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Preface

The ability to identify and evaluate similarities (and dissimilarities) between a cur-
rent situation and already known cases and to take advantage of these evaluations is
an important feature of human thinking. We make sense of the new situation and draw
inferences for classification, prediction, etc.

For this reason, AI has always been interested in analogical reasoning. Special forms
of similarity-based reasoning such as case-based reasoning have been studied and de-
veloped. Similarity and analogy-based methods have been applied to a large variety
of areas such as problem solving (including IQ tests), theorem proving, case-based
question-answering and decision, machine learning, natural language processing, im-
age processing, causality analysis, argumentation, logic programming, diagrammatic
reasoning, or creativity.

In the last decade, the interest in AI for analogical reasoning and analogical propor-
tions, case-based reasoning, and other forms of similarity-based reasoning has contin-
ued to develop. In particular, different views and modelings have been suggested refer-
ring to a large variety of approaches ranging from propositional, first or higher order
logics to structure mappings, neural networks, analogical dissimilarity distances, prob-
abilistic models, Kolmogorov complexity theory, and fuzzy similarity-based methods.

The aim of this workshop is

1. to provide an overview of the state of the art in this field,
2. to share results,
3. to confront viewpoints, and
4. to get a better understanding of how to effectively implement these ideas and to

bring new solutions to practical problems.

It is a concerted attempt to try to reach a new milestone in this field. These proceed-
ings give an idea of the richness and the diversity of the field.

We take this opportunity to thank

– Our invited speaker, Prof. Laurent Miclet, for having accepted to give an introduc-
tory talk at this workshop.

– Our programme committee members for their commitment to the success of this
event and for their work (each paper received 3 reviews).

– The participants of SAMAI for the quality of their contribution.
– Finally, we thank our sponsors, namely the IRIT laboratory in Toulouse and the

British Institute for Technology and E-commerce in London.
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Kai-Uwe Kühnberger 9

Matchmaking: How similar is what I want to what I get
Michael Munz, Klaus Stein, Martin Sticht, Ute Schmid 13

Perceptual similarity and analogy in creativity and cognitive development
Georgi Stojanov, Bipin Indurkhya 19

Analogical proportions in a lattice of sets of alignments built on the common sub-
words in a finite language
Laurent Miclet, Nelly Barbot, Baptiste Jeudy 25

Belief revision-based case-based reasoning
Julien Cojan, Jean Lieber 33

Cautious analogical-proportion based reasoning using qualitative conceptual rela-
tions
Steven Schockaert, Henri Prade 41

Issues in Analogical Learning over Sequences of Symbols: a Case Study with Named
Entity Transliteration
Philippe Langlais 49

(Re-)discovering the graphical structure of Chinese characters
Yves Lepage 57

Arguing by analogy - Towards a formal view. A preliminary discussion
Leila Amgoud, Youssef Ouannani, Henri Prade 65





Analogical proportion – A brief survey
Henri Prade and Gilles Richard1

Abstract. Analogies play an important role in many reasoning
tasks. In this paper, we survey a recently proposed modeling for an
analogical proportion, i.e. a statement of the form “A is to B as C is
to D”, and its diverse applications. The logical representation used
for encoding such proportions takes both into account what the four
situations have in common and how they differ. Thanks to the use of
a Boolean modeling extended with suitable fuzzy logic connectives,
the approach can deal with situations described by features that may
be binary or multiple-valued. It is shown that analogical proportion
is a particular case of a more general concept, namely logical propor-
tion. Among the 120 existing logical proportions, we single out four
proportions (including the analogical proportion) for their remark-
able properties. We emphasize the interest of analogy-related logical
proportions for handling a large variety of reasoning tasks, ranging
from solving IQ tests, to transductive reasoning for classification, and
interpolative and extrapolative reasoning. The approach does not just
rely on the exploitation of similarities between two cases (as in case-
based reasoning), but rather takes advantage of the parallel made be-
tween a situation to be evaluated or to be completed, with three other
situations.

1 Introduction
Reasoning is at the core of human intelligence, allowing to infer new
knowledge from a pre-existing knowledge. While logical inference
allows to generate valid conclusions, analogical inference is less ro-
bust and leads only to plausible conclusions. An analogy parallels
two particular situations on the basis of some similarities (the no-
tion of situation and similarity should be understood in a very broad
sense). Based on such an analogy, analogical inference assumes that
these two situations might be similar in other respects and then draws
conclusions on this basis. Due to the brittleness of its conclusions,
analogy is not easily amenable to a formal logic framework. Never-
theless, diverse modelings coexist, using first order logic as in [9],
second order logic as in [50], algebraic oriented frameworks as in
[8, 15], or even a complexity-based approach as in [5] that estab-
lishes a close link with computational learning theory. From a more
practical viewpoint, analogical reasoning has mainly been viewed as
a powerful heuristic device [13, 52, 31], and considered as such in AI
for a long time, e.g. [10, 57, 16, 26], being useful at the meta level
for improving deductive reasoning provers, as well as in cognition,
in problem solving and in learning, e.g. [14, 25, 21, 17], involving
not only symbolic representations but also numerical calculations as
it is the case for quantitative estimation [32].

The above-mentioned works do not usually consider a specific
type of analogy, the so-called analogical proportion, i.e. a statement
of the form “a is to b as c is to d”, usually denoted a : b :: c : d.
In that case, a situation is represented as a pair of items (a, b) and

1 University of Toulouse, IRIT-CNRS, France, email: prade,richard@irit.fr

the 4 items appearing in the proportion generally have the same type.
Inference then amounts to find a value for an unknown item x such
that the proportion a : b :: c : x holds.

In the last decade, some authors starting with the pioneering in-
vestigation made in [23] with computational linguistic motivations,
have started to develop a large panel of algebraic models for analog-
ical proportions, from semi-groups to lattices, through words over
finite alphabets and finite trees [53, 54, 28]. Moreover, the use of ana-
logical proportions for machine learning purposes in [3, 27] has been
also proposed and studied. Since analogical proportions have various
instances in natural language, it is not surprising that the field of nat-
ural language processing has also been investigated [1, 24, 22, 56, 4]
providing encouraging results for automatic translation or text com-
prehension [55], or even recently recommendation systems [49].

However, it is only more recently that a propositional logic repre-
sentation of analogical proportion has been proposed [29]. Still, this
view has its roots in the largely ignored work of the anthropologist,
linguist, and computer scientist Sheldon Klein [19, 18], who was the
first to propose a truth table-like way for finding x such that the ana-
logical proportion a : b :: c : x holds. Besides, in the annex of a 1952
French book by the psychologist Jean Piaget [33], the author infor-
mally investigates a similar idea, still without explicitly mentioning
analogy (see also [34] pp. 35–37), where a definition of a so-called
proportion logique is given).

The logical view of analogical proportion has been further devel-
oped in a series of works [37, 36, 40, 38] leading to the introduction
of other related proportions, the extension to multiple-valued settings
[39], and to various applications to reasoning and classification. Our
aim in this paper is to provide a brief introduction to the Boolean ap-
proach to analogy and a short overview of its potential developments
and applications. The paper is organized in two main parts: section
2 and its subsections present the main results on the modeling of
analogical proportion and other related logical proportions. The re-
maining sections discuss the interest of the approach for solving IQ
tests, in classification, in interpolation and extrapolation reasoning.

2 Analogical proportion and related proportions

In this section, we present the basic Boolean definitions for ana-
logical proportion, introducing three sister-proportions, highlight-
ing their strong link and formalizing the equation solving problem,
which is the core of the analogical inference process. Finally, we
briefly investigate their multi-valued extensions, before briefly men-
tioning the existence of other logical proportions.

2.1 Four basic proportions

Generally speaking, the comparison of two items A and B relies
on their representation. Let us adopt a logical setting and let ϕ be a
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property, which can be seen as a predicate: ϕ(A) may be true (in that
case ¬ϕ(A) is false), or false. When comparing two items A and B
w.r.t. ϕ, it makes sense to consider A and B similar (w.r.t. ϕ):

- when ϕ(A) ∧ ϕ(B) is true or
- when ¬ϕ(A) ∧ ¬ϕ(B) is true.

In the remaining cases:
- when ¬ϕ(A) ∧ ϕ(B) is true or
- when ϕ(A) ∧ ¬ϕ(B) is true,

we can consider A and B as dissimilar w.r.t. property ϕ. ϕ(A) and
ϕ(B) being ground formulas, they can be considered as Boolean
variables, denoted a and b by abstracting w.r.t. ϕ. If the conjunc-
tion a ∧ b is true, the property is satisfied by both items A and B,
while the property is satisfied by neither A nor B if a ∧ b2 is true.
Moving to the Boolean setting, a∧ b and a∧ b are indicators of sim-
ilarity while a ∧ b and a ∧ b are indicators of dissimilarity. These
indicators are the basis [37] for providing a formal definition of ana-
logical proportion and more generally of a logical proportion. An
analogical proportion focuses on differences and should hold when
the differences between a and b and between c and d are the same. If
we consider a pair of items (a, b) as completely described via the 4
above indicators, analogical proportion express the identity of their
dissimilarity indicators, Then it makes sense to encode an analogical
proportion with the following conjunction

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)(1)
as it is the logical counterpart of “a differs from b as c differs from d”,
and conversely. When we generalize this viewpoint by considering a
logical proportion T as the conjunction of 2 distinct equivalences
between indicators, it appears that 120 different proportions can be
build, from which 4 emerge as being strongly related to analogical
proportion. They are respectively [37]:

• reverse analogy: R(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
• paralogy: P (a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
• inverse paralogy: I(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
When needed, the analogical proportion a : b :: c : d will be denoted
A(a, b, c, d) .

2.2 Basic properties of A,R, P, I

Considered as Boolean formula, logical proportions can be seen via
their truth tables. Table 1 exhibits the truth tables of A,R, P, I ,
where only the 6 lines leading to the truth value 1 are shown. Starting
from the definition, it can be easily shown:

• A(a, b, a, b) and A(a, a, b, b), but not A(a, b, b, a) ;
• A(a, b, c, d)⇒ A(c, d, a, b) (symmetry);
• A(a, b, c, d)⇒ A(a, c, b, d) (central permutation).

which correspond to the usual postulates of analogical proportion
and which mimics the properties of the numerical proportion a

b
= c

d
.

Similar postulates hold for R,P and I . The following properties are
easy to check on the truth tables and establish a strong link between
the four proportions A,R, P, I:

- R(a, b, c, d) iff A(a, b, d, c)
- P (a, b, c, d) iff A(a, d, c, b)
- I(a, b, c, d) iff A(a, d, c, b)

2 The overline denotes Boolean negation.

Table 1. Analogy, Reverse analogy, Paralogy, Inverse Paralogy truth tables

A R
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 1

P I
0 0 0 0 1 1 0 0
1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

2.3 Equation solving

Given a proportion T and 3 items a, b, c, the problem of find-
ing a fourth item x such that T (a, b, c, x) holds is known as the
equation-solving problem. The equations A(a, b, c, d), R(a, b, c, x),
P (a, b, c, x) and I(a, b, c, x) have not always a solution x ∈ {0, 1}.
For analogical proportions, the existence condition for a solution is
(a ≡ b) ∨ (a ≡ c) = 1, which just states that A(1, 0, 0, x) and
A(0, 1, 1, x) have no solution. When a solution exists, it is unique
and given by x = a ≡ (b ≡ c) for the three proportions A,R, P
[29, 37], as first guessed from anthropological observations by Klein
[19] (without distinguishing the three proportions). Obviously, this
equation-solving problem is at the core of the inference process as-
sociated to analogical proportion. When we know that a proportion
A(a, b, c, x) holds (under the above conditions), we can infer the
value of x from the known values of a, b, c.

As a direct illustration of the equation solving process, let us con-
sider an analogical puzzle, as the ones considered early by Evans
[10] where a series of 3 first items a, b, c is given and the 4th item d
has to be chosen among several plausible options. In [11] or [47], an
optimization mechanism looks for the candidate solution that maxi-
mizes the similarity of the set of rules describing the change from a
to b, with the set of rules describing the change from c to each can-
didate solution. Here, the application of the equation solving process
for each feature contrasts with such an approach, since the solution
is computed directly. This is illustrated on Figure 1, and the details
of the equations for the different features are given below. When the
items are pictures, our method may also apply with an encoding of
the image at the pixel level; see [41] for a discussion.

Figure 1. IQ test: Graphical analogy

square: (1, 1, 0, x1) holds⇒ x1 = 0, i.e. no square;
triangle: (0, 0, 1, x2) holds⇒ x2 = 1, i.e. triangle;
star: (1, 0, 1, x3) holds⇒ x3 = 0, i.e. no star;
circle: (0, 1, 0, x4) holds⇒ x4 = 1, i.e. circle;
black point: (1, 1, 1, x5) holds⇒ x5 = 1, i.e. black point;
hexagon: (0, 0, 0, x6) holds⇒ x6 = 0, i.e. no hexagon.

There are many examples of analogical proportions that
may look slightly different at first glance. Take for instance
Paris: France :: Roma : Italy. In such a case, there
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is the (obvious) relation “is the capital of” between a and b,
which also holds between c and d. This is a binary relation, not
a unary feature, and the proportion cannot just be captured with
features such that “is a capital”, and “is a country” (since then
Roma : France :: Paris : Italy would hold as well).

However, with more specific features such as “capital of what is
in the next slot”, “country to which belongs what is in the previ-
ous slot”, one may still have a faithful encoding of the proportion.
Checking that the new proportion obtained by central permutation
Paris : Roma :: France : Italy is still valid, would

require the introduction of slightly different features – a problem
that does not appear with unary features. Lastly, solving the equa-
tion a : b :: c : x amounts in this case to look for the relation(s)
that hold(s) for (a, b), say Ri and then to look for x such as Ri(c, x)
holds (see [49] for instance).

2.4 Multiple-valued logic extension

If we consider the Boolean expression of the analogical proportion,
one may think of many possible multiple-valued extensions, depend-
ing of the operations chosen for modeling ∧, ≡ (involving→), and
¬. Moreover, a formula such as (1) can be written in many equivalent
forms in Boolean logic. These forms are no longer necessarily equiv-
alent in a non-Boolean setting where [0, 1] is now the truth space. The
choice for ¬a interpretation is quite standard as 1−a, but it is impor-
tant to make proper choices for the remaining connectors that are in
agreement with the intended meaning of the considered proportion.
Some properties seem very natural to preserve, such as

i) the independence with respect to the positive or negative encod-
ing of properties (one may describe a price as the extent to which
it is cheap, as well as it is not cheap), which leads to require that
A(¬a,¬b,¬c,¬d) holds if A(a, b, c, d) holds;

ii) the knowledge of a and of the differences between a and b and
between b and a, should enable us to recover b. Indeed in the Boolean
case, we have b = (a ∧ (a → b)) ∨ ¬(b → a). A careful analysis
[39] of the requirements leads to choose

i) the minimum operator for ∧; ii) s ≡ t = 1− |s− t|;
iii) Łukasiewicz implication s→ t = min(1, 1− s+ t).

Note also that with these choices s ≡ t = (s→ t) ∧ (t→ s).
This leads to the following expressions which both generalize the

Boolean case to multiple-valued entries and introduce a graded view
of the analogy-related proportions.

For analogy, we have A(a, b, c, d) =
1− | (a − b) − (c − d) | if a ≥ b and c ≥ d, or a ≤ b and c ≤ d
1−max(|a− b |,|c− d |) if a≤b and c≥d or a≥b and c≤d

Thus, A(a, b, c, d) is all the closer to 1 as the differences (a − b)
and (c−d) have the same sign and have similar absolute values. Note
that A(1, 0, c, d) = 0 as soon as c ≤ d.

For reverse analogy, we have R(a, b, c, d) =
1− | (a − b) − (d − c) | if a ≤ b and c ≥ d or a ≥ b and c ≤ d
1−max(|a− b |,|c− d |) if a≥b and c≥d, or a≤b and c≤d

The definition of paralogy is a little bit simpler:
P (a, b, c, d) = min(1−|(a∧ b)− (c∧d)|, 1−|(a∨ b)− (c∨d)|),
with a∨b = 1−(1−a)∧(1−b). Again we take a∧b = min(a, b);
see [39] for justifications. The definition for I is deducible from the
definition of P and the link I(a, b, c, d) ≡ P (a, b, c, d).

With respect to equation solving, it can be shown that it exists x
such that A(a, b, c, x) = 1 if and only if x = c + b − a ∈ [0, 1],
and when it exists, the solution is unique. Similar equations may be
solved as well for the three other proportions.

2.5 The other logical proportions
As said above, there are 120 distinct ways to combine indicators to
build a logical proportion. It appears that all of them are true for 6
lines in their truth table and false for the 10 other lines. Since we
have [166 ] = 8008 truth tables with exactly 6 valuations leading to
true, logical proportions can be considered as quite rare. When fo-
cusing on their syntactic forms, 5 classes of proportion can be dis-
tinguished (see [38] for the details), but is also interesting to identify
the proportions that possess some noticeable property, such as

- full identity, i.e. being true for the pattern (x, x, x, x), which
means true for (1, 1, 1, 1) and (0, 0, 0, 0). There are 15 such propor-
tions, including P,A,R [40].

- code independency. The idea underlying this semantic property is
that a proportion should be independent from the coding convention,
i.e., representing true by 1 and false by 0. So if we switch the values
(0, 1) in the coding of a given valuation, the truth value of a propor-
tion should remain the same. There are 8 proportions satisfying code
independency including P,A, I, R.

- transitivity. There are 6 transitive proportions among which A
and P . But R and I are not transitive.

Thus, if we require full identity and code independency, we only
have P,A,R. Both formal and empirical investigations of these pro-
portions can be found in [43, 44].

3 Reasoning with proportions
Due to their dissimilarity / similarity semantics, logical proportions,
and specially analogy-related ones, seem to have a great potential in
reasoning about particular situations. Inferring the value of d starting
from the values of a, b, c and the fact that some proportion holds in
the 4-tuple (a, b, c, d) is an equation solving problem: find d such that
the considered proportion holds knowing the truth values of a, b, c.
Such an equation may have no solution, or may have one or two
solutions. Regarding the unicity of the solution when it exists, the
solution will be always unique for proportions such that each of the
6 lines of their truth table starts with a different triple of values for
a, b, c. There are 64 proportions that have this property, and there are
56 proportions for which the 4-tuple (a, b, c, x) may have 2 solutions
for some entries a, b, c. Besides, since any logical proportion relating
(a, b, c, d) is true for only 6 patterns of values, and (a, b, c) may take
23 = 8 different triples of values, there are at least 2 entries a, b, c
leading to no solution. Thus, as already said for analogy, the two
equations A(1, 0, 0, x) and A(0, 1, 1, x) have no solution.

Since logical proportions are Boolean formulas, it is natural to de-
scribe what can be inferred from a given situation with a set of valid
inferences, involving these proportions in the premises of the infer-
ence schemes. Let us start from a simple example to understand our
point. Suppose we observe ¬a, b and ¬c and we get a new d knowing
only that d is in analogical proportion with the 3 previous values. We
are faced to the problem of inferring the value of d. One may use the
clausal form of this proportion [36], namely
{¬a ∨ b ∨ c,¬a ∨ b ∨ ¬d, a ∨ ¬c ∨ d,¬b ∨ ¬c ∨ d,
a ∨ ¬b ∨ ¬c, a ∨ ¬b ∨ d,¬a ∨ c ∨ ¬d, b ∨ c ∨ ¬d}3

Each clause is falsified by a pattern of 3 literals for which there
does not exist a 4th literal with which they form a proportion. Thus,
the first clause ¬a∨ b∨ c expresses syntactically that a ¬b ¬c (i.e.,

3 Similarly, the clausal form for paralogy is: {¬a ∨ c ∨ d,¬a ∨ ¬b ∨ d, a ∨
b∨¬c, b∨¬c∨¬d, a∨¬c∨¬d, a∨ b∨¬d,¬a∨¬b∨ c,¬b∨ c∨ d}.
More generally, analogy, paralogy, reverse analogy, inverse paralogy are
each described by a set of 8 clauses which cannot be further reduced by
resolution, and these 4 sets do not share any clause.
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1 0 0 in semantical terms) cannot be analogically completed, while
a∨¬b∨¬c expresses the same w. r. t. ¬a b c and 0 1 1. Since the
unknown x may be any of the 4 literals of the proportion, this makes
2× 4 clauses. Going back to our inference example, we have:

¬a b ¬c a : b :: c : d

d

by resolution from the clausal form of a : b :: c : d (6th clause). As
expected, there are 6 valid inferences given in Table 2.

Table 2. Valid inferences with an analogical proportion

a b c a:b::c:d
d

¬a ¬b ¬c a:b::c:d
¬d

¬a ¬b c a:b::c:d
d

a ¬b c a:b::c:d
¬d

¬a b ¬c a:b::c:d
d

a b ¬c a:b::c:d
¬d

4 Analogical-proportion based reasoning
In the above section, we have assumed the knowledge that some par-
ticular logical proportion holds in the inference patterns we consid-
ered. Where may such knowledge come from? A natural answer is
to consider that the proportion has been observed between four items
for some features, and we assume on this basis that the same pro-
portion holds for other features as well. This makes sense at least for
proportions such as the 3 analogy-related proportions that express
regularities in change as well as they leave room for the expression
of similarity for other features.

More formally, let us consider items, cases, or situations described
by vectors (a1, . . . , an) of Boolean values that encode the different
binary features that describe a situation. More generally, one may
have multiple-valued features. Starting from a triple of items com-
pletely informed with respect to all features, we consider a new item
d = (d1, . . . , dn), which is only partially informed, i.e. where only
some features k(d) = (d1, . . . , dp), p < n, are known, the val-
ues of the missing features u(d) = (dp+1, . . . , dn) having to be
predicted. For that purpose, we adopt the following transfer pattern
(where T ∈ {A,R, P} denotes any analogy-related proportion):

∀i ∈ [1, p], T (ai, bi, ci, di)

∀j ∈ [p+ 1, n], T (aj , bj , cj , dj)

It simply means that if the known part k(d) of d is componentwise in
formal proportion T with k(a), k(b) and k(c) then it should be also
true for the unknown part u(d) of d for the same proportion T . This
form of reasoning is clearly not sound, but may be useful for trying
to guess unknown values. Then, for all j ∈ [p+ 1, n], one may infer
the truth value of dj assuming that T (aj , bj , cj , dj) holds, given aj ,
bj , and cj .

Let us consider an example where n = 5 and a = (1, 1, 0, 0, 1),
b = (1, 0, 1, 1, 0), c = (0, 1, 0, 0, 1), with an incompletely known
item d = (0, 0, 1, d4, d5) (here p = 3, k(d) = (0, 0, 1), u(d) =
(d4, d5)). We can check that analogical proportion k(a) : k(b) ::
k(c) : k(d) holds for the first three features. Then using the above
inference scheme, we should have 0 : 1 :: 0 : d4 and 1 : 0 ::
1 : d5, which leads to d4 = 1 and d5 = 0. Although this type of
reasoning basically amounts to copy existing similarity / dissimilarity
relationships, it is very powerful since it may produce new compound
patterns where the vector representing d is not similar in all respects
to any of the vectors representing a, b, or c, (as in the example above).

The transfer pattern also encompasses the following basic analog-
ical reasoning schema. We have 2 situations or cases at hand, x and
y, that both share a property P , i.e. P (x) and P (y) hold, and x

also satisfies another property Q, the schema amounts to conclude
that Q(y) also holds, by an “analogical jump”. Indeed the propor-
tion P (x) : Q(x) :: P (y) : Q(y) can be justified in our approach,
viewing the presence of instances, properties or functions as features
(see [42] for details). Similarly, one can also justify the extended ana-
logical pattern x : f(x) :: y : f(y). This pattern, combined with the
general ones, can be successfully used for solving IQ tests, starting
from the completion of a sequence of 3 geometric figures as in [41]
to more complex tests like the Raven’s tests [7] that we summarize
in the following section.

5 Solving IQ tests
IQ tests play a special role in the AI litterature as they can be, in some
sense, considered as a kind of scale on which to measure the effec-
tiveness of an AI theory or system (see [20] for instance where the
authors target Bennett Mechanical Comprehension Test Problems).
Among the most well-known IQ tests, we have the Raven Progres-
sive Matrices (RPM) [48]. They are visual tests where a sequence
of 8 pictures has to be completed in a logical way and the solution
has to be chosen among a set of 8 candidate pictures. The result-
ing performance is considered as a measure of the reasoning ability
of the participant. An example4 is given with its solution (a simple
big square) in Figure 2. Solving an RPM heavily relies on the repre-

Figure 2. Modified Raven test 12 and its solution

sentation of the space and objects at hand. A Raven matrix pic is a
3×3 matrice where pic[i, j] (i, j ∈ {1, 2, 3}×{1, 2, 3}) denotes the
picture at row i and column j and where pic[3, 3] is unknown. As-
suming that the Raven matrices can be understood in the following
way, with respect to rows and columns:

∀i ∈ [1, 2], ∃f such that pic[i, 3] = f(pic[i, 1], pic[i, 2])

∀j ∈ [1, 2],∃g such that pic[3, j] = g(pic[1, j], pic[2, j])

the two complete rows (resp. columns) are examples supposed to
help to discover f (resp. g), and then to predict the missing picture
pic([3, 3]) as f(pic[3, 1], pic[3, 2]) (resp. g(pic[1, 3], pic[2, 3])).
This representation is summarized in Figure 3. In fact, the problem

Figure 3. Raven matrix representation

can be restated as an analogical equation-solving problem. using an
extended scheme where proportion (a, b) : f(a, b) :: (c, d) : f(c, d)

4 For copyright reasons and to protect the security of the tests, the original
Raven test is replaced by specifically designed examples (still isomorphic
in terms of logical encoding to the original ones).
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holds for lines and proportion (a, b) : g(a, b) :: (c, d) : g(c, d) for
columns, which translates into:

(pic[1, 1], pic[1, 2]) : pic[1, 3] :: (pic[2, 1], pic[2, 2]) : pic[2, 3]

(pic[1, 1], pic[2, 1]) : pic[3, 1] :: (pic[1, 2], pic[2, 2]) : pic[3, 2]

Similar analogical proportions are supposed to relate line 1 to line
3 and line 2 to line 3, and similarly for the columns. We have two
options to solve the problem:

• Each picture pic[i, j] is represented as a Boolean vector of dimen-
sion n. The Boolean coding is done manually so far. In the ex-
ample of Figure 3, we consider 4 binary features in the following
order: big square, small square, circle, cross. For
instance, the contents of pic[1, 2] is encoded by the vector (0110)
in Figure 4.

