another ar-
ticle compiling all knowledge labeled with namespaces n1 and n2.
The namespaces and corresponding compilation of knowledge is de-
picted in Figure 1.

As a historical remark, the current mechanism of namespaces and
their compilation is different from the original ideas of KnowWE de-
scribed in [4]: Back then, every article was compiled into a single
knowledge base and therefore had to include all relevant concepts
and derivations. In a distributed problem-solving process the differ-
ent wiki articles and knowledge bases, respectively, communicated
with each other exchanging input and output concepts. The outputs of
the problem-solving process were displayed to the user in an aggre-
gated view. The concept of distributed problem-solving uncovered
two critical issues in real-world knowledge base development: First,
the reasoning process was not intuitive for domain specialists who

Article C

Terminology (n1)

Article D

Rules (n1)

Article B

Decision Trees (n2)

Article E

Knowledge Base K1

uses: n1

Article A

Knowledge Base K2

uses: n1, n2

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 1. Distribution and namespaces of the knowledge across a set of
wiki articles. Knowledge bases are flexibly compiled be defining a number

of namespaces.

were usually not familiar with distributed reasoning algorithms. To
help the users, very sophisticated explanations for derived solutions
needed to be presented in order to allow for effective debugging when
problems appeared. Second, the wiki often was used only as the de-
velopment environment of the knowledge base. The target platform
of the knowledge system typically differed from the wiki system,
so the knowledge base needed to be joined and exported from the
wiki into a single knowledge base to be applicable for the later use.
In consequence, the exported knowledge base needed further quality
management, since the reasoning results of the distributed reasoning
may differed from the reasoning results of the monolithic knowledge
base. Therefore, the test and development of a monolithic knowledge
base (the setting of the target platform) within the wiki appeared to
be more efficient for developers.

Endpoints for Testing the Knowledge During knowledge base de-
velopment it is important to have powerful interfaces to test the cur-
rent state of the knowledge base. In KnowWE, we offer a dialog in-
terface for testing strong problem-solving knowledge, i.e., by pre-
senting a form to enter values for input concepts. Derived solutions
are presented in a configurable output panel. The test dialog and out-
put panel can be placed in an arbitrary wiki article in order to give
the user the required flexibility to test the knowledge base where it is
currently developed.

For ontology engineering we offer a markup to formulate
SPARQL [24] queries for RDF ontologies [23]. For OWL ontologies
we are able to formulate specific class expression queries in Manch-
ester OWL syntax [12].

Simple Support for Authoring Administration Within a colla-
borative development process not all involved engineers are working
on the knowledge base at the same time. Moreover, the engineers are
often not located at the same place. Therefore, the tool needs to offer
support for administrative authoring tasks. Typical examples are as
follows:

• Label unfinished areas of the knowledge base, i.e., todo tasks.

32

• Mark identified issues in knowledge definitions, i.e., problems.
• Specify urgent tasks for the development phase.

For all these tasks a specific user or group of users needs to be at-
tachable in order to personalize them.

KnowWE offers a simple todo markup, that can be used to la-
bel content or formal knowledge in the wiki article with the action
requests as described above. Furthermore, a tagging plugin allows
for the annotation of entire pages. Tag clouds with instant access to
tagged pages can be inserted into the wiki; most often at the bottom
of the left navigation panel.

Use of Standard Wiki Features KnowWE benefits from a set of
useful features, that usually comes with a standard wiki distribution:

• A user and group management allows for the fine-grained defini-
tion of user rights (view and edit) for single articles.

• All wiki articles are under version control. That way, older ver-
sions of an article (and its contained knowledge definitions) can
be compared with the current version of the article. When neces-
sary an older version of an article can be restored.

• A recent changes view displays a list of recently modified articles
and knowledge definitions. With this feature, it is easy to keep
track of the current development process.

3 Notable Features
KnowWE is a development environment that supports the knowledge
engineer on all aspects of the development process, such as author-
ing assistance, error handling, refactoring, manual testing, and qual-
ity management. In this section we present a selection of the most
relevant features of KnowWE.

3.1 Knowledge Acquisition
In KnowWE, knowledge is formalized by using (knowledge) markup
languages. A markup language is a formal syntax provided with an
internal mapping to the target knowledge representation which is per-
formed instantly after page save by a compilation script. The markup
languages can be used at any place in the wiki articles to create el-
ements of the knowledge base allowing for interweaving formal and
informal knowledge. Figure 2 shows an article taken from an ex-
emplary car fault diagnosis wiki describing the concept Clogged air
filter. The article contains informal content such as plain text and
images (e.g., in the top half of the article) as well as formalized
knowledge (rules at the bottom part of the article). KnowWE pro-
vides markup languages for creating knowledge bases in the d3web3

format and for creating ontologies in OWL. For the d3web reasoner,
markups for decision trees, set-covering models, decision tables,
and rules are provided as introduced in [2]. Additionally, executable
flowcharts can be designed in the DiaFlux language by using a graph-
ical editor available the wiki [10]. For the development of ontologies
KnowWE provides markups based on well-known languages such
as the Manchester Syntax for OWL [12] and the Turtle Syntax for
RDF 4.

3.2 Authoring Support
In addition to the basic wiki editing interface, KnowWE provides
different kinds of editing support. The system provides instant edit

3 http://d3web.sourceforge.net
4 http://www.w3.org/TeamSubmission/turtle

functionality that allows to edit a section, i.e. a coherent part of an
article, within the view of the wiki page as shown in Figure 3.

Typically, the editing of tables is difficult when using the standard
text markup for tables. Therefore, KnowWE provides instant editing
capabilities for tables in a WYSIWYG style allowing each cell to be
edited by one click as shown in Figure 5. The table content is stored
within the wiki page source in standard wiki markup.

Figure 3. Authoring parts of an article using the instant edit feature.

Additionally, a code completion mechanism supports the user to
create markup sections in the text editing panel.

Often, it becomes necessary to obtain an overview of the occur-
rences and uses of a particular domain concept. Figure 4 shows an
overview page for the concept Leaking air intake system, that is dy-
namically generated when requested by clicking on the concept name
in the wiki. Besides the pure information about the concept, also
small refactoring capabilities are available: At the top, a renaming
tool is presented that allows the wiki-wide renaming of the concept,
thus ensuring a working and consistent knowledge base. In the bot-
tom part of the info page, the user can see an overview of the wiki
articles, where the concept is used (links yield to the particular oc-
currences in the wiki).

3.3 Testing
As a modern knowledge engineering environment, KnowWE sup-
ports an agile knowledge engineering approach. Here, knowledge
bases are developed in an evolutionary manner, always maintaining
an executable and correct version at a certain level of competency. In
this context, (automated) testing is very important to ensure success-
ful evolutionary development cycles. Test cases are either developed
manually by defining expected solutions for a given set of inputs
or are imported from external testing suites. We adopted the con-
tinuous integration practice known from software engineering into
the knowledge engineering tool KnowWE. A continuous integration
dashboard in the wiki is used to define a collection of quality tests
(for validation and verification). As a special knowledge markup, the
dashboard can be configured easily to support tailored quality man-
agement for the respective project. Registered automated tests are
performed on the current version of the wiki knowledge base and

33

Figure 2. A wiki page from a car-fault diagnosis knowledge base in KnowWE.

34

Figure 6. The continuous integration dashboard of KnowWE showing messages of the current test runs and the history of the previous development stages.

Figure 4. The generated object-info page for every concept allows for the
renaming of the concept and it shows the use of the concept across the wiki

articles.

Figure 5. Inline editing of tables by the WYSIWYG interface of the wiki.

give verbose feedback to the knowledge engineers by status mes-
sages on the dashboard as shown in Figure 6.

At any time, the dashboard displays the current state of the wiki
knowledge base with respect to quality at one glance. Also the his-
tory of builds is listed on the left panel of the dashboard. Older builds
can be inspected by clicking on the build number, for instance, be-
cause the developer wants to check the reason for the build problem.
For the selected build the applied tests are shown in the center of
the dashboard. In case of errors, the tests give detailed reports on the
error s as well as links are provided for further investigation and de-
bugging of the issue. In Figure 6, the top two tests have been passed
successfully, while the lower two tests have failed showing more de-
tails explaining the actual problem. The tests can be activated by
three trigger-modes onChange, onSchedule, and onDemand. In the
mode onChange, the tests are executed after each modification of
a wiki article which changed the knowledge base. This mode pro-
vides the most immediate feedback possible. However, for very time
consuming tests this mode can yield inconvenient delays. The mode
onSchedule executes the tests on a regular basis according to a spec-
ified schedule, for instance at night. This mode is preferable also for
tests with considerable high execution time. Further, in the mode on-
Demand all responsibility for test execution is left to the user, since
the user has to explicitly start a continuous integration run. The user
has to decide, when the execution is reasonable, which often is an
option for tests with high runtime (considering sufficiently experi-
enced users). It is important to note, that the user can define different

35

dashboards, for instance, one for quick tests running onChange and
another one for executing larger/time-consuming tests onSchedule.

Additionally to the dashboard, located on a specific wiki page,
KnowWE provides a CI-Daemon (daemon for continuous integra-
tion) which can be connected to a dashboard. The CI-Daemon is al-
ways visible in the KnowWE user interface basically only showing a
colored bubble (green, red, or grey) representing the current state of
the connected dashboard. In Figure 2 the CI-Daemon is visible as a
green bubble on the left of the page below the navigation menu. In
this way, the users are always aware of the current quality state not
requiring to frequently visit the dashboard article. A very important
category of tests for knowledge bases are the competency tests which
can be implemented by (sequential) test cases [1]. Figure 7 shows a
markup for the definition of sequential test cases in KnowWE. Dur-
ing execution, the test case is performed line-by-line. Equal signs ex-
press assignments of input data, added to the current testing session.
Expressions containing brackets are expected derivations. The test
fails, if the expected derivations do not match the actual ones. That
way, input-output behavior of a knowledge base can be covered by
automated competency tests which can be attached to a continuous
integration dashboard easily.

Figure 7. Markup for the definition of sequential test cases.

3.4 Knowledge Use

For instant manual testing of the created knowledge base KnowWE
provides an embedded interview component which can be embedded
into any wiki article. Figure 8 shows the interview interface which is

dynamically generated from the connected knowledge base. It allows
the user to answer the input questions and instantly gives feedback of
the derived solution concepts. In the shown example, the combina-
tion of inputs derived the established solution concept Bad ignition
timing. The solutions Clogged air filter, Flat battery, and Leaking air
intake system are also suggested as potential solutions while Dam-
aged idle speed system is marked as an excluded solution.

Figure 8. The interview component for manual knowledge base testing.

For developed ontologies KnowWE provides an inline-query
mechanism to summarize the knowledge of the ontology as a dy-
namic content element. Using a markup based on the SPARQL lan-
guage, queries can be defined within the wiki pages. They are evalu-
ated on page load on the current version of the developed ontology.
The result of the query is displayed in the view of the wiki article.

4 Known Uses of KnowWE
KnowWE is currently used in several knowledge engineering
projects of different subject domains, both in academic and industrial
contexts. In this section, we report on a selection of these projects and
we give a brief overview of the use of the system KnowWE.

4.1 Managing Chemical Safety with KnowSEC
KnowSEC (Managing Knowledge of Substances of Ecological Con-
cern) is a group-wide wiki to manage substance-related work(flows)
within a group of the German Federal Environmental Agency
(Umweltbundesamt). Here, every substance is represented by a dis-
tinct wiki article storing important information such as chemical end-
points, relevant literature, or comments of group members. The in-
formation is entered in (user-friendly) editors in the wiki and trans-
lated into special markups in the background; thus, the information is

36

also stored in an RDF ontology. That way, the information currently
available in the wiki but also the latest knowledge changes can be
aggregated and visualized by integrated SPARQL queries.

Besides the storage of weakly formalized knowledge, KnowSEC
also offers knowledge-based modules that support the classification
of substances for a number of critical chemical characteristics. At the
moment, modules are available for supporting the assessment of the
relevance, the persistence, the bioaccumulation, and the toxicity of
a given substance. These aspects (e.g., relevance, persistence, etc.)
are developed in the wiki using different namespaces, so they can
be maintained and tested independently from the other aspects. For
the users of KnowSEC, a joint knowledge base with all aspects is
virtually defined including all above namespaces.

Currently, the knowledge base is still under development. The joint
version of the knowledge base consists of 214 questions (user inputs
to characterize the investigated substance) grouped by 46 question-
naires, 146 solutions (assessments of the investigated substance), and
more than 1.000 rules to derive the assessments. The rules are auto-
matically generated from entered decision tables that allow for an
intuitive and maintainable knowledge development process.

Two knowledge engineers are supporting a team of domain spe-
cialists, that partly define the knowledge base themselves, partly giv-
ing domain knowledge to the knowledge engineers.

4.2 Modeling Clinical Guidelines in KnowWE

Within the project CliWE5 (Clinical Wiki Environments), KnowWE
is extended by plugins to allow for the collaborative development
of Computer-Interpretable Guidelines (CIGs). Clinical guidelines are
based on evidence-based medicine and improve patient outcome by
providing standardized treatments. Their computerization allows for
decision-support systems at the point of care, or even the automated
application by closed-loop systems in the setting of Intensive Care
Units. The goal of CliWE is to create a platform that supports the en-
gineering of CIGs by spatially distributed domain specialists. There-
fore, the graphical CIG language DiaFlux was created. Its focus lies
on the direct applicability and understandability by domain special-
ists [9]. By offering only a small set of intuitive language elements,
the guidelines can in the best case be built and maintained by the
domain specialists themselves. Currently, the extensions developed
within CliWE are used in the project WiM-Vent6. Its goal is to inte-
grate medical expertise concerning mechanical ventilation and phys-
iological models into an automated mechanical ventilator [11]. In
the course of this project, one knowledge engineer guides and sup-
ports one domain specialists (backed up by a committee of further ex-
perts) during the knowledge engineering process. The latest version
of the guideline contains 17 DiaFlux modules, that in total contain
295 nodes and 345 edges. During its development, the testing capa-
bilities of KnowWE are extensively used. So far, about 1.100 contin-
uous integration builds were automatically executed. Especially the
empirical testing feature is applied to define and process local test
cases, as well as ones that are created using external tools, e.g., a
Human Patient Simulator. Those simulated patient sessions can then
be replayed in KnowWE for introspecting and debugging the guide-
line execution. A high-lighting of the taken paths within the DiaFlux
models serves as an accessible means of explanation for the domain
specialists.

5 funded by Draegerwerk AG & Co. KGaA, Lübeck, Germny, 2009-2012
6 ”WiM-Vent” - Knowledge- and model-based Ventilation, funded by BMBF

(Federal ministry of education and research)

4.3 ESAT: Selecting Assisting Technologies for
Handicaped People

ESAT (Expertensystem für Assistierende Technologien [german]) is
an expert system designed to determine an appropriate set of human-
computer interaction devices for handicapped people. In the appli-
cation scenario a detailed profile of the physical capabilities (e.g.,
visual or motorical abilities) for a person is entered into the system.
The knowledge base derives a set of input and output devices, that
together provide optimal computer interaction for that specific per-
son. In advance, the underlying domain knowledge has been elab-
orated by a comprehensive study in 2008. The actual implementa-
tion of a corresponding executable knowledge base using KnowWE
has started in spring 2011. Currently, the ESAT knowledge base
has been completed and the system will be launched for a testing
phase at the project’s initiator (FAB7). The knowledge base has been
implemented by mainly one knowledge engineer using KnowWE.
For knowledge representation production rules are used. In total the
ESAT knowledge base currently contains 654 rules distributed on 74
wiki articles. Also in this single-user context the possibility of free
structuring allows for reasonable and clear distribution of the knowl-
edge. The terminology is defined on different wiki articles dealing
with vision, hearing, motoric and haptic abilities and general skills
(e.g., braille) respectively. The about 50 different types of input and
output devices (e.g., various kinds of keyboards, sensors, displays)
are each described in distinct wiki articles also containing the rules
relevant for the derivation of the particular device. Five heuristics
have been established within a theoretical study, describing solutions
for major categories of handicaps. These are implemented on distinct
wiki articles forming the core of the derivation knowledge. The test-
ing framework for continuous integration discussed in Section 3.3 is
extensively used to guarantee the save development process by un-
covering undesired side-effects of modifications including at least
one sequential test case for each device and heuristic. More details
about the project are given by Kreutzer [13].

4.4 Continuous Medical Cataract Knowledge with
WISSKONT

The WISSKONT project considers the creation of an intelligent in-
formation system in the medical domain of cataract surgery. The sys-
tem is currently under development and it will support the ophtal-
mologist during the treatment process before, in-between, and after
the cataract surgery. That way, the system needs to present relevant
knowledge of the domain, which is integrated at varying degrees of
formality. For instance, textbook content with images describe par-
ticular aspects of a treatment process, whereas temporal relations
of the treatment phases are represented by ontological annotations.
Here, informal content is correlated by ontological relations. In con-
sequence, a semantic search mechanism provides the presentation of
the relevant information at any stage of the treatment process. Ad-
ditionally, for a number of decision tasks occurring during the treat-
ment, distinct decision-support modules are created, e.g., the selec-
tion of an appropriate lens for the surgery based on the patient’s pa-
rameters. The integration of formalized and informal knowledge al-
lows the ophtalmologist to verify the recommendations of the knowl-
edge base by analyzing the comprehensive support information pro-
vided with the recommendation.

The WISSKONT project is part of the WISSASS project, a coop-
eration of the Karlsruhe Institute of Technology, Germany (KIT) and

7 http://www.vo-fab.at/

37

the denkbares GmbH. It is funded as a ZIM-KOOP8 project by the
German Federal Ministry of Economics and Technology (BMWI).

5 Conclusion
In this paper, we presented the current state-of-the-art of the semantic
wiki KnowWE. The tool is used in knowledge engineering projects
that have a distributed and collaborative nature. Also, KnowWE is
capable to jointly represent and use knowledge at different levels of
formalization and therefore allows for the flexible organization and
elicitation of knowledge. We showed notable features of the tool,
such as dedicated markups and editors for knowledge acquisition and
use, but also features for (continuously) testing the developed knowl-
edge base. Publicly known projects and applications were reported,
that use KnowWE as their primary knowledge engineering environ-
ment.

REFERENCES
[1] Joachim Baumeister, ‘Advanced empirical testing’, Knowledge-Based

Systems, 24(1), 83–94, (2011).
[2] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,

‘Markups for knowledge wikis’, in SAAKM’07: Proceedings of the Se-
mantic Authoring, Annotation and Knowledge Markup Workshop, pp.
7–14, Whistler, Canada, (2007).