Figure 4. Raven test 12 encoding

column1 column2 column3
row1 1111 0110 1001
row2 0011 0010 0001
row3 1100 0100 ????

Considering the first missing feature, the horizontal pattern (1 0)
to be completed in line 3 appears in line 1 and leads to the solution
1. For the second missing feature, there is no corresponding hori-
zontal pattern for (1 1), so we have to move to a vertical analysis
and to look for a vertical pattern starting with (0 0) for this sec-
ond feature. We fail again. We have then to consider that a Raven
matrix expresses a set of analogical proportions without any con-
sideration of a particular feature. This is why, even if we fail to
find a suitable pattern in row or column for this feature, we look
for a similar valid pattern but related to another feature. In other
terms, in order to find the solution for feature i, we allow us to
take lesson from other features, then looking for a solution in a
row or a column coming from another feature j. In the example,
we thus find 0 for the second feature, using the context of feature 3
in column 1 or in column 2 (in fact when proceeding this way, we
have to make sure that there is no contradictory patterns (here it
would be (1 1 1)) observable in row or in column. Using the same
approach for feature 3 (circle) we get 0 from observing feature
2 in row 2, or feature 4 in column 2. Feature 4 is easier, we get 0
from column 1 for the same feature. Altogether, we get (1 0 0 0)
as the answer, which is indeed the encoding of the solution. This
method is sufficient for solving 32 Raven tests over 36 [7].

• If we consider an image as a matrix of pixels of dimension n×m
(considering only non compressed format as BMP for instance),
this is simply a Boolean-like coding automatically performed by
the picture processing device (e.g. the camera or the scanner). In
that case, instead of dealing with 8 hand-coded Boolean vectors,
we deal with BMP files for instance. Apart from the fact that we
have to take care of the headers of the files (which do not obey any
proportion pattern), there is no reason to change our method and
our basic algorithm still applies allowing to solve 16 tests (over
36).

6 Classification by transduction
Transduction [12] is the name given to a form of reasoning that
amounts to predict the class of a new piece of data on the basis of
a set S of previously observed pieces of data whose class is known,

without any attempt at inducing a generic model for the observed
data (which would be then applied to the new piece of data in order
to determine its class). A simple example of transduction mechanism
(also known as lazy learning) is the k-Nearest Neighbors method,
where the class that is the most frequent among the k closest neigh-
bors of x is inferred for x.

The application of the transfer pattern to classification provides
the basis for another transduction mechanism, proposed in [40] for
binary classification and binary-valued features, and then extended
to multiple-valued features and to multiple class problems [45]. Each
piece of data x is described by a vector (x1, . . . , xn) of feature values
that are normalized in the interval [0, 1] together with its class cl(x).
Then a classification method, quite different from k-NN methods, is
applied since the new item d to be classified is not just compared with
the classified items on a one-by-one basis. Once chosen some fixed
analogy-related proportion T , we look for 3-tuples (a, b, c) ∈ S3

such that the proportion T (cl(a), cl(b), cl(c), cl) has a solution cl.
This requires that cl(a), cl(b), and cl(c) correspond to a maximum
of two distinct classes: either cl(d) = cl(a) = cl(b) = cl(c), or
there are two distinct classes (cl(a) = cl(b) 6= cl(c) = cl(d) or
(cl(a) = cl(c) 6= cl(b) = cl(d)). Only such triples (a, b, c) are
retained as potentially useful. Indeed the other triples (a, b, c) are
useless since whatever the coming d, they cannot constitute a logical
proportion with d. This processing of the suitable set of triples can
be done offline.

Then, we have to look, among the set of suitable triples,
for the one(s) that seem(s) the most appropriate to pre-
dict the class cl(d). For doing this, each suitable triple
we consider is evaluated by means of the following vec-
tor (T (a1, b1, c1, d1), . . . , T (ai, bi, ci, di), . . . , T (an, bn, cn, dn)).
Then the vectors (and thus the triples) are ordered in a lexicographic
decreasing manner5. Then we may choose for cl(d) the class asso-
ciated to the triple having the best evaluation, or the most frequent
class among the k best triples.

This approach has been tested on different benchmark problems
and has given rather good results [45]. This agrees with the results
previously obtained in [3, 27], where the authors have developed a
binary classifier on the basis of an “analogical dissimilarity” measure
AD: for a given tuple (a, b, c, d),AD(a, b, c, d) is a positive number
which is zero if and only if the proportion a : b :: c : d holds. The
reasons behind this success are investigated in [6].

7 Interpolation, extrapolation and non-monotonic
reasoning

A problem formally similar to transduction is the problem of reason-
ing from an incomplete collection of parallel if-then rules of the form
“if X1 is A1 and ... and Xn is An then Y is B” where the Ai’s and
the B’s are labels belonging to ordered domains; for instance, the la-
bels associated with the domain of Xi could be ‘small’, ‘medium’,
and ‘large’. Such a rule base may be incomplete in the sense that for
some combination of the labels of the condition variables Xi, there
may not be a corresponding rule. Such a problem may be handled by
considering that the Ai’s and the B’s are represented by fuzzy sets.
Another route may take advantage of the idea of analogical propor-
tion, as suggested in [46]. The analogical proportions will no longer
apply between feature values pertaining to different pieces of data
as in classification, but between labels appearing in the expression

5 (u1, . . . , ui, . . . , un) >lexicographic (v1, . . . , vi, . . . , vn), once the
components of each vector have been decreasingly ordered, iff ∃j <
n ∀i = 1, j ui = vi and uj+1 > vj+1.
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of generic rules. The approach is based on the assumption that the
mapping from the Xi’s to Y which is partially described by the set
of available rules, is sufficiently “regular” for completing missing
rules, as in the following example. Assume we know the two rules

[rule 1] “if X1 is small and X2 is small then Y is large”
[rule 2] “if X1 is small and X2 is large then Y is small”

where the possible labels associated with variables X1, X2, and Y
are small, medium, or large. Then, if we wonder what may be a
plausible conclusion for the rule

[rule 3] “if X1 is small and X2 is medium then Y is ...”
we may observe that a kind of analogical proportion of the form
rule 1 : rule 3 :: rule 3 : rule 2 holds. Indeed, one may consider
that we have for variable X1: small : small :: small : small,
which certainly holds on the basis of pure identity, and for variable
X2 we get small : medium :: medium : large, which holds as
much as the increase from small to medium is the same as the in-
crease from medium to large. What we have here are analogical
proportions on a discrete scale. This leads to an equation of the form
large : x :: x : small for the label of Y in rule 3, with medium as
a solution. In case we would rather know rule 1 and rule 3, and we
have to guess the conclusion of rule 2, we would obtain the equation
large : medium :: medium : x (with x = small as a solution).
We can thus perform extrapolation as well as interpolation. Such an
approach fully agrees with a more cautious treatment of the ideas
of “betweenness” and “parallelism” between symbolic situations in
conceptual spaces; see [51] for further discussions.

Non-monotonic reasoning and analogical reasoning are very dif-
ferent in nature since one handles generic default rules while the
other one parallels particular situations, even if both leads to brit-
tle conclusions. Still there are noticeable connections between them;
see [42] for detailed discussions. Let us only mention that in the set-
ting of nonmontonic consequence relations, one may propose a rep-
resentation of “a is analogous to b”, which agrees with the pattern
of inference originally hinted by Polya [35]: “a is analogous to b, a
is true, b plausibly holds”. This may be related to the idea that two
situations are analogous if they only differ on non important features.

8 Concluding remarks
A Boolean view of the ideas of similarity and dissimilarity have led to
the concept of logical proportions, which is a logical generalization
of the numerical concept of proportion. Analogy-related proportions
are especially remarkable, seem to play an important role in classi-
fication and other types of reasoning tasks where particular patterns
can be put in parallel. In spite of its wide scope, this overview has
left aside some worth-mentioning issues such as the study of the re-
lation of analogical proportion with formal concept analysis [30], or
the evaluation of natural language analogical proportions in terms of
Kolmogorov complexity [2].
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Rationality Through Analogy:
On HDTP And Human-Style Rationality

Tarek R. Besold and Martin Schmidt and Helmar Gust and Ulf Krumnack
and Ahmed Abdel-Fattah and Kai-Uwe Kühnberger1

Abstract. At times, human behavior seems erratic and irrational.
Therefore, when modeling human decision-making, it seems reason-
able to take the remarkable abilities of humans into account with
respect to rational behavior, but also their apparent deviations from
the normative standards of rationality shining up in certain ratio-
nality tasks. Based on previous work on computational analogy-
making, on the computational side we give a sketch of the Heuristic-
Driven Theory Projection (HDTP) analogy-making system, focusing
on the heuristics applied in the current implementation of the sys-
tem, and subsequently conceptually outline a high-level algorithmic
approach for an HDTP-based system for simulating and, thus, pre-
dicting human-style rational behavior.

1 Introduction
At times, human behavior seems erratic and irrational. Still, from a
top-down perspective, it is widely undoubted that humans have the
ability to act in a rational way and, in fact, even appear to act rational
most of the time. Even more, the degree of rationality shining up in
a human’s behavior in many cases is even taken as an indicator for
the agents level of intelligence.2 The study of rationality itself has
a long history in science and philosophy that resulted in the forma-
tion of mainly four different families of abstract models: logic-based
systems, probability-based frameworks, game theory-based models,
and accounts based on the use of heuristics. Unfortunately, when
comparing the different conceptions, it shows that the resulting def-
initions are in many cases almost orthogonal to each other (as are
the frameworks). Additionally, the predictive, positive power of the
frameworks is very limited (if to be found at all), which we see as one
of the reasons why rationality after all these years still is a discussed
and actively pursued research topic, with new proposals and theories
being developed, and new fields joining the debate (cf., e.g., [1]).

The aim of the present paper is twofold: Starting out from previous
work on computational analogical reasoning, which resulted in the
development of the Heuristic-Driven Theory Projection framework
for computational analogy-making, and the corresponding computa-
tional implementation HDTP (cf. e.g. [19]), on the technical side we
first provide a description of how the heuristics underlying HDTP
work, and subsequently on the conceptual side sketch how HDTP
could be used as basis for a computational architecture that links ra-
tionality to analogy as a basic cognitive capacity of humans.

1 Institute of Cognitive Science, University of Osnabrück, Germany, email:
{tbesold | martisch | gust | krumnack | ahabdelfatta | kkuehnbe}@uos.de

2 Recently, a feasible positive model of rationality has also been considered
as a decisive part in constructing and evaluating systems of artificial gen-
eral intelligence. For an example see a proposal for a cognitively-inspired
decomposition of Turing’s classical test for machine intelligence in [2].

The general architecture proposed in the conceptual part of the
paper, on a very abstract level, can functionally be subdivided into
four steps: Given a problem description and domain, select and re-
trieve analogical situations from memory (retrieval). Use the prob-
lem as target domain for an analogy, the retrieved situation as source
domain, and establish an analogy between both (mapping). Trans-
fer solution-relevant knowledge from the source domain to the target
domain via the analogical mapping (transfer). Apply the newly ob-
tained knowledge in the target domain (i.e. the problem domain) for
solving the problem (application). One of the main advantages of
such a cognitively-inspired architecture is the positive and predic-
tive, rather than normative, character of the underlying theoretical
paradigm, actively allowing for deviations from classical paradigms
of rationality and seeming “rationality errors”, thus also accounting
for peculiarities of human-style rationality (as, e.g., to be found in
Tversky and Kahneman’s Linda Problem experiments [21]).3

2 Heuristic-Driven Theory Projection
The Heuristic-Driven Theory Projection (HDTP) framework has
been conceived as a mathematically sound framework for analogy-
making (cf., e.g., [19]). In the following we will give an outline of
the overall basic principles and functionality of HDTP, before having
a closer look at its heuristics in the subsequent section.

As explained in [8], HDTP has been created for computing ana-
logical relations and inferences for domains which are given in form
of many-sorted first-order logic representations. Source and target of
the analogy-making process are defined in terms of axiomatisations,
i.e., given by a finite set of formulae. From there, HDTP tries to align
pairs of formulae from the two domains by means of anti-unification.
Anti-unification is the dual to the more prominent unification prob-
lem, and has to the best of our knowledge firstly been studied by
Plotkin in [16]. Basically anti-unification tries to solve the problem
of generalizing terms in a meaningful way, yielding for each term
an anti-instance, in which distinct sub-terms have been replaced by
variables (which in turn would allow for a retrieval of the original
terms by a substitution of the variables by appropriate sub-terms).
The goal of anti-unification is to find a most specific anti-unifier, i.e.,
the least general generalization of the involved terms.4 HDTP now
extends Plotkin’s classical first-order anti-unification to a restricted
form of higher-order anti-unification, as mere first-order structures

3 A more detailed treatment of these aspects, together with a deeper elabo-
ration of some of the underlying theoretical assumptions and claims, can,
e.g., be found in [3] or [4].

4 Plotkin [16] has shown that for a proper definition of generalization, for a
given pair of terms there always is a generalization, and that there is exactly
one least general generalization (up to renaming of variables).
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have shown to be too weak for the purpose of analogy-making: Think
of structural commonalities which are embedded in different con-
texts, and therefore not accessible by first-order anti-unification only.

Restricted higher-order anti-unification as used in HDTP was first
presented in [13]. In order to restrain generalizations from becom-
ing arbitrarily complex, a new notion of substitution is introduced.
First of all, classical first-order terms are extended by the introduc-
tion of variables which may take arguments (where classical first-
order variables correspond to variables with arity 0), making a term
either a first-order or a higher-order term. Now, anti-unification can
be applied analogously to the original first-order case, yielding a gen-
eralization subsuming the specific terms. As already indicated by the
naming, the class of substitutions which are applicable in HDTP is
restricted to (compositions of) the following four cases: renamings,
fixations, argument insertions, and permutations. In [13], it is shown
that this new form of (higher-order) substitution is a real extension
of the first-order case, which has proven to be capable of detecting
structural commonalities not accessible to first-order anti-unification.
Unfortunately, the least general generalization loses its uniqueness
(which in turn may be interpreted as corresponding to the multi-
ple possibilities humans may find in drawing analogies between a
source and a target domain). Therefore, HDTP ranks generalizations
according to a complexity order on the complexity of generalization
(which in turn is based on a complexity measure for substitutions),
and finally chooses the least complex generalizations as preferred
ones. From a practical point of view, it is also necessary to anti-unify
not only terms, but formulae. Therefore, HDTP extends the notion
of generalization also to formulae by basically treating formulae in
clause form and terms alike (as positive literals are structurally equal
to function expressions, and complex clauses in normal form may
be treated component wise). Furthermore, analogies do in general
not only rely on an isolated pair of formulae from source and tar-
get, but on two sets of formulae. Here, a heuristics is applied when
iteratively selecting pairs of formulae to be generalized: Coherent
mappings outmatch incoherent ones, i.e., mappings in which sub-
stitutions can be reused are preferred over isolated substitutions, as
they are assumed to be better suited to induce the analogical relation.
Once obtained, the generalized theory and the substitutions specify
the analogical relation, and formulae of the source for which no cor-
respondence in the target domain can be found may by means of the
already established substitutions be transferred to the target, consti-
tuting a process of analogical transfer between the domains.

3 HDTP: Heuristics at Work

Mapping in HDTP is the process of selecting pairs of formulae to be
handed to anti-unification in a manner that minimizes the complex-
ity of alignment between two domains. The complexity of alignment
here means the sum of complexities of the preferred generalizations
for the pairs of formulae that constitute the alignment. Therein lies a
meta heuristic that is a key principle in HDTP namely “an alignment
with minimal complexity produces a good analogy”. A brute force
approach to finding an alignment for domains with minimal com-
plexity would simply mean to compute the complexity of all possi-
ble generalizations of two domains (which minimally is equal to the
number of all possible alignments, assuming the ideal case that for
each pair of formulae the preferred generalization is unique). Sub-
stitutions that were already made by anti-unification earlier are con-
sidered complexity-free when reused for generalizations later in the
mapping process (even when used for anti-unification of a different
pair of formulae). From this arises that the complexity for a gen-

eralization of a pair of formulae not only depends on the formulae
but also on the substitutions that are regarded as free during anti-
unification. Therefore the order in which formulae are anti-unified
matters, expanding the search space of mappings even further. Thus,
in order to handle this problem space (growing faster than propor-
tional to the formulae in each domain), we must explore techniques
to reduce the number of evaluated mappings between domains.

We may distinguish two aspects of heuristics used for mapping.
The first viewpoint we can take on heuristics is that they could in-
corporate knowledge that is not solely based on the formal structure
of domains. For instance, the heuristics could use information that is
based on previous knowledge of anti-unifying domains from similar
fields (bridging this system-theoretical consideration back to a more
cognitive scenario, this would correspond to a memory-based reuse
of generalizations). Or they could guide the search in such a way that
complexity is not solely minimized, rather other goals are incorpo-
rated by pruning the search in an appropriate form. Whereas HDTP in
its most primitive form is solely a symbol manipulating system, this
represents a point where “intelligence” can be incorporated: Map-
ping for analogical reasoning as here described has an exponential
explosion in the search tree and cannot be solved by mere brute force
search. The task of intelligence in form of heuristics here is then to
advert the threat of exponential search explosion by guiding search
in certain, by some standard plausible directions only.

Instead of a full breadth first search through all possible pairings
of formulae HDTP focuses the search by employing a locally greedy
search for alignment: First a selection heuristic selects pairs of for-
mulae that do not constrain mapping possibilities too fast, but col-
lect support for symbol mappings incrementally in small steps. If no
prior mapping is available the pair of formulae is selected that is best
according to an heuristic that approximates the anti-unification com-
plexity itself (if multiple such pairs exist, the ones that have most
matching predicates on the top-level will be selected). For example
aligning f(a) and f(b) would be preferred over the pair f(a) and
g(a), as aligning arguments is less complex than aligning functions
themselves. We then take the source formula from that pair as a start-
ing point. If the mapping already contains substitutions we simply
select the formula as source formula that contains the least amount
of symbols that are unmapped or do not appear in the other domain. If
multiple such formulae exist we narrow down the choice again by the
anti-unification heuristic and choose the source formula that is con-
tained in the pair of formulae that has the lowest approximated com-
plexity. Because the anti-unification heuristic used is not admissible
we will only heuristically select the source formula and not at the
same time the target formula. All unaligned formulae in the target do-
main will then have to be considered to form a pair for alignment with
the source formula. However, this is optimized by working through
them in the order given by the complexity computed by the anti-
unification heuristic. To make this computationally more efficient,
we exploit the fact that the restricted higher-order anti-unification
algorithm is able to search for generalizations up to a specific com-
plexity. The anti-unification heuristic should be good enough to put a
formula at the beginning of the list of possible target formulae in such
a way that the first ones have relatively low computed anti-unification
complexity in comparison to the formulae further down the list. We
then pass the computed minimal complexity for generalizations with
a specific selected source term on to the following anti-unifications
with different target formulae. If they do not have generalizations
that are less or equally complex the process can terminate earlier than
without a given cutoff value. If the anti-unification heuristic has not
accurately predicted the pair of formulae which contains the source
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formula selected that has minimal anti-unification complexity, this
will not generate a suboptimal solution. The algorithm is still locally
optimal in that, given a source formula, it will select the best target
formula that still needs to be aligned. However, because we employ
a greedy search we will not compute anti-unifications for an arbi-
trary order of source formulae in the alignment, which makes the
algorithm globally not optimal. An alignment does not need to in-
clude all formulae of the two corresponding domains, but could be
partial or even empty. When domains consist of an unequal number
of formulae a full one-to-one alignment trivially will not be possi-
ble at any rate. Usually formulae from the source domain are left
over with no possible partner to form a pair, even if as much pairs
of formulae as possible are incorporated in an alignment. Therefore,
besides pairing up a source formula with a target formula the case
of not pairing it up (and therefore not aligning it) is also considered.
For the heuristic that gives the complexity of not matching a formula
the balance between not trying to force mappings to hard and not
leaving a lot of formulae unaligned is aimed for. We therefore use
the metric (number of symbols ∗ 2) + 1 to make it more complex to
not align a formula, than to anti-unify it with a formula that is equal
in argument structure. At the same time this does not dismiss align-
ments when a term with many matching or already mapped symbols
is available. The mapping process accordingly is finished when all
source formulae have been aligned or determined to have no match.
The strategy will always terminate, because in each iteration of the
main mapping loop a formula will be taken from the source formula
set which is finite (whether that formula will be aligned or not is a
different matter). In the end no source formulae are left for inclusion
in the alignment, thereby, trying to make the mapping cover as many
formulae as possible in both domains with minimal complexity.

In analogy-making restrictions on mapping symbols between do-
mains are often imposed so as to disallow arbitrary mappings from
symbols to symbols. The up to now described form of mapping
domains allows for multiple mappings of one symbol to symbols
within the other domain. However, this may not be desired. Gen-
tner’s Structure-Mapping Theory is based on the finding in [6] that
people prefer alignments that are structurally consistent. This means
that there should be a one-to-one correspondence between elements
in source and target domain. Enforcing this constraints further nar-
rows down the search for alignments, as under this restriction an anti-
unifier for a pair of formulae does not always exist.

Another addition to HDTP presented in [18] is the encoding of
additional knowledge by incorporating sorts. Sorts describe the type
of an entity at a general level and can be interpreted as high-level
concepts as, e.g., object, massterm, time or number. They reflect our
wish not to consider the universe as a homogeneous collection of ob-
jects. Their purpose in HDTP is to help restrict the possible mappings
during the analogical mapping process by using background knowl-
edge about relations between classes of symbols in the involved do-
mains. Domains used in HDTP are described by a many-sorted logic
and sortal ontology. Adding a complexity measure for adjusting sorts
in mappings makes HDTP prefer mappings where entities with the
same sort are mapped to each other. It thereby serves as another
heuristic to speed up computation and produce good mappings.

4 Cornerstones of an Architecture for
Human-Style Rationality

In this section, we outline how solving a rationality puzzle can be
modeled in terms of HDTP, by this also pointing towards principles
for a HDTP-based architecture for a cognitive rationality system. For

some first example applications of HDTP-style modeling to classical
rationality puzzles we refer the reader to [3] or [14].

As already stated before, in HDTP, source and target domains for
analogy-making are represented as theories in a first-order logical
language. In the following, we additionally assume that the system
has access to a library of previously formalized situations and scenes
(i.e., domains that had already initially been pre-compiled, or that
have been learned and acquired during runtime up to the present
moment in time), corresponding to a human’s (episodic) memory of
previously seen and experienced happenings and events (here, con-
straints on human memory could for example be modeled by limiting
the number of domains available to the system).

Given the (rationality) problem at hand as target domain for the
analogy, the retrieval problem within HDTP comes down to select-
ing a fitting domain from memory as source domain. This can be
done in different ways, for example by means of a separate module
(similar to the MAC stage in the MAC/FAC model [5]), or by forc-
ing HDTP to construct analogies between all possible pairings of the
target domain with a candidate source domain, subsequently taking
the heuristics value HDTP computed when constructing the analogy
as a measure for analogical distance between domains and proceed-
ing for example with the analogically closest domain as source do-
main for the analogy. Of course, the outcome of the retrieval pro-
cess does not have to be unique, and always strongly depends on the
heuristics or distance measures used, thereby introducing a degree
of uncertainty into the system (matching the uncertainty and irreg-
ularities humans exhibit in their decision and rationality behavior).
Once a source and target domain have been identified, HDTP con-
structs an analogical relation between both, mapping between ele-
ments from source and target domain. The construction of this map-
ping is based on the previously outlined generalization mechanism,
guided by heuristics which try to keep the analogy as simple (i.e. less
general) as possible, whilst still maximizing the sub-theories of the
sources which can be re-instantiated from the generalization (a trade
off close in spirit to the precision/recall problem in pattern recog-
nition and information retrieval). Also here, in most cases the map-
pings between elements of the respective domains do not have to be
unique (e.g. different elements of the source could be mapped to one
certain element of the target domain), again introducing a source of
uncertainty. In the transfer phase, knowledge from the (with respect
to problem solutions richer) source domain is transferred to the tar-
get domain (i.e. the problem at hand). Making use of the mappings
established in the previous step, the concepts from the source domain
are re-instantiated from the generalized theory into the target do-
main, enriching the latter and giving additional information needed
for computing a solution to the problem. In the last step, the newly
added knowledge is applied in the target domain (e.g. used for rea-
soning and inference), in most cases yielding a solution to the prob-
lem (sometimes, although additional knowledge has been provided
via the analogical process, the problem solving process still will fail,
a phenomenon reminiscent of human failure in seemingly familiar,
in the past already mastered problem situations). This step also in-
cludes a consolidation process, integrating the transferred knowledge
into the target domain, giving an expanded or richer domain.

Of course, this type of architecture leaves ample space for uncer-
tainty and deviating behavior: Apart of the already mentioned sys-
temic influences, a certain chance of deviation from HDTP’s pre-
dicted outcome for a certain problem situation is automatically in-
troduced by the use of logical theories as descriptive framework for
situations and problems. As with every symbolic formalization, de-
cisive information might accidentally be left out of considerations
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when formulating the domain descriptions. Nonetheless, we don’t
see this as a major drawback, but rather as a natural constraint every
system trying to predict a phenomenon as complex as human rational
behavior has to face, and which even holds in the case where humans
try to predict each other. We want to go even one step further, in the
future trying to make this uncertain or vague formalization process
to a certain extent part of the system via introducing a bayesian-style
learning and inference process at the stage of obtaining (complete)
domain theories from (most likely only partial) observations.

5 Related Work & Conclusion
We are not alone in our overall plea for a “more cognitive” view on
rationality models and systems. Of course, Simon’s epochal work on
bounded rationality [20] has to be seen as an early predecessor. Also,
there are tight programmatic connections to the ecological rational-
ity [17] movement. On the cognitive science side, amongst others,
Kokinov challenged traditional views on rationality in [12]: Observ-
ing that rationality fails as both, descriptive theory of human-decision
making and normative theory for good decision-making, Kokinov
reaches the radical conclusion that the concept of rationality as a the-
ory in its own right ought to be replaced by a multilevel theory based
on cognitive processes, proposing analogy as means of unifying the
different mechanisms. Utility making then would have to be rendered
as an emergent property, emerging in most (but not all) cases, thereby
converting rationality itself into an emergent phenomenon and as-
signing rational rules the status of approximate explanations of hu-
man behavior. And also on the empirical side, evidence for the appli-
cability and suitability for the resulting position can be found. In [15],
Petkov and Kokinov present JUDGEMAP, a computational model of
judgement and choice based on the general-purpose cognitive archi-
tecture DUAL [11], and the corresponding AMBR analogy-making
system. JUDGEMAP is capable of performing both tasks, giving a
judgement on a scale and deciding a choice situation, by means of a
process of making forced analogies, exclusively using mapping prin-
ciples inherited from the underlying AMBR system. JUDGEMAP
has been demonstrated to replicate phenomena known from obser-
vations of human judgement as, e.g., range and frequency effects, or
sequential assimilation effects. Additionally, several simulations run
on JUDGEMAP have shown that mechanisms designed for modeling
analogy can have influence on judgement and choice, possibly repro-
ducing contextual effects in tasks which at first sight don’t seem to
be related to analogy-making.

Earlier work has been conducted addressing the application of
analogy-making systems to basic problem-solving scenarios (cf.,
e.g., [9, 10]). Still, concerning the general application of analogy en-
gines to rationality tasks, to the best of our knowledge the number of
existing coordinated research projects is still quite limited,5 and most
proposals and frameworks only are in an early stage, at best having
proof-of-concept status. Nonetheless, already at this level, available
theoretical and practical results are promising enough to justify se-
rious and dedicated research efforts. Here, both sides, the “classi-
cal” cognitive and analogy computation movement and the “classi-
cal” rationality schools, could profit from further intensifying their
interaction and cooperation: The mostly symbolic paradigms used
in many applications and implementations dealing with analogy-
making could be expanded and enriched by some of the alternate
techniques applied when modeling rationality, whilst the numerous

5 We explicitly do not consider frameworks and theories for case-based rea-
soning in decision-making or for case-based decision theory, as the under-
lying mechanism differs significantly from analogy-making.

frameworks for rationality could significantly profit from including
more cognitive aspects and properties of humans into their models
and theories (for an example, see some of the considerations con-
cerning subject-related aspects of rationality in [7]).
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Matchmaking: How similar is what I want to what I get
Michael Munz and Klaus Stein and Martin Sticht and Ute Schmid 1

Abstract. We introduce matchmaking as a specific setting for sim-
ilarity assessment. While in many domains similarity assessment is
between pairs of entities with equal status, this is not true for match-
making in general. Usually, in matchmaking there exists a source
request which triggers search for the most similar set of available
entities. Whether an entity is acceptable depends highly on the ap-
plication domain. We describe a specific scenario where elderly peo-
ple request support or companionship for activities away from home.
The focus is primarly based on neighbourly help, like helping some-
one to carrying his or her shoppings, finding someone else to enjoy
a performance or simply for taking a walk around the block. Then,
the scenario is used to formulate requirements for a matchmaking
framework and for the matchmaking service.

1 INTRODUCTION
Cognitive scientists consider similarity to play a crucial role in most
cognitive processes such as concept acquistion, categorization, rea-
soning, decision making, and problem solving [5, 4]. Major ap-
proaches to similarity in cognitive science as well as in artificial in-
telligence can be characterized on two dimensions: First, whether
basic information about objects is metrical or categorial and second,
whether objects are characterized by feature vectors or structural in-
formation [10, 5]. In psychology, the typical task under investigation
is that subjects are asked to rate similarity of two objects. In this
setting, the entities for which similarity is assessed play equivalent
roles and often occur as first or second position during evaluation.
Furthermore, entities are dissociated from the person who does the
rating. However, there are many scenarios, where similarity between
a “driver” entity and a series of candidates needs to be assessed. This
type of similarity assessment is to the core of information retrieval
research and can be characterized by the questions how similar is
what I want to what I get?

In this paper we introduce matchmaking as a special domain of in-
formation retrieval. In general, matchmaking is the process of identi-
fying similar or compatible entities. Requirements stated as a query
by a user are matched with descriptions (e.g. of services or social
events) provided by other users. Typically, a good match is obtained
by identifying features or constraints which are similar and – in addi-
tion – by features or constraints which are complementary for request
and candidate entities. Complementary or fitting features are defined
by a request/provides relation.

There exists a wide range of application to matchmaking, such as
(online) dating, sports, eSports and business [12, 11]. In those do-
mains, the matching process is based on different assumptions about
what “similarity” means. In (online) dating a matchmaker tries to
bring together people with similar interests or similar personality.

1 University of Bamberg, Germany, WIAI, email: {name.surname}@uni-
bamberg.de

Whereas in the area of sports a matchmaker has to consider the skills
and competence of sportsmen and of teams when it comes to a match-
ing. In business, a matchmaker could have the job of finding appro-
priate services for a request. Here, similarity depends on what kind
of service one is interested in. The examples are all from different
domains, that means finding something that is similar to a request
depends on the domain of application.

The paper is organised as follows: first, we review three different
approaches of matchmaking applied to different domains. Then we
present two different kinds of scenarios, where older people search
support or compagnions for activities. The scenarios are used to de-
rive requirements for a matchmaking framework. In chapter 5 we
present the components of framework and conclude with a short dis-
cussion and future plans. The focus of this paper is on the presenta-
tion of the system architecture (backend) by which matchmaking can
be realized. We are not concerned with the user interface (frontend).

2 APPROACHES TO MATCHMAKING
In this section we discuss three existing approaches for matchmaking
with respect to four major questions:

1. How is the data (advertisements, queries) represented?
2. Does the approach make use of background knowledge?
3. Which matching algorithm is applied?
4. Which fitting measurement is used?

The described approaches are applied in different domains. The ap-
proaches [9] and [3] are related to the business domain whereas [2]
is related to dating and meeting people. Furthermore, they have a dif-
ferent understanding of what actually similarity means as previously
discussed. It is this difference that drives the matchmaking process
in different directions.

2.1 Matching Resources With Semistructured Data
The classad matchmaking framework [9] is a centralized resource
management system for managing distributed resources. It allo-
cates information, like availability, capacity, constraints, and other
attributes describing a resource. Those information are used in the
matchmaking process to find a proper match. The idea here is to use
classads (classified advertisement), a semi-structured data model [1]
comparable to records or frames, to describe a resource request or to
announce a resource to the system. Classads are modelled via lists of
pairs, each containing an attribute name and one or more values, to
store semi-structured data. Data pairs are used to describe offered and
requested services. For example, when considering to use a worksta-
tion, a requester would probably store information about the CPU’s
capabilities or the disk space, while a provider offering a printing ser-
vice would describe the printer’s throughput. It’s possible to define
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constraints, restricted user groups and rules to rank each other. Both,
service provider and service requester use classad descriptions. This
makes it easy to compare the query with the suppliers’ offers, look-
ing at similarities of attributes and constraints and to rank the offers
found in this process.

For a given request, the matchmaker tries to match the classad
of the request to a resource with respect to any constraints given
in the classads. The rule-based process evaluates expressions like
other.memory >= self.memory. The authors focus on the data struc-
ture and do not specify a specific matching algorithm. They state that
the profiles can be matched in “a general manner” using the specified
constraints. Additionally, as goodness criteria, the ranking rules can
be applied to find out which classads fit better than others. Unfortu-
nately, further details are not given by the authors.

Finally, the matched entities will be informed by sending them the
classads of each other by the matchmaker and the resource provider
decides to accept or decline the given request.

2.2 Matching Activities Using Ontologies

R-U-In? [2] is a social network primarily based on activities and in-
terests of users. A user looking for company for an activity (e. g.
going to the cinema or to a jazz club etc.) queries system with a short
description, including time and place. The matchmaker returns con-
tacts found by the user’s social network profile, who have similar
interests and are located in close proximity. The found contacts need
not be known by the querying user yet. For example, the new person
might be a social-network “friend” of a “friend” identified by some
social network service.

Users can post their interests and planned activities on the platform
in real-time, i .e. planned activities are dynamic and can often change
at the last minute. As a result of this, participants in an activity get
updates about changes immediately.

An ontology is used to realise the matching process. There are rea-
soning mechanisms for ontologies based on Description Logic [6]
and therefore for ontologies based on OWL [7]. Banerjee et al. used
an OWL-based context model for their activity-oriented social net-
work. Interests are provided by the user itself and are based on tags.
Each interest can be tagged via the dimensions location, category
and time. In this way, one can find similar interests by matching on
all dimensions: the time (e.g. evening, 8 pm, . . . ), the category (hor-
ror movie, skating, jazz, . . . ) and the location (Bamberg, jazz-club).

Tags entered by the user (for describing or querying an activity)
are considered as concepts of the ontology. The matchmaker queries
the context model which in return gives a set of similar tags. Those
tags are then matched with the tags specified in the user profile.
Based on the search criteria of a user, activities might match exactly
or just partially. The search result of any match is then ranked by its
geographical distance to the current location of the requesting user.
Suppose, a user stores the activity (Park, skating, 3 pm) and a sec-
ond user searches for (skating, afternoon). While the activity skating
is an exact match, afternoon matches only partially with 3 pm. As
afternoon subsumes 3 pm it is still possible to match the activity.

In general, the ontology is used to store background knowledge by
modelling concepts and relations. For the presented prototype, this is
done manually. After a query, the matching process is performed in
two steps. First, the context-model is used to get semantically similar
tags which are then compared to the tags of the other user’s activ-
ity descriptions. However, details on how the tags are compared and
matched and how the results are ranked (beside of the geographical
distance) are not discussed by the authors.

2.3 Matching Web Services Using Clustering
Fenza et al. [3] propose an agent-based system to match semantic
web services. There are two different kinds of agents in the system:
a broker agent (kind of mediator) and one or more advertiser agents.
A request for a service is handled only by the broker itself. When it
encounters a request it converts it into a fuzzy multiset [8] represen-
tation. With these multisets a relevance degree is assigned to each
possible ontology term that describes a web service according to the
place, where the term occurs. For example, if the term occurs in the
input specification of the service then it will get a relevance degree
of 1. If it occurs in the textual description, then it will get a degree
of 0.3 and so on. In this way, it is possible to weight the term for
different occurrences via categories.

Advertiser agents interact with web services and with a single bro-
ker agent. Each web service description2 is converted into a fuzzy
multiset representation. Note that the broker does the same with the
user’s request. So in the end, a broker has a fuzzy multiset of a re-
quest and advertiser agents have a fuzzy multiset for each registered
service. The broker sends the fuzzy multiset of the request to the ad-
vertiser agents to find an appropriate web service. If a web service
matches with a request then the matched web service is returned by
the broker, the corresponding fuzzy multiset is stored to a central
cluster and its job is done. Otherwise, the broker tries to find an ap-
proximate service by using a knowledge base which is divided into
two distinct sets of knowledge: static knowledge and dynamic knowl-
edge.

There are several ontologies modelled to specific domains in the
static part of the background knowledge. To calculate an approxima-
tion, the broker modifies the original request by utilizing the domain
ontologies. The dynamic part of the knowledge consists of the cluster
of fuzzy multisets where the web service descriptions of the known
providers are stored (encoded as fuzzy multisets). It compares the
fuzzy multiset of the modified request with the fuzzy multiset of each
cluster center and selects the services most similar to the request.
That is, services with the minimal distance to the request are can-
didates for an approximation. The similarity is therefore measured
using the distances in the fuzzy cluster.

3 SCENARIO
Many older people at a specific age often don’t leave their home on
their own, because of several factors: they might be more anxious
in late life or may have physical health problems. They also might
be more socially isolated, have significant changes in living arrange-
ments, the loss of mobility, fewer flexibility, and loss of their inde-
pendance. All this factors contribute to withdrawal from social life
and thereby reduce quality of life.

To have an independent life at an old age mobility is crucial to
being active and to stay in contact with other people. Therefore, the
goal is to improve mobility and social connections of (older) people.
That is, to bring together people who do need help, but also people
who want to meet others and people who offer help.

The idea is to build a platform mainly based on collaborative help,
but also includes service providers. In this paper we focus on the
matchmaking framework of the platform. The context of collabora-
tive help means to match people asking for help to people offering
help and vice versa. People looking for help are going to be mostly
elderly people and people offering help are going to be mainly vol-
unteers.
2 A specific ontology for describing web-services named OWL-S is used.
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In the following, we are looking at two kinds of scenarios the
system might be confronted with. They represent two different ap-
proaches the matching service has to deal with. The first scenario
describes matchmaking based on best fit, while the second scenario
describes matchmaking based on similarity. Fitting and Similarity are
discussed in more detail in chapter 5.

Scenario 1 (a) Mrs. Weber is looking for a babysitter for her 3
years old daughter on weekends on a regular basis from 1 pm un-
til at least 4 pm. (b) Mrs. Peters is an 82 years old lady who needs
attendance in taking the public bus lines. She thinks it’s too compli-
cated for her, because she has to know how to buy a ticket, where to
change bus lines, and the bus station to get off. (c) Zoey plays guitar
and goes to the music lessons every Wednesday after school at 3 pm
and takes the bus line 901. She would agree in attending someone
else. (d) Aylia Özdan is 31 and will help someone else on Sundays if
it’s between 11 am – 8 pm.”

The examples provide some information: Zoey works as a volun-
teer every now and then. She would accompany someone else under
some conditions. She is using the bus line 901 at a very specific time
(3 pm). So the person to accompany should use the same bus line and
should be there before the bus arrives at the bus stop. If these condi-
tions are met, Zoey will accompany a person until the bus arrives at
the bus stop she has to get off. The request of Mrs. Peters will match
this offer, if she also uses bus line 901 and waits at the same bus stop.

The request of Mrs. Weber looking for a babysitter on weekends
matches only partial with the offer of Aylia Özdan to help someone
on Sundays. Note, there is a difference between the help of Zoey and
Aylia Özdan. While Zoey is helping the old lady by courtesy as long
as it doesn’t interfere with her plans, is Aylia Özdan helping someone
else on purpose by spending some of her spare time.

Scenario 2 (a) Mr. Beck is 70 years old and interested in play-
ing Backgammon regularly. None of his acquaintances is play-
ing it, and he doesn’t know any other person who might play it.
(b) Mr. Miller plays regularly Poker with his buddies on Friday
evening and is always looking for new participants who are inter-
ested in it. (c) Mr. Novak wants to play Skat with a friend and they
are looking for a third player.

In this scenario Mr. Beck is looking for someone who is playing
Backgammon. Because there is nobody else in the system who is in-
terested in it, no exact match is possible. But there are other requests
stored in the system, like Skat and Poker, the system could offer in-
stead as similar matches. The implication is, if one is interested in
playing Backgammon, one could also be interested in playing other
games. Here, similarity means finding someone with similar inter-
ests. At the level of a “parlour game” all these requests are similar.
So they should appear in the result list as possible matches.

4 REQUIREMENTS

In chapter 3 we described two different kinds of scenarios where
matchmaking is either a best fit or a similarity match. From these
scenarios various requirements arise which have to be considered in
a matchmaking framework.

Activities A matchmaking framework has to deal with different
kinds of requests when it comes to a matchmaking. The essence of
scenario 1 is that someone is searching for help and someone else
is offering a helping hand. Here, a request for help and an offer to

help should be matched. In scenario 2 the situation is different. Users
search for other users with similar interests. Here, a matching service
should match users with same or similar interests. All requests have
in common that they concern “activities”. As a result, requests are
essentially a search for activities. Therefore, one requirement to a
matching framework is to handle those activities properly.

While R-U-In? (Sec. 2.2) matches users with similar interests it
does not handle fitting of offers with requests. Classads (Sec. 2.1), on
the other hand, support these different roles but only provides the data
structure and no matching algorithm. The fuzzy multiset approach
(Sec. 2.3) also supports the different roles of requester and provider
as long as all parameters can be expressed as fuzzy multisets.

Constraints Activities are essentially sets of constraints. We dis-
tinguish between hard (“must”) and soft (“should”) constraints. If
only one hard constraint can’t be satisfied the whole activity won’t
be satisfied at all. If one soft constraint can’t be satisfied, the activity
will still be available as a possible match. In the context of matching
similar activities, a soft constraint evaluated to false means matched
activities do not fit so well. Note, what is seen as hard and soft con-
straints depends highly on user expectations. Scenario 2 (Backgam-
mon) is an example where a lot of soft constraints exist: time, place,
day of week, and even the activity itself. Whereas the examples of
scenario 1 have a lot of hard constraints, like time, place, bus line,
and day of week.

The classad approach supports modelling of constraints, but the
authors do not distinguish between hard and soft constraints. To
overcome this, one could think of utilising annotations to distin-
guish categorically between hard and soft constraints. Both of the
other approaches do not have explicit constraining mechanisms. The
activity-oriented network R-U-In? models interests of users via three
dimensions: “time”, “category”, and “location”. The model could
be extended by an additional dimension specifying constraints. The
downside of this approach is all dimensions of the model are repre-
sented by an ontology. That means, only the concepts of hard and
soft constraints could be modelled, but no instances. Otherwise, con-
straints would be predefined and too inflexible. The fuzzy multiset
approach directly supports (weighted) matching of soft constraints,
but the datastructure has to be adapted to directly support hard con-
straints.

Roles The scenarios (Sec. 3) present two basic situations. On one
hand there are people needing help or searching for other people with
same interests. On the other hand, there are people offering their help.
But there are differences in the degree of helping someone. Some
users do volunteering work and other users just do someone a favour.
In the context of neighbourly help it’s important to distinguish be-
tween these, because there is a difference in the social commitment.
Via user roles these differences can be modelled. Roles can represent
the different expectations users have, when searching for activities.
For example, users searching for help expect to find someone offer-
ing help. The same is true vice versa. That is, a volunteer who is
looking for users needing help expects to find posted activites.

As already stated, the goal of the proposed framework is to im-
prove social life of older people by focusing on mutual assistance
and neighbourly help. Therefore, the default role represents those
users who are searching for help or looking for company. The dif-
ference in helping is taken into account by another two roles. That
is, volunteers and favours are represented by separate roles, because
they have different characteristics. People doing volunteering jobs do
it on a regular basis and offer assistance explicitly. Usually, they have
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weaker conditions under which they are willing to help and try to be
more flexible in scheduling an appointment with someone who needs
help. Furthermore, they are willing to spend some of their spare time
in helping others. In a third role are those users represented doing
favours. The difference to volunteers is, they don’t help out regu-
larly and they have stronger conditions under which they are willing
to help someone. Doing someone a favour is usually a very time-
limited act, so time is a hard constraint. Another characteristic of a
favour is most people will do it only, if it doesn’t interfere with their
own plans and they don’t have to change their schedules.

Classads and fuzzy multisets are designed to match available re-
sources to requests of resources. In those situations there exist only
the two roles of service providers and service requesters, and no fur-
ther differentiation is needed. An activity-oriented social platform
like R-U-In? does only have one group of users. All users are in-
terested in doing activities in their spare time. This leads to clear
expectations when using the platform. They either search for or post
activities. Because of an activity-oriented user group only one role is
needed to represent them.

Knowledge The matchmaking process can be improved by pro-
viding knowledge. For matchmaking based on similarity different
sources of knowledge are suitable. That is, background knowledge
and user profiles.

Background knowledge is the general knowledge available in the
system. Activities are represented by it and the knowledge is used to
tell how similar different activities are. Then, the matching service
can offer similar activities by evaluating it (e. g. by taxonomic rela-
tionships). Suppose, someone searches for Backgammon, but there
is no direct match (as the situation is in scenario 2). The matchmak-
ing service can offer Skat and Poker instead and ignore other avail-
able activities. Background knowledge has a disadvantage, though.
It is often static and explicit. It doesn’t change often and represents
knowledge to a specific time. Moreover, updating static knowledge is
often time consuming. To overcome this we consider to utilise user
input. The initial background knowledge would be more dynamic
and converge to requested user activities.

A user profile is also helpful in the matching process. It has two
advantages: first, in the profile are those information stored a user
normally doesn’t want to re-enter everytime a search is submitted.
Second, information stored in the profile can be used to filter off
matched activities which do not fit. In this way, the result list can be
improved. Information in the profile could be among other things:
interests of a users, trust to other users, constraints, and a user rat-
ing. Activities of other users should be withhold in the result list, if
a user marked others as disliked or even untrusted. Trust and user
ratings are really important in the context of neighbourly help and
are valuable information in the matching process. A matching will
get a much more higher rating, if there already exists a relationship
of trust between users. The implication is, they did some activities
in the past, know each other and would like to do future activities
together.

Classads [9] have in some extend a user profile, but they do not
have any background knowledge. In classads only a resource can
specify a list of trusted and untrusted requesters, so the relationship
here is unidirectional. The activity network R-U-In? [2] uses both
background knowledge and user profiles for a matching. While user
profiles are updated in real-time, the background knowledge has no
dynamic update mechanism so far. Moreovere, there exists a policy
repository where a user can define policies for participants when at-
tending an activity. The downside of the platform is one can’t rate

users, can’t mark them as liked or unliked, and it’s not possible as-
signing any status of trust. In the fuzzy multiset approach [3] there
is a distinction between background knowledge and fuzzy multisets.
The background knowledge is realised in the form of domain ontolo-
gies and is static, according to the paper [3]. Whereas, fuzzy multi-
sets are dynamic and are updated according to changes of services.

Requests The matching framework should be able to differenti-
ate between two different classes of requests, immediate request and
stalled request. They represent different searches of activities. Sup-
pose, a user wants to play Backgammon and issues a search. In the
profile aren’t defined any preferences, like hard constraints. Further
assume no exact match is possible, but there are two other activites
stored (Skat and Poker), as the situation in scenario 2. As a result,
the best matches are Poker and Skat. The user has now the choice
of either choosing any of the matches he or she is interested in by
contacting the other person or to store the request in the system. A
user should have the opportunity to store it, if he or she doesn’t like
any of the activities found or the results are not as expected

Everytime a user initiates a new search for activities to the sys-
tem he or she immediately receives all matching results best fitting
the search. It is an immediate request. The result list is ordered ac-
cording to a weighting so the best fitting activities are on top. In
case, the user isn’t happy about the found matching results, he or
she has the opportunity to initiate a stalled request. The request of
the user is stored in the system’s activity database and is from now
on in monitoring modus. Depending on the preferences stored in the
corresponding user profile the user will be notified about new activ-
ities of other users similar to his or her activity request. Utilising a
stalled request one can find a match that best fits over a period of
time while an immediate request matches the best fit of the current
available activities.

Classads [9] and the fuzzy multiset approach [3] match a request to
the current available set of services, only. They do not have to distin-
guish between different kinds of requests in their systems. Whereas,
in R-U-In? [2] you can search for and post activities. Activities are
stored in a so-called activity groups reposititory. The difference here
is, stored activities are not in any monitoring mode, so users are not
being informed about searches of other users. Rather, in R-U-In? a
user will only be informed, if the requester is interested explicitly in
an activity by sending him or her a message.

For the proposed system based on neighbourly help the described
requirements are mandatory to the process of matchmaking. Because
none of the approaches is appropriate for our needs we propose a
matching framework with the required components.

5 COMPONENTS OF A MATCHMAKING
FRAMEWORK

We introduce a framework with respect to the requirements identi-
fied in chapter 4. Figure 1 depicts all components of the proposed
matchmaking framework. It shows the interaction between the com-
ponents, in which the matchmaker is the key component. A user
searching for activities initiates a request to the system. All inter-
action between a user and the system is via a mediator. The mediator
decides whether it is an immediate request or a stalled request. If
it’s an immediate request the matchmaker will be called. For finding
similar activities or activities which fit to a given request the match-
ing algorithm uses the underlying databases. That is, the background
knowledge, the user profiles and the stored activities. A result list is
then returned in response to the mediator. If the request is a stalled
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Figure 1. Components of the matching framework and their interaction.
The matchmaker is the key component of the system. It uses the underlying

database for a matching and propagates the results to the mediator.

request an activity will be created in the activities database. There
are two things to be aware of: first, the activity is in a monitoring
mode. Second, a stalled request can only follow up on an immediate
request. Whenever there is a new match for a stalled request the user
will be informed.

5.1 Representing Constraints
Descriptions of activities as those mentioned in chapter 3 consist of
features, such as gender, time, location, and the name of the activity
itself. These features describing an activity are viewed as constraints
for a matching and are classified by two dimensions:

similarity ↔ complement
hard constraints ↔ soft constraints

Some features need to be similar like the activity. Here reflexivity of
mapping holds. On the other hand, some features need to be com-
plementary. For example, the relationship between needs car/offers
car. Here we speak of fitting and not of similarity. The mapping of
fittings can be modelled in such a way that the resulting scale cor-
responds to a similarity mapping. So that both similarity and fitting
can be processed together.