[3] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe, ‘Engi-
neering intelligent systems on the knowledge formalization contin-
uum’, International Journal of Applied Mathematics and Computer
Science (AMCS), 21(1), (2011).

[4] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,
‘KnowWE: A semantic wiki for knowledge engineering’, Applied In-
telligence, 35(3), 323–344, (2011).

[5] Joachim Baumeister, Dietmar Seipel, and Frank Puppe, ‘Agile devel-
opment of rule systems’, in Handbook of Research on Emerging Rule-
Based Languages and Technologies: Open Solutions and Approaches,
eds., Giurca, Gasevic, and Taveter, IGI Publishing, (2009).

[6] B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley, 1984.

[7] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E.
Grosso, Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and Sam-
son W. Tu, ‘The evolution of protégé: An environment for knowledge-
based systems development’, Int. J. Hum.-Comput. Stud., 58(1), 89–
123, (January 2003).

[8] Chiara Ghidini, Barbara Kump, Stefanie N. Lindstaedt, Nahid Mah-
bub, Viktoria Pammer, Marco Rospocher, and Luciano Serafini, ‘MoKi:
The enterprise modelling wiki’, in ESWC’09: The Semantic Web: Re-
search and Applications, volume 5554 of LNCS, pp. 831–835. Springer,
(2009).

[9] Reinhard Hatko, Joachim Baumeister, Volker Belli, and Frank Puppe,
‘DiaFlux: A graphical language for computer-interpretable guidelines’,
in KR4HC’11: Proceedings of the 3th International Workshop on
Knowledge Representation for Health Care, (2011).

[10] Reinhard Hatko, Jochen Reutelshoefer, Joachim Baumeister, and Frank
Puppe, ‘Modelling of diagnostic guideline knowledge in semantic
wikis’, in Proceedings of the Workshop on Open Knowledge Models
(OKM-2010) at the 17th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW), (2010).

[11] Reinhard Hatko, Dirk Schädler, Stefan Mersmann, Joachim Baumeis-
ter, Norbert Weiler, and Frank Puppe, ‘Implementing an automated ven-
tilation guideline using the semantic wiki knowwe’, in EKAW 2012:
18th International Conference on Knowledge Engineering and Knowl-
edge Management, eds., Heiner Stuckenschmidt, Annette ten Teije, and
Johanna Voelker, (2012).

[12] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,
Robert Stevens, and Hai H Wang, ‘The manchester owl syntax’, in
Proceedings of OWL: Experiences and Directions (OWLED’06), eds.,
Bernardo Cuenca Grau, Pascal Hitzler, Connor Shankey, and Evan Wal-
lace, Athens, Georgia, USA,, (2006).

8 http://www.zim-bmwi.de/

[13] S. Kreutzer, Ein Expertensystem zur Unterstützung körperbehinderter
Menschen, Diplomica, 2012.

[14] Markus Krötzsch, Denny Vrandecić, and Max Völkel, ‘Semantic Me-
diaWiki’, in ISWC’06: Proceedings of the 5th International Semantic
Web Conference, LNAI 4273, pp. 935–942, Berlin, (2006). Springer.

[15] Dennis Merritt, Building Expert Systems in Prolog, Springer, Berlin,
1989.

[16] Grzegorz J. Nalepa, ‘PlWiki - a generic semantic wiki architecture’, in
ICCCI’09: Computational Collective Intelligence. Semantic Web, So-
cial Networks and Multiagent Systems, number 5796 in LNCS, pp.
345–356. Springer, (2009).

[17] Frank Puppe, ‘Requirements for a Classification Expert System Shell
and their Realization in MED2’, Applied Artificial Intelligence, 1, 163–
171, (1987).

[18] Frank Puppe, ‘Knowledge Reuse among Diagnostic Problem-Solving
Methods in the Shell-Kit D3’, International Journal of Human-
Computer Studies, 49, 627–649, (1998).

[19] Frank Puppe and Bernhard Puppe, ‘Overview on MED1: An heuris-
tic diagnostics system with an efficient control structure’, in Proceed-
ings of the German Workshop on Artificial Intelligence (GWAI-83),
Informatik-Fachberichte 76, pp. 11–20. Springer, (1983).

[20] Jochen Reutelshoefer, Florian Lemmerich, Joachim Baumeister, Jorit
Wintjes, and Lorenz Haas, ‘Taking OWL to Athens – Semantic Web
technology takes ancient greek history to students’, in ESWC’10: Pro-
ceedings of the 7th Extended Semantic Web Conference, pp. 333–347.
Springer, (2010).

[21] Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte
Kiesel, ‘Semantic wikis’, IEEE Software, 25(4), 8–11, (2008).

[22] Guy L. Steele and Richard P. Gabriel, ‘The evolution of lisp’, in The
second ACM SIGPLAN conference on History of programming lan-
guages, pp. 231–270, (1993).

[23] W3C. RDF - resource description framework recommendation:
http://www.w3.org/rdf/, February 2004.

[24] W3C. SPARQL recommendation: http://www.w3.org/tr/rdf-sparql-
query, January 2008.

38

Overview of BPMN Model Equivalences.
Towards normalization of BPMN diagrams1

Krzysztof Kluza and Krzysztof Kaczor2

Abstract. In various application domains, there is a desire to stan-
dardize modeling techniques. Business Process Model and Notation
(BPMN) is currently the most widespread language used for mod-
eling Business Processes (BP). Although there are some guidelines
how to use this notation, the issue of modeling technique is not stan-
dardized. The same semantics can be represented in BPMN using
various but behaviorally equivalent model structures. In this paper,
we present an overview of the BPMN models equivalences topic.
We point out various possibilities of equivalence patterns. This can
help to structure diagrams and decrease their semantic complexity.
Such research can be further useful for such tasks as analyzing simi-
larities or measuring compliance of processes.

1 Introduction
Business Process (BP) models constitute a graphical representa-
tion of processes in an organization. Business Process Model and
Notation (BPMN)3 [1, 23] is a notation for modeling Business
Processes, which contributed significantly in Software Engineering
when it comes to collaboration between developers, software ar-
chitects and business analysts. Although there are many new tools
and methodologies which support the BPMN notation, they neither
support some recommended modeling techniques nor make BPMN
models easily comprehensible.

Two models with different structure, but behaviorally equivalent,
can be both correct and unambiguous. This stems from the BPMN
specification allowing for expressing the same semantics using vari-
ous syntactic structures. However, this can cause difficulties in mod-
eling or understanding of the model – the modeling challenge.

Although behaviorally equivalent structures can be replaceable,
some of them may be not translatable to other languages in order
to be analyzed or verified [29, 33]. This makes practical problems
with model analysis – the analysis challenge. Thus, to avoid such
problems, a set of best practices for modelers is needed, and it would
be useful to normalize the preffered model structures.

The first step towards such a structure normalization process is
to identify behaviorally (or semantically) equivalent structures. One
model can be transformed to the equivalent model to make it con-
sistent in a way which it might not have been before [14]. While this
may be done manually, and usually is in the case of ad hoc modeling,
it is possible to support a normalization task with tools. The goals of
such a normalization can be to maintain compatibility, interoperabil-
ity, safety, repeatability, or quality of models.
1 The paper is supported by the BIMLOQ Project funded from 2010–2012

resources for science as a research project.
2 AGH University of Science and Technology, Poland,

Email: {kluza,kk}@agh.edu.pl
3 See: http://www.bpmn.org/.

Although there are several research papers concerning equiva-
lences of Business Process models, most authors do not consider us-
ing of the BPMN notation, but analyze equivalences of models for
Petri nets [5, 32] or web services [12, 25]. The thorough research in
the area of BPMN models equivalences was carried by Vitus Lam
and can be found in his papers [14, 15, 16]. Although Lam’s equiv-
alences of models are formalized, he analyzes only several equiva-
lence patterns. Thus, it is advisable to address the issue of BPMN
models equivalences in a wider range.

In this paper, we present an overview of the BPMN models equiv-
alences and show various possibilities of equivalent structures. This
research can be useful in different areas of BPMN application, such
as: process matching [36], identifying the differences between pro-
cess models [13], analyzing similarities [3, 6, 19] or measuring com-
pliance of processes [2, 8].

The rest of this paper is organized as follows. In Section 2, BPMN
models and elements are introduced. Section 3 provides a review of
various equivalence patterns in BPMN models. The conclusion with
suggested course of action is presented in Section 4.

2 BPMN models and elements

A Business Process [34] can be defined as a collection of related tasks
that produce a specific service or product (serve a particular goal) for
a particular customer. BPMN constitute the most widespread lan-
guage for modeling BPs. It uses a set of predefined graphical el-
ements to depict a process and how it is performed. The current
BPMN 2.0 specification defines three models to cover various as-
pects of processes:

1. Process Model — describes the ways in which operations are car-
ried out to accomplish the intended objectives of an organization.
The process can be modeled on different abstraction levels: public
(collaborative Business 2 Business Processes) or private (internal
Business Processes).

2. Choreography Model — defines expected behavior between two
or more interacting business participants in the process.

3. Collaboration Model — can include Processes and/or Choreogra-
phies, and provides a Conversation view (which specifies the log-
ical relation of message exchanges).

In most cases, using only the Process Model is sufficient. In our
research, the internal Business Process Model is considered. Four
basic categories of elements used to model such processes, presented
in Fig. 1, are: flow objects (activities, gateways, and events), con-
necting objects (sequence flows, message flows, and associations),
swimlanes, and artifacts [23].

39

Flow Objects Connecting Objects ArtifactsSwimlanes

Annotation text

Events

Activities

Gateways

Sequence Flow

Message Flow

Association

Pool

Lanes
(within a pool)

Data Object

Text Annotations

Group

Figure 1. BPMN core objects

Activities constitute the main BPMN elements. They denote tasks
that have to be performed and are represented by rectangles with
rounded corners. The sequence flow between activities, the flow of
control, is depicted by arcs. The directions of arcs depict the order in
which the activities have to be performed.

Events, represented by circles, denote something that happens dur-
ing the lifetime of the process. The icon within the circle denotes the
event type, e.g. envelope for message event, clock for time event.

Gateways, represented by diamond shapes, determine forking and
merging of the sequence flow between tasks in a process, depending
on some conditions.

3 Equivalences of BPMN Models
In various application domains there is a need to compare process
models [32]. One of the possible results of such a comparison can be
that two structurally different graphical representations of a business
process are behaviorally (and semantically) equivalent. Thus, BPMN
processes can be regarded as equivalent if both of them can be trans-
formed into a common graphical representation [14].

There is ongoing research in the area of process models equiva-
lences [5, 32, 35]. However most of the researchers do not consider
BPMN notation, but e.g. Petri nets [5, 32]. There are tools which can
prove selected equivalences of BPMN processes [14]. However, this
topic still remains an open research problem [16].

3.1 Basic equivalent structures
Some basic equivalences that follow directly from the semantics of
model elements described in the BPMN specification [23] are pre-
sented in Table 1.

Other basic equivalences have been presented by Wohed et al. [35]
when defining the five simple control-flow patterns for process con-
trol based on the concepts defined by Workflow Management Coali-
tion [4], such as:

1. sequence — the ability to depict a sequence of activities,
2. parallel split — the ability to capture a split in a single thread of

control into multiple threads which can execute in parallel,
3. synchronization — the ability to capture a synchronization of mul-

tiple parallel subprocesses/activities into a single thread,
4. exclusive choice — the ability to represent a decision point in

a workflow process where one of several branches is chosen,
5. simple merge — the ability to depict a point in the workflow pro-

cess where two or more alternative branches come together with-
out synchronization.

Apart from the sequence, the other patterns can be modeled in sev-
eral ways. The models in each column of the Table 2 are equivalent.

One can also observe that in many cases multiple gateway struc-
ture can be replaced by a single gateway, as shown in Table 3.
Moreover, Gruhn and Laue described patterns in BPMN models that
deal with OR-gateways which can be replaced by AND- or XOR-
gateways [9], as presented in Table 4 (each row contains an equiva-
lent pair of structures). They claimed that the equivalent model is eas-
ier to understand, as it is cognitively less complex. Such transforma-
tion is also consistent with a study on the comprehensibility of BPM
carried out by Sarshar and Loos [28], which shows that OR-gateways
are significantly less comprehended than AND or XOR gateways.
Thus, Mendling et al. recommended to avoid OR-gateways [20].

Several researchers noticed that in several situations it is possible
to reduce number of repeated activities [14, 17]. The first example
in Table 5 shows a situation where the same activity is located at
the last position of all incoming sequence flow paths before a join
gateway. It is possible to reduce the number of nodes by moving
this activity behind the join gateway. The second one is similar but
concerns a situation in which the repeated activity is located at the
first position after a split gateway.

In [10], Jung et al. proposed a transformation from the BPMN-
formed business process to its semantically equivalent XPDL pro-
cess. Although both BPMN and XPDL are conceived of as a directed
graph structure and the mapping should be straightforward, there are
some differences between BPMN and XPDL. Thus, in the paper [10]
several BPMN transformations are considered.

One of them concerns a loop mechanism. A loop in a process can
be depicted as in Fig. 2a. The BPMN 2.0 specification defines the
"testBefore" standard loop attribute, which constitutes a flag that con-
trols whether the loop condition is evaluated at the beginning (test-
Before = true) or at the end (testBefore = false) of the loop iteration.
Instead of using this attribute, a loop can be depicted explicitly as in
Fig. 2b (test time: before) and Fig. 2c (test time: after).

Loop equivalences

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 1 of 1 24.05.2012

a) Loop modeled as a loop activity

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 1 of 1 24.05.2012

b) Loop modeled using control flow (test time: before)

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 1 of 1 24.05.2012

c) Loop modeled using control flow (test time: after)

Figure 2. Variants of a loop structure [10]

Another transformation of loops in graphs was proposed by
Zhongjun Du and Zhengjun Dang in [7]. Based on the graph reduc-
tion technique [27], they proposed an algorithm which transforms the
loop in the workflow to an acyclic sub-graph. Although their solution
does not use BPMN, it is rather general and should be applicable to
BPMN models as well.

40

Simple equivalences
simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

control flows without gateways control flows with gateways

some

A A

A A A

A

...

...

A

...

...

A

...

...

Krzysztof Kluza 7 of 7 29.05.2012

some

A A

A A A

A

...

...

A

...

...

A

...

...

Krzysztof Kluza 7 of 7 29.05.2012

model with start and end events model without start and end events

some

A A

A A A

A

...

...

A

...

...

A

...

...

Krzysztof Kluza 7 of 7 29.05.2012

some

A A

A A A

A

...

...

A

...

...

A

...

...

Krzysztof Kluza 7 of 7 29.05.2012

intermediate message event start message event

some

A A

A A A

A

...

...

A

...

...

A

...

...

Krzysztof Kluza 7 of 7 29.05.2012

some

A A

A A A

A

...

...

A

...

...

A

...

...

Krzysztof Kluza 7 of 7 29.05.2012

multiple start event-based gateway multiple intermediate event-based gateway

Table 1. Equivalences of BPMN structures based on the semantics of elements (based on the BPMN specification [23])

Control flow equivalences
Merge Exclusive Choice Synchronization Parallel Split

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

with XOR-gateway, alt 1 with XOR gateway, alt 1 with AND-gateway with AND-gateway

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

with XOR-gateway, alt 2 with XOR gateway, alt 2 partially through sub-Activities implicit

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

simple eq

A A

A

B

C

A

B

C

B

C

A

C

A

B

A

B

C

A

B

C

A

B

C

A

B

C

C

A

B

C

A

B

C

A

B

Krzysztof Kluza 6 of 7 29.05.2012

implicit without XOR-gateway through sub-Activities

Table 2. Basic control-flow patterns in BPMN [35]

41

Multiple gateways equivalences

morgan

A

B

B

D

A B

C

D

C

Krzysztof Kluza 3 of 7 29.05.2012

morgan

A

B

B

D

A B

C

D

C

Krzysztof Kluza 3 of 7 29.05.2012

multiple parallel gateway with a common task single parallel gateway

multiple gateways

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Krzysztof Kluza 4 of 7 29.05.2012

multiple gateways

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Krzysztof Kluza 4 of 7 29.05.2012

multiple parallel gateway single parallel gateway

multiple gateways

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Krzysztof Kluza 4 of 7 29.05.2012

multiple gateways

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Krzysztof Kluza 4 of 7 29.05.2012

multiple inclusive gateway single inclusive gateway

multiple gateways

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Krzysztof Kluza 4 of 7 29.05.2012

multiple gateways

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Krzysztof Kluza 4 of 7 29.05.2012

multiple exclusive gateway single exclusive gateway

Table 3. Equivalences of BPMN structures based on multiple gateway elements

3.2 Complex Equivalences of BPMN structures

Other transformations considered in [10] concern discrimination and
serialization mechanisms. In Table 6 several examples of the applica-
tion of the discriminator transformation to selected BPMN elements
are presented. The serialization examples, which transform some-
thing serialized implicitly to another thing serialized explicitly, are
shown in Table 7.

Qing-xiu et al. [24], in order to verify a workflow model based
on Petri net, proposed several reduction actions, such as reduction
of sequential, iterative, or adjacent structure. However, the proposed
reductions are not directly applicable to BPMN models.

Tantitharanukul and Jumpamule [31] defined Generalized Busi-
ness Process Modeling Notation (GBPMN) as a notation for dia-
grams which nodes are labeled with the process expression. They
presented an algorithm which converts any BPMN into GBPMN
form. It is important to mention that the GBPMN is not a standard-
ized solution, thus it is not very useful in practice. However, one of
the steps of their algorithm is taken if the existing diagram has more
than one start event or end event. In such a case, they stipulate adding
a new single start event and/or a new single end event, and connect-
ing these events to the existing diagrams by using inclusive gateway
which is capable of capturing whether they simultaneously start or
not. Using single start and end events should be taken into account
when modeling, and such a procedure should be considered as a part
of a normalization algorithm for business processes as well.