Hard constraints can be encoded using arbitrary complex boolean
formulas on object properties while sets of weighted propositions are
used for soft constraints. For example, let’s assume that Mrs. Peters
from scenario 1 only wants help from women who are at least 30
years old (hard constraint). This can be formalised as:

other .gender = female ∧ other .age ≥ 30 (1)

where other is a reference to a potential activity partner (similar to
[9]). Consider the request of Mrs. Peters finding someone assisting

her in riding the public bus as activity a1:

requires(a1, assistance) (2)

Requires relations are matched to corresponding provides relations
of other activities. Say a2 given by another user, namely Aylia Özdan.
Both relation will be used to check, if the activities fit, as:

provides(a2, assistance) (3)

The matchmaker must know that the relations requires and provides
are matchable. However, matching two requires relations would not
solve any problems. Whereas, relations of the same type (e.g. likes)
would match in a similarity check:

likes(other , backgammon) ' likes(other , skat) (4)

Using constraints, time and loaction related restrictions can also be
modelled. For time related restrictions it’s necessary to handle inter-
vals to check temporal overlaps. Location related restrictions calcu-
late and weight distances. The distances are used for ranking pur-
poses. Matches which have a shorter distance are better matches as
similar pairs of matches but with greater distance.

5.2 Matching on Constraints
Checking hard constraints can be done by comparing the requires
and provides relations of both, activities and the user profiles. If a
hard constraint is violated by an activity description or an involved
user profile, the activity will not be considered further in this query.
Matching hard constraints should be done before soft constraints are
considered. In this way hard constraints are used as filters to omit ac-
tivities that are being violated. Soft constraints have to be checked
only on the remaining set of activities to calculate values of the
matching quality.

Soft constraints have different weights, i. e. a value between 0.0
and 1.0 representing its importance to a user. These weights are either
derived from the user profiles or from the user’s query where the
requester can specify the importance of each constraint.

If a soft constraint doesn’t match, the matchmaker can

1. check the severity of the violation (e.g. the other’s age is 38 while
the claimed age is 40; this violation would not be as strong as if
the other’s age was 12). Note that this is only possible if a distance
between the claimed and the actual value can be obtained (here
difference in ages).

2. combine the severity of the violation with the weight of the con-
straint and find out how severe this violation is for the complete
activity. Lower weights of constraints might qualify severe viola-
tions and vice versa.

If we assume that the severity can be normalized to a value be-
tween 0.0 and 1.0 where 0.0 means no violation and 1.0 represents
the hardest possible violation, the matching violation V can obtained
by a sum

V =
∑

c∈C

sc · wc (5)

where sc represents the normalized severity of the violation of fea-
ture c and wc the weight given by the user. C is the set of all relevant
constraints.

In this way, it is possible to calculate for every remaining activity
(after checking the hard constraints) a value of how well it fits to a
query. A low V means a better fitting. According to these values,
target activities can be ranked and presented in the corresponding
order.
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5.3 Knowledge from User Profiles and Missing
Knowledge

We do not only distinguish hard and soft constraints, but also pro-
file constraints and on the fly constraints. These constraints refer to
where they are defined. Profile constraints are defined in user pro-
files and are used for recurring constraints only. If a user has defined
constraints via the profile, the system will take them into account
automatically when initiating a request. It’s a way of constraining
the search implicit. On the other hand, it should be possible to de-
fine constraints manually when doing a search. Those constraints
are specified on the fly and are valid only for a specific request.
Manually constraining the search should have higher priority as con-
straints in profiles. For this reason, different knowledge has different
priority. Information given in profiles have higher priority as back-
ground knowledge. A request has in turn higher priority as profiles.
So knowledge with higher priority overwrites lower priority. As a
result, constraints defined in the profile influence the search results
implicitly, whereas constraints defined on the fly influence it explic-
itly.

Suppose, a user has ignore(cardgames) in his profile the con-
straint specified and searches for Backgammon. Skat, Poker, and
chess are in the system as available activities. Because Backgammon
isn’t available, the only similar activities are Skat, Poker, and chess.
The matching service just offers chess as an alternative activity and
discards the card games Skat and Poker, because they’re on the ig-
nore list. Now suppose, the same user initiates an explicit request for
Skat. The request has higher priority as the constraint in the profile
and overwrites it. This approach allows users to find still activities
explicit, even when the profile states otherwise, by overwriting con-
straints.

Further, it is also important not to treat unmatched constraints as
fails because of missing information about the feasibility on the other
side. Assume Zoey wants to attend a concert, but needs someone with
a car to go there. So the car is a requirement that can be modelled as
a (hard) constraint: requires(car). Her neighbour Tim also wants to
go to the concert. However, he doesn’t mention in his stalled activity
that he’s going to drive with his own car. The problem here is, Zoey
wouldn’t find him although the activities would match. In this case,
the matchmaker should identify the match and the missing fulfiller
(car). Then, inform Zoey about the possible match and propose her
to contact Tim to check, if the activity can be matched anyway. After
contacting Tim, Zoey is able to go with Tim to the concert by car.

Missing information can be treated as wild cards which match ev-
erything. The matchmaker doesn’t know if Tim possesses a car, but
the requirement is assumed to be fulfilled. However, the activity is
marked as uncertain until Tim confirms he’s going to the concert by
driving his own car.

5.4 Presentation of Results

The approach we’re going to use here is to present all matching re-
sults to the user. For this purpose, the result list is divided into three
subsets: matches with complete information, matches with incom-
plete (missing) information, followed by matches violated by hard
constraints. The results within the first subset are ranked by viola-
tion of soft constraints. Matches with no violations come first, then
matches with low violation and finally matches with high violation.
To improve the subset of matches with missing values the user is
asked to provide additional information.

6 CONCLUSION AND FUTURE WORK
In this paper we proposed a framework for matchmaking similar ac-
tivities. It is part of a larger web-application called EMN-MOVES.
The target group of the system are older people and the overall goal
is to improve their mobility and their social life. We described two
different kinds of scenarios the system might be confronted with to
derive the requirements of the framework. We have evaluated the re-
quirements against existing approaches and concluded none of these
can fully support our needs for a platform based on neighbourly help.

The presented framework will be the starting point for the de-
velopment of a general framework for matchmaking. Currently, we
are designing an algorithm which allows to calculate both similar-
ity matches and best fits and incorporates a goodness criterion for
ranking the results.
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Abstract.1  We argue for the position that analogy represents the 
core mechanism in human cognitive development rather than being 
a special cognitive skill among many. We review some 
developmental psychology results that support this claim. Analogy 
and metaphor, on the other hand, are seen as central for the creative 
process. Whereas mainstream research in artificial creativity and 
computational models of reasoning by analogy stresses the 
importance of matching the structure between the source and the 
target domains, we suggest that perceptual similarities play a much 
more important role. We provide some empirical data to support 
these claims and discuss their consequences. 

1 Introduction 

Analogy, together with its close cousin metaphor, is considered, by 

some accounts, to be fundamental to thought itself [41, 43]. 

Similarities and analogies are also known to play a key role in 

creativity [e.g. 43, 15, 16, 18].  Here, although many studies of 

creativity emphasize that one of the underlying mechanisms is that 

of re-conceptualization [17, 55, 60 and, to some extent 33 through 

Karmiloff-Smith’s notion of representational-redescription 

processes in human cognitive development] most artificial 

creativity systems focus on generating a product that is considered 

to be creative rather than viewing creativity as a re-

conceptualization of a given object/situation [58]. To our 

knowledge, there have been only a few attempts to model the 

process of re-conceptualization itself, which lies at the heart of 

creativity [20, 21, 26, 44]; Davies and Goel [10] proposed to tackle 

analogical mapping problem by re-representing, in visuospatial 

domain, the  knowledge of the source and the target, so that 

similarities that may not be easily noticeable in amodal (i.e. logical 

formuli) representations will pop-up and can be mapped.  

However, computational models of analogy largely consider 

analogy as a special cognitive skill or heuristic that is evoked in 

some situations on top of other cognitive processes.  

The aim of this paper is to articulate a view that sees 

analogy as a fundamental mechanism of cognitive development, 

and examine the implications of this view for modeling creativity. 

The paper is organized as follows. We start in Sec. 2 with a 

discussion of analogy and creativity; in Sec. 3 we briefly review 

the computational approaches to modeling analogy and comment 

on their shortcomings. We continue with Sec. 4 by discussing the 

limitations of the existing artificial creativity systems. In Sec. 5, we 
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present our framework by connecting analogy with Piaget’s 

mechanisms of assimilation and accommodation. In Sec. 6, we 

discuss some implications of this framework for the role of 

similarity in analogy and creativity, and in Sec. 7 we summarize 

our main conclusions. 

2 Analogy in Creativity 

Analogy has been recognized as a key mechanism of creativity [6, 

17, 20, 21, 36, 43, 47]. However, one must distinguish between 

two modes of analogy. On one hand, analogy refers to ‘seeing one 

thing as another’, and on the other hand it refers to the process 

whereby the structure and the attributes of one object or situation 

(the source) are mapped to another object or situation (the target). 

This latter mechanism seems contrary to creativity according to 

many accounts [29], and so it needs a little elaboration. 

Every conceptualization (of objects, situations, visual scenes) 

involves loss of some potential information: potential differences 

are ignored between two objects that are put in the same category, 

and potential similarities are ignored between two objects that are 

put in different categories. The concepts and categories, and their 

underlying cognitive structures that naturally evolve through a 

cognitive agent’s interaction with the environment reflect the 

priorities of the agent. The information that is retained in the 

conventional conceptualization is the one that has been useful to 

the agent in its phylogenetic and ontogenetic past. So, as long as 

one stays in the familiar domain (in which the conventional 

conceptualizations are very useful), and the problem at hand does 

not require the potentially lost information, reasoning from 

conventional operations and conceptualizations may be very 

efficient. However, as soon as the problem does require new 

information, the existing conceptualization stops being useful, and 

a new conceptualization becomes necessary. In such situations, 

analogy, as it is traditionally construed, becomes a hindrance, 

because it reinforces the existing conceptualization; and metaphor 

becomes a very useful heuristic. (See also [17, 25, 28]). We should 

note here that various researchers have characterized the relation 

between metaphor and analogy in different ways (see also [27]), 

but for our purpose here, we are taking the view that metaphor can 

be applied to virtually all comparisons between two 

objects/situations. Though this process may be triggered by 

noticing some similarities between them, but sometimes the very 

act of comparing the two creates the similarities. In this regard, we 

echo the position taken by Aubusson et al [1] who write: “While 

not always the case, there appears to be a tendency to use the term 

analogy when the comparison is extended highlighting a range of 

similarities and differences between two things. Thus, all analogies 

are metaphors but not all metaphors are extended into analogies.”   
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If we follow this argument, analogy, in its traditional 

sense at least, which is based on structural similarities, turns out to 

be an anathema to creativity. The reason is that analogies are based 

on mapping the structure or attributes of the source, to the structure 

and attributes of the target. So an analogy, which is based on the 

existing conceptualization of the source, will retrieve targets with 

similar  structure, thereby further strengthening the existing 

conceptualization of that very target. In some cases, this may be 

enough to solve the problem, e.g. by bringing to the forefront some 

of the less prominent attributes of the target. But if the problem 

could not be solved because of needing new information, then a 

structure-mapping based analogy approach will not be very useful. 

3 Computational Models of Analogy 

Much of the research on computational modeling of analogy has 

worked with what might be characterized as mapping-between-

existing-representations paradigm, where there are given 

representations of the source and the target, and various algorithms 

are applied for mapping parts of the source to parts of target. 

Models differ from one another with respect to whether mapping 

between relations is preferred over attributes; or whether an 

incremental or a distributed approach is applied to compute the 

mapping [15, 13, 22, 23, 24]. All these approaches have severe 

limitations in that they cannot model emergence of new structure, 

which is very crucial as far as creativity is concerned. (For a good 

critical overview see [9]). Though these models do capture a 

certain aspect of creativity in noticing new connections between 

existing knowledge, and in importing novel hypotheses from the 

source to the target, they do not produce a paradigm shift of 

Kuhnian kind. In this regard, models based on corpus-based 

analyses and distributed representations seem more promising [59, 

61], but so far they are limited to linguistic metaphors.  

In contrast, some other approaches have focused on the 

process of representation building itself, notable among them being 

the work of Hofstadter and his colleagues. In this paradigm, the 

appropriate representations of the source and the target and the 

mapping between them evolve together by parallel processes that 

interact with each other [26, 41]. As another example, Yaner and 

Goel [63] propose an analogy-based problem solver that builds a 

representation of the target, but is different from Hofstadter’s 

approach because the outcome of this representation-building 

process is deterministic.  Such approaches come closer to being 

able to model creativity, for often creative insights emerge from 

applying a concept to an object (or a low-level representation of it) 

that is not habitually associated with it. In our earlier work, we 

have formalized this process [25], and have applied it to model 

creativity in legal reasoning [26], but clearly much more work 

remains to be done. Moreover, in real-life, a number of different 

cognitive processes may act in consort to generate a creative 

insight, modeling of which may require hybrid architectures [31, 

43]. 

4 Artificial Creativity Systems 

Research in creativity (usually conducted within psychology), 

since its inception, has shown a bias towards exceptional 

individuals, that is the big-C creativity.  Consequences of these 

views were felt in the research in Artificial Creativity (AC) and 

Computational models of Metaphor and Analogy (CMA) where 

often the existence of creativity and analogy modules was 

hypothesized. Attempts to model those modules were made and 

virtually all of them aimed at big-C creativity (composing music, 

writing novels, painting…) as opposed to mundane creativity. In 

[58] we give an extensive review of the approaches in AC research. 

Below, we only mention the main conclusions. 

What can be said about the vast majority of existing 

Artificial Creative systems?  

-Virtually all of them focus on the product (a 

consequence of the product generating paradigm in which they 

are working) rather than on the process. Thus, we may call this 

approach top-down or product-first approach; 

- Most of them are given, in advance, a detailed (hard-

coded) description of the domain. This can be: language syntactic 

rules, narrative structure, and some semantics for artificial prose 

writers; musical notation and rules for artificial composers and 

creative interpreters; basic drawing primitives for artificial 

painters; basic mathematical operations, a lot of search heuristics 

with evaluation functions, and big knowledge/fact base for 

artificial scientists); 

-All these AC systems appear to be closed systems in the 

sense that there is no way to appreciate, and build upon, the 

feedback from naïve (or not) observers; 

-None of these AC systems are socially embedded 

except, in a certain sense, via their designers who themselves, 

receive the feedback from the audience and eventually make the 

necessary changes in their programs; 

-Finally, virtually all of the researchers within AC looked 

for inspiration into the existing theories of the domain in which 

their systems are supposed to be creative: literary and narrative 

theory, music theory, visual arts, etc. This goes counter to our 

intuitions and the empirical facts that many artists and scientists 

report that actually combining domains (in which they not need be 

widely recognized but simply familiar enough) has resulted in 

some of their most creative outputs. 

On a more abstract level (and maybe with a bit of risk of 

oversimplification) we could say that the majority of AC systems 

to date quite resemble the generic architecture of a GOFAI expert 

system from the ‘70s and ‘80s of the last century. The aim of those 

expert systems was to replace human experts in some particular 

narrow domain like: general MD practitioner who would come up 

with a diagnose given the symptoms of the patient, or an operating 

system administrator who would know how to fine-tune the 

parameters and optimize the functioning of a complex operating 

system.  Just like the AC systems, they usually contained a huge 

knowledge base, many heuristics, and representative cases (in case-

based reasoning). The knowledge representation was mainly 

symbolic, and some systems also included probabilistic reasoning.  

Given the dominant approaches to computational models of 

analogy (i.e. focusing on relational matches between two 

hardcoded representations), it is probably not surprising that 

although (as mentioned in section 2) analogy is often seen as a key 

factor to the creative process, and we rarely see AC systems that 

use analogy. (However, see [64], as well as 12 and 5 for recent 

counter-examples).  

Research in modeling creativity in scientific discovery (from 

Lenat and Brown [40] and Langley at al [38]  in the ‘80s) to King 

et al in 2009 [35] seem to address some of the issues raised in the 

section above. For example, Lenat’s Automated Mathematician can 

build upon its own output an incorporate input from outside. But, 

we think that this is just an illusion just because the domains in 
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which these systems operate is more constrained and it is relatively 

easy to adapt existing formalisms to describe their inputs and 

outputs. An excellent critical review of these systems is given in 

Chalmers et al [9]. 

5 Analogy in Cognitive Development 

Reasoning by analogy is sometimes seen as a pinnacle of cognitive 

development. Goswami in [19], for instance, notes that in Piaget’s 

account, analogical reasoning occurs only in adolescence during 

the formal operation stage. In contrast, Goswami goes on to review 

a number of research results that show that analogy is far more 

pervasive in cognitive development, and occurs much earlier, i.e. 

even in 3 and 4 year olds. Goswami argued that children in some of 

Piaget’s experiments were not able to solve a relational analogy 

problem because they were not familiar with the causal relations 

among the objects (e.g. ‘bicycle : handlebars :: ship : ?’,  

handlebars are used to guide the bicycle in the same way the ship’s 

wheel is used to steer the ship).  However, a close look at Piaget’s 

numerous studies reveals that he has also noted the onset of 

analogical thinking manifested as a sensorimotor schema at a very 

young age: “At 1;4(0) L. tried to get a watch chain out of a match-

box when the box was not more than an eighth of an inch open. 

She gazed at the box with great attention, then opened and closed 

her mouth several times in succession, at first only slightly and 

then wider and wider. It was clear that the child, in her effort to 

picture to herself the means of enlarging the opening, was using as 

‘signifier’ her own mouth, with the movements of which she was 

familiar tactually and kinesthetically as well as by analogy with the 

visual image of the mouths of others. It is possible that there may 

also have been an element of ‘causality through imitation,’ L. 

perhaps still trying, in spite of her age, to act on the box through 

her miming. But the essential thing for her, as the context of the 

behaviour clearly showed, was to grasp the situation, and to picture 

it to herself actively in order to do so.” ([49, p. 65; see also 48] 

 We included this long quote here for it illustrates that 

Piaget was fully aware of the key role played by analogy and its 

various manifestations in cognitive development as early as sixteen 

months2. Accordingly, in the framework that we propose here, 

                                                                 
2 These differences (Goswami vs Piaget) may stem from Piaget’s 

idiosyncratic approach to research: he was not trying to study 

particular modules or faculties (such as reasoning by analogy, for 

example) but as an acute observer he was trying to offer the best 

explanation that may account for certain types of behavior at 

certain age groups. We would like to offer the following 

speculation: if we were to ask Piaget about analogical reasoning 

and how/when it develops he might say that there is no particular 

age when children begin to reason by analogy. What happens is a 

gradual progression that starts from objects being understood only 

in terms of the sensorimotor schemas in which it is involved; an 

object ‘is for something’ and there is no independent representation 

of them. Their properties remain contextual (and not fixed) and 

hence reasoning about relations among objects will neither be 

stable nor be consistent, especially at an early age of 4 or 5. Piaget 

thus, we might assume, hesitated to call this reasoning by analogy, 

reserving the term for his formal-operations stage when abstract 

object and relation representations are fully developed and 

available for conscious manipulation. Later in the paper we offer 

an alternative framework for interpretation of Piaget’s theory by 

cognitive development is a series of small creative leaps where 

cognitive agent internalizes its interaction with the environment. 

Using the standard language of cognitive science or artificial 

intelligence, we can see these internal constructs as agent’s 

representations of the environment, or, to be more accurate:  

representation of agent’s embededness in that particular 

environment. Initially, these representations are entirely expressed 

in terms of the innate Piagetian sensory-motor schemas. That is, we 

can look at the innate schemas as the source domain for a 

metaphorical description of the agent environment (the unknown 

target domain). Through the processes of assimilation (current 

metaphors can explain new experiences) and accommodation (re-

conceptualization of the source domain is needed in view of new 

experiences), as well as spontaneous reorganization of the internal 

schema space (for example, by finding similarities and connections 

among distant subspaces) cognitive agents change themselves and 

their environments (physical, social, linguistic). (See also [25]). 

They need to master motor skills, language, social conventions and 

norms etc. This maturation process is comprised of many creative 

acts, driven by our genetic heritage as well as the micro and macro 

social context. The growth continues throughout the lifetime of the 

individual and, in some cases, particularly creative individuals may 

question some of the norms and conventions of their culture, and 

may impact significantly some particular established domain (arts, 

sciences, religion) or even create entirely new domains. The point 

here is that creativity is understood as a continuum and not as a 

binary (‘yes’ or ‘no’) attribute. It is also the driving force behind 

our cognitive development and it relies on more basic cognitive 

processes described above. An initial outline of this approach can 

be found in [57] and its partial implementation in context of mobile 

robot learning can be found in [51].  

If what we suggest is plausible, the dominant approaches in 

artificial creativity and computational modeling of analogical 

(metaphorical) reasoning will have to be re-evaluated and probably 

fundamentally changed. 

6 Similarity and Analogy in Creativity 

In cognitive development, it has been noted that younger children 

tend to focus on surface-level similarities, and only later they take 

into account relational and structural similarities. For example, 

Namy and Gentner [42] remark: “Children up to five years go for 

perceptually similar objects. Clearly, then, a large number of 

studies have converged to demonstrate that perceptual properties 

such as shape loom large in children’s responses on categorization 

tasks. This evidence suggests that children rely on shape or other 

salient perceptual features—perhaps even to an extent that seems 

detrimental to their acquisition of conceptually coherent object 

categories.” (p. 6) 

Apart from Piaget’s theory of cognitive development which we 

mention above, other theories can be re-casted too as series of 

small P-creative leaps during which conventional conceptualization 

arise. Karmiloff-Smith [32, 33] proposes the representational 

redescription model which comprises of an endogenously driven 

“process by which implicit information in the mind subsequently 

becomes explicit knowledge to the mind” [33 p. 18]. The process 

can be likened to Piaget’s stages from early sensorimotor schemas 

                                                                                                            

adopting a broader construal of what is meant by ‘analogy’. Also 

see [7]. 
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(which too are endogenously driven to be executed) to the final 

stage of formal operations where the subject 

deliberately/consciously manipulates different abstract schemas. 

Karmiloff-Smith’s developing agent goes through four phases 

where the first one (I) is characterized by Implicit/behavioral 

knowledge/skill representations applied to certain task. These are 

rather detailed and task specific, and are not available for conscious 

manipulation by the subject. The next three phases E1, E2, E3 

represent the emergence of more and more explicit, abstract, and 

finally (E3) verbalizable representations. These representations 

lose many specific details compared to the first (I) phase 

representations, but become more flexible/reusable, and 

declarative. As such, they also become members of a huge library 

of source analogies which can be applied to different problems. 

(See [26] for a similar approach to modeling creativity in legal 

reasoning.) 

Barsalou and Prinz’s [3] theory of mundane creativity in 

perceptual symbol systems [4] also comes close to the picture we 

want to paint here. Their theory of cognitive development focuses 

on the formation of perceptual symbols, which originate from the 

perceptual input (across all modalities) during agent’s sensorimotor 

interaction with the environment.  By the processes of selective 

attention, the subject focuses on some aspects of the entire 

perceptual input, filtering out alternative potential aspects to a large 

extent. These perceptual aspects are transferred into the long-term 

memory and in essence can be seen as concepts that can be recalled 

by similar perceptual input. In the language that we have adopted 

here, this would correspond to the emergence of conventional 

conceptualization. A creative insight then would happen when a 

subject uses a non-conventional perceptual symbol or symbols to 

perceive the given object/situation/scene.   

In creativity research, it has been widely recognized that 

similarities play a key role in the generation of new ideas [36, 54, 

62]. Although surface similarities are often found to influence 

memory access and recall [2], most of the research has focused on 

semantic aspects of the similarity, like structural alignment, for 

these are considered to be more helpful in problem solving and 

learning. In fact, surface similarities are often thought to be 

distracting [14]. A number of other creativity researchers, however, 

point out that focusing on structural similarities reinforce 

conventional way of viewing a given situation, and the crux of 

creativity lies in breaking the conventional structure and 

conceptualize the situation in a new way [6, 8, 17, 53, 56]. In this 

process, surface similarities can act as cues to connect two 

(conventionally) unrelated objects in a new way. 

Some of our recent empirical studies further support this view. 

In one set of studies ([30, 45, 46], we have found that low-level 

perceptual similarities — that is, similarities with respect to 

texture, shape, color etc. determined algorithmically — facilitate 

creation of conceptual features and conceptual similarities. In 

another study [31], we focused on the creative process involved in 

connecting two pictures by painting another picture in the middle. 

This technique was involved in four Infinite Landscape workshops 

conducted by a visual artist at Art Museums in Japan and Europe 

2007-11. Based on the artist’s verbal recollection of the ideas that 

occurred to him as he drew each of the connecting pictures, we 

identified the micro-processes and cognitive mechanisms 

underlying these ideas, we found that surface features, contrast, 

and meaning deconstruction play major roles in the generation of 

new ideas. 

What can we conclude from the above? First, traditional models 

of analogical reasoning which prefer relation over attribute 

mapping may be useful when we have to solve a novel problem in 

a domain with high structural similarities to some familiar domain. 

The solutions that may result from this process will rarely be 

deemed creative and will reinforce traditional conceptualizations of 

both domains. On the other hand, we may have no or little 

knowledge of the deep structure of the target domain (as, for 

example, in the early stages of the cognitive development). In these 

cases, perceptual similarities may lead to novel conceptualizations 

(of both source and target domains) and highly creative solutions 

or products.     

7 Conclusions 

We have presented a view here where analogy represents a core 

process in human cognitive development. We have argued that 

creativity in human agents represents a continuum: from 

everyday/mundane/P-creativity to the big-C creativity. Accepting 

the view that analogy is crucial for creativity, we attempted to 

make the case that superficial (attribute) similarities may actually 

lead to more original solutions or products. Structural analogies 

only reinforce the conventional conceptualization, which may be a 

hindrance in case the problem at hand requires information that is 

not normally a part of this conceptualization. We have re-casted 

Piaget’s theory of cognitive development by describing 

assimilation and accommodation as progressive reasoning by 

analogy starting from early analogizing in terms of sensory motor 

schemas, to analogies in mature cognitive agents who have 

developed object representations. Within this framework for 

creativity, we gave a critical overview of today’s artificial 

creativity models, and provided some empirical support for the 

claim that surface-level or perceptual similarities may play a more 

central role in creativity than has been supposed so far. 
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Analogical proportions in a lattice of sets of alignments
built on the common subwords in a finite language

Laurent Miclet1 and Nelly Barbot2 and Baptiste Jeudy3

Abstract. We define the locally maximal subwords and locally min-
imal superwords common to a finite set of words. We also define the
corresponding sets of alignments. We give a partial order relation
between such sets of alignments, as well as two operations between
them. We show that the constructed family of sets of alignments has
the lattice structure. The study of analogical proportion in lattices
gives hints to use this structure as a machine learning basis, aiming
at inducing a generalization of the set of words.

Keywords: Locally maximal subwords, alignments, algebraic
structure of sets of alignments on a set of words (lattice), analogi-
cal proportion.

1 Introduction

Much has been done on finding maximal subwords and minimal su-
perwords to a set of words, when the order relation is based on the
length of words. We are interested in this paper in the same problem,
but for the finer order relation based on the definition of a subword. Is
there a manner to characterize the set of maximal subwords and that
of minimal superwords, given a finite set U of words, according to
this relation ? More than that, is there an algebraic relation between
all these sets of subwords and superwords of U ? An answer to these
questions would allow to give a precise definition to what the words
of U share, and how this common core is organised.

The firsts parts of this paper gives a partial answer to these points.
We define in section 2 a particular case of the notion of alignment,
which will be useful for our construction. Actually, in section 3, we
define two operations and an order relation on sets of alignments that
leads to the construction of a lattice.

We are also interested in how this structure could be analysed in
terms of analogical proportions, which could be used in machine
learning. Since we start from a finite set of words, the convenient ma-
chine learning framework seems to be grammatical inference (from a
positive set of positive samples, in our case). It seems that the lattice
structure is particularly adapted to learning by analogy, since some
natural analogical proportions can be observed in such a structure.
We give in section 4 some hints on these points.

1 IRISA-Dyliss, Rennes France. miclet@enssat.fr
2 IRISA-Cordial, Lannion France. barbot@enssat.fr
3 Université de Saint-Étienne, Laboratoire Hubert Curien. baptiste point

jeudy at univ-st-etienne point fr

2 Maximal subword, minimal superword,
alignment

2.1 Basics
Let Σ be an alphabet, i.e. a finite set of letters. A word u is a sequence
u1 . . . un of letters in Σ. The length of u, denoted |u| is n. The empty
word, of null length, is ε. A language is a set of words. A subword
of a word u is a word obtained by deleting letters of u at some (non
necessarily adjacent) positions4 in u. We denote u • v the shuffle of
the two words u and v.

In Σ?, the set of all words on Σ, we use the order relation ≤ de-
fined by: (u ≤ v ⇔ u is a subword of v). When u is a subword of v,
v is called a superword5 of u. For example: abc ≤ aabbcd.

A word w is a common subword to u and v when w ≤ u and w ≤
v. The wordw is a maximal common subword to u and v if there does
not exist any other common subword x to u and v such that w ≤
x. For example, ab and c are maximal common subwords to u =
cadba and v = fagbhc, while a is a non maximal common subword.
Defining a common maximal subword to a finite set of words is a
straightforward extension.

A maximal common subword to two words and to a non empty
finite set of words is defined in an analog way.

In a partially ordered set S, an antichain is a subset of S com-
posed of pairwise incomparable elements. Any subset T of S can be
reduced to a maximal antichain by removing from T every element
of T lesser than another element of T .

2.2 Alignments
2.2.1 Definition

Definition 1 An alignment is a finite set of pairs (w, l) where w is
a word and l a set of indices between 1 and |w|. The set l defines a
subword of w denoted w[l]. Moreover, an alignment a must satisfy
the following properties for all (w, l) ∈ a and (w′, l′) ∈ a:

1. w[l] = w′[l′]
2. (w = w′)⇒ (l = l′)
3. (w ≤ w′)⇒ (w = w′)

The set of words on which the alignment is defined is called the
support and is denoted word(a) = {w | ∃l ⊂ N with (w, l) ∈ a} .
4 Other terms for subword are subsequence and partial word. A factor, or

substring is a subword of u built by contiguous letters of u.
5 A superword of u, also called a supersequence must not be confused with a

superstring of u, in which the letters of u are contiguous. In other words, u
is a factor (a substring) of any superstring of u. See [Gus97], pages 4, 309
and 426.
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According to our definition6, the support is an antichain of words for
≤.

The set of indices l will be called the position of the indexed sub-
word of w[l].

In the following, an alignment will be represented by a set of
words in which some letters are boxed. For each element (w, l) of the
alignment, the boxed letters represent the subword w[l] (also called
the boxed subword of the alignment).

For legibility, the n words can be displayed in such a manner that
the corresponding letters ofw in the nwords are in the same column.
Some blanks can be added freely to help the reading. For example:

a =




a c b d e g
a c e h

g a h c d




denotes the alignment
a = {(acbdeg, {1, 2}), (aceh, {1, 2}), (gahcd, {2, 4})}.
We can write also without ambiguity:

a = ( a c bdeg, a c eh, g a h c d).

2.2.2 Locally maximal alignments and locally maximal
subwords

Generally speaking, two alignments on the same support W =
{w1, . . . , wn} with the same boxed subword r can be different (hav-
ing different set of indexes). We could define maximal alignments as
those whose boxed letters are maximal subword of W .

However, all interesting alignments would not be maximal with
this definition. Consider for example the two words w1 = abcd
and w2 = dabcab. The complete set of common subwords is
{ε, a, b, c, ab, ac, bc, abc, d} and their set of maximal common sub-
words is {abc, d}.

But these two subwords are not sufficient to define the
totality of the interesting alignments. Actually the alignment
( a b cd, dabc a b ) is somehow "maximal" since it is not com-
parable to the only alignment with the boxed subword abc, namely
( a b c d, d a b c ab).

This leads to define the following notion of locally maximal align-
ment and of locally maximal subword.

Definition 2 An alignment a = {(w1, l1), . . . , (wn, ln)} is locally
maximal if there is no other alignment b = {(w1, l

′
1), . . . , (wn, l

′
n)}

on the same support such that for all i, li ⊂ l′i.

Notice that the empty alignment ∅ is locally maximal.

Definition 3 The set of boxed subwords associated to all lo-
cally maximal alignments between a finite set of words W =
{w1, . . . , wn} is called the set of locally maximal subwords to W
and is denoted ·u (W ).

For some r ∈ ·u (W ), the set of locally maximal alignements as-
sociated to r is denoted Ar(W ).

We also define: A(W ) =
⋃

r∈ ·u (W )

Ar(W ).

For example, let us consider W = {ababc, cabd}, its sets of lo-
cally maximal alignments are given by

6 An alignment (regardless of the third point of our definition), is called a
trace by Wagner and Fisher [WF74] for two words and a threading scheme
in Maier [Mai78].

Aab(W ) = { ( a b abc, c a b d),

( a ba b c, c a b d),

(ab a b c, c a b d) }
Ac(W ) = {(abab c , c abd)} .
A(W ) = Aab(W )

⋃
Ac(W ).

Then, the set of locally maximal subwords of W is

·u (W ) = {ab, c}

2.3 Language associated with an alignment
Definition 4 Let w = w1 · · ·wp be a word, locally maxi-
mal subword of two words u and v at only one position (i.e.
|Aw({u, v})| = 1). Then there exists an unique set of factors
of u, denoted (u1, . . . , up+1), and an unique set of factors of v,
denoted (v1, . . . , vp+1), such that u = u1w1 . . . u

pwpu
p+1 and

v = v1w1 . . . v
pwpv

p+1. We define L(Aw({u, v})) as the follow-
ing finite language:

L(Aw({u, v})) = (u1•v1)w1(u2•v2), . . . , (up•vp)wp(up+1•vp+1)

The construction of L(Aw({u, v})) is shown in Figure 1, with
straightforward graphic conventions.

u1

v1

w1
u2

v2

wi
ui+1

vi+1

wi wp−1 up

vp

wp up+1

vp+1

• • • • •

Figure 1. The construction of L(Aw(u, v)) when |Aw({u}, {v})| = 1.

If |Aw({u, v})| > 1, L(Aw({u, v}) is defined as the union of
all languages associated with all different positions of w as locally
maximal subword of u and v. Finally, L(A({u, v})) is defined as
the union of the languagesL(Aw({u, v})), for allw locally maximal
subwords of u and v.

Proposition 1 Let w be a locally maximal subword common to two
words u and v and L(Aw({u, v})) constructed as above. We have:

1. All words in L(Aw({u, v})) are (non necessarily minimal) com-
mon superwords of u and v.

2. For any word W ∈ L(Aw({u, v})), we have7 |W |+ |w| = |u|+
|v|.

Proof. We firstly give an axample to show that a word of
L(Aw({u, v})) can be a non-minimal superword of u and v.

We take the two words u = abcabb and v = aabbc. The associ-
ated alignment ( a b ca b b, a a b b c) is locally maximal. The
language L(Aabb({u, v}) contains the language aabcab(b · c) and,
in particular, the word w = abcabbc. The word w′ = abcabbc is
another superword of u and v, and w′ ≤ w. Thus, w is not an locally
maximal superword of u and v.

Then we demonstrate the proposition.
Let us consider W ∈ L(Aw({u, v})). By definition of

L(Aw({u, v})), there exists (u1, . . . , up+1) and (v1, . . . , vp+1), re-
spectively sets of factors of u and v, such that the word W can
be written as W = x1w1 . . . x

pwpx
p+1 where, for every i ∈

{1, . . . p+ 1}, xi ∈ (ui • vi).

7 A consequence of this assertion is : let LCS(u, v) be a longest common
subword to u and v and SCS(u, v) be a shortest common superword to u
and v. Then we have: |LCS(u, v)|+ |SCS(u, v)| = |u|+ |v|.
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1. Therefore, for every i ∈ {1, . . . p + 1}, xi ≥ ui and xi ≥ vi.
We then have W ≥ u1w1 . . . u

pwpu
p+1 = u and W ≥

v1w1 . . . v
pwpv

p+1 = v.
2.

|W | = |x1|+ |w1|+ . . .+ |xp|+ |wp|+ |xp+1|

= |w|+
p+1∑

i=1

|xi| = |w|+
p+1∑

i=1

(
|ui|+ |vi|

)

= |w|+ (|u| − |w]) + (|v| − |w|) = |u|+ |v| − |w| .

�

2.4 Constructive algorithms
We have devised an algorithm producing a finite automaton
A ·u ({u,v}) which exactly recognizes the language ·u ({u, v}), the
set of locally maximal subwords common to two words u and v, due
to lack of space, we do not describe it here. It is based on the transfor-
mation of an 2-d array displaying which letters are common to two
words into a finite automaton recognizing ·u (u, v) (see an example
on figure 2(a)).

Starting from A ·u ({u,v}), it is then simple to produce a finite au-
tomaton that we call At({u,v}) which exactly recognizes the lan-
guage L(A({u, v})) (also denoted t({u, v})). We display an exam-
ple at figure 2(b).

3 Order relation and operations between
alignments

In this section, we are interested in a particular family of alignments,
since we want to describe what have in common the subwords and su-
perwords of a finite set U of sentences. We will consider alignments
on U , i.e. alignments with a support subset of U . Moreover, we will
assume that U is an antichain according to the order relation ≤.

3.1 Order relation
Definition 5 (Order on alignments on U ) Given two align-
ments on U a = {(w1, l1), . . . , (wn, ln)} and b =
{(w′1, l′1), . . . , (w′m, l

′
m)}, we write a v b if for all i ∈ (1, n), it

exists j ∈ (1,m) such that

1. wi = w′j
2. l′j ⊆ li

Therefore, if a v b, then word(a) ⊆ word(b).

It is easy to check that v is a partial order relation on the set of
alignments and that the empty alignment ∅ is smaller than every other
alignment.

Definition 6 (Homogeneous sets of alignments) A set of align-
ments is homogeneous if it is non empty and all its elements have
the same support. The family of homogeneous sets of locally maxi-
mal alignments is denoted AH .

In order to link this definition with definition 3, we can notice that,
for any subset W of U , A(W ) ∈ AH .

Definition 7 (Order on homogeneous sets of alignments on U )
Let A and B be two homogeneous sets of alignements. We have
A v B if for all b ∈ B, there is a ∈ A such that a v b.

z

b

y

a

x

t b u a v b w

b

a

b

ε

ε

ε

ε

ε

(a) An automaton which recognizes the language ·u (r, s). We have r =
zbyax and s = tbuavbw ; a and b are letters, while t,u,v,w,x,y and z are
factors on Σ\{a, b}.

z

b

y

a

x

t b u a v b w

b

a

b

(b) An automaton which recognizes t(r, s) = (z • t)b(u • y)a(vbw •
x)∪(tbuav•z)b(w•yax). A rectangle holds for the shuffle of the factors
on its sides

Figure 2. Constructing the languages u(r, s) and t(r, s)

Proposition 2 v is a partial order on AH and the smallest element
is {∅}.

Proof.
Reflexivity and transitivity are immediate. In order to check the

antisymmetry, let us consider two homogeneous sets of locally max-
imal alignments, denoted A and B, such that: A v B and B v
A. Since A and B are homogeneous, all alignments in A have
the same support, denoted word(A), and the same holds for B,
with the support denoted word(B). From the definition of v, we
easily check that word(A) = word(B). Let us consider b1 =
{(w1, l

′
1), . . . , (wn, l

′
n)} ∈ B: since A v B and B v A, it exists

a ∈ A and b2 ∈ B such that a v b1 and b2 v a. By transitivity, we
have b2 v b1. At last, b1 and b2 having the same support and being
locally maximal, it implies that b1 = b2 and then a ∈ B. Hence,
A ⊆ B. Similarly, we can check that B ⊆ A.

�
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3.2 Definition and properties of ]
Definition 8 Let a ∈ Ar({u1, · · · , un}) and b ∈
As({v1, · · · , vm}), where a = {(u1, l1), . . . , (un, ln)} and
b = {(v1, l′1), . . . , (vm, l

′
m)}. Firstly, we construct a + b, the finite

set of alignments c = {(w1, L1), . . . , (wp, Lp)} such that

1. {w1, . . . , wp} = word(a) ∪ word(b)
2. for all (i, k), if (wk = ui) then (Lk ⊆ li)
3. for all (j, k), if (wk = vj) then (Lk ⊆ l′j)

Secondly, we denote a ] b the set of minimal elements of a + b
according to v.

As consequence, if ·u ({r, s}) 6= ∅, then the boxed word in c ∈
a+b is a subword of r and s, else, no letter is boxed in c. In addition,
if a and b contains an identical word ui = vj such that li ∩ l′j = ∅,
no letter is then boxed in c.

The operation ] is extended to homogeneous sets of alignments
by the following definition.

Definition 9 Let A and B be two homogeneous sets of alignments.
We defineA]B as the set of the minimal elements ofA+B according
to v where

A+B =
⋃

b∈B
a∈A

(a + b)

Proposition 3 The operation ] is internal to AH , commutative and
idempotent.

Proof. Let us consider A ∈ AH and B ∈ AH .

1. All the alignments inA]B are locally maximal by definition and
have the same support, namely word(A) ∪ word(B).

2. The commutativity is straightforward.

3. Let a be an element of A, it is immediate that a ∈ (a + a) ⊆
A + A. Moreover, since A ∈ AH , a is a locally maximal align-
ment, and so a ∈ A ] A. Consequently, A ⊆ A ] A. Re-
ciprocally, let c be an element of A ] A. Then it exists a cou-
ple (a,b) ∈ A2 such that c ∈ a + b. Since A ∈ AH and
word(c) = word(a) ∪ word(a), a, b and c have the same sup-
port. Moreover, from definitions 5 and 8, a v c and b v c. c
being a minimal element of A + A according to v, and a and b
belonging to A+ A, it turns out that a = b = c. At last, c ∈ A.
Hence A ]A ⊆ A. v is then idempotent on AH . �

3.3 Construction of ]

Definition 10 Let a ∈ Ar({u1, · · · , un}) and b ∈
As({v1, · · · , vm}) where a = {(u1, l1), . . . , (un, ln)} and
b = {(v1, l′1), . . . , (vm, l

′
m)}. We construct a

]

b, the finite set of
alignments c = {(w1, L1), . . . , (wp, Lp)} such that

1. {w1, . . . , wp} = word(a) ∩ word(b)
2. Either, for all (i, k) such that wk = ui we have li ⊆ Lk, or for

all (j, k) such that wk = vj we have l′j ⊆ Lk.
3. c is a locally maximal alignment.

An alignment in a

]

b is thus based either on a restric-
tion of a to the support word(a) ∩ word(b) or on a re-
striction of b to the same support. For instance, if a =
{( a cd, ab a c, a ba)} and b = {(a c d, aba c , c a)}, then
a

]

b = {( a c d, a ba c ), ( a c d, ab a c )}.

Definition 11
A

]

B =
⋃

b∈B
a∈A

(a

]

b)

Proposition 4 The operation

]

is internal toAH , commutative and
idempotent.

Proof. The commutativity is straightforward (definition 10 is sy-
metric wrt a and b). For idempotence, we use the fact (direct conse-
quence of the definition) that if a and b are locally maximal aligne-
ments on the same support, then a

]

b = {a,b}. Let us consider
A ∈ AH : if a ∈ A then a ∈ (a

]

a) ⊆ (A

]

A) and therefore
A ⊆ A

]

A. If c ∈ A ]

A, then there exists (a,b) ∈ A2 such that
c ∈ a

]

b. Since a and b have the same support, either c = a or
c = b, therefore c ∈ A and A

]

A ⊆ A. �

3.4 Structure of homogeneous sets of alignments
on U

We define sup
v

(A,B) as the minimal set of alignments larger than

A and B (if it exists) according to v. Similarly, inf
v

(A,B) is the

maximal set of alignments smaller than A and B.

Proposition 5 Let A and B be finite homogeneous sets of align-
ments. Then sup

v
(A,B) exists and:

sup
v

(A,B) = A ]B

Proof.
• First, we show that A]B is greater than A and B for v. Let c ∈
A ] B. By construction, there exist a ∈ A and b ∈ B such that
c ∈ a ] b ⊆ a + b. By the first item of definition 8, word(a) ⊆
word(c) and by the two other items, we can conclude that a v c.
Thus for every c ∈ C there is a ∈ A such that a v c. Thus
A v A ]B and B v A ]B.

• Let C be a set of alignments greater thanA andB, and let c ∈ C.
There are a ∈ A and b ∈ B such that a v c and b v c. We need
to find c′ ∈ A]B such that c′ v c. Remove from the support of c
all words not in the support of a or b. The obtained alignment may
not be locally maximal, so we add more boxed letters to make it
locally maximal. The result alignment c′ satisfies all conditions of
Definition 8, thusA]B v C and therefore supv(A,B) = A]B.�

There is no equivalent relation between

]

and inf for all homo-
geneous sets of alignments, we must restrict to sets of all alignments
built on a given set of words.

Definition 12 If U is a finite collection of words, we define the col-
lection of sets of alignments A(U) = {A(V ) | V ⊆ U}.

Proposition 6 Let A and B be sets of alignments inA(U). Then, in
A(U), inf

v
(A,B) exists and:

inf
v

(A,B) = A

]

B

Proof.
• First, we show that if A = A(V ) and B = A(W ) with V ⊆ U

andW ⊆ U thenA

]

B = A(W∩V ). Let c ∈ A ]

B. c is a loc-
cally maximal alignment on its support word(A) ∩ word(B) =
W ∩ V , thus c ∈ A(W ∩ V ). Let c ∈ A(W ∩ V ). Let a be an
alignment on W such that c v a, then c is obtained from a ∈ A
using the definition of A

]

B and c ∈ A ]

B.
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• Let C ∈ A(U) be a set of alignments smaller than A and B. We
show that C is smaller than A

]

B. Some alignments of C are
smaller than alignments of A and others are smaller than align-
ments of B. Since C is homogeneous, its support word(C) must
be included in word(A) ∩ word(B) and since C = A(T ) for
some T ⊆ U , then T ⊆ V ∩W . Therefore A(T ) v A(V ∩W )
which is exactly C v A ]

B.
�

Proposition 7 Let U = {u1, u2, · · · , un} be a finite set of words,
the operations

]

and ] are internal to A(U).

Proof. For

]

it is a consequence of the previous definition. For
], it is not difficult to see it from the definition of ]. �

Proposition 8 Let U = {u1, u2, · · · , un} be a finite set of words,
antichain for ≤. Then U = (A(U),], ]

) is a lattice. This lattice is
said to be built on the finite language U .

Proof. This is a direct consequence of the three previous propo-
sitions. �

4 Analogical proportions in the lattice U
4.1 The axioms of analogical proportion

Definition 13 (Analogical proportion) An analogical proportion
on a set E is a relation in E4 such that, for all 4-tuples A, B, C
et D in relation in this order (denoted A : B :: C : D ):

1. A : B :: C : D ⇔ C : D :: A : B
2. A : B :: C : D ⇔ A : C :: B : D

For every 2-tuple, one has : A : B :: A : B

It is easy to show that five other proportions are equivalent:
B : A :: D : C D : B :: C : A D : C :: B : A
B : D :: A : C C : A :: D : B

These requirements are often called the axioms of analogical propor-
tion (see [Lep03]).

4.2 Analogical proportions between words

A first definition using factorization. According to Yvon and
Stroppa [SY05] a general definition of analogical proportion, con-
form to the axioms, can be given in many different cases thanks to
the notion of factorization. We show here how it applies in Σ?, and
we will come back later to its use in general lattices.

Definition 14 (Analogical proportions between words.)
(x, y, z, t) ∈ Σ? are in analogical proportion, which is denoted x :
y : z : t , if and only if there exists a positive integer n and two
sets of words (αi)i∈[1,n] and (βi)i∈[1,n] ∈ Σ? such that:

x = α1. . .αn, t = β1. . .βn, y = α1β2α3. . .αn, z = β1α2β3. . .βn
ou
x = α1. . .αn, t = β1. . .βn, y = β1α2β3. . .αn , z = α1β2α3. . .βn

and ∀i, αiβi 6= ε.

Example. reception : refection :: deceptive : defective is an ana-
logical proportion between sequences, with n = 3 and the factors :
α1 = re, α2 = cept, α3 = ion, β1 = de, β2 = fect, β3 = ive.

β1 α1 β2 α2 β3 α3

x : re cept ion
y : re fect ion
z : de cept ive
t : de fect ive

The authors have shown that this definition is conform to the ax-
ioms.

Another definition using alignments. This second definition,
with the associated algorithms, is given in [MBD08]. The axioms
of analogical proportion are verified as well.

Definition 15 Let u, v, w and x four words in Σ?. We assume that
an analogical proportion is defined on Σ. We extend this relations to
Σε = Σ ∪ {ε}, adding the proportions a : ε :: a : ε for all a ∈ Σ.
Then u, v, w and x are in analogical proportion in Σ? if there exists
an alignment between the four words such that every column of the
alignment is an analogical proportion in Σε.

Example Let Σ = {a, b, c, A,B,C} an alphabet with the analog-
ical proportions a : b :: A : B , a : c :: A : C , c : b :: C : B .
The following alignment shows that there is an analogical proportion
in Σ? between the four words CaCA, CcbBA,bAc and bCbb.




C
C
b
b

a
c
A
C

b

b

C
B
c
b

A
A




Note that there is no boxed letter in this alignment. It can happen
anyway in the case of a column such that a : a :: a : a.

Links between the two definitions. The second definition using
alignments is shown to imply the first one (not the reverse). How-
ever, a straightforward modification of the first one lead to a complete
equivalence [Has11].

4.3 Analogical proportions in a lattice
Using the factorization technique, Stroppa and Yvon [SY05] have
found that a general definition of an analogical proportion can be
given in a lattice. Unfortunately, his definition was uncomplete. We
give here the complete one.

Definition 16 For four elements (x, y, z, t) ∈ (L,∨,∧)4, the ana-
logical proportion denoted (x : y :: z : t) is true if and only
if:

x = (x ∧ y) ∨ (x ∧ z) and x = (x ∨ y) ∧ (x ∨ z)
y = (x ∧ y) ∨ (t ∧ y) and y = (x ∨ y) ∧ (t ∨ y)

z = (t ∧ z) ∨ (x ∧ z) and t = (t ∨ z) ∧ (t ∨ y)

t = (t ∧ z) ∨ (t ∧ y) and z = (t ∨ z) ∧ (x ∨ z)

The geometry of this definition is displayed in figure 3.
A simple example of proportion in a lattice is given by the follow-

ing property:
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x ∧ z

t ∧ zt ∧ y

x ∧ y

y

t

x

z

x ∨ zt ∨ z

t ∨ y x ∨ y

Figure 3. The general analogical proportion in a lattice.

Proposition 9 Let y and z be two elements of a lattice. Then the
following analogical proportion holds:

(y : y ∨ z :: y ∧ z : z)

y ∧ z

y z

y ∨ z

Figure 4. A canonical proportion in a lattice: (y : y ∨ z :: y ∧ z : z).

4.4 Learning from U
After having given the basis in the previous sections, we give prelim-
inary here remarks and hints concerning some possible extensions of
this work to applications, via machine learning, in connexion with
analogical proportions and lattice structure.