42

Gateways equivalences

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012

refaktoring

AA

A A

A A

B

A

B

A

B

A

B

A

Krzysztof Kluza 5 of 7 29.05.2012Table 4. Gateways equivalences of BPMN structures (based on [9])

Multiple activities equivalences

brackets

B

A

B

AC

C

C

A

A

C

BB

C

A

Krzysztof Kluza 1 of 1 31.05.2012

brackets

B

A

B

AC

C

C

A

A

C

BB

C

A

Krzysztof Kluza 1 of 1 31.05.2012

brackets

B

A

B

AC

C

C

A

A

C

BB

C

A

Krzysztof Kluza 1 of 1 31.05.2012

brackets

B

A

B

AC

C

C

A

A

C

BB

C

A

Krzysztof Kluza 1 of 1 31.05.2012

Table 5. Multiple activities equivalences of BPMN structures (based on [14, 17])

43

Discriminator equivalences of events

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

boundary intermediate event intermediate event in normal flow

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 1 of 1 31.05.2012

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

multiple event a number of single events
Discriminator equivalences of gateways

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

termination of a process using terminate event normal process termination

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012
multiple event gateway a combination of gateways and single events

Table 6. Discriminator equivalences of BPMN structures (based on [10])

3.3 Guidelines for modelers
The normalization process should also take into account the existing
guidelines for business modelers. Most of the existing tools do not
require to comply with any guidelines or modeling requirements, so
a user has to adhere to them itself.

One of the papers with most impact in the business process mod-
eling field by Mendling et al. [20] concerns guidelines for business
process modelers, which should be taken into account when model-
ing business processes. They formulated seven guidelines and prior-
itized them with the help of industry experts [20]:

1. Model as structured as possible.
2. Decompose a model with more than 50 elements.
3. Use as few elements in the model as possible.
4. Use verb-object activity labels.
5. Minimize the routing paths per element.
6. Use one start and one end event.
7. Avoid OR routing elements.

La Rosa et al. [26] performed a systematic analysis and proposed
a number of concrete syntax modifications for business process mod-
els to manage their complexity. They presented a collection of pat-
terns that generalize and conceptualize various existing mechanisms
to change the visual representation of a process model. Their goal
was to simplify the representation of processes. Thus, they identified

eight patterns which reduce the perceived model complexity with-
out changing the abstract syntax of the model and classified them
according to the following hierarchy [26]:

1. Layout Guidance — describes features to modify the process
model layout.

2. Outline visual mechanisms to emphasize certain aspects:

(a) Enclosure Highlight — for visually enclosing close a set of log-
ically related model elements,

(b) Graphical Highlight — to change the visual appearance of
model elements, such as shape, line thickness and type, etc.

(c) Pictorial and Textual Annotation — to assign pictorial ele-
ments, such as icons or images, to modeling elements, or to
visually represent free-form text in the canvas, which can be
attached to modeling elements without changing semantics.

3. Two representation patterns:

(a) Explicit Representation — to capture process modeling con-
cepts via a dedicated graphical notation,

(b) Alternative Representation — to capture process modeling con-
cepts without the use of their primary graphical notation.

4. Naming Guidance — naming conventions or advice for model el-
ements’ labels, which can be syntactic (e.g. using a verb-object
style) or semantic (e.g. using a domain-specific vocabulary).

44

Serialization equivalences for gateways

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

loop

A B C

A B C

A B C

A A

A B C

D

A B C

D

A B A B

A

B

C

A

B

C

A

B

A

B

A

B

C

A

B

C

Krzysztof Kluza 2 of 7 29.05.2012

implicit join explicit join
Serialization equivalences for links

link

A

B ...

Z A

B ...

Z

A

Z

X Y

Z

A Z

X Y

Z

Krzysztof Kluza 1 of 1 24.05.2012

link

A

B ...

Z A

B ...

Z

A

Z

X Y

Z

A Z

X Y

Z

Krzysztof Kluza 1 of 1 24.05.2012

internal links in a model a model without links

link

A

B ...

Z A

B ...

Z

A

Z

X Y

Z

A Z

X Y

Z

Krzysztof Kluza 1 of 1 24.05.2012

link

A

B ...

Z A

B ...

Z

A

Z

X Y

Z

A Z

X Y

Z

Krzysztof Kluza 1 of 1 24.05.2012

external links in a model a model without links

Table 7. Serialization equivalences of BPMN structures (based on [10])

4 Conclusion

Although BPMN is the most widespread notation used by soft-
ware architects and business analysts for modeling Business Pro-
cesses, it is not clear which structures should be preferred and which
avoided. The BPMN specification does not clarify how the notation
should be used for modeling various processes. Thus, the standard-
ization of such modeling technique in BPMN is desired.

As BPMN allows for expressing the same semantics using var-
ious syntactic structures, this can cause the modeling and analysis
challenges. Cognitive understanding of model semantics can vary in
case of complex syntactic differences. Furthermore, a behaviorally
equivalent but syntactically different structures can be analyzed in
different ways or even can be untranslatable to other languages in or-
der to be verified. To address these issues, a set of best practices for
modelers as well as normalization of BPMN models are needed.

In this paper, we prepared the first step towards such a normaliza-
tion process – based on a literature review, we presented an overview
of the topic of BPMN models equivalences, identified various be-
haviorally (or semantically) equivalent structures, and pointed out
possibilities of equivalent patterns.

Moreover, we presented several guidelines for modelers, which
should be taken into account when modeling, and considered as a part
of a normalization algorithm for business processes.

While normalization can be performed manually, and usually is in
the case of ad hoc modeling, it is possible to support such a process
with tools. However, most of the existing tools do not require to com-
ply with any guidelines or modeling requirements, so a user has to
adhere to them itself.

Furthermore, normalization can help in the future research on
structuring diagrams in order to decrease their semantic complexity.
Our research can be further useful for many purposes, such as pro-
cess matching, identifying the differences between process models,
analyzing similarities or measuring compliance of processes.

In our future research, we will formalize the presented equiva-
lences. This will allow for implementing a tool for proving that two
models are equivalent or using some of the existing tools for ana-
lyzing BPMN patterns for this purpose [15, 17, 18, 30]. Our goal is
to define the preferable structures of the model, which will consti-
tute a normalization process and a part of a modeling methodology
for modeling business processes integrated with rules [22, 21]. Such
process can be further supported by a proper tool framework [11].

45

References

[1] Thomas Allweyer, BPMN 2.0. Introduction to the Standard for Business
Process Modeling, BoD, Norderstedt, 2010.

[2] Ahmed Awad, Matthias Weidlich, and Mathias Weske, ‘Visually spec-
ifying compliance rules and explaining their violations for business
processes’, Journal of Visual Languages & Computing, 22(1), 30–55,
(2011). Special Issue on Visual Languages and Logic.

[3] Michael Becker and Ralf Laue, ‘A comparative survey of business pro-
cess similarity measures’, Computers in Industry, 63(2), 148–167, (Feb
2012).

[4] Workflow Management Coalition, ‘Workflow management coalition
terminology & glossary’, Technical Report WFMC-TC-1011, WfMC,
United Kingdom, (Feb 1999).

[5] Ana Karla Alves de Medeiros, Wil M. P. van der Aalst, and A. J. M. M.
Weijters, ‘Quantifying process equivalence based on observed behav-
ior’, Data Knowl. Eng., 64(1), 55–74, (2008).

[6] Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina
Käärik, and Jan Mendling, ‘Similarity of business process models: Met-
rics and evaluation’, Information Systems, 36(2), 498–516, (Apr 2011).

[7] Zhongjun Du and Zhengjun Dang, ‘A new algorithm based graph-
search for workflow verification’, in Proceedings of the 2nd Interna-
tional Conference on Information Engineering and Computer Science
(ICIECS), 25-26 Dec. 2010, pp. 1–3. IEEE, (2010).

[8] Kerstin Gerke, Jorge Cardoso, and Alexander Claus, ‘Measuring the
compliance of processes with reference models’, in On the Move
to Meaningful Internet Systems: OTM 2009, eds., Robert Meersman,
Tharam Dillon, and Pilar Herrero, volume 5870 of Lecture Notes in
Computer Science, 76–93, Springer Berlin / Heidelberg, (2009).

[9] V. Gruhn and R. Laue, ‘Reducing the cognitive complexity of busi-
ness process models’, in Proceedings from the 8th IEEE International
Conference on Cognitive Informatics, 15-17 June 2009. ICCI’09., pp.
339–345, (2009).

[10] Moonyoung Jung, Hak Soo Kim, Myung Hyun Jo, Kyung Hyun Tak,
Hyun Suk Cha, and Jin Hyun Son, ‘Mapping from BPMN-formed
business processes to XPDL business processes’, in Proceedings of
the Fourth International Conference on Electronic Business – Shaping
Business Strategy in a Networked World ICEB, pp. 422–427. Academic
Publishers/World Publishing Corporation, (2004).

[11] Krzysztof Kluza, Krzysztof Kaczor, and Grzegorz J. Nalepa, ‘Enriching
business processes with rules using the Oryx BPMN editor’, in Artifi-
cial Intelligence and Soft Computing: 11th International Conference,
ICAISC 2012: Zakopane, Poland, April 29–May 3, 2012, eds., Leszek
Rutkowski and [et al.], volume 7268 of Lecture Notes in Artificial In-
telligence, pp. 573–581. Springer, (2012).

[12] Li Kuang, ‘A formal analysis of behavioral equivalence for web ser-
vices’, in Proceedings from the IEEE Congress on Services - Part I,
2008, pp. 265–268, (2008).

[13] Min-Hsun Kuo and Yun-Shiow Chen, ‘A method to identify the differ-
ence between two process models’, Journal of Computers, 7(4), 998–
1005, (2012).

[14] Vitus S. W. Lam, ‘Equivalences of BPMN processes’, Service Oriented
Computing and Applications, 3(3), 189–204, (2009).

[15] Vitus S. W. Lam, ‘Formal analysis of BPMN models: a NuSMV-based
approach’, International Journal of Software Engineering and Knowl-
edge Engineering, 20(7), 987–1023, (2010).

[16] Vitus S. W. Lam, ‘Foundation for equivalences of BPMN models’, The-
oretical and Applied Informatics, 24(1), 33–66, (2012).

[17] Ralf Laue and Ahmed Awad, ‘Visual suggestions for improvements in
business process diagrams’, Journal of Visual Languages & Computing,
22(5), 385–399, (2011).

[18] Antoni Ligęza, ‘BPMN – a logical model and property analysis’, Deci-
sion Making in Manufacturing and Services, 5(1-2), 57–67, (2011).

[19] N.M.b. Mahmod and S.b.A. Radzi, ‘An approach to analyse similarity
of business process variants’, in Proceedings from the IEEE Interna-
tional Conference on Progress in Informatics and Computing (PIC),
2010, pp. 640–644, (2010).

[20] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst, ‘Seven pro-
cess modeling guidelines (7pmg)’, Information & Software Technology,
52(2), 127–136, (Feb 2010).

[21] Grzegorz J. Nalepa, ‘Proposal of business process and rules model-
ing with the XTT method’, in Symbolic and numeric algorithms for
scientific computing, 2007. SYNASC Ninth international symposium.
September 26–29, eds., Viorel Negru and et al., pp. 500–506, Los

Alamitos, California ; Washington ; Tokyo, (september 2007). IEEE
Computer Society, IEEE, CPS Conference Publishing Service.

[22] Grzegorz J. Nalepa, Krzysztof Kluza, and Sebastian Ernst, ‘Modeling
and analysis of business processes with business rules’, in Business
Process Modeling: Software Engineering, Analysis and Applications,
ed., J.A. Beckmann, Business Issues, Competition and Entrepreneur-
ship, 135–156, Nova Science Publishers, (2011).

[23] OMG, ‘Business Process Model and Notation (BPMN): Version 2.0
specification’, Technical Report formal/2011-01-03, Object Manage-
ment Group, (January 2011).

[24] Liu Qing-xiu, Cao Bao-xiang, and Zhao Yi-wei, ‘An improved veri-
fication method for workflow model based on petri net reduction’, in
Proceedings of the 2nd IEEE International Conference on Informa-
tion Management and Engineering (ICIME), 2010, pp. 252–256. IEEE,
(2010).

[25] S. Rinderle-Ma, M. Reichert, and M. Jurisch, ‘Equivalence of web ser-
vices in process-aware service compositions’, in Proceedings from the
IEEE International Conference on Web Services, 2009. ICWS 2009, pp.
501–508, (2009).

[26] Marcello La Rosa, Arthur H. M. ter Hofstede, Petia Wohed, Hajo A.
Reijers, Jan Mendling, and Wil M. P. van der Aalst, ‘Managing process
model complexity via concrete syntax modifications’, IEEE Transac-
tions on Industrial Informatics, 7(2), 255–265, (2011).

[27] Wasim Sadiq and Maria E. Orlowska, ‘Analyzing process models us-
ing graph reduction techniques’, Information Systems, 25(2), 117–134,
(2000).

[28] Kamyar Sarshar and Peter Loos, ‘Comparing the control-flow of epc
and petri net from the end-user perspective’, in Business Process Man-
agement, eds., Wil van der Aalst, Boualem Benatallah, Fabio Casati,
and Francisco Curbera, volume 3649 of Lecture Notes in Computer Sci-
ence, 434–439, Springer Berlin / Heidelberg, (2005).

[29] Marcin Szpyrka, Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof
Kluza, ‘Proposal of formal verification of selected BPMN models with
Alvis modeling language’, in Intelligent Distributed Computing V. Pro-
ceedings of the 5th International Symposium on Intelligent Distributed
Computing – IDC 2011, Delft, the Netherlands – October 2011, ed.,
Frances M.T. Brazier et al., volume 382 of Studies in Computational
Intelligence, 249–255, Springer-Verlag, (2011).

[30] N. Tantitharanukul, P. Sugunnasil, and W. Jumpamule, ‘Detecting dead-
lock and multiple termination in bpmn model using process automata’,
in Electrical Engineering/Electronics Computer Telecommunications
and Information Technology (ECTI-CON), 2010 International Confer-
ence on, pp. 478–482, (May 2010).

[31] Nasi Tantitharanukul and Watcharee Jumpamule, ‘Detection of livelock
in BPMN using process expression’, in Advances in Information Tech-
nology, eds., Borworn Papasratorn, Kittichai Lavangnananda, Wichian
Chutimaskul, and Vajirasak Vanijja, volume 114 of Communications in
Computer and Information Science, 164–174, Springer Berlin Heidel-
berg, (2010).

[32] Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M.
Weijters, ‘Process equivalence: Comparing two process models based
on observed behavior’, in Business Process Management, 4th Interna-
tional Conference, BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, volume 4102 of Lecture Notes in Computer Science, pp.
129–144, (2006).

[33] Matthias Weidlich, Gero Decker, Alexander Grosskopf, and Mathias
Weske, ‘Bpel to bpmn: The myth of a straight-forward mapping’, in
Proceedings of the OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE 2008. Part I on On the Move to
Meaningful Internet Systems, OTM ’08, pp. 265–282, Berlin, Heidel-
berg, (2008). Springer-Verlag.

[34] Stephen A. White and Derek Miers, BPMN Modeling and Reference
Guide: Understanding and Using BPMN, Future Strategies Inc., Light-
house Point, Florida, USA, 2008.

[35] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M.
ter Hofstede, and Nick Russell, ‘On the suitability of bpmn for busi-
ness process modelling’, in Business Process Management, 4th Inter-
national Conference, BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, volume 4102 of Lecture Notes in Computer Science, pp.
161–176, (2006).

[36] Jian Zhu and Hung Keng Pung, ‘Process matching: A structural ap-
proach for business process search’, in Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009. COMPU-
TATIONWORLD ’09. Computation World, pp. 227–232, (2009).

46

Critical evaluation of the XTT2 rule representation
through comparison with CLIPS1

Krzysztof Kaczor and Grzegorz J. Nalepa2

Abstract. There are two main approaches to the design Business
Rules. The first one involves formalized methods that strictly define
the syntax and semantics of rules. This approach usually requires
technical skills or conceptual knowledge and therefore is not appro-
priate for everyone. In the second approach, dedicated rule languages
are used for facilitating rules specification. Nevertheless, such lan-
guages are usually programming solutions without a precisely de-
fined semantics. This may cause ambiguities in knowledge interpre-
tation and thus, the efficient rule interoperability becomes impossi-
ble. The goal of our work is to develop a formalized model for a
rule representation which will allow for an effective rule interchang-
ing. For this purpose, we want to combine the above mentioned ap-
proaches by tailoring the formalized rule representation called XTT2
to languages provided by CLIPS or Drools. This paper is the first
step in our research providing an identification of the most important
differences between the XTT2 and CLIPS rule languages.

1 Introduction
Rule-Based Systems constitute a mature technology in the field of
Artificial Intelligence. Over the years, they were applied in many do-
mains like medicine, engineering [7] or decision support [10]. De-
spite their maturity, many ideas, algorithms and solutions that are
applied in new technologies, such as Business Rules (BR) [22], Se-
mantic Web [2] or Complex Event Processing [12], are derived from
the classic Rule-Based Systems [9].

Business Rules are one of the latest application of classic rules.
They are intended to be created by business people in order to define
logical aspects of business. Despite the fact that business people may
not have any technical skills or scientific knowledge, BR must be
appropriate to be used by such users. Currently, many techniques are
used for the specification of BR, from description in natural language
to design by using formalized methods. There is no single method
that is considered to be the best. Usually, a designer chooses one
according to his or her own preferences.

Rules specification in natural language is very intuitive and does
not require any specialized skills. Moreover, such a method allows
for an easy specification of very complex rules. However, such in-
formal description may be very vague, especially in case of complex
rules which may be hard to understand or in the worst case may be
misunderstood. This type of problems can be prevented by using for-
malized methods having the following advantages:

• they provide a clear framework enabling uniform knowledge mod-
eling with well-defined expressive power,

1 The paper is supported by the AGH UST Grant.
2 AGH University of Science and Technology, Poland, email:

kk,gjn@agh.edu.pl

• speed up the design process – formalized rule language opens pos-
sibility to partially formalize the design process which can, in turn,
lead to better detection of design errors, possibly at early develop-
ment stages,

• allow for a superior knowledge base quality control – formal
methods can be used to identify logical errors in rule formulation,

• simplify knowledge interoperability – partially formalized trans-
lation to other knowledge representation formats are possible, and

• allow for custom inference modes – structured rule bases require
inference strategies alternative to the classic inference algorithms.

This paper is organized as follows: Section 2 gives a short mo-
tivation for our work. A short introduction to the XTT2 method is
provided by Section 3. Section 4 is the main part of this paper dis-
cussing the most important differences between XTT2 and CLIPS.
The paper is concluded with Section 5 providing short summary and
information concerning future works.

2 Motivation

Together with the development of BR design methods, a number
of development tools also increases. Among them very important
are Drools [4] and OpenRules3. Sometimes, it is desirable to have
a mechanism for exchanging knowledge between different tools.
This makes maintenance of the rule bases easier and allows for more
efficient usage of these tools. Nevertheless, the existing tools usually
allow for BR modeling in an informal way and do not provide any
common rule representation model. This provides ambiguity in the
rule semantics and in turn, does not allow for efficient interchanging.