Firstly, when investigating the connexions between locally max-
imal subwords, locally minimal superwords and analogical propor-
tions, a first property is easy to show from definition 15 and proposi-
tion 1.

Proposition 10 Let w = w1 · · ·wp be a locally maximal subword
of two words u and v. Then:

∀t ∈ L(Aw({u, v})), ∃w ∈ ·u (u, v) such that t : u :: v : w

∀w ∈ ·u (u, v), ∃t ∈ L(Aw({u, v})), such that t : u :: v : w

Take u = abcabb and v = aabbc with the maximal subword y =

abb. The alignment ( a b ca b b, a a b b c) is locally maximal.
The language L(Aabb({u, v}) contains the word w = abcabbc. The
facing figure displays the analogical proportion w : u :: v : y




a a b c a b b c

a b c a b b

a a b b c

a b b




However, what we are really interested in is to find how using the
lattice U and its analogical properties to generalize U . As a second
remark, we note that any homogeneous set of alignments A in U
represents an intensional definition of the finite language t(A), the
set of locally minimal superwords common to all the words in the
support8 of A. We can also construct, as indicated in section 2.4, a
finite automaton as an intensional representation of this language,
with the syntactic analysis facility. Therefore, we have potentially at
our disposal a lattice of finite automata, in connection with the lattice
of subsets of U : each automaton recognizes a finite language which
is a particular generalization of the associated support, itself a subset
of U .

We denote hereafter ≤ the order relation between finite set of
words derived from the subword relation ≤, defined by: M ≤ N iff
∀m ∈ n, ∃ n ∈ N such that m ≤ n. For example, {ab, c} ≤
{abcd, e}. There is an partial inclusion relation between the lan-
guages recognized by this lattice of automata, compatible with that
of the subsets, since the following property holds.

Proposition 11 For any subsets J and K of U , the three follow-
ing relations are equivalent: L(A(J)) ≤ L(A(K)), J ⊂ K and
·u (K) ⊂ ·u (J).

Note that the exploration of such a lattice of automata, constructed
on a finite set of positive examples, is the basis of the efficient finite
automata inference, see [dlH10]. This could be one basis for the use
of our lattice in machine learning.

Another threads to follow could be the idea of analogical closure
of a finite language, as described in [Lep03] and that of analogical
generation, see [BMMA07]. In both, a triple of words is taken in the
learning sample and a fouth sentence is generated, under the con-
straint that the four sentences are in analogical proportion. It is not
yet clear to the authors how this technique can be combined with
the lattice structure, but this could be a connection with the area of
machine learning on the basis of formal concepts, as in [Kuz01].

5 Conclusion and related work
The problem of finding one longest common subsequence (subword)
or one shortest common supersequence (superword) to two or more
words has been well covered (see e.g. [Gus97], pp 287-293 and 309,
[IF92]). However, to the best of our knowledge, the problem of find-
ing an intentional definition to the sets of maximal subwords and
minimal superwords of a set of words has not been explored yet. In
this, we have produced, via the construction of a lattice of alignement
sets, an interesting subset of minimal superwords and maximal sub-
words to a set of words. We have not worked yet neither on the the-
oretical complexity of the construction of the lattice of alignments,

8 Remember that this support, that we have denoted word(A), is a sub-
set of U .
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nor on its practical complexity and applications. Hereafter we give
some bibliographical hints to this problem.

A complexity result (sometimes misinterpreted) is given by Maier
[Mai78] who has demonstrated that the "yes/no longest common
subsequence problem" and the "yes/no shortest common superse-
quence problem" are NP-complete for alphabets of sufficient size.
These problems are defined as follows: "Given an integer k and a set
of sequences R, is |LCS(R)| ≤ k ? Is |SCS(R)| ≥ k ?" where
|LCS(R)| and |SCS(R)| are the length of a longest common sub-
sequence and the length of a shortest common supersequence of R.

It is also true that finding the length of a shortest (longest)
super(sub)sequence common to a set of k sequences is in9

O(m1 . . .mk), withmi the size of the i-th of the k sequences, hence
exponential in k.

The works of Fraser and Irving [FIM96] have produced algorithms
to find the longest minimal common supersequence (superword) and
the shortest maximal common subsequence, according to the order
relation ≤.

Yvon and Stroppa [SY05] give a definition of an analogical pro-
portion between words and also within lattices. Our objective is to
use the properties of the lattice structure on alignement sets to solve
the associated analogical equations.
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Belief revision-based case-based reasoning
Julien Cojan1 and Jean Lieber234

Abstract. Adaptation is a task of case-based reasoning (CBR) that
aims at modifying a case to solve a new problem. Now, belief revi-
sion deals also about modifications. This paper studies how some re-
sults about revision can be applied to formalize adaptation and, more
widely, CBR. Revision operators based on distances are defined in
formalisms frequently used in CBR and applied to define an adap-
tation operator that takes into account the domain knowledge and
the adaptation knowledge. This approach to adaptation is shown to
generalize some other approaches to adaptation, such as rule-based
adaptation.

1 INTRODUCTION

Case-based reasoning and belief revision are two domains in which
the notions of similarity and modification play an important role.

Case-based reasoning (CBR [19]) is a reasoning process using
a case base, where a case is a representation of a problem-solving
episode, in general, in the form of a problem-solution pair. CBR aims
at solving a target problem and generally consists in a retrieval step
(selection of one or several case(s) from the case base that is/are sim-
ilar to the target problem), an adaptation step (modification of the
retrieved case(s) to propose a solution to the target problem), and
a possible storage of the case formed by the target problem and its
solution.

Belief revision is the process of changing a belief base about a
static world by incorporating new beliefs while keeping the belief
base consistent. When the old beliefs are inconsistent with the new
beliefs, the formers have to be modified in order to restore consis-
tency with the latters. Usually, belief revision is based on the mini-
mal change principle [1]: most of the old beliefs should be kept. One
way to measure change (so that it is minimal) is to use a similarity
metric (to be maximized) or a distance (to be minimized).

Thus, the question raised is whether the modification performed
during CBR could be performed by a belief revision operator. This
question has been addressed in several publications and this paper
gives a synthesis of some of them.

The paper is organized as follows. Some preliminaries about CBR
are given in section 2. Section 3 introduces belief revision. In CBR,
the modifications are performed during the adaptation step, section 4
is the core of the paper and describes revision-based adaptation.
More globally, belief revision can be applied to CBR as a whole
as section 5 shows. Finally section 6 concludes the paper.

1 INRIA Sophia-Antipolis, Edelweiss Project, Julien.Cojan@inria.fr
2 Université de Lorraine, LORIA, UMR 7503 — 54506 Vandœuvre-lès-

Nancy, France, Jean.Lieber@loria.fr
3 CNRS — 54506 Vandœuvre-lès-Nancy, France
4 Inria — 54602 Villers-lès-Nancy, France

2 PRELIMINARIES
2.1 Formalism
The approach to CBR presented in this paper can be applied to a
variety of representation languages. It is assumed that there exists a
representation language L: a formula is an element of L. The seman-
tics of L is given by a (possibly infinite) set U and by a function
Mod : ϕ ∈ L 7→ Mod(ϕ) ∈ 2U , defining, in a model-theoretical
manner, the semantics of L: a is a model of ϕ if a ∈ Mod(ϕ); ϕ1

entails ϕ2 (ϕ1 |= ϕ2) if Mod(ϕ1) ⊆ Mod(ϕ2); ϕ1 and ϕ2 are
equivalent (ϕ1 ≡ ϕ2) if Mod(ϕ1) = Mod(ϕ2). A subset A of U is
representable inL if there exists a formulaϕ such that Mod(ϕ) = A.

It is assumed that L is closed under conjunction, which means that
for every ϕ1, ϕ2 ∈ L there exists a formula denoted by ϕ1∧ϕ2 such
that Mod(ϕ1, ϕ2) = Mod(ϕ1) ∩Mod(ϕ2).

Some formalisms are closed under negation (or complement),
which means that for every ϕ ∈ L, there exists a formula denoted
by ¬ϕ such that Mod(¬ϕ) = U \ Mod(ϕ). For such formalisms,
ϕ2 ∨ ϕ2 is an abbreviation for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 is an
abbreviation for ¬ϕ1 ∨ ϕ2 and ϕ1 ⇔ ϕ2 is an abbreviation for
(ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

Propositional logic with n variables is an example of such a for-
malism: U denotes the set of interpretations on the variables. Every
A ⊆ U is representable in this logic.

2.2 Case-based reasoning: principles and notations
For CBR, U is called the case universe. A case instance a is, by def-
inition, an element of U : a ∈ U . A case C is a class of case instances:
C ∈ 2U (in this paper, a case represents a class of experiences, it is
what is called an ossified case in [19] and a generalized case in [18]).
For instance, when the formalism is propositional logic with n vari-
ables, U is the set of the 2n interpretations and a case C is represented
by a formula ϕ: C = Mod(ϕ).

A source case is denoted by Source: it is a case of CaseBase (the
case base). The target case is denoted by Target: it is the input of
the CBR system. In many applications, the source cases Source are
specific: each of them represents a single case instance a (Source =
{a}). By contrast, the target case specifies only its “problem part”
and needs to be completed by a “solution part”. The aim of the CBR
process is to perform this completion:

CBR : (CaseBase, Target) 7→ ComplTarget

with ComplTarget ⊆ Target

Usually, this inference is decomposed into two steps:

Retrieval : (CaseBase, Target) 7→ Source ∈ CaseBase

Adaptation : (Source, Target) 7→ ComplTarget
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In many CBR applications, a case instance a can be decom-
posed into a problem part x and a solution part y: a = (x, y). Let
Upb and Usol be the universes of problem and solution instances:
x ∈ Upb, y ∈ Usol, U = Upb × Usol. A source case Source

is decomposed in a source problem srce ∈ 2Upb and its solution
Sol(srce) ∈ 2Usol , thus Source = srce × Sol(srce) that is in-
terpreted as: for all x ∈ srce there exists y ∈ Sol(srce) such that
a = (x, y) is a licit case (i.e., y solves x). The solution part of the
target problem is unknown, thus Target = tgt × Usol, where tgt

is called the target problem. When cases are decomposed in prob-
lems and solutions, CBR aims at solving the target problem tgt,
thus ComplTarget = tgt× Sol(tgt) where Sol(tgt) ∈ 2Usol . In
general, a target problem is specific: it is a singleton, i.e., tgt = {xt}
with xt ∈ Upb. This problem-solution decomposition is not needed
to present revision-based adaptation but it is a prerequisite for other
approaches to adaptation mentioned in the paper. When cases are de-
composed in problem and solution parts, it is common to consider
the adaptation problem as an analogical problem represented by the
following diagram:

tgtsrce

Sol(srce) Sol(tgt) (1)

that can be read as “Sol(tgt) is to Sol(srce) as tgt is to srce”
(transformational analogy [3]) or “Sol(tgt) is to tgt as
sol(srce) is to srce” (derivational analogy [4]).

The domain knowledge DK is a knowledge base giving a necessary
condition for a case instance to be licit. Thus, the domain knowledge
can be represented by a subset DK of U and for each a ∈ U , a 6∈ DK

involves that a is not licit. When the case universe is decomposed in
Upb×Usol, a = (x, y) 6∈ DK means that y is not a solution of x or that
x and/or y are meaningless (i.e., they are objects represented in the
language that have no correspondence in the real world, e.g., in the
domain of zoology, a cat that is not a mammal). Having no domain
knowledge (or not taking it into account) amounts to DK = U .

Each source case is assumed to be consistent with the domain
knowledge, i.e., DK ∩ Source 6= ∅. Similarly, if a target case is in-
consistent with the domain knowledge, it has not to be considered
for the CBR inference (the CBR system has to reject it). Thus, if
Target is an input of the adaptation procedure, it is required that
DK ∩ Target 6= ∅. The result of adaptation must also be consistent
with DK, therefore: DK ∩ ComplTarget 6= ∅.

2.3 Distances and metric spaces
A distance on a set U is defined in this paper as a function d : U ×
U → [0; +∞] such that d(a, b) = 0 iff a = b (the properties of sym-
metry and triangle inequality are not required in this paper, unless ex-
plicitly specified). Let b ∈ U and A, B ∈ 2U . d(A, b) is a notation
for inf

a∈A
d(a, b), d(b, A) is a notation for inf

a∈A
d(b, a), and d(A,B)

is a notation for inf
a∈A,b∈B

d(a, b). A is said to be closed under d if

{b ∈ U | d(A, b) = 0} = {b ∈ U | d(b, A) = 0} = A. By conven-
tion, the infimum on an empty set is +∞, e.g., d(A, ∅) = +∞.

If U = IRn (where IR is the set of the real numbers), a L1-
distance is a distance d parametrized by a base B of the vector space
U such that d(a, b) =

∑n
i=1 |vi−ui|where (u1, u2, . . . , un) (resp.,

(v1, v2, . . . , vn)) is the representation of a (resp., of b) in B. When B
is the canonical base, ai = ui and bi = vi for each i ∈ {1, 2, . . . n}.
By extension, if U is a subset of IRn, a distance d on U that is the

restriction of a L1 distance on IRn is also called a L1 distance on U
(for example, if U = ZZn where ZZ is the set of integers).

3 BELIEF REVISION
3.1 Belief revision in propositional logic
In [1], postulates of belief revision are proposed in a general logical
setting. These postulates are based on the idea of minimal change.
They are applied to propositional logic in [13] which presents 6 pos-
tulates that a belief operation u has to verify in this formalism: given
ψ and µ, two belief bases, ψ u µ is a revision of ψ by µ. One of
these postulates states that u is independent to syntax:

if ψ1 ≡ ψ2 and µ1 ≡ µ2 then ψ1 u µ1 ≡ ψ2 u µ2 (2)

where ψ1, ψ2, µ1, and µ2 are formulas representing beliefs. As a
consequence of (2), a formula ϕ can be assimilated to Mod(ϕ), the
set of its models: in the rest of the paper, formulas and subsets of U
are used indifferently. Then, the other 5 postulates can be rewritten
as follows (using subsets of U , the set of interpretations, instead of
propositional formulas):

(u1) A u B ⊆ B.
(u2) If A ∩B 6= ∅ then A u B = A ∩B.
(u3) If B 6= ∅ then A u B 6= ∅.
(u4) (A u B) ∩ C ⊆ A u (B ∩ C).
(u5) If (A u B) ∩ C 6= ∅ then A u (B ∩ C) ⊆ (A u B) ∩ C.

(A,B, andC are subsets of U .) The interpretation of these postulates
is made further, for their application to revision-based adaptation.

Intuitively, to revise A by B, the idea is to modify minimally A
into A′ so that A′ ∩B 6= ∅, and then A u B = A′ ∩B. Now, there
are many ways to model minimal modifications. Among them, there
is the modification based on a distance d on U : given λ ≥ 0, Gdλ(A)
is the generalization (a kind of modification) of A ⊆ U defined by

Gdλ(A) = {b ∈ U | d(A, b) ≤ λ}

Then, the revision operator ud is defined by

A ud B = Gdδ(A) ∩B where δ = inf{λ | Gdλ(A) ∩B 6= ∅}

Note that the infima on U are always reached when U is finite, which
is the case when U is the set of interpretations over n propositional
variables. This kind of revision operators is a direct generalization
of the Dalal revision operator [9], which is based on the Hamming
distance between propositional interpretations. The following equiv-
alent definition can be given:

A ud B = {b ∈ B | d(A, b) = δ} where δ = d(A,B)

(the δ in the two definitions are the same).

3.2 Belief revision in a metric space
The (u1-5) postulates can be straightforwardly generalized to other
formalisms where U is (a priori) any set and each formula ϕ of such
a formalism is assimilated to a subset Mod(ϕ) of U .

Given a distance d on U , ud can be defined as above but it must
be noticed that ud may not satisfy the (u1-5) postulates. This issue
is considered further, in section 4.4.1.

The representability issue must also be addressed in this general-
ization, thus we propose the following postulate:
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(u6) For any ψ, µ ∈ L, there exists ρ ∈ L such that Mod(ρ) =
Mod(ψ) u Mod(µ).

In propositional logic, for any operator u, this postulate holds, since
every subset of the set U of the interpretations of propositional vari-
ables is representable in this logic.

3.3 Integrity constraint belief merging
Let ψ1, ψ2, . . . , ψk, and µ be k + 1 belief bases. Merging ψ1, ψ2,
. . . , ψk, given the integrity constraint µ consists in building a be-
lief base ϕ such that ϕ |= µ and ϕ keeps “as much as possible”

from the ψi’s. A merging operator4 :
(
µ, {ψi}1 ≤ i ≤ k

)
7→ ϕ =

4µ
(
{ψi}1 ≤ i ≤ k

)
is assumed to satisfy some postulates similar

to the postulates for a revision operator (in [15], such postulates are
defined in propositional logic but can be easily generalized to met-
ric spaces). Actually, the notion of integrity constraint extends the
notion of belief revision in the sense that if4 is such a merging op-
erator, then u defined by ψ u µ = 4µ({ψ}) satisfies the (u1-5)
postulates.

4 REVISION-BASED ADAPTATION
This section defines revision-based adaptation (§4.1), presents an ex-
ample in propositional logic (§4.2), studies its properties (§4.3), de-
scribes with details revision-based adaptation in metric spaces (§4.4),
mentions briefly an extension to multiple case adaptation (§4.5), re-
lates this approach to adaptation with rule-based adaptation (§4.6)
and gives pointers on other work related to revision-based adaptation
(§4.7).

4.1 Definition
Let U be the case universe and u be a revision operator on U . The
u-adaptation is defined as follows [16]:

ComplTarget = (DK ∩ Source) u (DK ∩ Target) (3)

(DK∩Source) (resp., (DK∩Target)) is the source (resp., target) case
interpreted within the domain knowledge (i.e., case instances known
to be not licit are removed). Thus (3) can be interpreted as a minimal
modification of the source case to satisfy the target case, given the
domain knowledge, knowing that the minimality of modification is
the one associated with the operator u.

4.2 Example in Propositional Logic
Let us consider the following story. Léon is about to invite Thècle and
wants to prepare her an appropriate meal. His target problem can be
specified by the characteristics of Thècle about food. Let us assume
that Thècle is vegetarian (denoted by the propositional variable v)
and that she has other characteristics (denoted by o) not detailed in
this example:

Target = v ∧ o
From his experience as a host, Léon remembers that he had invited
Simone some times ago and he thinks that Simone is very similar to
Thècle according to food behavior, except that she is not a vegetarian
(¬v∧ o). He had proposed to Simone a meal with salad (s), beef (b),
and a dessert (d), and she was satisfied by the two formers but has
not eaten the dessert, thus Léon has retained the source case

Source = (¬v ∧ o) ∧ (s ∧ b ∧ ¬d)

Besides that, Léon has some general knowledge about food: he
knows that beef is meat, that meat and tofu are protein foods, and
that vegetarians do not eat meat. Moreover, the only protein food
that he is willing to cook, apart from meat, is tofu. Thus, his domain
knowledge is

DK = b⇒ m ∧ m ∨ t⇔ p ∧ v ⇒ ¬m

where b, m, t, and p are the propositional variables for “some
beef/meat/tofu/protein food is appreciated by the current guest”. Ac-
cording to u-adaptation, what meal should be proposed to Thècle?
If u is the Dalal revision operator, the u-adaptation of the meal for
Simone to a meal for Thècle is

ComplTarget ≡ DK ∧ Target ∧ (s ∧ t ∧ ¬d)

In [16], this adaptation is qualified as conservative: the salad and the
absence of dessert is reused for the target case and, though the beef
is not kept (to ensure a consistent result), the consequence of b that
is consistent with DK, i.e., p, is kept, and thus, t is proposed instead
of beef (since v ∧ p |=DK t; in other words, some protein food is
required, the only vegetarian protein that Léon is willing to cook is
tofu, thus there will be tofu in the meal).

4.3 Properties
The (u1-6) postulates entail some properties of revision-based adap-
tation.

(u1) applied to u-adaptation gives ComplTarget ⊆ DK∩Target,
i.e., ComplTarget ⊆ Target (that is a property required by an adap-
tation process: cf. section 2.2) and ComplTarget ⊆ DK (no instance
case a known to be illicit —a ∈ U \ DK— is in the result).

Let us assume that DK∩Source∩Target 6= ∅. Then, (u2) entails
that ComplTarget = DK∩Source∩Target. Thus, ComplTarget =
DK∩Source∩Target: if the target case is consistent with the source
case, given the domain knowledge, then it can be inferred by u-
adaptation that Source solves Target. This is consistent with the
principle of this kind of adaptation: ComplTarget is obtained by
keeping from Source as much as possible, and if no modification is
needed then no modification is applied.

(u3) gives: if DK ∩ Target 6= ∅ then ComplTarget 6= ∅. Since
ComplTarget ⊆ DK (cf. (u1)), DK ∩ ComplTarget 6= ∅, which is a
property required by an adaptation operator (cf. section 2.2).

According to [13], (u4) and (u5) capture the minimality of mod-
ifications. Thus they express the minimality of modification made by
a u-adaptation. This can be interpreted as follows. The conjunction
of (u4) and (u5) can be reformulated as:

{
Either (A u B) ∩ C = ∅,
Or (A u B) ∩ C = A u (B ∩ C).

(4)

Let F represent some additional features about the target problem:
the new target case is Target2 = Target ∩ F . If ComplTarget
is consistent with F , then (u4) and (u5) entails that the adaptation
of Source to Target2 gives ComplTarget2 = ComplTarget ∩ F .
In other words, if F does not involve needs on modifications (corre-
sponding to an inconsistency) then the result of the u-adaptation can
be reused straightforwardly.

(u6) involves that ComplTarget is representable in L.

4.4 Revision-Based Adaptation in Metric Spaces
In this section, ud-adaptation is considered on a metric space (U , d).
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4.4.1 The (u1-6) postulates in metric spaces

This section studies the revision postulates for ud. Some of these
postulates are not satisfied by ud and some additional assumptions
on the representation language L and on d are proposed that are suf-
ficient conditions for their satisfaction (provided that the subsets A,
B, and C of U involved in postulates (u1-5) can be represented in
L).

(u1) is always satisfied by ud (cf. the definitions).
(u2) is not always satisfied by ud as the following counterexam-

ple shows. Let U = IR and let L be the language of intervals of IR,
e.g., [0; 1[= {a ∈ U | 0 ≤ a < 1}. Let d : (a, b) 7→ |b − a|. It can
be shown that [0; 1[ud [0; 1[= [0; 1] 6⊆ [0; 1[. Now, let us consider
the following additional assumption:

(L1) Every subset A of U that can be represented in L is closed
under d.

Under this assumption, (u2) is satisfied as proven hereafter. Let A
and B be two subsets of U such that A is closed and A ∩ B 6= ∅.
Thus, d(A,B) = 0 and

A ud B = {b ∈ B | d(A, b) = 0}
= {b ∈ U | d(A, b) = 0} ∩B
= A ∩B since A is closed

Therefore A ud B = A ∩B and (u2) is satisfied.
(u3) is not always satisfied by ud as the following counterexam-

ple shows. Let U and d be the same as in the counterexample of
(u2). Let A = [0; 1] and B =]2; 3]. B 6= ∅ but A ud B = ∅.
This suggests that A and B should be closed but even if the (L1)
assumption was made, (u3) may be not satisfied. For example, if
U = IR2 and d is a L1 distance on U , A = {(x, y) ∈ U | y = 0}
and B = {(x, y) ∈ U | x > 0 and y = 1/x}, we have B 6= ∅ and
A ud B = ∅ though A and B are closed. Now, let us consider the
following assumption:

(L2) For every A and B non empty subsets of U representable in L,
the distance between A and B is always reached: there exist
a ∈ A and b ∈ B such that d(A,B) = d(a, b).

Under this assumption, (u3) is satisfied as proven hereafter. Let
A,B ∈ 2U such that B 6= ∅. If A = ∅, d(A,B) = d(A, b) = +∞
for every b ∈ B, thus A ud B = B 6= ∅. If A 6= ∅ and if A and B
are representable in L then (L2) entails that d(A,B) = d(a, b) for
some (a, b) ∈ A × B.) Since d(a, b) ≥ d(A, b) ≥ d(A,B) =
d(a, b), d(A, b) = d(a, b). Therefore, b is such that d(A, b) =
d(A,B) thus b ∈ A ud B and so, A ud B 6= ∅. So (u3) is
satisfied.

If U = IRn, if d is a L1 distance on U , and if eachA representable
in L is closed and bounded, then (L2) is satisfied. More generally, if
d is a distance in the classical mathematical sense (it verifies sepa-
ration, symmetry, triangle inequality, and d(a, b) < +∞ for every
a, b ∈ U ), and if every A representable in L is a compact space,
then (L2) is satisfied.

(u4) and (u5) are always satisfied by ud as proven hereafter. The
conjunction of these postulates is equivalent to (4). Let A,B,C ∈
2U . If (A ud B) ∩ C = ∅ then (4) is verified. Now, assume that
(A ud B) ∩ C 6= ∅ and let b ∈ (A ud B) ∩ C. Then b ∈ (A ∩B)
and d(A, b) = d(A,B). Thus, the following chain of relations can
be established:

d(A,B) ≤ d(A,B ∩ C) ≤ d(A, b) = d(A,B)

(cf. the infimum appearing in the definition of d(A, ·) and the fact
that b ∈ B ∩ C). Therefore, these real numbers are all equal and
d(A,B) = d(A,B ∩ C). Hence A ud (B ∩ C) = {b ∈ B ∩
C | d(A, b) = d(A,B)} = (A ud B) ∩ C.

(u6) is not always satisfied by ud as the following counterex-
ample shows. Let U = IR2, d be the L1 distance on IR2 (with the
canonical base), and a formula ofL represent a polygonal line. Let us
consider ψ, µ ∈ L such that Mod(ψ) = {P0} with P0 = (0, 0) and
Mod(µ) is the polygonal line P1 − P2 − P3 such that P1 = (0, 1),
P2 = (0, 3), and P3 = (0,−1):

P0

P1

P2

P3

Then Mod(ψ) ud Mod(µ) = {P1, P3} which is not a polygonal
line thus cannot be expressed in L.

4.4.2 Attribute-constraint formalisms

Definitions. In this section, it is assumed that U = V1 × V2 ×
. . .× Vn where each Vi is a “simple value” space, i.e. either IR (the
set of real numbers), ZZ (the set of integers), any interval of IR or
ZZ, IB = {true, false}, or another set defined in extension. For
i ∈ {1, 2, . . . , n}, the attribute ai is the ith projection:

ai : (a1, a2, . . . , an) ∈ U 7→ ai ∈ Vi

A formula ϕ of the representation language is a constraint,
i.e., a Boolean expression based on the attributes ai: ϕ =
P (a1, a2, . . . , an). The semantics of ϕ is

Mod(ϕ) = {a ∈ U | P (a1(a), a2(a), . . . , an(a))}

These formalisms contain propositional logic with n variables:
Vi = IB (for each i ∈ {1, 2, . . . , n}), knowing that the Boolean
expressions are based on the Boolean operations and, or, and not.
For example, if n = 3, and a1 = o, a2 = t and a3 = v:

Mod(¬v ∨ o) = {(a1, a2, a3) ∈ U | or(not(a3), a1)) = true}

These formalisms also contain the attribute-value formalisms of-
ten used for representing cases in CBR [14]: a specific case C is
defined by C = (a1 = v1) ∧ (a2 = v2) ∧ . . . ∧ (an = vn) and thus
C = {(v1, v2, . . . , vn)}. When problem-solution decomposition is
made, in general, the attributes are split in problem attributes (a1,
. . . , ap) and solution attributes (ap+1, . . . , an). Classically, the dis-
tance used on U for the retrieval is the weighted sum of distances on
each problem attribute.

Application to the numerical case with linear constraints. Now,
it is assumed that each Vi is either IR or ZZ and each formula is
a conjunction of linear constraints on the attributes. A linear con-
straint is an expression of the form

∑n
i=1 αi · ai ≤ β where

α1, . . . , αn, β ∈ IR.
Let d be the L1 distance on U parametrized by a base B. It can

be shown that ud satisfies all the (u1-6) postulates (where A, B,

36



and C are defined thanks to conjunctions of linear constraints). ud-
adaptation amounts to solve the following optimization problem:

a ∈ DK ∩ Source (5)

b ∈ DK ∩ Target (6)

minimize
n∑

i=1

|vi − ui| (7)

where (u1, . . . , un) and (v1, . . . , vn) are the respective representa-
tions of a and b in B. ComplTarget is the set of the b that solve this
optimization problem.

In this optimization problem, (5) and (6) are linear constraints, but
the function to be minimized in (7) is not linear. However, this opti-
mization problem can be solved thanks to the solving of the following
linear problem (introducing the new variables z1, . . . , zn):

a ∈ DK ∩ Source

b ∈ DK ∩ Target

vi − ui ≤ zi (1 ≤ i ≤ n)

ui − vi ≤ zi (1 ≤ i ≤ n)

minimize
n∑

i=1

zi

It can be shown that the optimal values of a and b in the two opti-
mization problems are the same. Therefore, in this formalism, ud-
adaptation amounts to a linear programming problem, which is NP-
complete if some Vi = ZZ but is polynomial when all Vi = IR [12].

More details about this process can be found in [5].

A cooking application. This principle has been applied to a CBR
system called Taaable (http://taaable.fr) that has been a con-
testant of the CCC (Computer Cooking Contest, organized during the
ICCBR conferences). The CCC provides a recipe base. A contestant
of the CCC is a system that has to solve cooking problems using
these recipes (a case of this application is a recipe). These problems
are specified by a set of desired ingredients or dish types, and un-
desired ones (e.g., “I’d like a pear pie but I don’t like cinnamon.”).
Taaable has won the main challenge and the adaptation challenge
of this contest in 2010 [2]. The adaptation of ingredient quantities
was made possible thanks to a reduction to linear programming as
mentioned before. Details can be found in [2] but the idea, explained
on a simplified example, is as follows. Suppose that the user wants
a recipe of a pear pie and that Taaable retrieves an apple pie. The
domain knowledge is expressed by linear constraints on these prop-
erties, such as:

massfruit = 120 · nbapple + 100 · nbpear
masssweet = masssugar + 10 · nbapple + 15 · nbpear

(these knowledge can be found in a free nutritional database). Each
mass· is an attribute on IR and each nb· is an attribute on IN

(non negative integers). The source case is a singleton {a} such that
nbapple(a) = 4 and masssugar(a) = 40. The target case corresponds
to the constraint nbapple = 0 (the substitution of apples by pears is
inferred by a previous step similar to a u-adaptation in propositional
logic). The ud-adaptation leads to a maximal preservation of the at-
tributes massfruit and masssugar and since the pears contain more
sweet than the apples, the mass of added sugar is lowered (there is a
sort of “compensation effect”). More precisely, the ud-adaptation (at

least for some base B) gives ComplTarget = {b} with nbpear(b) =
5 (the total fruit mass from Source to ComplTarget is modified
from 480 to 500) and masssugar(b) = 5 (the total sweet mass is
unchanged).

4.5 Multiple case adaptation
Some CBR systems retrieve several cases and then adapt them in
order to solve the target case:

Retrieval : (CaseBase, Target)

7→ {Sourcei}1 ≤ i ≤ k
⊆ CaseBase

Adaptation :
(
{Sourcei}1 ≤ i ≤ k

, Target
)
7→ ComplTarget

This adaptation is called multiple case adaptation and is also known
as case combination. Multiple case adaptation extends single case
adaptation (which is a case combination with k = 1) in the same
way as integrity constraint belief merging extends belief revision (cf.
section 3.3), hence the idea5 to use a merging operator 4 on U to
define a multiple case adaptation process:

ComplTarget = 4DK∩Target
(
{DK ∩ Sourcei}1 ≤ i ≤ k

)

which generalizes (3).
This approach to multiple case adaptation is studied in [5].

4.6 Revision-based adaptation and rule-based
adaptation

Other approaches to adaptation have been defined in the CBR lit-
erature. This section compares revision-based adaptation to one of
them.

Rule-based adaptation is the adaptation based on a set of adapta-
tion rules. Following the formalization of [17], an adaptation rule is
an ordered pair (r,Ar) where r is a binary relation on Upb and Ar

is such that, for xs, xt ∈ Upb and ys ∈ Usol (Source = {(xs, ys)},
Target = {xt} × Usol):

if xs r xt then Ar(x
s, ys, xt) = yt probably solves xt

The rule is not certain (hence the “probably”).
The adaptation rules can be composed as explained hereafter. Let

AK be the finite set of adaptation rules that are available to the CBR
system. Let AKpb = {r | (r,Ar) ∈ AK}.
AKpb provides a structure on Upb. A similarity path from xs ∈

Upb to xt ∈ Upb is a path in (Upb, AKpb): it is a sequence
of relations ri∈ AKpb such that there exist x0, x1, . . . , xq ∈
Upb with x0 = xs, xq = xt, and xi−1 ri xi (1 ≤
i ≤ q). Given such a similarity path, yt ∈ U that proba-
bly solves xt can be computed by applying successively the rules
(r1,Ar1), . . . , (rq , Arq ): yi = Ari(x

i−1, yi−1, xi) for i taking the
successive values 1, 2, . . . , q. Finally, yt = xq probably solves xt.
This can be graphically represented by the following diagram, com-
posed of q diagrams like the one of (1), section 2.2:

xs = x0
x1 x2 xq−1 xq = xt

ys = y0
y1 y2 yq−1 yq = yt

r1 r2 rq

Ar1 Ar2 Arq

5 Once suggested by Pierre Marquis. Thanks Pierre!
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There may be several similarity paths from xs to xt. The choice
between them is usually based on a cost function such that if SP1

and SP2 are two similarity paths from xs to xt and cost(SP1) <
cost(SP2) then SP1 is preferred to SP2, which is interpreted as
“SP1 is more likely to lead to an appropriate solution to xt than
SP2.” The function cost is usually assumed to be additive, that is
cost(SP ) is the sum of cost(r) for r a relation of SP . To each
(r,Ar) ∈ AK, cost(r) > 0 is an information associated with this
adaptation rule.6

Let dAK be the distance on U defined by

dAK((x
s, ys), (xt, yt))

= min



cost(SP )

∣∣∣∣∣∣

SP : similarity path from xs to yt

such that the application of SP
on {(xs, ys)} gives yt





with the convention min ∅ = +∞. Let ComplTarget = tgt ×
Sol(tgt) be the result of udAK -adaptation without domain knowl-
edge (U = DK). If there is no similarity path from xs to xt, then
ComplTarget = Target (the adaptation fails: it does not add any
information to the target case). Else, b = (xt, yt) ∈ ComplTarget

iff yt is obtained by application of a similarity path of minimal cost.
Therefore, revision-based adaptation includes rule-based adaptation.
Moreover, DK can be taken into account in udAK -adaptation, thus this
enable to specify a rule-based adaptation taking into account the do-
main knowledge. Conversely, if some adaptation knowledge AK in
the form of rules has been acquired (e.g., by means of knowledge
discovery and data-mining techniques [8, 10]), this can be useful to
specify a relevant revision operator. Indeed, there are many possi-
ble revision operators and the adaptation knowledge enables to make
some choices among them.

A limitation of rule-based reasoning is that it can fail (i.e.,
ComplTarget = Target) and this is particularly true when there
are few adaptation rules (if AK ⊆ AK′ then dAK(a, b) ≥ dAK′(a, b)
so if udAK′ -adaptation fails then udAK -adaptation fails). One way to
overcome this limitation is to combine this kind of adaptation with
another approach to adaptation and the principle of revision-based
adaptation can be used to formalize this combination. This idea is
formalized as follows. Let us assume that the other approach to adap-
tation that has to be combined with rule-based adaptation can be for-
malized as a revision-based adaptation and let d0 be a distance on
U such that this adaptation coincides with the ud0 -adaptation (intu-
itively, this adaptation is a “novice” adaptation, hence the 0 in d0).
The ud-adaptation with d defined below combines rule-based adap-
tation with ud0 -adaptation (for a, b ∈ U ):

d(a, b) = inf
c∈U

(WAK · dAK(a, c) +W0 · d0(c, b))

whereWAK andW0 are two positive constants. When AK = ∅, d = d0

(intuitively: with no adaptation knowledge, the adaptation process is
a novice). If the infimum above is reached on c = (xc, yc), the ud-
adaptation consists in a rule-based adaptation of Source = {a} to
solve {xc} and then a ud0 -adaptation of c to solve the target case.

4.7 Other studies related to revision-based
adaptation

Some other studies related to revision-based adaptation have been
carried out.
6 A coarse modeling of this cost is cost(r) = − logP where P is the

probability that yt is a licit solution of xs. Thus, the additivity of the cost
corresponds to an independence assumption of the q adaptation steps.

An algorithm based on revision-based adaptation principles has
been described for the description logic ALC [6]. In this work, each
case is represented as an instance associated with some assertions
and the domain knowledge is represented by a set of terminological
axioms.

Belief revision has been studied in qualitative algebras [7] and
thus, it is natural to apply this work on revision-based adaptation to
these formalisms. This has been studied in [11], with an application
to the adaptation of the procedural part of a cooking recipe (using
a temporal algebra) and to the adaptation of crops spatial allocation
(using a spatial algebra).

5 REVISION-BASED CBR
Let SOURCE be the union of all the cases from the case base:

SOURCE =
⋃

i

Sourcei where CaseBase = {Sourcei}i

The following question can be raised: according to what conditions
can the CBR process with SOURCE as only source case be equiva-
lent to the CBR process with CaseBase? This question is addressed
below with a ud-adaptation.

Let A1, A2, . . . , An, and B be n + 1 subsets of U . Let δi =
d(Ai, B) and ∆ = mini δi. The following equation holds:

(⋃

i

Ai

)
ud B =

⋃

i,δi=∆

(Ai ud B)

Indeed d(
⋃
iAi, b) = mini d(Ai, b) for any b ∈ B, and so

(
⋃
iAi) u B = {b ∈ U | mini d(Ai, b) = ∆} =

⋃
i,δi=∆(Ai u

B).
From this equation applied to Ai = DK ∩ Sourcei and B = DK ∩

Target, it comes that the ud-adaptation of SOURCE to solve Target
gives COMPL_TARGET such that

COMPL_TARGET =
⋃

i,δi=∆

ComplTargeti

where ComplTargeti is the result of the ud-adaptation of Sourcei
to solve Target.

First, let us consider that there is only one i such that δi = ∆.
Then COMPL_TARGET = ComplTargeti. Therefore if the retrieval
process aims at selecting the source case Sourcei ∈ CaseBase that
minimizes d(DK ∩ Sourcei, DK ∩ Target) then

CBR({SOURCE}, Target) = CBR(CaseBase, Target) (8)

Now, let us consider that there are ex aequo source cases for such
a retrieval process: there are several source cases Source such that
d(DK∩Source, DK∩Target) = ∆. Then the equation (8) still holds
if the two following modifications are made:

• Retrieval returns the set S of source cases Source minimizing
d(DK ∩ Source, DK ∩ Target);

• Adaptation first performs a ud-adaptation of each Source ∈ S
and then takes the union of the results.

Therefore, if the distance d used for ud-adaptation is also used
for the retrieval process as it is described above, the whole CBR in-
ference can be specified by ud and DK: DK is the “static” knowledge
(stating that some case instances are not appropriate) and d is the “dy-
namic” knowledge about the modification from a case instance to an-
other one. This can be linked to the general principle of “adaptation-
guided retrieval” [20] stating that the adaptation knowledge should
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be used during retrieval: a source case must be preferred to another
one if the former requires less “adaptation effort” (this adaptation
effort being measured thanks to d for ud-based CBR).

6 CONCLUSION
Case-based reasoning systems use similarity (usually in the form of
a similarity measure or a distance). This is obvious for the retrieval
of a case similar to the target case but this paper shows how it can be
used for adaptation: an important class of revision operators is based
on distances. Indeed, ud-based adaptation can be reformulated as the
process of selecting the case instances that are the closest ones to the
source case, in the metric space (U , d), with constraints given by DK.

This approach to adaptation has a good level of generality since
it captures some other approaches to adaptation (as shown for rule-
based adaptation). However, even if revision-based adaptation would
capture all the approaches to adaptation (and we do not claim that
it is the case —not yet), it would not close the investigations about
adaptation in CBR. Indeed, a revision operator is parametrized by a
topology (usually a distance) and the issue of the choice of an appro-
priate topology, is far from being completely addressed. In fact, the
choice of this topology is an adaptation knowledge acquisition issue
and an important aspect of the research on revision-based adaptation
is to have related this topology of the case universe with the adapta-
tion knowledge.
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Cautious analogical-proportion based reasoning using
qualitative conceptual relations

Steven Schockaert1 and Henri Prade2

Abstract. Propositional rule bases may be incomplete in the sense
that some situations of interest are not explicitly covered by any of
their rules. While logical deduction does not produce meaningful re-
sults in such a case, a variety of methods have been proposed to de-
rive plausible conclusions about a given situation, by comparing it
with similar or analogous situations that are explicitly covered by
available rules. Most of these methods, however, rely on the avail-
ability of quantitative information which may be difficult to obtain
and/or justify. In this paper, we therefore propose a form of com-
monsense reasoning which remains at the qualitative level. In par-
ticular, we use qualitative spatial relations between geometric repre-
sentations of properties to encode how they are conceptually related,
essentially corresponding to a weaker version of analogical propor-
tions. A commonsense inference relation is then obtained by identi-
fying a rule base with a mapping between two geometric spaces, and
making assumptions about the regularity of this mapping.

1 Introduction

Many domains make use of a large number of labels to categorize
instances. In the domain of music, for example, labels for describing
different genres abound, ranging from coarse labels such as classical
music or pop music, to fine-grained labels such as lo-fi, doom metal,
or vocal jazz. As another example, consider the domain of wines, and
the following rules:

chianti→ low-tannins ∧ medium-body (1)

merlot→ (low-tannins ∨ mid-tannins) ∧ medium-body (2)

Given the large number of available labels, rule bases about domains
such as music genres or wines are not likely to be complete. For ex-
ample, assume that we have no rules about barbera wine. In such a
case, logical deduction cannot tell us anything about the amount of
tannins in barbera. On the other hand, if we know from experience
that barbera tastes quite similar to chianti, we may conclude that the
amount of tannins in barbera is not likely to be high. To formalize
this form of commonsense reasoning, a variety of similarity based
reasoning have already been proposed [2, 15, 7, 11, 3, 17]. The in-
tuition is usually that given a rule α → β and a fact α∗, the more
similar α is to α∗, the more likely it is that a situation similar to β
holds.

Although the idea of similarity based reasoning is important in
understanding human reasoning, and although it has enabled a large

1 Cardiff University, UK, email: s.schockaert@cs.cardiff.ac.uk
2 Université Paul Sabatier, IRIT, CNRS, Toulouse, France, email:

prade@irit.fr

number of applications (including the work on fuzzy rule based sys-
tems and case based reasoning), it does not offer a fully satisfactory
solution to the problem at hand, because of problems such as:

• Where do the similarity degrees come from and what do they
mean?

• How similar should α and α∗ be to say something meaningful
about the similarity between the conclusion β∗, and the rule con-
sequent β?

• What exactly can we derive about the similarity between β and
β∗?

While specific applications may give specific answers to these ques-
tions, we believe that a more qualitative method is needed to handle
the problem of incomplete rule bases in general. In [9], we proposed
such a qualitative method for completing rule bases based on the no-
tion of analogical proportion. An analogical proportion a : b :: c : d
expresses that “a is related to b as c is related to d”. Possible exam-
ples are:

chick : chicken :: kitten : cat

loft : penthouse :: cottage : mansion

hard-rock : progressive-rock :: heavy-metal : progressive-metal

More formally, if A, B, C and D are the set of features exhibited by
a, b, c and d, the analogical proportion a : b :: c : d is said to hold
whenA\B = C \D andB \A = D\C [1]. In [9], we suggested to
complete rule bases using the assumption that that when each of the
corresponding arguments of 4 rules are in an analogical proportion
then also the conclusions of these 4 rules should form an analogical
proportion. More precisely, given three rules a1 ∧ ... ∧ ak → a,
b1 ∧ ...∧ bk → b, c1 ∧ ...∧ ck → c and the premises d1, ..., dk such
that the analogical proportions ai : bi :: ci : di holds for every i, [9]
suggests to add the rule d1 ∧ ... ∧ dk → d to the knowledge base,
where X = d is the unique solution which makes a : b :: c : X an
analogical proportion, if one exists.

Analogical-proportion based reasoning eliminates the need for de-
grees, and can often suggest answers in situations where similarity
based reasoning cannot. However, from a practical point of view, in
many domains it may be hard to find four-tuples of properties which
form a perfect analogical proportion, and when analogical propor-
tions only hold approximately, the method from [9] may not be suf-
ficiently cautious. To make analogical-proportion based reasoning
more robust in such a case, in this paper we further develop the ideas
from [13] on interpolating and extrapolating rules using qualitative
knowledge.

The paper is structured as follows. First, in Section 2, we focus
on the idea of using betweenness to interpolate rules, essentially pro-
viding a qualitative counterpart to similarity based reasoning. Then,
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in Section 3, we turn our attention to the idea of analogical change
for extrapolating rules. Subsequently, in Section 4, we discuss some
of the limitations of the present approach, as well as some ideas to
address them in future work. In particular, we explore some ideas
to obtain the required information about betweenness and analogi-
cal change, we discuss the problem of introducing inconsistencies
when making interpolative or extrapolative inferences, and we touch
on the idea of applying interpolative and extrapolative reasoning in a
non-monotonic setting.

2 Interpolation
Syntax

At the syntactic level, the idea of interpolating rules corresponds to
the following inference rule:

α1 → β1
α2 → β2

α1 1α2 → β1 1β2

(3)

where we write α1 1α2 for the disjunction of all formulas that are
conceptually between α1 and α2. In the example from the introduc-
tion, for instance, chianti 1 merlot would be the disjunction of all
wines whose taste is between that of chianti and merlot, whereas we
may consider that

(lt ∧ mb)1((lt ∨ mt) ∧ mb) ≡ (lt ∨ mt) ∧ mb (4)

where we have abbreviated the labels for the ease of presentation
(e.g. lt stands for low-tannins).

In practice, it may be difficult or even impossible to character-
ize α1 1 α2 and β1 1 β2 using the available labels and the usual
propositional connectives. For example, while we may know that
barbera is between chianti and merlot, we may not necessarily be
able to enumerate all such wines. Even worse, sometimes the avail-
able labels make it impossible to exactly characterize α1 1α2. For
instance, let α1 = 3-bedroom-apartment and α2 = penthouse, then
we may wonder whether a loft should be included in the disjunction
α1 1 α2, i.e. whether loft → 3-bedroom-apartment 1 penthouse
holds. A loft with three bedrooms can be considered intermediate
between a 3 bedroom apartment and a 3 bedroom penthouse, but for
a loft with fewer bedrooms this is harder to justify. In other words,
while some lofts are conceptually between 3 bedroom apartments
and penthouses, this does not hold for all lofts. If the language does
not contain a label for 3 bedroom lofts, we may therefore not be able
to precisely characterize 3-bedroom-apartment1penthouse.

Because of this observation, in practice we are left with approxi-
mating α1 1α2. In particular, we assume that we have access to rules
of the form

α∗ → α1 1α2 β1 1β2 → β∗

which indicate, respectively, that at least all situations covered by α∗

are conceptually between α1 and α2, and that all situations which
are conceptually between β1 and β2 satisfy β∗.

Example 1 From (1) and (2) we derive using interpolation:

chianti1merlot→ (lt ∧ mb)1((lt ∨ mt) ∧ mb)

Considering the equivalence in (4), and the rule

barbera→ chianti1merlot

we find using classical deduction that

barbera→ (lt ∨ mt) ∧ mb

Notice how the symbol 1 is essentially treated as a binary modality.
We assume this modality to be reflexive and symmetric in the sense
that

α1α ≡ α
α1β ≡ β 1α

for any propositional formulas α and β. We moreover assume that α
and β themselves are “between α and β”, i.e.

α ∨ β → α1β

In practice, we may only have information about the between-
ness of atoms (i.e. individual labels) and not about the betweenness
of more complex propositional formulas. We may consider, for in-
stance, the following inference rule to lift betweenness for atoms to
betweenness for formulas:

α→ α1 1α2

β → β1 1β2

(α ∨ β)→ (α1 ∨ β1)1(α2 ∨ β2)
(5)

α1 1α2 → α

(α1 ∨ β)1(α2 ∨ β)→ (α ∨ β)
(6)

α→ α1 1α2

α, α1 and α2 are “logically independent” from β

(α ∧ β)→ (α1 ∧ β)1(α2 ∧ β)
(7)

α1 1α2 → α
β1 1β2 → β

(α1 ∧ β1)1(α2 ∧ β2)→ (α ∧ β)
(8)

Note that because 1 is symmetric, from the premises of (5) we can
also derive

(α ∨ β)→ (α1 ∨ β2)1(α2 ∨ β1)
(α ∨ β)→ (α2 ∨ β1)1(α1 ∨ β2)
(α ∨ β)→ (α2 ∨ β2)1(α1 ∨ β1)

and similar for (6)–(8).
To see why these inference rules make sense, and to elucidate the

informal requirement of logical independence, it is useful to consider
the notion of interpolation at the semantic level.

Semantics

We characterize interpolation at the semantic level using the idea of
conceptual spaces [4]. Specifically, we assume that the meaning of
every label can be represented as a convex region in some geomet-
ric space, whose dimensions correspond to elementary cognitive fea-
tures; they are usually called “quality dimensions” in this context.
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In the case of labels referring to wines, for instance, there would be
quality dimensions corresponding to colour (e.g. three dimensions,
encoding hue, saturation and intensity), dimensions corresponding to
the texture of the wine, its taste, smell, etc. The points of the concep-
tual space would then correspond to specific instances, while regions
correspond to categories. Essentially, the region representing a cate-
gory (e.g. chianti) corresponds to the points which are closest to the
prototypes of that category [5], which is why such regions are nat-
urally convex. For simplicity, we assume that conceptual spaces are
Euclidean spaces.

Given this geometric setting, betweenness can naturally be char-
acterized: we say that a category b is between a and c, if some point
of the region corresponding with b is between some point of the re-
gion corresponding with a and some point of the region correspond-
ing with c. To make this more precise, let us write reg(α) for the
conceptual space representation of a propositional formula α, where
reg(α ∧ β) = reg(α) ∩ reg(β) and reg(α ∨ β) = reg(α) ∪ reg(β).
In this paper, we do not explicitly consider negation, and rather as-
sume that propositions are grouped in domains of pairwise disjoint
attributes. In the wine example, we may for instance consider the
domain A = {low-tannins,mid-tannins, high-tannins}. We assume
there are implicit constraints that enforce the pairwise disjointness of
attributes from the same domain. Sometimes, we do use the notation
¬a as a shorthand for domainsA = {a,¬a}with only two elements.

We have α→ β 1γ iff

∀q ∈ reg(α) . ∃p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] .−→pq = λ · −→pr

and β 1γ → α iff

∀p ∈ reg(β), r ∈ reg(γ), λ ∈ [0, 1] . p+ λ · −→pr ∈ reg(α)

where the points p + λ · −→pr for λ ∈ [0, 1] are exactly the points
which are between p and r. From these characterizations it is easy
to verify that inference rules (5), (6) and (8) are indeed valid. The
argument for (7) is a bit more subtle. The intuition is that because of
the assumption of logical independence, we can see the underlying
conceptual space as a Cartesian product C1 × C2 such that reg(α),
reg(α1) and reg(α2) are all of the formX×C2 (i.e. the dimensions in
C2 are irrelevant for describing the categories α, α1 and α2), whereas
reg(β) is of the form C1 × Y (i.e. the dimensions in C1 are irrelevant
for describing the category β).