A problem of knowledge interoperability is known since classic
rule-based expert systems and still remains an open issue. During
the years, several approaches to this problem were proposed. The
most important of them are: Knowledge Interchange Format4, Rule
Markup Language [3], Rule Interchange Format [8] and REWERSE
Rule Markup Language [23]. Nevertheless, the above mentioned
methods provide a very general model of rule-based knowledge rep-
resentation, what makes their practical application hard or even im-
possible. Hence, practical tools supporting any of these methods do
not exist or provide only partial support.

The main objective of our current research is to develop a for-
malized method for an efficient rule interoperability. We assume that
this can be done by providing a common and logic-based rule rep-
resentation model. Thanks to such a model, the semantics of rules,
specified in other representations, can be clarified or defined. What

3 See: http://openrules.com
4 See: http://www.upv.es/sma/teoria/sma/kqml_kif/kif.
pdf

47

is more, this model will allow to specify which representation can
be losslessly translated to another and how this translation should be
performed. We assume that the model will be based on the formal-
ized rule representation method called XTT2 [19] which is provided
by the Semantic Knowledge Engineering (SKE) methodology [16].
The XTT2 method (see Section 3) is a visual method for model-
ing structured rule bases. This method is intended to be a rigorously
formalized rule language. Nevertheless, a rigorous formalization has
restricted the expressiveness of the language. Thus, in comparison
with other methods, XTT2 has several limitations and significant dif-
ferences. This is why our current work is focused on the extension of
XTT2 towards such languages as CLIPS5 [6] or Drools. These two
languages have been selected as the reference because they proved to
be successful implementations of rule-based systems.

CLIPS is a classic rule-based expert system shell developed by
NASA in 1984. The original intent for CLIPS was to gain use-
ful insight and knowledge about the construction of expert system
tools and to lay the groundwork for the construction of a replace-
ment tool for the commercial tools being used in that time. Because
of its portability, extensibility, capabilities, and low cost, it has re-
ceived widespread acceptance throughout the government, industry,
and academia. Development of this tool has improved the accessi-
bility to expert system technology throughout the public and private
sectors for a wide range of applications and diverse computing en-
vironments. CLIPS became one of the most commonly known rule
language that was used for e.g. image processing or recognition.

As a classic rule-based tool, CLIPS became a reference tool also
for other tools like Jess which is a rule engine and scripting environ-
ment providing rule language. It is written in Java. Jess was origi-
nally a clone of the essential core of CLIPS, but has begun to acquire
a Java-influenced flavor. Therefore, it is a convenient tool for giving
Java applets and applications the ability to reason.

Drools is a much younger project which was started in 2001. Cur-
rently Drools is widely used by Business environment as Business
Logic Integration Platform providing a unified and integrated plat-
form for Rules, Workflow and Event Processing. Drools-based rules
are specified using dedicated rule language and processed by dedi-
cated rule engine called Drools Expert. Similarly to Jess, this engine
is also written in Java and allows for easy integration with other ap-
plications written in this language.

The above mentioned tools are not intended to provide a formal-
ized rule representation that is necessary for efficient rule interchange
preserving their semantics. The provide only programming solutions
for rapid development of the rule bases. In our work, we try to com-
bine the advantages of formalized methods and programming so-
lutions. This paper describes the first step of this work. The main
contribution is the comparison of the XTT2 method with the CLIPS
language, by identifying the differences and limitations of XTT2 in
terms of CLIPS. It describes the most important aspects of extending
XTT2 towards CLIPS and challenges that must be overcome for an
efficient rule interoperability between these two representations.

3 Overview of XTT2
This section gives a short introduction to XTT2 (eXtended Tabular
Trees) [17, 18]. XTT2 can be considered a multidimensional concept.
It involves many aspects of the rule-based systems design:

• Rule Base — this aspect involves issues related to structure and
maintenance of a rule base.

5 See: http://clipsrules.sourceforge.net

• Rule Syntax — defines how the knowledge can be expressed and
what are the limitations of a provided rule language i.e. this issue
concerns rule language syntax as well as its expressiveness.

• Rule Semantics — defines the semantics of the rules and how they
should be interpreted.

• Rule Processing — is related to inference mechanism as well as
the way how the knowledge processing is performed.

This section is divided into four subsections describing XTT2 in
terms of above mentioned aspects.

3.1 Rule Base
An XTT2-based rule base contains attributes that store values. Each
attribute-value pair can be considered as a single fact. The set of all
pairs is called system state and is defined as follows:

s : (A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn) (1)

where Ai are the attributes and Si are their current values.
It is important to notice, that the number of attributes (facts) is con-
stant during the inference process. The knowledge base modification
can be made only by changing attribute value.

XTT2 provides modularized rule base, where rules working to-
gether are placed in one context. Contrary to the majority of other
systems, where a basic knowledge item is a single rule, in the XTT2
formalism the basic component displayed, edited and managed at a
time is a single context. A single context corresponds to a single de-
cision table. Thus, only those rules which have the same conditional
and decisions attributes can be placed in one context i.e. each rule in
a decision table determines values of the same set of attributes.

XTT2 is a hybrid knowledge representation combining a decision
network and decision tables. Tables are linked together forming a
network-like structure of the XTT2 decision tables. Links define or-
der in which tables should be processed. Considering a single table
as a blackbox for determining attribute value, the links corresponds
to functional dependencies between attributes.

3.2 Rule Syntax
The XTT2 rule language provide a dedicated syntax called HeKatE
Meta Representation (HMR). This is a textual representation that can
be easily read by human and automatically processed by an inference
engine. Moreover, the HMR language is suitable for visual represen-
tation (see Figure 1). Thanks to this, such a knowledge representa-
tion provides not only high density of knowledge visualization, but
assures transparency and readability. Additionally, the visual repre-
sentation is fully supported by the HQEd [20] graphical editor. Using
this editor, a HMR-based representation can be automatically gen-
erated for a given visual model. Then, the HMR representation is
processed by the HeaRT [15] tool which is the dedicated inference
engine for reasoning with the XTT2 rule bases [1].

For study purposes, an example below presents the same rule
in three representations: natural language, HMR representation and
XTT2-based visual representation. The rule comes from Cashpoint
case study [5] and is as follows:

if
driver is younger than 25 years
and
it has driving licence at least three years

then
increase the driver current discount by 50%

48

Figure 1. An example of visual representation of XTT2 rule base

Figure 2. An example of visual representation of XTT2 rule

This rule can be easily expressed with HMR syntax:

xrule ’Table1/1’:
[driverAge lt 25,
drLicAge gte 3]

==>
[driverDiscount set (driverDiscount+50)]

The figure 2 depicts the equivalent visual representation of the pro-
vided HMR syntax.

3.3 Rule Semantics

XTT2 is based on the Attributive Logic with Set of Values over Finite
Domains (ALSV(FD)) logic [11, 18]. ALSV(FD) is a formal frame-
work for attributive logic that provides syntax, semantics and some
notes on inference rules for a logical calculus in which attributes
can take set values (generalized attributes). In comparison with other
attributive logics, its expressive power is increased through the in-
troduction of new relational symbols enabling definitions of atomic
formulae. This logic provides very strict and rigorous definition of
rule semantics allowing for knowledge definition which can be un-
ambiguously interpreted.

A single rule in ALSV(FD) is defined as a set of ALSV(FD)
triples. The exemplary rule from Section 3.2 can be expressed in
ALSV(FD) in the following way:

r1 : (driverAge,<, 25) ∧ (drLicAge,>=, 3)→
→ (driverDiscount, :=, driverDiscount+ 50)

The complete formalization of XTT2 can be found in [19].

3.4 Rule Processing
XTT2 provides a dedicated rule processing mechanism. This is an
advanced inference algorithm that can work in one of four modes:
Fixed Order, Data, Token and Goal Driven (for more details see [13]).
The inference mechanism is responsible for evaluating and executing
(firing) rules. The rules are processed in predetermined order which
is specified by taking the following issues into account: inference
mode, links between modules, order of the rules in the XTT2 table.

4 Challenges in the Rule Interoperability between
XTT2 and CLIPS

The goal of our work is to develop a common unified rule repre-
sentation model for efficient rule interoperability between different
rules representations. Our starting point is formalization of the XTT2
method which provides the underlying ALSV(FD) logic. Neverthe-
less, the current form of the method does not use the ALSV(FD) logic
effectively (lack of support for complex types) and has several lim-
itations. In comparison to CLIPS, this language constitutes a subset
of CLIPS. In this context, the knowledge interchange between XTT2
and CLIPS requires many improvements and changes that must be
done in XTT2 in order to provide a better coverage of CLIPS. Some
of the limitations stem from the made assumptions and others stem
from the visual representation. This section provides a detailed de-
scription of the most important challenges in the context of extending
XTT2 and efficient rule interoperability with CLIPS. The section is
divided into subsections according to aspects introduced in Section 3.

4.1 Rule Base
Rule base modification CLIPS provides a mechanism allowing

for modifying a Knowledge Base (KB) by asserting, retracting and
modifying facts. This can be done using the following commands:
assert, retract and modify. Thanks to this, when the system
is running, the number of facts in the KB can be changed. In contrast
to CLIPS, the XTT2-based knowledge base defines a system with a
constant number of facts described by attributes. During the execu-
tion, attributes are neither created nor removed from the knowledge

49

base. Only the current value of the attribute can be changed. Never-
theless, the process of asserting and retracting facts in XTT2 can be
achieved using generalized attributes (see paragraph Multivalued at-
tributes in Section 4.2).

Modularization of Knowledge Base Both, XTT2 or CLIPS pro-
vide mechanism for creating modularized knowledge base. In XTT2,
set of rules that work together are grouped into so called contexts.
Each context corresponds to a single XTT2 table and contains rules
which have the same attributes in their conditional and conclusion
parts. In turn, CLIPS provide modules which can be defined using
defmodule construct. In contrast to XTT2, CLIPS modules do not
provide any policy determining which construct can be placed in
a module. In particular any rule (or other construct) can be placed in
any module. In fact, this is also possible in XTT2 and can be achieved
by extending rules LHS and RHS by all attributes that appears in the
other rules in this context. However, this can lead to formation of
large tables in which majority of cells contain always true compar-
isons (an example of such table is depicted in Figure 3).

CLIPS modules allow a set of constructs to be grouped together
such that explicit control can be maintained over restricting the ac-
cess of the constructs by other modules. This type of control is sim-
ilar to global and local scoping used in languages such as C. The
default behavior in CLIPS restricts constructs in one module to be
accessible in another. However, this can be modified and selected el-
ements can be permitted to be visible from other modules. In turn, the
XTT2 rules placed in one context are not accessible from another.

In both CLIPS or XTT2, modules are used by rules to provide exe-
cution control. In CLIPS, each module has its own pattern-matching
network [13], and thus only rules from the active module can be ac-
tivated and executed. Similarly, in XTT2 only rules from the active
context are evaluated and can be executed.

Variables CLIPS provides two elements which allow for stor-
ing information: facts and variables. Nevertheless, the semantics of
these two elements is different. Facts are knowledge-based elements
which defines what is currently known. Any change made in a set
of facts invokes the pattern-matching process. In contrast to facts,
variables are used for defining non knowledge-based values e.g. val-
ues of some factors, constant values, etc. Variables can be used as a
part of pattern-matching process, however changes of their values do
not invoke pattern-matching. CLIPS variables can be defined using
defglobal construct e.g.:

(defglobal ?*high-priority-factor* = 100)

In turn, XTT2 does not provide any concept having the same se-
mantics as CLIPS variables. The system designed with XTT2 con-
sists of attributes. According to ALSV(FD), the state of the XTT2-
based system is defined as a set of current values of all attributes
specified within the knowledge base. From logical the point of view,
the state of the system is represented as a logical formula (1). Ac-
cording to this definition, all XTT2 attributes are considered to be
knowledge-based elements.

It is important to notice that the inference mechanism from XTT2
works in different way than in CLIPS. It evaluates rules in predeter-
mined order and changes in attribute values do not affect it.

4.2 Rule syntax
Complex types The first and most important limitation of the

XTT2 is related to complex types. A complex type is a data type

that provides its own structure and aggregates a fixed set of labelled
fields, possibly of different types, into a single type. An example of
such type is a structure that is known from C programming language.
The ALSV(FD) logic provides support for complex types and objects
throughout attribute function which denotes a property of an object
and allows for accessing its value using property name. However,
currently XTT2 uses only atomic types for defining all attributes in
the knowledge base and assumes that only one object (in this case
it is the system being described) with a specific property name ex-
ists. In turn, CLIPS provides deftemplate element that allows
for defining complex facts consisting of number of typed properties
(called slots in CLIPS-based vocabulary):

(deftemplate person
(slot name (type SYMBOL))
(slot surname (type SYMBOL))
(slot gender (type SYMBOL))
(slot height (type INTEGER))
(slot age (type INTEGER))

)

This example defines a template of person which allows for creating
complex facts consisting of five typed properties: name, surname,
gender, height and age.

Multivalued attributes ALSV(FD) provides a generalized at-
tribute that can take more than one value at any point of time. This is
very important and useful feature of ALSV(FD), however it is hard
to assess to which element of the CLIPS language it corresponds.
There are two obvious possibilities:

• facts list of the same type – a generalized attribute can be used
for aggregation of values having the same type. A value of gener-
alized attribute is defined as set. Such sets can be modified using
set theory operators. In particular union of sets or difference of
sets can correspond to CLIPS operations of asserting or retracting
facts to/from knowledge base.

• multivalued slots – the deftemplate construct in CLIPS allows
for defining multivalued slots which can take more that one value:

(deftemplate person
(slot name (type SYMBOL))
(slot surname (type SYMBOL))
(slot gender (type SYMBOL))
(slot age (type INTEGER))
(slot height (type INTEGER))
(multislot friends (type SYMBOL))

)
(assert (person (name Tom) (surname Joe)

(gender M) (age 18) (height 180)
(friends John Alex Emma))

)

This defines a man (M) Tom Joe that is 180 cm tall and 18 years
old and has three friends: John, Alex and Emma. It is important
to notice that the list of friends is not treated as one string contain-
ing spaces, only as the list of three separate values.
Usually multislot contains values with the same semantics (infor-
mally described by a slot name). Apart from the support for com-
plex types, the generalized attribute in XTT2 can be used in the
same context as the multivalued slots in CLIPS.

50

Figure 3. An example of a large XTT2 table

Expressions in LHS The XTT2 method provides mechanisms for
logical quality analysis called HalVA [14]. It allows for discovering
logical anomalies such as inconsistency, redundancy, contradictions
etc. In order to assure higher efficiency of HalVA, the LHS of the
rule can contain only a simple attribute-to-value comparisons e.g.:

A = 12 B > 23 C in {1,2,3}

Such comparisons test a specific attribute against its value. Thus,
an attribute is always on the left hand side of a comparison and con-
stant value or set of constant values on the right hand side. Neither
attributes nor expressions are allowed on the right hand side e.g.:

A = 11+1 B < A-3

In turn, the Right Hand Side (RHS) of a rule can contain complex
expressions and attribute references:

A := A+1 B := 4*3

In contrast to XTT2, CLIPS allows for any complex expressions in
conditional part of the rules. This limitation of XTT2 can be omitted
by creating an additional decision table having required expression
in its RHS. The figure 4 depicts the equivalent construction in CLIPS
and XTT2. The rules comes from the Cashpoint example [21] and are
intended to check if a user has entered a correct PIN. This is done by
comparing enteredPIN and correctPin attributes. The equal-
ity of this two attributes is a condition that must satisfied in order to
authorize a user. In CLIPS this condition can be placed directly in
LHS of a rule, while XTT2 required an additional table (Table3)
and attribute (pinDifference).

Constraints ALSV(FD) provides a concept of attribute domain.
A domain is a finite set of admissible values that attribute can take.
Each domain is based on one of two primitive types symbolic or nu-
meric. In XTT2, for each attribute a domain must be specified. The
domain concept plays important role because it is used by verifi-
cation mechanism for discovering logical anomalies in knowledge
base. The example below shows a definition of types (in HMR lan-
guage) restricting values of the attributes describing a person. We
assume that:

name is not restricted and can contain any list of characters,
gender can take only two values: M for male and F for female,
height can take a value from the interval [0, 300],
age can take a value from the interval [0, 120].

xtype [name: name,
base: symbolic].

xtype [name: gender,
base: symbolic,
domain: [M,F]].

xtype [name: height,

base: numeric,
domain: [0 to 300]].

xtype [name: age,
base: numeric,
domain: [0 to 120]].

In CLIPS, a value of a slot can be restricted using similar
concepts: primitive types, list of values, ranges. However, CLIPS
provides more primitive types than XTT2: SYMBOL, STRING,
LEXEME, INTEGER, FLOAT, NUMBER, INSTANCE-NAME,
INSTANCE-ADDRESS, INSTANCE, EXTERNAL-ADDRESS, and
FACT-ADDRESS. Moreover, CLIPS allows for restricting a number
of elements in multivalued slots.

The equivalent CLIPS-based definition of slot constraints describ-
ing person may look like this:

(deftemplate person
(slot name (type SYMBOL))
(slot surname (type SYMBOL))
(slot gender (type SYMBOL)

(allowed-symbols M F))
(slot height (type INTEGER) (range 0 300))
(slot age (type INTEGER) (range 0 120))
(multislot friends (type SYMBOL))

)

The one advantage of XTT2 in comparison with CLIPS is that the
XTT2 allows for defining symbolic ordered domains. Such concept
is similar to enum construct from C programming language. Thanks
to ordering, the symbolic values can be treated as ordinary integer
values e.g.:

xtype [
name: weekdaytype,
base: symbolic,
domain: [mon/1,tue/2,wed/3,thu/4,

fri/5,sat/6,sun/7],
ordered: yes].

In this example a type describing weekdays is defined. Each day has
assigned an equivalent numeric value. Thanks to that one can write:

mon > tue A = tue+wed

The results of this expressions are equal to results of corresponding
expressions where symbolic values were replaced with numeric.

Values binding In some cases, it is very hard or even impossible
to define LHS of a rule by using only logical and relational oper-
ators. Let us consider the following example: The knowledge base
contains information about a number of people described by proper-
ties defined in paragraph Complex types:

51

xrule ’Table3’/1:
[enteredPin eq any,

correctPin eq any]
==>
[pinDifference set
(correctPin-enteredPin)]

:’Table2’.

xrule ’Table2’/1:
[pinDifference neq 0]

==>
[authorizated set false,

failedAttempts set (failedAttempts+1)]
:’Table1’.

xrule ’Table2’/2:
[pinDifference eq 0]

==>
[authorizated set true,

failedAttempts set failedAttempts]
:’Table1’.

(defrule rule-1
?a <- (atm (enteredPin ?e)

(correctPin ?c)
(failedAtempts ?f))
(test (neq ?e ?c))

=>
(modify ?a (authorizated false)

(failedAtempts (+ ?f 1))))

(defrule rule-2
?a <- (atm

(enteredPin ?e)
(correctPin ?c))

(test (eq ?e ?c))
=>
(modify ?a (authorizated true)))

Figure 4. The equivalent construction in XTT2 (on the left) and CLIPS (on the right)

(person (name Tom) (surname Joe)
(gender M) (age 18) (height 180)
(friends John Alex Emma))

(person (name Emma) (surname Johnson)
(gender F) (age 19) (height 180)
(friends Tom Julia))

(person (name Alex) (surname Johnson)
(gender M) (age 17) (height 170)
(friends Tom Emma Julia))

Our task is to define a rule selecting all allowed pairs of persons
which can dance together. Two person can dance together when sat-
isfy the following conditions: 1) They have different gender and 2)
they have the same growth. Such a rule can be easily written us-
ing mechanism allowing for value binding. This mechanism allows
for retrieving desired value during inference and storing it in a user-
defined variable. Then, this variable can be used in further conditions
as well as conclusion part. The rule for our task can look like this:

(defrule rule-1 "Our solution"
(person (name ?n1) (surname ?s1)
(gender M) (height ?h))

(person (name ?n2) (surname ?s2)
(gender F) (height ?h))

=>
(printout t ?n1 " and " ?n2 crlf)

)

The LHS of the rule contains two conditions that refers to person
template. Thanks to this, the inference algorithm would try to match
all possible pairs of person facts. When a single match is per-
formed, then the variables (which names start with question mark)
are bound to the current value of the matched fact. Binding is made
only one time during a single match and the variable stores bounded
value until this particular match is finished. Thus, usage of bounded
variable in further conditions restricts the set of elements that can
be matched because matching algorithm must take its value into ac-

count. So, the variable binding can be used for defining restrictions
across several objects. In our example, the ?h variable is bound in
the first condition and then its value is used in the second condition.
This restricts the set of possible facts that can be matched to the sec-
ond condition, because apart from the value F of the gender slot,
a matched fact must have the same value of the height slot as the
fact matched in the first condition.

Variable bindings is currently not supported in XTT2. Thus, defi-
nitions of equivalent rule is currently not possible.

Functions CLIPS allows for defining functions. It is possible to
define a user-defined external functions that can be written in an ex-
ternal language e.g. C and then linked with CLIPS during recom-
pilation. Such functions can be later executed directly in CLIPS in
ordinary manner. Moreover, CLIPS provides a second mechanism
allowing for defining function directly in CLIPS by using CLIPS-
based syntax. This can be done with the help of the deffunction
construct. The CLIPS-based functions have all features that an ordi-
nary function can have i.e.: unique name, list of parameters, sequence
of actions, returned value, recursion. An example function that cal-
culates the factorial of an argument can be written as follows:

(deffunction factorial (?a)
(if (or (not (integerp ?a)) (< ?a 0)) then

(printout t "Factorial Error!" crlf)
else

(if (= ?a 0) then
1

else
(* ?a (factorial (- ?a 1))))))

It is important that each function can be invoked from any part of
a rule and can modify a knowledge base.

XTT2 provides a similar mechanism to CLIPS user-defined ex-
ternal functions through callbacks. Callback function is an external
function written in Prolog or Java language. Then, such function is
invoked by Prolog interpreter directly or by using JPL plugin for call-
backs written in Java.

52

Figure 5. An example of dialog invoked by callback function

Callbacks in XTT2 are strictly related to attributes. Each attribute
can have two callback functions assigned: input callback and/or out-
put callback. The input callbacks are used for retrieving attribute
value from outside system when value of an attribute is not defined.
Thus, this type of callback function can modify a knowledge base. In
contrast to input callbacks, the output callbacks cannot modify state
of the system and are used only for presentation purposes. The or-
der and time when a callback is invoked is determined by inference
algorithm and cannot be redefined. The example below depicts the
definition of input callback and attribute to which is assigned:

xcall ask_console_symbolic: [AttName] >>> (
alsv_domain(AttName,Domain,symbolic),
write(’availible answers are ’),
write(Domain), nl,
write(AttName), write(’: ’), read(Answer),
(member(Answer,Domain) ->

xattr [name: weekday,
abbrev: weekday,
class: simple,
type: weekdaytype,
comm: in,
callback: [ask_console_symbolic,[day]]

This callback function invokes dialog allowing user to provide
value of an attribute. The example of such dialog is depicted in Fig-
ure 5. The list of possible values is created according to attribute
type. The definition of the attribute weekday type can be found in
Section 4.2 in paragraph Constraints.

4.3 Rule semantics
Ordered structures CLIPS facts defined by using deffact con-
struct are also called non-ordered facts. This is because the fact struc-
ture consists of fields that are referred by named slots. Additionally,
CLIPS provides an ordered facts which encode information position-
ally. To access the information, a user must know not only what data
is stored in a fact but which field contains the data. The first field
of an ordered fact specifies a relation that applied to the remaining
fields in the ordered fact e.g.:

(father-of jack bill)

This fact defines that bill is the father of jack.
The current XTT2 method does not provide any concept with sim-

ilar semantics. ALSV(FD) provides support only for complex types,
where properties of object are referred by attribute function.

Rules properties The way, a rule is processed by CLIPS can be
modified by changing rule properties. CLIPS provides support for
two properties auto-focus and salience.

The auto-focus property allows an automatic focus com-
mand to be executed whenever a rule becomes activated. If the
auto-focus property for a rule is true, then a focus command
on the module in which the rule is defined is automatically executed
whenever the rule is activated. This property can be used for defining
rules responsible for values validation:

(defrule VIOLATIONS::bad-age
(declare (auto-focus TRUE))
(person (name ?name) (age ?x&:(< ?x 0)))

=>
(printout t ?name " has a bad age value."))

The above rule is activated whenever the VIOLATIONS module re-
ceives focus and checks if all the person facts accessible in that mod-
ule have correct value of the slot age.

The salience property allows for assigning a priority to a rule.
This property is a part of conflict resolution mechanism, which uses
a salience value for determining order of rules to be fired. Rules
with higher value have precedence to be executed.

XTT2 does not provide any rules properties directly. However, the
ALSV(FD) logic defines the decision component (table) as follows:

t = (r1, r2, . . . , rn)

This means that rules placed in an XTT2 table are ordered. The in-
ference engine uses this order for determining precedence of rules
evaluation and execution. This precedence can be changed by mov-
ing rules in the table.

This behavior corresponds to CLIPS salience rule property.
However, XTT2 forces the different values of rules priority in con-
trast to CLIPS that allows for rules with the same priority. This is
why, the XTT2 method do not provide conflict resolution strategies.

4.4 Rule processing
Facts maintenance Any modification of KB in CLIPS that is done
by using commands like assert, retract and modify, exe-
cutes a pattern-matching algorithm which attempts to match rules
to the current state of the system (as represented by the fact-list and
instance-list). Each rule that has satisfied their conditional part (LHS
– Left Hand Side) with respect to the modification is activated for
execution. CLIPS allows non monotonic inference because each rule
firing may again modify the KB. This inference process continues
while KB is being modified. During this time, any rule can be acti-
vated and executed many times.

As it was mentioned, the XTT2 knowledge base contains a con-
stant number of attributes (facts). The only modification that can
be made is changing of the attribute value. However, in contrast
to CLIPS, such modifications of the KB do not execute pattern-
matching algorithm in order to find the rules that have satisfied their
conditional parts against to a new system state.

This behavior is deliberate and follows from the method assump-
tions. According to this assumptions, the user defines the functional
dependencies between attributes (links between tables). Thus, if a
rule should be checked for execution when a value of an attribute
is changed, then a user must define an appropriate dependency. This
allows for optimized rule activating and more advanced inference
control in comparison with CLIPS.

53

5 Summary
The main focus of this paper is to compare XTT2 with the CLIPS
language. The scope of the provided comparison covers only the ba-
sic CLIPS language elements. In fact, the CLIPS language provides
fully object oriented syntax called CLIPS Object Oriented Language
(COOL). However, in the context of this paper the COOL syntax has
not been taken into account. This paper tries to identify differences
between these two languages in terms of the following aspects:

• Rule Base — differences related to knowledge maintenance and
representation,

• Rule syntax — comparison of the languages expressiveness,
• Rule semantics — differences in knowledge interpretation,
• Rule processing — issues related to different knowledge evalua-

tion and processing.

As it can be concluded from this paper, expressiveness of the XTT2
language (in comparison with CLIPS) is limited in each of the con-
sidered aspect. What is more, this paper shows that the ALSV(FD)
logic, on which XTT2 is based, has also several limitations. On the
other hand, in contrast to CLIPS, the XTT2 language provides strong
underlying formalism playing a key role in rule interoperability. Due
to the fact that CLIPS language is only a programming solution, a
definition of an efficient CLIPS-based knowledge interchanging can-
not be done. This is why, the extension of both the ALSV(FD) logic
and XTT2 is a must in order to define an unified and formalized
knowledge interoperability method. This extended formalism will
allow for preserving rule semantics during interchanging. What is
more, this method is intended to be supported by tools.

We selected the CLIPS language because it is considered to be
successful in the Artificial Intelligence research community and have
been used for many AI software projects. What is more, similarly
to CLIPS, the XTT2 language is intended to be rule-based systems
modeling method in their classic form. On the other side, the current
application of rules (Business Rules) differs from the classic systems.
One of the most important difference lies in different rule types. The
classic systems usually provide only one rule type called production
rule, while the BR-based languages provide five rule types: Denotic
Rules, Derivation Rules, Integrity Rules, Reaction Rules and Trans-
formation Rules. This rule classification is based on the specific rule
properties (e.g. monotonicity of KB modification) and purposes (e.g.
reaction on events). We do not discuss the differences between these
types in details, because this is out of scope of this paper. These five
types of Business Rules slightly extend the semantics of the produc-
tion rules. Nevertheless, each type of Business Rule can be repre-
sented in classic rule-based systems using the production rules. This
is why, despite the classic nature of CLIPS or XTT2, these languages
can also be used for BR modeling.

The mentioned in Section 2. methods for rule interoperability (e.g.
RIF) try to take rule properties and purpose into account. This is why,
such a language is divided into so called dialects. RIF provides two
standard dialects for rule representation: BLD (Basic Logic Dialect)
and PRD (Production Rules Dialect). In general, the BLD and PRD
dialects divide rules into two types: allowing for monotonic and non-
monotonic changes in the Knowledge Base. In terms of BR types,
usually the Derivation, Denotic and Transformation rules can be ex-
pressed in the BLD dialect while remaining in the PRD dialect.

Working on extension of XTT2 and ALSV(FD), the different types
of rules will be taken into account and different formalisms will be
provided. We assume, the unified rule representation model will be
based on the Attributive Logic. However, this issue will be elaborated
in details in the future work.

REFERENCES
[1] Weronika T. Adrian, Szymon Bobek, Grzegorz J. Nalepa, Krzysztof

Kaczor, and Krzysztof Kluza, ‘How to reason by HeaRT in a semantic
knowledge-based wiki’, in Proceedings of the 23rd IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2011, pp. 438–
441, Boca Raton, Florida, USA, (November 2011).

[2] Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer,
The MIT Press, 2008.

[3] Harold Boley, Said Tabet, and Gerd Wagner, ‘Design rationale for
ruleml: A markup language for semantic web rules’, in SWWS, eds., Is-
abel F. Cruz, Stefan Decker, Jérôme Euzenat, and Deborah L. McGuin-
ness, pp. 381–401, (2001).

[4] Paul Browne, JBoss Drools Business Rules, Packt Publishing, 2009.
[5] Tim Denvir, Jose Oliveira, and Nico Plat, ‘The Cash-Point (ATM)

’Problem’’, Formal Aspects of Computing, 12(4), 211–215, (Dec 2000).
[6] Joseph Giarratano and Gary Riley, Expert Systems. Principles and Pro-

gramming, Thomson Course Technology, Boston, MA, United States,
4th edn., 2005. ISBN 0-534-38447-1.

[7] Adrain A. Hopgood, Intelligent Systems for Engineers and Scientists,
CRC Press, Boca Raton London New York Washington, D.C., 2001.

[8] Michael Kifer and Harold Boley, ‘RIF overview’, W3C working draft,
W3C, (October 2009). http://www.w3.org/TR/rif-overview.

[9] The Handbook of Applied Expert Systems, ed., Jay Liebowitz, CRC
Press, Boca Raton, 1998.

[10] Antoni Ligęza, ‘Expert systems approach to decision support’, Euro-
pean Journal of Operational Research, 37(1), 100–110, (1988).

[11] Antoni Ligęza, Logical Foundations for Rule-Based Systems, Springer-
Verlag, Berli, Heidelberg, 2006.

[12] David Luckham, ‘Complex event processing (CEP)’, Software Engi-
neering Notes, 25(1), 99–100, (2000).

[13] Grzegorz Nalepa, Szymon Bobek, Antoni Ligęza, and Krzysztof Kac-
zor, ‘Algorithms for rule inference in modularized rule bases’, in Rule-
Based Reasoning, Programming, and Applications, eds., Nick Bassili-
ades, Guido Governatori, and Adrian Paschke, volume 6826 of Lecture
Notes in Computer Science, pp. 305–312. Springer, (2011).

[14] Grzegorz Nalepa, Szymon Bobek, Antoni Ligęza, and Krzysztof Kac-
zor, ‘HalVA - rule analysis framework for XTT2 rules’, in Rule-Based
Reasoning, Programming, and Applications, eds., Nick Bassiliades,
Guido Governatori, and Adrian Paschke, volume 6826 of Lecture Notes
in Computer Science, pp. 337–344. Springer, (2011).

[15] Grzegorz J. Nalepa, ‘Architecture of the HeaRT hybrid rule engine’, in
Artificial Intelligence and Soft Computing: 10th International Confer-
ence, ICAISC 2010: Zakopane, Poland, June 13–17, 2010, Pt. II, eds.,
Leszek Rutkowski and [et al.], volume 6114 of Lecture Notes in Artifi-
cial Intelligence, pp. 598–605. Springer, (2010).

[16] Grzegorz J. Nalepa, Semantic Knowledge Engineering. A Rule-Based
Approach, Wydawnictwa AGH, Kraków, 2011.

[17] Grzegorz J. Nalepa and Antoni Ligęza, ‘A graphical tabular model
for rule-based logic programming and verification’, Systems Science,
31(2), 89–95, (2005).

[18] Grzegorz J. Nalepa and Antoni Ligęza, ‘HeKatE methodology, hybrid
engineering of intelligent systems’, International Journal of Applied
Mathematics and Computer Science, 20(1), 35–53, (March 2010).

[19] Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof Kaczor, ‘Formal-
ization and modeling of rules using the XTT2 method’, International
Journal on Artificial Intelligence Tools, 20(6), 1107–1125, (2011).

[20] Grzegorz J. Nalepa, Antoni Ligęza, Krzysztof Kaczor, and Weronika T.
Furmańska, ‘HeKatE rule runtime and design framework’, in Proceed-
ings of the 3rd East European Workshop on Rule-Based Applications
(RuleApps 2009) Cottbus, Germany, September 21, 2009, eds., Adrian
Giurca, Grzegorz J. Nalepa, and Gerd Wagner, pp. 21–30, Cottbus, Ger-
many, (2009).

[21] Pascal Poizat and Jean-Claude Royer, ‘Kadl specification of the cash
point case study’, Technical report, IBISC, FRE 2873 CNRS - Univer-
site d’Evry Val d’Essonne, France, Genopole Tour Evry 2, 523 place
des terrasses de l’Agora 91000 Evry Cedex, (January 2007).

[22] Barbara von Halle, Business Rules Applied: Building Better Systems
Using the Business Rules Approach, Wiley, 2001.

[23] G. Wagner, A.Giurca, and S. Lukichev, ‘R2ml: A general approach for
marking up rules’, in Principles and Practices of Semantic Web Rea-
soning, Dagstuhl Seminar Proceedings 05371, eds., F. Bry, F. Fages,
M. Marchiori, and H. Ohlbach, (2005).

54

Template-based Extensible Prototyping for Creativity-
and Usability-Oriented Knowledge Systems Development

Martina Freiberg and Frank Puppe 1

Abstract. In knowledge-based systems (KBS) development, there
still is a lack of research regarding user interface (UI) design and
(usability) evaluation. Thus, especially KBS UIs still often are de-
veloped in a rather ad hoc manner, lacking reusability of proven so-
lutions and potentially valuable experimentation with design alter-
natives and their thorough evaluation. We propose the tailored KBS
prototyping and engineering tool ProKEt for practically supporting
Template-based Extensible Prototyping, a technique for more effi-
cient, affordable, and UI design/usability evaluation oriented KBS
development. Further, we report current projects where both the ap-
proach and the tool provided valuable support.

Keywords: Knowledge-based System, Knowledge System Engi-
neering, Extensible Prototyping, UI Design, Usability Evaluation

1 Introduction

Knowledge-based systems (KBS) engineering still constitutes an ef-
fortful, expensive task in terms of development time and costs; also,
the focus often is on knowledge base development whereas UI de-
sign, creativity/experimentation, or even formal usability evaluation
are considered rather lower priority task—if considered at all. Proba-
bly due to the numerous benefits of web-based systems, an increasing
number of knowledge-based/expert systems seems to be developed
for the web. However, such systems apparently often are being de-
veloped for quite specialized contexts in a rather ad hoc manner and
not (re)using (neither providing) any patterns or best practices espe-
cially regarding the UI/interaction design. Amongst the reasons for
this may be the lack of research—c.f. Duan et al. [9]—and tool sup-
port for encompassing KBS development, i.e., particularly integrat-
ing UI design and usability evaluation. An important premise for cre-
ative KBS (UI) development, for reusability of existing solutions and
their usability-related evaluation is the availability of an affordable
development methodology and tool. With regards to general KBS
development there exist various software tools—such as JavaDON
[15], or KnowWE [6]—as well as development methodologies—e.g.,
CommonKADS [14], or the Agile Process Model [5]. Yet, such ap-
proaches mostly focus on knowledge base design and evaluation. In
contrast, we propose ProKEt as tailored development tool for web-
based KBS that seamlessly couples agile KBS development—with
particular focus on UI/interaction design—with semi-automated us-
ability evaluation activities; therefore, the tool particularly supports
Template-based Extensible Prototyping—a tailored form of evolu-
tionary prototyping—and fosters reuse of existing KBS solutions.
Concerning usability evaluation—specifically collecting click log

1 University of Würzburg, Germany, email: freiberg/puppe@informatik.uni-
wuerzburg.de

data—there exist a vast range of both research-based and commer-
cial tools; however, those mostly need to be separately installed and
configured. In contrast, ProKEt seamlessly integrates appropriately
tailored evaluation mechanisms.

In Section 2, we propose Template-based Extensible Prototyping
in more detail. We then introduce the KBS engineering tool ProKEt
in Section 3 for practical support of the described, tailored prototyp-
ing approach for KBS. In Section 4, we report experiences with the
approach and the tool during current projects. We conclude with a
summary of the presented research and an outlook on prospective
future work in Section 5.

2 Template-based Extensible Prototyping

Evolutionary prototyping—see e.g. [7]—in particular evolves
mature prototypes continuously into productive systems; yet the
process, until a productive stage is reached may be quite lengthy.

Template-based Extensible Prototyping (TEP) We propose
Template-based Extensible Prototyping (TEP) as a tailored form of
online evolutionary [7] prototyping that additionally (re-)uses cer-
tain template or pattern sets for accelerating development. In con-
trast to basic evolutionary prototyping, TEP particularly focusses on
the anytime production of functional systems. TEP basically con-
sists of the two stages pure prototyping, and productive prototyp-
ing; consequently, it results in two types of prototype artifacts: An
interactive, potentially slightly stripped-down user interface proto-
type (pure prototype), that can be transferred into an entirely pro-
ductive, non-prototypical system with no effort. In the context of
KBS, we think of pure prototypes as a specific excerpt of the sys-
tem that mirrors only the core KBS specific UI and interactions, but
not yet contains general required functionality such as session per-
sistence or login mechanisms. In the productive prototyping stage,
the pure prototype is transferred into a productive system by asso-
ciating it with the respective knowledge base and aforementioned
add-on functionality. For a detailed introduction of basic Extensible
Prototyping and how it can be integrated with agile KBS develop-
ment, see [12]. The additional usage of proven KBS solutions in the
form of templates further enriches Extensible Prototyping by foster-
ing efficiency and affordability as copying & and adaption/extension
can be exploited. Templates thereby are applied directly at the pure
prototyping stage when developing the UI of the prototype and fu-
ture system, respectively. The range of templates should encompass
more generic, system-level templates—e.g. for the entire framing
UI design—to fine granular templates—e.g. for single UI elements
such as buttons or the representation of questions and their answer
alternatives. We propose a set of (system-level) templates derived

55

from practical project experiences in the next section. Besides from
UI templates, knowledge patterns—for creating the knowledge base,
such as proposed in [13]—are an opportunity for further leveraging
the overall KBS development process.

Due to the application of reusable UI/KBS templates where
reasonable and due to the deliberate exclusion of certain system
aspects, pure prototyping becomes an affordable and straightforward
task—even the more when TEP-tailored tools such as ProKEt,
see Section 3, are available. Thus, it particularly supports the
development of multiple alternative KBS prototypes in parallel
and/or to develop in a highly iterative manner. Also, a more creative,
experimental KBS design process is fostered, as e.g. novel KBS
UI forms can be experimentally tried out while there is no need
to deal with selecting—or newly developing—the appropriate
required knowledge representation immediately. It can be argued,
that template-based development and using a specific and thus
potentially restricted tool could rather hinder than unfold creativity;
there, we argue that it is no strict prerequisite to always make
use of all or even any existing templates, but they are more to be
seen as additional option to accelerate development in cases where
system requirements and framing conditions are similar. Moreover,
we claim it a major important feature of such template sets to be
assembled of modular entities that built on each other and can be
most easily extended; this allows for reusing just the templates that
match the given requirements (and save time and efforts) and to
get creative with other parts. Regarding template selection, this is
currently intended as a manual process, depending on the project
requirements and on the experiences of the knowledge engineer;
however, we also plan to further enrich the approach with a template
selection KBS which could—based on some entered framing
properties—propose and setup the most appropriate template for a
given context. Further, the affordability of frequent iterations sup-
ports usability-oriented development both implicitly and explicitly.
Implicitly, as iterative development most often naturally detects
shortcomings and flaws of the system which are more likely to be
refined the more development iterations are performed. Explicit
usability support is provided, as it becomes possible to create several
alternative pure prototypes—which, as described above, exhibit
a mature UI and the core interaction—and to formally evaluate
them in a straightforward manner under quite realistic framework
conditions. Due to the possibility to create alternative prototypes by
simply adding adapted/other knowledge bases to the pure prototype,
both UI and knowledge base can be assessed and refined in a highly
iterative and visual manner.

Exemplary KBS UI Templates Due to practical experiences
in past and current KBS projects, several system-level templates for
web-based KBS could be identified. The Questionary style displays
questions in resemblance to paper-based questionnaires. Two exem-
plary realizations of the Questionary template are shown in Figure
1, A (1-column style) & B (3-column style). For a more compact
UI, the Daily template was developed; an exemplary 3-column Daily
prototype is depicted in Figure 1, C. There, questionnaires and their
included questions form a column-wide, visual entity similar as in
common newspapers. Both Questionary and Daily style can be ap-
plied for documentation KBS—where the focus is on collecting data
uniformly and correctly—as well as for consultation KBS—that de-
rive one or several solutions based on the user input provided for
the questions. Questionary and Daily style are introduced some-
what more elaborately in [12]. As an example for an efficient, skill-
building KBS UI, we propose the iTree template, particularly apt for

clarification consultation KBS—i.e., systems, where only a single is-
sue is rated. An exemplary implementation is shown in Figure 2, A.
The core issue as well as the questions–a tailored form of yes/no
questions with additional value neutral/uncertain—that determine
the core issue rating are presented in a hierarchical, tree-like man-
ner. The core issue rating is derived from its top-level questions—
placed directly underneath the core issue and are interactively and
recursively navigable. We refer to [10] for a more detailed introduc-
tion of the iTree. Also applicable for clarification KBS, yet also for
multiplex consultation KBS—where one issue/solution out of a po-
tentially extensive set of solutions is to be derived due to the provided
input—is the One-Question template. An example is shown in Fig-
ure 2, B. It basically aims at closely imitating a conversation between
the system and a user by always presenting only the one appropriate
next question at a time. The intention of such a strict conversational
style is to ease the interaction as that way the user can always fully
concentrate on the current question at hand, letting the KBS guide
the problem solving workflow. In [10] also more details on the One-
Question style are given. Of the proposed templates, so far only iTree
and One-Question contain explanation modules, i.e., parts of the UI
where the results of the KBS session are displayed and explained—in
iTree above the tree part and in One-Question above the main, con-
versational question display panel. This is mostly due to the fact, that
Questionary and Daily style were so far only applied in the context of
documentation KBS where no solutions/diagnoses/explanations are
required; nevertheless, there exist rough, alternative Questionary pro-
totypes that also include prototypical explanation modules realized,
e.g., as additional side panels.

3 ProKEt: Practical KBS Development Support

ProKEt is a tailored Prototyping and Knowledge systems
Engineering tool for web-based documentation and consultation
KBS; it additionally provides support for various usability evaluation
activities and fosters Template-based Extensible Prototyping (TEP).
Pure prototypes are constructed in ProKEt by simply specifying a
certain template name—e.g. oqd for the One-Question template—
when defining the prototype-knowledge in a tailored XML format;
then ProKEt automatically selects the required system-level and sub-
templates and assembles them into a KBS prototype (pure prototyp-
ing). Templates thereby are defined by using the StringTemplate [4]
technique, whereas the specific design/styling of UI elements is
mostly done by separate CSS; relevant core interactivity—e.g., value
abstraction—which needs to be imitated in pure prototypes is real-
ized by JavaScript and is included automatically. When switching
to productive prototyping, the basic KBS framework remains the
same, making productive prototyping as easy as linking a productive
knowledge base and potentially slightly adapting the base specifica-
tion regarding, e.g., the CSS to be used. ProKEt currently supports
exclusively d3web [1] knowledge bases which allow for defining a
vast range of knowledge representations, such as (heuristic) rules,
decision trees, or set-covering knowledge. This straightforward pure-
to-productive-prototyping switch is supported for a bunch of basic
KBS templates—as summarized in the previous section—out of the
box. Thus ProKEt allows for a straightforward and affordable pro-
totyping and engineering process in cases where framing conditions
and system requirements are similar. Yet, also creativity is fostered,
as existing templates and/or style files can easily be adapted or even
completely rewritten, whereas the ProKEt framework—that finally
assembles prototypes and productive KBS and enriches them by the
required interactivity—needs not to be altered normally. For a more

56

extensive introduction of particularly the agile prototyping and engi-
neering process with ProKEt and a detailed description of the tool,
see [12]. It has to be noted, that when used as a prototyping envi-
ronment alone, ProKEt (is not intended to and) does not provide any
way to create (d3web) knowledge bases. However, when addition-
ally using the semantic wiki KnowWE [6] for knowledge base devel-
opment, both UI front-end and KB back-end can be developed in a
tightly interconnected manner: Changes made to the knowledge base
in the wiki can directly be deployed to the ProKEt artifact by a sim-
ple button click, making the changes immediately visible in the UI,
which in turn eases the direct investigation of the recent changes and
the potentially resulting side-effects regarding the UI.

Regarding usability, ProKEt directly offers integrated functional-
ity to perform usability evaluations. This fosters the seamless in-
tegration of more or less extensive or formal evaluations into the
KBS development process. Therefore, ProKEt basically offers quan-
titative and qualitative data collection mechanisms, which can be
added for both prototypes and productive KBS by a simple prop-
erty in the knowledge specification. As a result, e.g. questionnaires
are included within the prototype UI and/or click logging is acti-
vated. Thus, developers can setup and conduct various evaluation
scenarios and assess the current development state in a favorable way
any time. Regarding quantitative data, ProKEt provides a tailored,
mouse click and keyboard event logging mechanism that records
all relevant actions during KBS usage sessions. Based on that data,
ProKEt furthermore automatically calculates a bunch of known us-
ability metrics—such as Success Rate, or Average Task Time. For
qualitative data collection, ProKEt supports both the integration of
form-based questionnaires/surveys—standard measures as e.g. the
SUS [8] are provided out of the box, yet own questionnaires can be
integrated equally easily—and of anytime feedback—a mechanism
for collecting free user feedback at any time during a KBS session.
All recorded data—quantitative as well qualitative—can be exported
to a standard CSV format for further processing e.g. in statistical
software. For more details on ProKEt’s usability extension, see [11].

4 Case Studies

Several current projects so far showed the general applicability as
well as the value of the Template-based Extensible Prototyping ap-
proach and the ProKEt tool.

Mediastinitis The Mediastinitis Registry [3] is a german na-
tional project for improving patient care in a cardiac medical con-
text. Therefore, certain medical data are collected and statistically
evaluated as to develop appropriate future treatment strategies—for
more details, see [12]. For best supporting data entry by the medical
staff, a knowledge-based documentation system was implemented.
Based on a first specification of the underlying knowledge, the first
prototype—Figure 1, A—was created; based on that, ProKEt al-
lowed for creating also the two alternative designs in a straightfor-
ward manner by just adapting the respective UI templates and style
files, and linking them with the existing knowledge. Thus the entire
KBS framework, that was working for the first prototype, was reused,
which greatly shortened the development efforts required for the UI
alternatives (shown in Figure 1, B & C). After selecting the proto-
type fitting the requirements and expectations of the medical doctors
best—Figure 1, B—a productive knowledge base was created and in-
cluded with the chosen prototype UI (productive prototyping stage).
In the further course, one of the doctors from the project reviewed
the respectively current prototype by entering exemplary cases; the
required adaptions—both regarding the knowledge base and its rep-

resentation in the UI—were made in a timely manner and the expert
continued reviewing the adapted prototype; thereby, the possibility to
adapt UI and knowledge base separately from each other, but imme-
diately re-merge them into new productive KBS for further review-
ing was particularly valuable. This highly iterative process allowed
for detecting and removing several non-obvious flaws regarding both
knowledge base and UI, and thus for improving the system’s overall
usability.

(A)

(B)

(C)

(A)

Figure 1. The three initial Mediastinitis prototypes (in german). 1-column
questionary style (A); 3-column questionary style (B); daily style (C).

EuraHS EuraHS [2] is a project of the European Hernia Soci-
ety (EHS) with the goal to improve patient care and increase knowl-
edge regarding abdominal wall hernia surgery. Similar as in Medi-
astinitis, relevant data is to be collected and statistically evaluated;
due to the similar basic framing conditions and application context,
the first EuraHS prototype could be quickly built by (re)using the
basic Mediastinitis prototype framework and just adapting the ini-
tial, exemplary knowledge specification. Based on that prototype, a
first phase of iterative development began, where the expert partic-
ipation remained passive, as he reviewed the respective prototypes
and just reported what to refine. However, once the knowledge was
transferred into a productive d3web knowledge base—starting the
productive prototyping process—the expert was enabled to actively
participate in the further development. This was possible due to the
mechanism to immediately deploy adapted knowledge to the dialog
system via the direct linkage between the knowledge base develop-
ment tool KnowWE [6] and the dialog UI. This extensive expert par-
ticipation was perceived highly beneficial as it led to a high satisfac-
tion on the side of the expert due to his active involvement and result-
ing identification with the system; it further saved time and efforts, as
on the one hand the expert knowledge was formalized in an unsophis-
ticated manner and thus contained less flaws, and on the other hand
the parallel development of KBS/UI (university team) and KB (ex-
pert) led to quicker overall results. The highly iterative process again
enabled many KB and UI refinement cycles, thus enhancing the over-
all quality of the system. The final EuraHS implementation is quite
similar to the final Mediastinitis system—c.f. Figure 1, B—however
enhanced by several additional features including image questions
(where answers can be selected visually) and a more comprehensive
mechanism for flexibly fading in and out parts of the UI depending
on already provided answers. For a more detailed description of Eu-
raHS, see [12].

57

JuriSearch JuriSearch was started in 2012 as a cooperation
between the university of Würzburg and the RenoStar corporation
and aims at building a freely accessible, web-based knowledge-based
system for the legal domain for various topics, such as right of can-
cellation or the law of tenantry. The target system is intended to in-
tegrate both a standard consultation (entrance) module—helping the
user to preselect the specific problem definition—and various clar-
ification modules for each potential problem—which then validate
the concrete rating of that issue. Target users range from legal lay-
men—searching for a basic understanding/estimation of their case to
(fresh) lawyers seeking for guidance regarding legal (sub)domain(s)
that are not exactly their special field of work. So far, the focus lay on

IF

IF

AND

AND

IF

IF

IF

OR

Core Issue

Y

Y

Y

N

Y

N

N

Y

Y

N

N

N

J

reject

confirm

neutral

(G)

N

N

N

N

N

Y

Y

Y

Y

Y
Details

Is the dismissal formally legal?

Is the dismissal legally correct regarding the contents?

Is the dismissal not prohibited due to timely limitations?

Is the dismissal not prohibited due to special laws?

Was the statutory period of notice adhered to?

(B)

(A)

J

N

N

N

N

N

Y

Y

Y

Y

Y
Details

Is the dismissal formally legal?

Is the dismissal legally correct regarding the contents?

Is the dismissal not prohibited due to timely limitations?

Is the dismissal not prohibited due to special laws?

Was the statutory period of notice adhered to?

(B)

Figure 2. The two JuriSearch prototypes: interactively navigable iTree
clarification style (A), and One-Question clarification style (B).

the clarification modules each of which rates exactly one distinct core
issue, e.g. ”Was the cancellation legally correct” (labour legislation
domain). Initially, we experimented with two alternative yet distinct
UI forms: An iTree implementation, depicted in Figure 2, A, and a
One-Question UI, depicted in Figure 2, B. Therefore, first an iTree
prototype was implemented based on a rough specification of the un-
derlying knowledge. The possibility, to create various prototypes by
simply exchanging the knowledge specification again proved valu-
able, as that way the prototypes could be reviewed highly iterative
by a RenoStar staff member; this strongly supported the refinement
and correction of both the underlying knowledge but also its most
appropriate UI representation. ProKEt further allowed for creating
the alternative One-Question UI in an affordable and timely manner
in parallel to the iTree development. Based on those two alternative
prototypes, so far several comparative assessments were performed.
As first goal of the studies, it was assessed whether the iTree or the
One-Question UI style were more suitable—if any—for the target
context in general; there, the results of the studies indicate, that for
the specific context of legal clarification consultation—a domain of
highest expertise which needs to be mirrored adequately yet under-
standably by the KBS—the iTree is perceived more suitable and in-
tuitively usable than the One-Question UI. Elaborate details on that
study can be found in [11]. Furthermore, studies were conducted as
to asses two distinct alternative knowledge base structures for the
iTree style—one adhering to a legal specialist deduction scheme, the
other specifically intended to provide more guidance and overview
for legal laymen users; there, so far no significant distinction could
be identified whether one scheme works better than the other. How-

ever, both the knowledge base as well as the UI could be drastically
improved by refining them according to the respective insights and
user comments gained in the user studies.

5 Conclusion
For leveraging the issue of a lacking integration of UI-related cre-
ativity and usability activities in KBS current development, we pro-
posed Template-based Extensible Prototyping as KBS development
technique that despite originally being developed specifically for the
KBS domain may as well be applicable in general software engineer-
ing. For practical support of the approach, we introduced the KBS en-
gineering tool ProKEt and we reported case studies that showed the
applicability and value of the approach and tool. Regarding future
work, current and upcoming projects raised the need for extending
the collection of KBS classes and UI templates supported by ProKEt.
Also, integrating mouse tracking mechanisms as addition to the ex-
isting click logging seems promising as to gain even more detailed
insights regarding the UI usage evaluation. Equally, an automated, vi-
sual evaluation aid—that compares the solutions derived by the users
with the correct solutions—could strongly support usability related
evaluations. Further, a more formal classification of existing KBS
types and respective suitable UI styles/interaction forms—e.g. in the
form of a KBS pattern catalogue or also an interactive pattern selec-
tion KBS—could enrich the overall approach; thereby, the combina-
tion of UI templates/patterns and KB patterns [13] seems promising
for encompassing, reusability-enabling KBS development.

REFERENCES
[1] http://d3web.sourceforge.net/ , last checked Jun. 1st, 2012.
[2] http://eurahs.drwontwikkeling.nl/, last checked Jun. 1st, 2012.
[3] http://www.dgthg.de/register, last checked Jun. 1st, 2012.
[4] http://www.stringtemplate.org/, last checked Jun. 1st, 2012.
[5] Joachim Baumeister, Agile Development of Diagnostic Knowledge Sys-

tems, IOS Press, AKA, DISKI 284, 2004.
[6] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,

‘KnowWE: A Semantic Wiki for Knowledge Engineering’, Applied In-
telligence, 35(3), 323–344, (2011).

[7] Michel Beaudouin-Lafon and Wendy Mackay, ‘Prototyping Tools and
Techniques’, in The human-computer interaction handbook: fundamen-
tals, evolving technologies and emerging applications, pp. 1006–1031,
Hillsdale, NJ, USA, (2003). L. Erlbaum Associates Inc.

[8] J. Brooke, ‘SUS: A quick and dirty usability scale’, in Usability evalu-
ation in industry, eds., P. W. Jordan, B. Weerdmeester, A. Thomas, and
I. L. Mclelland, Taylor and Francis, London, (1996).

[9] Y. Duan, J. S. Edwards, and M. X. Xu, ‘Web-based expert systems:
benefits and challenges’, Information & Management, 42, 799–811,
(September 2005).

[10] Martina Freiberg and Frank Puppe, ‘itree: Skill-building user-centered
clarification consultation interfaces (to appear)’, in KEOD 2012 - Pro-
ceedings of the International Conference on Knowledge Engineering
and Ontology Development, (2012).

[11] Martina Freiberg and Frank Puppe, ‘Prototyping-based Usability-
oriented Knowledge Systems Engineering’, in To appear in Proceed-
ings of Mensch und Computer 2012, (2012).

[12] Martina Freiberg, Albrecht Striffler, and Frank Puppe, ‘Extensible pro-
totyping for pragmatic engineering of knowledge-based systems’, Ex-
pert Systems with Applications, 39(11), 10177 – 10190, (2012).

[13] Frank Puppe, ‘Knowledge Formalization Patterns’, in Proceedings of
PKAW 2000, Sydney Australia, (2000).

[14] Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog,
Nigel Shadbolt, Walter Van de Velde, and Bob Wielinga, Knowledge
Engineering and Management - The CommonKADS Methodology, MIT
Press, 2 edn., 2001.

[15] Bojan Tomic, Jelena Jovanovic, and Vladan Devedzic, ‘JavaDON: an
open-source expert system shell’, Expert Systems with Applications,
31(3), 595 – 606, (2006).

58

Towards Collaborative Knowledge Engineering for
Improving Local Safety in Urban Environment

Antoni Ligęza and Weronika T. Adrian and Przemysław Ciężkowski1

Abstract. Web systems supporting collaborative knowledge engi-
neering have attracted much attention recently. By using social soft-
ware techniques and attractive yet simple user interface, the motiva-
tion of users increases and the process can be significantly improved.
The willingness of community to invest their time as well as mutual
encouragement can be achieved when users are convinced that their
contribution is important and useful. We propose a social platform
called Social Threat Monitor (STM) aimed at improving safety of lo-
cal communities in urban environment. The main assumption of the
system is the collaboration of users to build and maintain a knowl-
edge base about threats in their neighborhood. Knowledge gathered
in the system can be used by the citizens as well as local authorities
and police. The system supports collaborative knowledge engineer-
ing and management using semantic methods and a GIS component.

1 Introduction
Web-based information systems are used for gathering, storing and
processing diversified information for various purposes. In Web 2.0.
era, users can actively participate in building such systems. Projects
such as Wikipedia have shown that collaborative knowledge acqui-
sition (KA) and management (KM) can be successful if people see
the importance of the project and the KA process is relatively easy.
Mechanisms such as voting, commenting and discussions increase
the possibility of building reliable and useful knowledge bases. Se-
mantic technologies enable adding metadata to regular content and
facilitate automatic knowledge extraction and processing [5].

In this paper, we present a Web-based system for collaborative
knowledge acquisition and management. It is a thematic portal which
aims to gather knowledge about threats of various kinds in local envi-
ronment. This information may be used by citizens as warnings and
by local police as notifications. The system is being developed within
the INDECT project: ”Intelligent information system supporting ob-
servation, searching and detection for security of citizens in urban
environment” 2. The original contribution of this paper consists in
presenting the collaborative knowledge engineering (KE) possibili-
ties including knowledge exchange with external sources with use of
a dedicated Application Programming Interface (API).

The paper is organized as follows: In Sect. 2 the motivation for this
research is given. Sect. 3 provides an overview of the system func-
tionality, user interface and implementation. Mechanisms applied to
facilitate KE with the system are discussed in Sect. 4. The API of the
system is presented in Sect. 5. Related work is outlined in Sect. 6,
followed by a summary in Sect. 7 and future work in Sect. 8.

1 AGH University of Science and Technology, Poland, email:
{ligeza,wta}@agh.edu.pl

2 See http://indect-project.eu.

2 Motivation
The aim of the Task 4.6. of the INDECT project is to develop a
system for distributed knowledge acquisition and management with
GIS [9] integration. The research is motivated by a hypothesis that lo-
cal communities can effectively collaborate to build a useful knowl-
edge base about threats in the neighborhood that can be used by both
the citizens and local services or police. A system promoting collab-
orative knowledge acquisition and management should improve the
communication between the citizens and the services, encourage co-
operation within the community and thereby improve the local safety.

A social software platform facilitate collaborative knowledge en-
gineering in an unintrusive way. Pieces of information shared by dif-
ferent persons are insignificant alone, but connected make a rich di-
versified picture. In popular social software platforms, people build
personal knowledge bases half-consciously by acknowledging things
and events shared by friends or ”followed” people. We want to lever-
age this dynamics and develop a system that would provide useful
information while seamlessly integrating with daily life.

Within the INDECT project, several prototypes have been devel-
oped [3, 8], each of which constitute a information silo Web-based
application. We claim that it is necessary to extend the existing pro-
totypes to be more flexible and better adapted to knowledge inter-
operability. Knowledge gathered in the system should be easily ex-
changed with other applications that can use its data to process it in
an arbitrary way (custom notifications, aggregation, statistics).

3 System Overview
The main goal of the system is to serve as a distributed knowledge
acquisition system for data, information and knowledge provided by
citizens, as well as to enable knowledge management and exchange.
Principles and a conceptual model of the system have been described
in [4]. The general idea of the system can be observed in Figure 1.
The input data, in general, may be composed of: a text description
of a threat, its spatial location, and multimedia documentation. The
data, stored in a relational database equipped with spatial features,
should be presented to the audience in a combined visual and textual
form. The system provides means for searching, filtering, aggrega-
tion and grouping information for users, according to their preferred
form and level of detail. The threats can be presented in a convenient
and transparent way as icons on the map, in reports or notifications.

To enhance the automated knowledge processing of the system,
semantic technologies for GIS were analyzed and discussed in [6].
The semantic research thread led to the development of a prototype
described in [8] which investigates the integration issues of databases
and ontologies. In the ontology, the general categories of threats were
stored, whereas in the database the actual data about selected areas in

http://indect-project.eu

59

Figure 1. Conceptual model of the system [3].

particular time were located. This prototype provided interesting in-
sights and ideas for future investigations. However, for the INDECT
purposes, more lightweight semantics and reasoning has been cho-
sen. Three systems, referenced in [3] use lightweight reasoning and
metadata annotations of threat such as simple tags. In the newest
prototype [2], codenamed Social Threat Monitor (STM), only basic
semantics is added with use of tags and categories (see Section 4).
Summary of improvements with respect to the previous implementa-
tions can be found in [1].

The following groups of users are defined in the system:

Guest is a user with the anonymous web account. He is able to use
basic features of the application. In order to gain more privileges,
a guest need to register and log in into the system.

Member is a user with registered account in the system. With this
account user can add threats, manage his own threats, comment
and vote threats of other users and edit his profile.

Services User is a special account with features helping threats
monitoring.

Moderator is a user with full access to threat records, able to ban
users.

Administrator is a user with full access to the application.

Main part of application is the map (see Fig. 2) that covers all
space user have and resize immediately when needed. The interac-

Figure 2. User Interface of the Social Threat Monitor.

tive map implemented with use of AJAX technology – Asynchronous
JavaScript and XML – provides easy and quick reloading as few
times as possible. Because the URL does not change when only par-
tial reloading is done, the identification of the state of the map (visi-
ble location or threat) is done with hashing (every time map position
is changed or other action is performed, the hash changes).

The map have two editing modes: for browsing and adding threats.
Mouse events are treated adequately to the mode. The map locates
the user’s position, but it can be moved (with mouse or keyboard)
and zoomed (with mouse scroll or scroll on the left on the map).

Users browsing the system can immediately view short threat de-
tails (votes, one picture if available, number of comments and quick
edit link). Voting is available only for registered users, but anony-
mous are able to see how many votes the threat got. Full gallery, list
of tags and all comments are available on new page for each threat.

Top menu toolbar allows the user to toggle options of the login
panel. If a user is already logged in, the login link is replaced with his
account name and five options: 1) Profile (where the user can change
account settings), 2) Logout, 3) Threats (where the user can list all
threats, last added threats, top reliability threats and most dangerous
threats), 4) Language (which allows user to change site language)
and 5) About Indect – which is a link to the INDECT project page3.

Most of the functionality is available form the left menu: (1)
adding threats, including selecting area for a new threat, (2) browsing
map by location, and (3) searching for threats using various filters.
Each section of the left menu can be shown or hide.

The system has been implemented using widely-accepted, cost-
free Web technologies: HTML, CSS, JavaScript, jQuery, Google
Maps API version 3 and the Django framework (for details see [2]).
It has been deployed on a dedicated server and is available at:
http://vigil.ia.agh.edu.pl. In the wiki system there is
a short description of the system, as well as user and admin manual.

4 Towards Collaborative Knowledge Engineering

Semantic annotations for the threats The basic piece of knowl-
edge in the system represents a single threat. Each threat may be
described using a set of attributes, such as: geometry – the informa-
tion about the shape and the location of the danger, name, category
– each danger is assigned to one category, comments – all logged in
users may post their comment on the danger info, severity – a num-
ber telling how severe the danger is, reliability – a number telling to
what degree the information is reliable, photo gallery – a relation to
an object being a set of pictures illustrating the threat, date added –
when the information has been added into the system, modification
date – when the information has been last modified, and tags – in
order to search for interesting information.

Tags Tags are non-hierarchical keyword or terms that describe an
object, specifically a threat. One threat can be assigned several tags.
They help searching and categorizing threats. Threats are tagged
while adding by user. Well tagged threats are more reliable for other
users and usually get more votes.

Categories Categories constitute a hierarchical way of describing
threats. One threat has one category, but categories can contain many
threats. Categories are organized into a tree structure. The root of
the categories is not visible on site. There is no children limit for

3 http://www.indect-project.eu/

http://vigil.ia.agh.edu.pl
http://www.indect-project.eu/

60

categories. As relational databases are not designed for storing hi-
erarchical data, retrieving category and its all parents with use of
procedural SQL is complicated. Also, fetching the whole tree re-
quires additional operations after database query execution. To solve
this problems in STM, Nested Set Model was implemented through
django-mptt module. It provides an efficient way to retrieve cat-
egories from database. Modifying the tree is more complicated, thus
slower, but it is only possible for admin user and rarely executed.

User Groups Except for categories for threats, the users can also
be grouped. Groups allows to publish threats for specified users.
When adding a threat, a user (who is at least in Services group) can
decide if the threat will be public or visible only for selected groups.
This solution allows special groups have their own threats that will
never be published for all system users.

An exemplary use-case has been presented in [1]. In this use-case,
three police departments cooperate on an investigation. However,
each group has their own sub-investigation and landmarks impor-
tant to these investigations can be marked on map and visible only to
selected users.

5 Towards Interoperability: the System API
Parts or the system data can be imported and exported to JSON,
XML and YAML formats. In order to enable export of knowl-
edge for further custom processing and import from another knowl-
edge base, a simple Application Programming Interface (API)
has been developed. Standarized knowledge representation using
attribute-value pairs describing threats allows for using the sys-
tem knowledge in various semantic applications (where triples
of the form: object-attribute-value or subject-predicate-object are
used). External systems can communicate with STM and use it
as a web service. The API is available over HTTP protocol:
http://application.url/api/method_name/.

API access and exchange format Part of the functionality of the
Social Threat Monitor is available for external applications without
authorization. For instance, by preparing an appropriate request con-
forming to the system API one can get all the threats defined for a
given location or filter. In order to use the whole functionality, includ-
ing adding threats to the system, the application must be authorized.
Its user must be defined in the STM and assigned to the API group.

The API uses POST requests and HTTP cookies. All responses are
in JSON format. Each successful request returns HTTP 200 header
and the 400 header is returned, if a method does not exist. Moreover,
if an anonymous user wants to access a method that requires autho-
rization, a HTTP 200 header with appropriate content is returned.

Methods The system API provides three basic methods: 1) log-
ging in, 2) adding a new threat, and 3) retrieving existing threats.
Each method accepts arguments that must be sent using POST or
COOKIES. Below, the methods with required (marked with an aster-
isk "*") and optional parameters are presented:

1. Method login:

Description: A method allowing to log into the API.

Parameters:

• POST:
– *username:string – user’s name.

– *password:string – user’s password.
2. Method add:

Description: A method allowing to add a threat.

Parameters:
• POST

– *title:string
– *description:string
– *latitude:float
– *longitude:float
– *category:int
– *scale:int from range [1, 10] (severity of the threat)
– *date_end:int from range [1, 3] (the number indicates how

many months a threat is active)
– *tags:string – tags separated with comma
– groups:array(int) – group ids for whom danger will be

shown (empty for ”all groups”)
• COOKIES

– *sessionid:string – session id returned in login method
3. Method threats:

Description: A method allowing to get filtered list of threats.

Parameters:
• POST

– *polygon: string – string of coordinates
that define the area of interest, for example:
lng1 lat1, lng1 lat2, lng2 lat2,
lng2 lat1, lng1 lat1

– votes: int – minimal votes number.
– images: int from set {0, 1} where 1 selectes threats only

with photos.
– category: int – category id.
– tags: string – tags separated by commas.
– scale: int from set {1, 4, 7, 10} indicating threats scale.
– date: string from set {12h, 24h,week}.
– date_start: datetime – threats added after date.
– date_stop: datetime – threats ending before date.
– groups: array(int) – threats for groups.

An example response:

Listing 1. Response to threats method on success.

{"threats" : [
{"category" : 2 ,
"user__username" : "admin" ,
"votes" : 6 ,
"scale" : 5 ,
"description" : "Threat description" ,
"point" : {"latitude" : 50 .087389 ,

"longitude" : 19 .891606} ,
"title" : "Crime" ,
"category__img" : "http://url/remont.png" ,
"comments" : 5 ,
"date_add" : "3 kwietnia 2011 22:57:34" ,
"points" : 2 ,
"category__title" : "Crimes" ,
"images" : 7 ,
"image__img" : "http://url/name.jpg" ,
"id" : 1} ,

{ a n o t h e r _ t h r e a t } ,
{ a n o t h e r _ t h r e a t }] }

61

Demo implementation An example system using API has been
developed and is available for testing at: http://home.agh.
edu.pl/kk/stm. It has been implemented in PHP and uses cURL
library. The library allows for connecting to and communicating with
various types of servers and different protocols. An example screen-
shot showing STM response is presented in Figure 3.

Figure 3. API demo: A threat list returned upon request.

6 Related Work
Crime Mapping systems were originally a class of systems that map,
visualize and analyze crime incident patterns using Geographic In-
formation Systems (GIS). However, the name has been later extended
to incorporate all applications that aid in improving the public safety.
This include natural disasters monitoring systems, often designed for
specific regions, which scope of functionalities is limited to the spe-
cific types of disasters that are most common and dangerous in those
regions, systems monitoring threats on the roads and crime monitor-
ing systems. A detailed survey of existing crime mapping systems is
given in [10]. To the best of our knowledge, none of existing system
works as a social platform supporting collaboration (voting, com-
ments and collaborative evaluation of information).

7 Summary
One of the tasks within the INDECT Project is the development of
a Web-based system for knowledge acquisition and management.
Once the main assumptions and requirements were defined, the de-
velopment has been done iteratively. Semantic description, cate-
gories and tags constitute the basis for further development of intel-
ligent information processing and knowledge management. System
API allows for easy integration with other applications and facilitate
knowledge exchange and integration from various sources.

8 Future Work
The approach to semantics representation now used in the STM can
be extended. Currently, only basic semantics is represented with use
of tags and categories. They are closer to the model of folksonomies,
where users provide custom tags that can be a foundation for a sim-
ple hierarchy of categories. A possible direction of future work is to
refactor the hierarchy currently existing in STM with the use of a
selected OWL 2.0 profile. All of the important relations should be
identified and formalized. This will allow for having a complete for-
mal model of the threat ontology. It is also planned to work on the
rule-based engine [7] to manage and customize output channels.

Although the system works in a regular Web browser and thus can
be accessed from any mobile device that has a browser, further adap-
tation for smartphones is planned. In particular, the system should
use the GPS embedded in mobile devices to facilitate adding threats.

ACKNOWLEDGEMENTS
The research presented in this paper is carried out within the EU FP7
INDECT Project: ”Intelligent information system supporting obser-
vation, searching and detection for security of citizens in urban envi-
ronment” (http://indect-project.eu).

References
[1] Weronika T. Adrian, Ciężkowski, Krzysztof Kaczor, Antoni Ligęza,

and Grzegorz J. Nalepa, ‘Web-based knowledge acquisition and man-
agement system supporting collaboration for improving safety in urban
environment’, in Multimedia Communications, Services and Security,
eds., Andrzej Dziech and Andrzej Czyżewski, volume 287 of Commu-
nications in Computer and Information Science, 1–12, Springer Berlin
Heidelberg, (2012).

[2] Przemysław Ciężkowski, Functionality Analysis and Design and Im-
plementation of User Interface for Threats Enregistration in Internet
System, Master’s thesis, AGH University of Science and Technology,
2011.

[3] Antoni Ligęza, Weronika T. Adrian, Sebastian Ernst, Grzegorz J.
Nalepa, Marcin Szpyrka, Michał Czapko, Paweł Grzesiak, and Marcin
Krzych, ‘Prototypes of a web system for citizen provided information,
automatic knowledge extraction, knowledge management and gis inte-
gration’, in Multimedia Communications, Services and Security, eds.,
Andrzej Dziech and Andrzej Czyżewski, volume 149 of Communica-
tions in Computer and Information Science, 268–276, Springer Berlin
Heidelberg, (2011).

[4] Antoni Ligęza, Sebastian Ernst, Grzegorz J. Nalepa, and Marcin
Szpyrka, ‘A conceptual model for web knowledge acquisition system
with GIS component’, Automatyka: półrocznik Akademii Górniczo-
Hutniczej im. Stanisława Staszica w Krakowie, 13(2), 421–428, (2009).

[5] Grzegorz J. Nalepa, ‘Collective knowledge engineering with seman-
tic wikis’, Journal of Universal Computer Science, 16(7), 1006–1023,
(2010).

[6] Grzegorz J. Nalepa and Weronika T. Furmańska, ‘Review of se-
mantic web technologies for GIS’, Automatyka: półrocznik Akademii
Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 13(2), 485–
492, (2009).

[7] Grzegorz J. Nalepa and Antoni Ligęza, ‘HeKatE methodology, hybrid
engineering of intelligent systems’, International Journal of Applied
Mathematics and Computer Science, 20(1), 35–53, (2010).

[8] Jarosław Waliszko, Weronika T. Adrian, and Antoni Ligęza, ‘Traffic
danger ontology for citizen safety web system’, in Multimedia Com-
munications, Services and Security, eds., Andrzej Dziech and Andrzej
Czyżewski, volume 149 of Communications in Computer and Informa-
tion Science, 165–173, Springer Berlin Heidelberg, (2011).

[9] The Handbook of Geographic Information Science, eds., John P. Wilson
and A. Stewart Fotheringham, Blackwell Publishin Ltd, 2008.

[10] Maciej Żywioł, Analysis and Evaluation of Crime Mapping Systems,
Bachelor’s thesis, AGH University of Science and Technology, 2012.

http://home.agh.edu.pl/kk/stm
http://home.agh.edu.pl/kk/stm
http://indect-project.eu

62

Formal Verification of Service Requests in a Multi-Agent
System using Event-B Method

Lorina Negreanu and Irina Mocanu1

Abstract.1 This paper promotes a multi-agent system for
requesting services. The proposed system is specified and validated
using a formal specification method – the Event-B method. It will
be used in an intelligent environment – a smart home.

1 INTRODUCTION

Multi-agent systems are systems of distributed software entities
that cooperate or compete to achieve individual or shared goals [4].
Agents encapsulate their behavior and are motivated by their
internal goals. The agents can individually respond, pro-actively
and reactively, to changes in their environment [5]. Event-B is a
mathematical approach for developing formal models of distributed
systems that can be used to analyze and reason about the system
[2]. It is built on the theory of action systems that can be used to
create models of reactive and parallel distributed systems [3],
making it an appropriate formalism for modeling systems of
distributed agents.

This paper specifies and validates using a formal specification
method a multi-agent system for requesting services. The proposed
system will help people access services outside their homes, for
different activities in a relaxing center (like swimming,
physiotherapy or simply socializing). The user will request a
service with a specific duration, for example 30 minutes of
physiotherapy. Each request has a priority computed by the system
using information of the user's daily program. The requests for a
specified service are satisfied based on their priorities (a request
with a higher priority will be satisfied earlier) if the requested
service has enough available time to satisfy them.

The rest of the paper is organized as follows: Section 2
describes the proposed system, Section 3 presents the formal
specification and validation of the system using Event-B method,
Section 4 lists conclusions and future work.

2 THE SYSTEM DESCRIPTION

The system for requesting services will be used for requesting
an available relaxing service demanded by a supervised person that
wants to take the activity at the relaxing centre (e.g. swimming,
physiotherapy or talking to somebody). The requested service will
have associated two properties: duration and priority. Both
properties are computed by the system (based on the usual daily
program and on the activities performed during that day, before
requesting the service).

1 Computer Science department, University POLITEHNICA of Bucharest,

Romania, email: {lorina.negreanu, irina.mocanu}@cs.pub.ro

Each type of service has an associated maximum (aggregated)
time availability. A request will be satisfied if the requested service
has enough available time to satisfy that request. The model for
satisfying the requests extends the description presented in [7].
Thus we associate a priority with each request in order to take into
account the flow of requests. The requests are satisfied based on
their priorities.

The system for requesting services is integrated in an ambient
intelligent system (an intelligent house) for home medical
assistance of elderly or disabled people, called AmIHomCare,
described in [8]. One component of the AmIHomCare System is
the supervising system, which recognizes the daily activities of the
supervised person. The architecture of the supervised system
consists of four layers: the information gathering layer, the context
processing layer, the activity recognition and prediction layer, and
the emergency detection layer, as described in [6]. Each layer is
composed of a set of agents. In our proposed system we use the
agents from the gathering information layer (which are a set of
sensor agents, for example an agent to interrogate the ambient
factors - Temperature Agent, and an agent to verify the health
status of the supervised person - Pulse Agent). We add a new layer
- the service acquiring layer that connects the user with a requested
service. The service acquiring layer contains the User Agent, a set
of Service Agents (each agent is responsible with a specific service)
and a Community Agent (this agent knows all the services available
and unavailable). We consider n Service Agents noting that each
agent has a specialization and a maximum available time. All the
Service Agents are recorded to the Community Agent. The User
Agent assists the user in order to make a query for a desired
service.

The whole process of acquiring a service is described in the
state chart from Figure 1. In order to obtain access to a desired
service, the user will make a query by selecting an image. The
User Agent will analyze the image and detect the representative
object from it. The desired service is computed using the properties
of the image’s representative object from the Object Ontology.
After that the User Agent will compute the priority and the duration
of the desired service by using the monitoring information obtained
by the supervised system. Thus a request service will be sent to the
Community Agent (new_request with id: user identifier, type: type
of the requested service, priority: the priority for the requested
activity, duration: requested duration).

63

Figure 1. The activity diagram for the requesting services system

The Community Agent will send the request to the Temperature

Agent and to the Pulse Agent in order to verify if the supervised
person can perform that activity. As a first example, it is a hot
summer day and the supervised person wants to meet with
somebody. The Temperature Agent will detect the temperature and
will send a cancel_request to the Community Agent which will
cancel the requested service. As a second example, the supervised
person requested a swimming service but he has a high pulse. In
this case the Pulse Agent will verify his health status and it will
send a cancel_request to the Community Agent which will cancel
the requested service. In the case of an unusual activity performed
by the supervised person, the Activity Agent (from the activity
recognition and prediction layer) will modify the duration and the
priority of the requested service and it will send a message to the
Community Agent (modify_request). After that the Community
Agent will interrogate all the service agents (of the requested type).
The User Agent will cancel the requested service in case of long
waiting time (the requested service is still unavailable). If the pulse
and temperature have satisfactory values, the system will enter in a
pending state, waiting for availability of the desired service (Wait
for service available state). If the waiting time is too long or the
supervised person performed an unusual activity, the request will
be canceled. Otherwise the system will wait until the requested
service will be available. If a service is available the user will
obtain the acceptance for the service (satisfy_request).

The Service Agents are connected with the Community Agent.
Some services may be requested more frequently than others. Thus
the Community Agent may modify the maximum available duration
for a Service Agent (update_ available).

3 FORMAL VERIFICATION

From the modeling point of view, a request is a member of a set,
namely the set of requests. To satisfy a request is an event which
modifies the status of the request from pending to satisfied. In our
model the event is called satisfy_request. We introduce the abstract
set of all possible requests (existing and future) - REQUESTS, the
abstract set of services - SERVICES, and the set STATUS =

{pending, satisfied} describing the status of a request. The existing
requests are a subset of REQUESTS: requests z REQUESTS.

Community
Agent

User
Agent

Ambient
 Agent

Pulse
Agent

Yes

cancel_request(id,
type, priority, time)

Request

Analyse Request

Temperature
high?

Cancel Request
Pulse high?

cancel_request(id, type, priority, time)

Pending Request

No

Pending Request

No

Pending Request

Service
available?

Activity
Agent

Activity Monitoring

Something
wrong?

new_request(id, type,
priority, duration)

modify_priority

satisfy_request(id,
type, priority,
duration)

Time too
long?

Cancel Request

Identify request

Cancel Request

Waiting for an available service

Yes

Yes

Yes

Yes

new_request(id, type,
priority, duration)

The request is the main modeling element. We can access the
status, the service and the duration associated with a request,
through the following functions:

status requests STATUS, where status assigns a status to
each request

reference requests SERVICES, where reference assigns a
service to each request

duration requests N*, where duration assigns a duration to
each request (with the assumption that if a service is requested, the
duration is at least 1).

The status of the request is changed into satisfied, if the duration
of the requested service is either less than or equal to the time
availability of the service. We will call the time availability of a
service available, where available SERVICES N.

3.1 Abstract Model

In our modeling we start by considering that all requested
references exist in the set of available services and that this set and
the set of requests are given in an up-to-date state. We derive by
refinement [1] the situation in which we have to take into account
new requests, modification of requests, cancelation of requests and
update of services time availability.

The abstract model is specified bellow:
CONTEXT
 Services_c0
 SETS
 REQUESTS
 SERVICES
 STATUS
 CONSTANTS
 satisfied
 pending
 AXIOMS
 status_type:
 partition(STATUS,{satisfied},{pending})
 END
 MACHINE
 Services_0
 SEES
 Services_c0
 VARIABLES
 requests
 available
 status
 duration
 reference
 INVARIANTS
 inv1: requests ⊆ EQUESTS R
 inv2: availab ∈ SERVICES → l
 inv3: status ∈ r uests → STATUS

e Գ
e

 inv4: duration ∈ equests → Գ1
q
 r

 inv5: reference ∈ requests → SERVICES
 EVENTS
 INITIALISATION:

 act1: request
 THEN

s≔
le

 act3: status ≔ ∅

 ∅
 act2: availab ≔ SERVICES × {0}

64

 act4: duration ≔ ∅
 act5: reference ≔ ∅
 END
 satisfy_request:
 ANY
 r
 WHERE
 grd1: r ∈ requests
 grd2: status(r) = pending
 grd3: duration(≤ available(reference(r)) r)

 act1: status(r) ≔ satisfied
 THEN

 act2: available(reference(r)) ≔
available(reference(r)) − duration(r)

 END
 modify_request:
 THEN
 act1: reques s duration, reference t

 status' ∈ quests' → STATUS

, status,
∣ requests' REQUESTS : ⊆

r
 duration' ∈ requests' → Գ1

∧ e
∧
∧ reference' ∈ requests' → SERVICES

 END
 new_request: ...
 cancel_request: ...
 update_available: ...
 END

In order to specify the events we consider that all requested
references are references in available and the satisfy_request event
is triggered when the time availability of the requested service is
greater than the duration requested. Let r be a pending request (r
requests ¶ status(r) = pending). If the time availability of the
service whose reference is reference(r) is greater than the duration
of the request duration(r) ≤ available(reference(r)), then the
request is satisfied status(r) = satisfied, and the time availability of
the service is decreased: available(reference(r)) :=
available(reference(r)) - duration(r).

The events cancel_request, new_request, modify_request, and
update_available are modeling the state changes for the variables
attached to the services and requests. The abstract model express
that a modification is possible by using the non-deterministic
assignment :| with a before-after-predicate (the specification of the
events is similar, this is why we described only one of them).

3.2 First Refinement

We can refine the first model by taking into account new
requests, cancellations of requests and update of request's duration
and service's time availability. The last events of the abstract
model should be refined to handle the modifications of the
variables requests, status, duration, reference and available. The
new_request event modifies requests, status, duration, and
reference; it adds a new request called r which does not exist in the
current set of requests (r REQUESTS ∖ requests); the status of
the request is pending; the duration and the reference are updated
according to the requested duration d and reference s. The event
modify_request allows the duration of a request, (if that request is
still pending) to be modified. Let r be a pending request (r
requests ¶ status(r) = pending), and d the new duration. Then the
duration of the request is updated: duration(r) = d. The
cancel_request event modifies requests, status, duration, reference

by removing a request called r which is pending in the current set
of requests; status, duration, and reference are updated by using
the domain subtraction operator: duration := {r} y duration, status
:= {r} y status, reference := {r} y reference. The update_available
event updates the duration for a given service s with the new value
d.

3.3 Second Refinement

We can further refine our model, by taking into account the flow of
requests. The current refinement captures the notion of flow by a
set. In fact it is possible that a request remains always pending and
is never satisfied, because there are always other requests which
are processed. A solution is to add a priority to each request in
order to sort the requests (priority requests N) and to satisfy
the request with the highest priority. The event new_request gives
each new request a priority using a parameter p (p N).
The variable priority records the priority of the request and the new
condition strengthens the guard of the previous event
satisfy_request: 	∀p · (p ∈ requests ∧ status(p)=pending ∧
duration(p) ≤ available(reference(p)) ⇒ priority(p) ≤ priority(r)).
The modify_request event is refined in order to take into account
the modification of the priority of the request: priority(r) ≔ p. The
cancel_request event is also refined to remove the priority
associated with the request r: priority := {r}y priority.

In the following we present the specification of the refined
machine (only the variables added and the events modified by the
second refinement):
 MACHINE
 Services_2
 REFINES
 Services_1
 SEES
 Services_c0
 VARIABLES ...
 priority
 INVARIANTS
 inv1: priority ∈ requests → Գ
 EVENTS
 INITIALISATION:

 act6: priority ≔ ∅
 THEN ...

 END
 satisfy_request:
 REFINES
 satisfy_request
 ANY
 r
 WHERE
 grd1: r ∈ requests
 grd2: tatus r) = pending s (

 d o
 gr 4: ·(p ∈ requests ∧ status(p) = pending

 gr 3: urati n(r) ≤ available(reference(r)) d
d
∧duration(p) ≤ available(reference(p))

 ∀p

⇒ priority(p) ≤ priority(r))
 THEN
 act1: status(r)≔satisfied
 act2: available(reference(r)) ≔

available(reference(r)) − duration(r)
 END
 modify_request:

65

 REFINES
 modify_request
 ANY
 r
 d
 p
 WHERE
 grd1: r quests ∈ re
 grd2: d Գ ∈ 1

 grd4: p ∈ Գ
 grd3: status(r) = pending

 THEN
 act1: duration(r) d ≔
 act2: priority(r) ≔ p
 END
 cancel_request:
 REFINES
 cancel_request
 ANY
 r
 WHERE
 grd1: r ∈ requests
 grd2: status(r) pending =

 act1: request r u sts ∖ {r}
 THEN

s eq
 act2: status ≔ {r} ⩤ status

≔ e

 act3: duration {r} duration ≔ ⩤
 ≔ ⩤

 act5: priority ≔ {r} ⩤ priority

 act4: reference {r} reference

 END
 new_request:
 REFINES
 new_request
 ANY
 r
 d
 s
 p
 WHERE
 grd1: r REQUESTS ∖ requests ∈

 grd3: s SERVICES
 grd2: d 1 ∈ Գ

∈
 grd4: p ∈ Գ
 THEN
 act1: requests ≔ r quests ∪	{r}
 act2: status(r) ≔ ding

e
p

 act3: duration(r) d
en

 act4: reference(r) s
≔
 ≔

 act5: priority(r) ≔ p
 END
 update_available: ...
 END

3.4 Model Validation

The models have been specified and validated using Rodin, an
Eclipse-based IDE for Event-B that provides support for
refinement and mathematical proofs [9]. The model is validated by
discharging proof obligations. The statement of development is
described in Table 1 with the required proof obligations.

Table 1. The statement of the development.

Element
Name

Total Auto Manual Reviewed Undischarged

Services_0 23 19 4 0 0
Service_1 7 7 0 0 0
Service_2 6 6 0 0 0

The initial model as well as the first and second refinements has

been checked for deadlock freeness using ProB [10]. A model is
considered to be deadlocked if the system reaches a state where
there are no outgoing transitions. ProB systematically "executes"
all events and tries to find a state where no event is enabled. All
models have been successfully checked.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a specification and verification of
a multi agent system for satisfying requests used in an intelligent
environment (a smart home). The system is first modeled using
UML diagrams; the resulting model is translated into the Event B
notation to verify required properties. The model refinement that
Event-B emphasizes simplifies proofs by providing a progressive
and detailed view of the system. As future work we will verify the
whole supervising system and after that we will implement and test
it in real situations.

ACKNOWLEDGEMENTS

The work has been co-founded by the Sectoral Operational
Programme Human Resources Development 2007-2013 of the
Romanian Ministry of Labor, Family and Social Protection through
the Financial Agreement POSDRU/89/1.5/S/62557.

REFERENCES

[1] J.-R. Abrial, D. Cansell and D. Méry, ‘Refinement and Reachability in
Event-B’, Lecture Notes in Computer Science, 3455: Formal
Specification and Development in Z and B, 129-148, (2005).

[2] J.-R. Abrial and L. Mussat, ‘Introducing dynamic constraints in B’. In
Recent Advances in the Development and Use of the B Method, vol.
1393 of Lecture Notes in Computer Science: 83 – 128, (1998).

[3] R.J. Back and K. Sere. ‘Stepwise refinement of action systems’.
Structured Programming, 12(1):17–30, 1991.

[4] J. Ferber, ‘Multi-Agent Systems: Introduction to Distributed Artificial
Intelligence’. Addison Wesley, 1999.

[5] N. R. Jennings, ‘On agent-based software engineering. Artificial
Intelligence’, 117: 277–296, 2000.

[6] I. Mocanu and A. M. Florea, ‘A Multi-Agent Supervising System for
Smart Environments’, In Proceedings of Wims’12, in press.

[7] I. Mocanu, L. Negreanu and A. M. Florea, ‘A Multi-Agent System for
Service Acquiring in Smart Environments’, In Proceedings of
MASTS 2012, in press.

[8] S. Mocanu, I. Mocanu, S. Anton, and C. Munteanu, ‘AmIHomCare: A
complex ambient intelligent system for home medical assistance’, In
Proceedings of the 10th International Conference on Applied
Computer and Applied Computational Science, 181–186, (2011).

[9] Rodin Platform, http://wiki.event-b.org/index.php/Rodin_Platform.
[10] The ProB Animator and Model Checker, http://www.stups.uni-

duesseldorf.de/ProB/index.php5/The_ProB_Animator_and_Model_C
hecker.

http://wiki.event-b.org/index.php/Rodin_Platform