If α is inconsistent (e.g. because it is the conjunction of two pair-
wise disjoint attributes), then reg(α) = ∅. In such a case, no point
is between a point of reg(α) and a point of any other region reg(β).
Accordingly, we assume that

⊥1β ≡ β 1⊥ ≡ ⊥

To describe the interpolation process itself, i.e. inference rule
(3), assume that a propositional rule base R is available, contain-
ing negation-free rules as before. The antecedent α of a rule corre-
sponds to a region reg1(α) in some conceptual space C1 (typically
corresponding to the Cartesian product of more elementary concep-
tual spaces). Similarly, the consequent β of a rule corresponds to a
region reg2(β) in a conceptual space C2. We can thus view the rule
base R as a mapping f from regions of C1 to regions of C2. A rule
α∗ → β∗ can then be derived from the rule base R using classical
deduction iff f(reg1(α

∗)) ⊆ reg2(β
∗).

By making certain meta-assumptions about the relationship be-
tween the conceptual spaces C1 and C2, we may be able to refine
the mapping f . In particular, in many cases C2 will be a subspace of
C1 (i.e. the quality dimensions that are needed to describe the labels

in the consequents of rules are a subset of those needed to describe
the antecedents). In such a case, f is the approximation of a linear
mapping from points of C1 to points of C2. We can then refine f
to a mapping f̂ such that f(X) \ f̂(X) are all points from C2 that
could never be obtained by a linear mapping from C1 which is con-
sistent with f . It can then be shown that f̂(reg1(α

∗)) ⊆ reg2(β
∗)

iff α∗ → β∗ can be derived from R using inference rule (3), and
(5)-(8) together with classical deduction. In other words, at the se-
mantic level, the interpolative inference rule (3) corresponds to an
assumption of regularity. We refer to [13] for more details.

Finally, note that interpolative reasoning can also be formalized
in terms of analogical proportions, by considering that b is between
a and c iff the analogical proportion a : b :: b : c holds. For in-
terpolative inferences, the method outlined in this paper yields more
cautious conclusions than the method from [9], which is intuitively
due to the fact that a : b :: b : c means that b is between a and c
and the distance between a and b is identical to the distance between
b and c. In the next section, we present a method for extrapolative
reasoning, which is again more cautious than the method from [9].

3 Extrapolation
Geometrically, analogical proportions intuitively correspond to the
idea of a parallelogram, indicating that the direction of change to go
from a to b is parallel to the direction of change from c to d, and that
the amount of change is identical. As this latter amount is difficult
to quantify, we will use a more qualitative approach, and restrict our
attention to the direction of change. In particular, we write γ�〈α, β〉
for the disjunction of all propositional formulas which correspond
to situations that differ from some situation satisfying γ in the way
as some situation satisfying β differs from a situation satisfying α.
More precisely, at the semantic level we have δ → α�〈β, γ〉 iff for
every s in reg(δ) there exist p in reg(α), q in reg(β), r in reg(γ) and
λ ≥ 0 such that

−→rs = λ · −→pq
Example 2 Let a partitioning of house sizes be given by
{very-small, small,medium, large, very-large}, then we have

medium�〈very-small, large〉 ≡ medium ∨ large ∨ very-large

Indeed, the change from very-small to large denotes an increase
in size. Therefore the house sizes compatible with medium �

〈very-small, large〉 are those that are at least as large as medium.
As in the case of betweenness, when we move from uni-

dimensional to multi-dimensional domains, it is often not possible
to provide precisely characterize formulas of the form γ�〈α, β〉. For
example, we may assume

prog-metal→ heavy-metal�〈hard-rock, prog-rock〉

without being able to precisely define all music genres that differ from
heavy-metal as prog-rock differs from hard-rock using the labels that
are available to us.

We obtain a form of extrapolative reasoning by assuming that ana-
logical changes in the antecedent of rules should lead to analogical
changes in the consequent:

α1 → β1
α2 → β2
α3 → β3

α3�〈α1, α2〉 → β3�〈β1, β2〉

(9)
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To lift information about analogical changes between atomic la-
bels to analogical changes of propositional formulas, the following
inference rules are available to us:

α→ α3�〈α1, α2〉
β → β3�〈β1, β2〉

(α ∨ β)→ (α3 ∨ β3)�〈(α1 ∨ β1), (α2 ∨ β2)〉
(10)

α3�〈α1, α2〉 → α
β3�〈β1, β2〉 → β

(α3 ∨ β3)�〈(α1 ∨ β1), (α2 ∨ β2)〉 → (α ∨ β)
(11)

α→ α3�〈α1, α2〉
α, α1 and α2 are “logically independent” from β and γ

(α ∧ γ)→ (α3 ∧ γ)�〈(α1 ∧ β), (α2 ∧ β)〉
(12)

α3�〈α1, α2〉 → α
β3�〈β1, β2〉 → β

(α3 ∧ β3)�〈(α1 ∧ β1), (α2 ∧ β2)〉 → (α ∧ β)
(13)

The inference rules (10)–(13) are justified using a geometric argu-
ment, similar as for betweenness. The extrapolation principle (9) it-
self can again be shown to be valid when the rule base approximates
a linear mapping between conceptual spaces.

Example 3 Consider the following rule base about houses:

large ∧ detached→ comf ∨ lux (14)

large ∧ row-house→ comf (15)

small ∧ detached→ bas ∨ comf (16)

which defines the comfort level (basic, comfortable, luxurious) of a
house, based on its size (small, medium, large) and type (detached,
row-house, semi-detached). From the extrapolation principle (9) we
find

(
(small ∧ det)�〈(large ∧ det), (large ∧ rh)〉

)
(17)

→
(
(bas ∨ comf)�〈(comf ∨ lux), (comf ∨ comf)〉

)

Using (12) and the fact that β → α�〈α, β〉 for any α and β, we find

(small ∧ rh)→ (small ∧ det)�〈(large ∧ det), (large ∧ rh)〉 (18)

where we have again abbreviated some labels. From

bas�〈comf, comf〉 → bas

comf�〈lux, comf〉 → (bas ∨ comf)

we find using (11):

(bas ∨ comf)�〈(comf ∨ lux), (comf ∨ comf)〉 → (bas ∨ comf)
(19)

Combining (17)–(19), we find

(small ∧ row-house)→ (bas ∨ comf) (20)

Intuitively, from the rule base (14)–(16) we derive that detached
houses are more comfortable than row houses, hence a small row
house can not be more comfortable than a small detached house.

If we know consider that

semi-detached→ row-house1detached

Using the interpolation principle (3) we can derive from (16) and
(20) that

(small ∧ semi-detached)→ (bas ∨ comf)

i.e. since semi-detached houses are intermediate between detached
houses and row houses, their comfort level should be intermediate as
well.

4 Discussion

In this section, we discuss a number of obstacles to implementing
the ideas of interpolation and extrapolation in practice, and provide
some ideas on how to circumvent them.

4.1 Obtaining conceptual relations

Regarding the applicability of our approach, an important question is
how the required relational knowledge about conceptual spaces can
be obtained. Depending on the specific application, different options
may be available.

In some domains, it is feasible to manually encode a complete
qualitative description of a conceptual space. Most notably, this is
the case for conceptual spaces that are unidimensional, for which it
suffices to provide a ranking of the labels of interest. For instance, a
conceptual space of housing sizes may be described by encoding that

very-small < small < medium < large < very-large

From this description, we immediately obtain that e.g. small →
very-small1medium.

A second possibility is to extract conceptual relations from natural
language. In [16], for instance, the idea of latent relational analysis
was introduced, with the aim of finding analogical proportions. The
main idea is that two pairs of words are likely to be related analo-
gously, i.e. form an analogical proportion, when the lexical contexts
in which they co-occur are similar. For example, the words kitten and
cat are found in sentences such as “a kitten is a young cat”, while the
words chick and chicken are found in sentences such as “a chick is a
young chicken”. From such observations, the analogical proportion
kitten : cat :: chick : chicken can be discovered. Another technique
for discovering analogical proportions from the web was proposed in
[8], estimating the strength of analogical proportions by converting
co-occurrence statistics using Kolmogorov information theory.

If sufficient information is available about instances of concepts
or properties, several data-driven approaches can be used, which di-
rectly take advantage of the geometric nature of the relations of in-
terest. For instance, [5] suggests to start from pairwise similarity
judgements between instances, and use multi-dimensional scaling to
obtain coordinates for them in a Euclidean space. Representations
of concepts can then be obtained by determining the corresponding
Voronoi tessellation, after which the conceptual relations of interest
can be evaluated by straightforward geometric calculations. In [12],
the feasibility of such an approach was demonstrated in the domain
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of music genres, using similarity judgements that were obtained in-
directly using user-contributed meta-data from the website last.fm3.
Rather than starting from similarity judgements, [14] suggests an ap-
proach based on singular value decomposition (SVD), which is a
form of dimensionality reduction. Translated to our setting, the ap-
proach would start from a matrix where rows correspond to instances
and columns correspond to binary features that these instances may
or may not have. Instances are then represented in a high-dimensional
space with one dimension for each feature, and coordinates are either
0 or 1, depending on whether the instance has the corresponding fea-
ture. Using SVD, a linear transformation is then determined which
maps this high-dimensional space onto a space of lower dimension,
with real-valued coordinates.

Note that these data-driven approaches essentially use quanti-
tative information to obtain a qualitative representation. One rea-
son for not using a purely quantitative approach is that the avail-
able data is not likely to be sufficiently informative to build accu-
rate conceptual space representations, but still allows to discover
information about qualitative relations between regions. A second
reason is that geometric calculations, such as determining convex
hulls or Voronoi tessellations, are computationally expensive in high-
dimensional spaces. Even the space required for representing poly-
topes is exponential in the number of dimensions. When all we are in-
terested in are spatial relations such as betweenness and parallelism,
we can avoid to actually build the conceptual space, using a linear
programming approach that was proposed in [12].

4.2 Handling inconsistencies

As mentioned in Sections 2 and 3, we see a rule base as an incom-
plete approximation of a mapping between two conceptual spaces (or
between two Cartesian products of conceptual spaces), and the inter-
polative and extrapolative inference principles are tied to assump-
tions on the regularity of this mapping. In particular, both principles
are valid when this mapping is linear. For interpolation, it even suf-
fices that the mapping is monotonic. If these regularity assumptions
are met, we are guaranteed that interpolation and extrapolation will
never introduce logical inconsistencies.

Relaxing the linearity assumption

In practice, on the other hand, the regularity assumptions may not
hold. For example, consider the following rules, which contain infor-
mation about the amount of traffic (light, moderate, heavy) at differ-
ent times during the day:

morning→ heavy-traffic (21)

mid-day→ moderate-traffic (22)

evening→ heavy-traffic (23)

Together with the constraint that light-traffic, moderate-traffic and
heavy-traffic are mutually exclusive properties. Using interpolation,
and the assumption that

mid-day→ morning1evening

we then derive the rule

mid-day→ heavy-traffic

3 http://www.last.fm

which is in conflict with (22). This can be explained due to a failure
of the monotonicity assumption. In particular, the underlying map-
ping from different times of the day to different amounts of traf-
fic is not a projection to a lower-dimensional conceptual space, but
rather expresses an observation about the world. We can contrast
such phenomenological rules with conceptual rules, which link con-
cepts to their inherent properties (as well as super-concepts). For the
latter type of rules, the mapping between conceptual spaces usually
is a projection from one space onto a lower-dimensional sub-space,
which trivially satisfies the linearity assumption.

In the case of (21)–(23) the underlying mapping is not even deter-
ministic, in the sense that the exact amount of traffic at e.g. 9 am
may vary from day to day (even if we assume that the rule base
talks about weekdays in a specific city). Nonetheless, even for rules
where the linearity assumption fails, interpolation may still be useful.
For instance, suppose we introduce the labels mid-morning and mid-
afternoon, which are between morning and mid-day, and between
mid-day and evening respectively. From (21) and (22) we may derive

mid-morning→ moderate-traffic ∨ heavy-traffic

Indeed, while the mapping underlying the rule base may, in principle,
be arbitrary, it seems natural to assume that more regular mappings
would be more likely, i.e. we could make the assumption that any
completion of the knowledge base should not introduce additional
irregularities. In particular, by identifying irregularities with viola-
tions of the monotonicity assumption, this leads to the assumption
that the conceptual space C1 corresponding with the antecedent of
the rules can be partitioned in a minimal number of segments, such
that the mapping is monotonic over these segments. In the traffic
example, we would thus assume that the amount of traffic is mono-
tonically decreasing throughout the morning and monotonically in-
creasing throughout the afternoon. While such conclusions would not
be valid in general, they are reasonable to make in absence of any
other information. Depending on how the rule base (21)–(23) was ob-
tained, we may also argue that the absence of a rule for mid-morning
suggests that this case is not special, i.e. that those cases which are
irregular in some sense would be more likely to be contained in the
rule base.

To avoid inconsistencies, the above view suggests that from a rule
base R we should try to identify subsets R1, ...Rk of rules, such
that no inconsistencies arise as long as interpolation is applied to two
rules from the same setRi. To be compatible with the above view, we
should moreover insist that when α → α1 1α2, (α1 → β1) ∈ Ri,
(α2 → β2) ∈ Ri and (α→ β) ∈ R, then we should have that (α→
β) ∈ Ri. In other words, the sub-bases Ri should contain all rules
that apply to a given (convex) segment of the conceptual space C1.
In this way, we can ensure that when a new rule α∗ → β∗ is derived
by interpolation from a sub-base Ri, the rules in Ri are indeed the
most relevant ones, i.e. that they are the ones whose antecedent is
closest to α∗ in some sense. In a similar, but slightly less cautious
fashion, we may assume that the mapping underlying the rule baseR
is piecewise linear, and apply extrapolation locally to the sub-bases
R1, ..., Rk.

Restricting to the most salient properties

Another reason why inconsistencies may arise is because the infor-
mation about betweenness or analogical change is not accurate, or,
more fundamentally, because it only takes the most salient properties
of objects in the account. For example, when we derive betweenness
information for wines from wine-food pairings, it will mainly reflect
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the taste of the wine, and to a much lesser extent properties such as
price. As an additional example, we may consider that coffeehouses
are conceptually between bars and restaurants, as both coffeehouses
and bars emphasise drinking rather than eating, while coffeehouses
generally do serve some food (sandwiches, cakes) as well. Nonethe-
less, we may consider that

bar→ serves-wine (24)

coffeehouse→ ¬serves-wine (25)

restaurant→ serves-wine (26)

Using interpolation and the assumption

coffeehouse→ bar1restaurant

we derive the rule

coffeehouse→ serves-wine

which is in conflict with the rule base. In this case, the inconsistency
is mainly do the fact that the property of serving wine was not consid-
ered when asserting that coffeehouses are between bars and restau-
rants. The most natural way to avoid inconsistencies would then be to
avoid applying interpolation to derive conclusions from the domain
A = {serves-wine,¬serves-wine}. In absence of any conflicts about
attributes from a given domain, we then assume that interpolative
and extrapolative conclusions are valid for that domain, an assump-
tion which may need to be revised if additional knowledge became
available.

4.3 Typicality
The ideas of interpolation and extrapolation, explored in this paper,
and the ideas of non-monotonic reasoning in the sense of [6] serve
two rather complementary goals. Whereas the former is concerned
with handling missing generic knowledge (i.e. the absence of rules
that allow us to derive meaningful conclusions about the situation at
hand), the latter allows us to deal with missing factual knowledge
(i.e. the absence of a complete description of the situation at hand).
Thus it is natural to try to combine both ideas, as illustrated by the
next example.

Example 4 Consider the following set of default rules:

bird |∼ flies

penguin |∼ bird

penguin |∼¬flies

aptenodytes |∼ penguin

eudyptula |∼ penguin

and assume that we also know that

pygoscelis→ aptenodytes1eudyptula (27)

Then we may want to combine the interpolation principle with a form
of non-monotonic reasoning to conclude

pygoscelis |∼¬flies

The intuition underlying the semantics of default rules such as
bird |∼ flies is that typical birds fly, but there may be birds that are
exceptional and which may not fly. When taking a geometric view,
we may assume that each label is represented by two nested regions,

where the inner region contains the typical instances of the corre-
sponding concept. Let us write typ(a1 ∧ ... ∧ an) for the typical in-
stances of the concept a1∧...∧an, where typ is treated as a modality.
A default rule such as bird |∼ flies is then interpreted as the classical
rule typ(bird)→ flies. The modality typ is assumed to at least satisfy
the following axiom

typ(a1 ∧ ... ∧ an)→ a1 ∧ ... ∧ an
expressing that all typical instances of a concept are instances, i.e. at
the semantic level reg(typ(a1 ∧ ... ∧ an)) ⊆ reg(a1 ∧ ... ∧ an).

To obtain meaningful inferences, some additional assumptions
need to be made on how the formulas typ(a1 ∧ ... ∧ an) relate to
the corresponding formulas a1 ∧ ...∧ an. To obtain inferences in the
spirit of System P [6], we need to assume that the following are valid
inferences for the modality typ:

typ(a1 ∧ ... ∧ an)→ b1 ∧ ... ∧ bm
typ(a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm)→ γ

typ(a1 ∧ ... ∧ an)→ γ

and

typ(a1 ∧ ... ∧ an)→ b1 ∧ ... ∧ bm
typ(a1 ∧ ... ∧ an)→ γ

typ(a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm)→ γ

corresponding to the cut rule and rational monotony rule from Sys-
tem P respectively. When typ(a1 ∧ ... ∧ an) → b1 ∧ ... ∧ bm, it
should be possible to find geometric models in which reg(typ(a1 ∧
... ∧ an)) = reg(typ(a1 ∧ ... ∧ an ∧ b1 ∧ ... ∧ bm)). Such models
are simpler in the sense that a smaller number of distinct regions is
needed to explain the semantics of the rules. In other words, as for
interpolation and extrapolation, we find that the underlying principle
relates to a preference for simpler, or more regular models.

To obtain inferences in the spirit of System Z, we can add Reiter
defaults [10] of the form

M(typ(a1∧...∧an) ≡ a1∧...∧an) ` typ(a1∧...∧an) ≡ a1∧...∧an
i.e. if it is consistent to assume that all instances of a1 ∧ ... ∧ an
are typical, then we should do so. Such defaults again express a pref-
erence for models with a minimal number of distinct regions, i.e. a
preference for simpler models.

Example 5 Consider again the rule base from Example 4. The only
equivalence of the form typ(α) ≡ α that could introduce inconsis-
tencies is the equivalence typ(bird) ≡ bird which would entail both
typ(penguin)→ ¬flies and typ(penguin)→ flies. Hence, the knowl-
edge base corresponding to the rules from Example 4 is

typ(bird) |∼ flies

penguin→ bird

penguin→ ¬flies

aptenodytes→ penguin

eudyptula→ penguin

from which we can entail

aptenodytes→ ¬flies

eudyptula→ ¬flies

Using the interpolation principle, (27) and ¬flies ≡ ¬flies 1¬flies,
we find

pygoscelis |∼¬flies
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5 Conclusions
In this paper, we have proposed the use of interpolative and extrap-
olative inference to complete propositional rule bases, as a more cau-
tious form of analogical-proportion based reasoning. At the semantic
level, these forms of inference are based on the assumption that rule
bases approximate mappings between conceptual spaces which are
regular in some sense. This regularity imposes some constraints on
what approximations are possible, which in turn translate to addi-
tional rules at the syntactic level. In practical applications, this as-
sumption of regularity may only be partially valid. For this reason,
we have discussed a number of ways to avoid the introduction of
logical inconsistency when making interpolative or extrapolative in-
ferences. We have also sketched how our ideas could be extended
to deal with default rules, by exploiting a geometric view on non-
monotonic reasoning. The geometric nature of our semantics, based
on Gärdenfors’ idea of conceptual spaces, stands in contrast with
traditional models for commonsense reasoning based on possible
worlds (and preference orders between them). It can be exploited
by data-driven techniques, opening the door for an automated acqui-
sition of commonsense knowledge.
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Issues in Analogical Learning over Sequences of Symbols:
a Case Study with Named Entity Transliteration.

Philippe Langlais1

Abstract. Formal analogies, that is, proportional analogies in-
volving relations at a formal level (e.g. cordially is to cordial as
appreciatively is to appreciative) have a long history in Linguistics
[18]. They can accommodate a wide variety of linguistic data with-
out resorting to ad hoc representations [26] and are inherently good
at capturing long dependencies between data. Unfortunately, apply-
ing analogical learning on top of formal analogy to nowadays large
Natural Language Processing (NLP) tasks is very challenging. In this
paper, we draw on previous works we conducted and identify some
issues that remain to be addressed for formal analogy to stand by
itself in the landscape of NLP. As a case study, we monitor our cur-
rent implementation of analogical learning on a task of transliterating
English proper names into Chinese.

1 INTRODUCTION
A proportional analogy is a relationship between four objects [x :
y :: z : t], which reads as “x is to y as z is to t”. While some works
have been proposed for handling semantic relationships [32, 8],
we focus in this study on formal proportional analogies (hereafter
formal analogies or simply analogies), that is, proportional analo-
gies involving relationships at the formal level, such as [miracle :
miraculeux :: fable : fabuleux].

Early work on formal analogies for NLP was devoted to propose
computational definitions of proportional analogies. Yvon [34] pro-
posed a definition where a prefixation or a suffixation operation was
allowed between forms. In [22], Lepage proposed a richer model al-
lowing at the same time, prefixation, suffixation, as well as infixation
operations. His model is characterized in terms of the edit-distance
that must verify 4 entities in (formal) analogical relation. Later on,
Yvon et al. [36] proposed a model of analogy which generalizes
the model of [22] thanks to finite-state machines. In particular, this
model can account for inversions (i.e. Paul gave an apple to Mary is
to Mary received an apple from Paul as Paul gave an letter to Mary
is to Mary received an letter from Paul ). Stroppa [31] further ex-
tended this model to various algebraic structures, among which trees
which are ubiquitous in NLP. Also, Miclet et al. [24] built on the def-
inition of [36] and defined the notion of analogical dissimilarity on
forms. Presumably, allowing near analogies might be of interest in
several AI applications. An extension of analogical dissimilarity to
tree structures has been recently proposed in [2] .

Another thread of studies is devoted to applications of analogi-
cal learning to NLP tasks. Lepage [22] early proposed an analogical
model of parsing which uses a treebank (a database of syntactically
analyzed sentences). He conducted proof-of-concept experiments.
Yvon [34] addressed the task of grapheme-to-phoneme conversion,

1 University of Montreal, Canada, email: felipe@iro.umontreal.ca

a problem which continues to be studied thoroughly (e.g. [3]). In
[17], the authors address the task of identifying morphologically re-
lated word forms in a lexicon, the main task of the MorphoChallenge
evaluation campaign [13]. Their approach, which capitalizes on for-
mal analogy to learn relations between words proved to be compet-
itive with state-of-the-art approaches (e.g. [5]) and ranked first on
the Finnish language according the EMMA metric (see [28]) which
is now the official metric since Morphochallenge 2010. Stroppa and
Yvon [31] applied analogical learning to computing morphosyntac-
tic features to be associated with a form (lemma, part-of-speech, and
additional features such as number, gender, case, tense, mood, etc.).
The performance of the analogical device on the Dutch language was
as good as or better than the one reported in [33].

Lepage and Denoual [19] pioneered the application of analogi-
cal learning to Machine Translation. Different variants of the sys-
tem they proposed have been tested in a number of evaluation cam-
paigns (see for instance [21]). Langlais and Patry [14] investigated
the more specific task of translating unknown words, a problem si-
multaneously investigated in [7]. In [16], the authors applied ana-
logical learning to translating terms of the medical domain in differ-
ent language directions, including some that do not share the same
scripts (e.g. Russian/English). The precision of the analogical engine
was higher than the one of a state-of-the-art phrase-based statistical
engine [12] trained at the character level, but the recall was lower. A
simple combination of both systems outperformed significantly both
engines. See [27] for a technical discussion of those works. Very re-
cently, Gosme et Lepage [11] investigate the use of formal analogy
for smoothing n-gram language models. They report improvements
over fair baselines in different languages, but for small training cor-
pora only.

Analogical learning has also been applied to various other pur-
poses, among which terminology management [4], query expansion
in Information Retrieval [25], classification of nominal and binary
data, as well as handwritten character recognition [24]. All these
studies witness that analogical learning based on formal analogies
can lead to state-of-the-art performance in a number of applications.
Still, it encompasses a number of issues that seriously hinder its
widespread use in NLP [27]. This motivates the present paper.

2 PRINCIPLE

In order to understand the methodology we first clarify the process
of analogical learning. Let L = {(i(xk), o(xk))k} be a training set
gathering pairs of input i(xk) and output o(xk) representations of
elements xk. We call input set, and note it I =

⋃
k
i(xk), the set of

input-space representations in the training set. Given an element t for
which only i(t) (or alternatively o(t)) is known, analogical learning
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works by:

1. building Ei(t) = {(x, y, z) ∈ L3 | [i(x) : i(y) :: i(z) : i(t)]},
the set of triplets in the training set that define with t a proportional
analogy in the input space,

2. building Eo(t) = {u | [o(x) : o(y) :: o(z) : u] and (x, y, z) ∈
Ei(t)}, the set of solutions to the analogical equations obtained in
the output space,

3. aggregating the solutions in Eo(t) in order to select o(t).

In this description, [x : y :: z : t] is our notation for a (formal)
proportional analogy;2 and [x : y :: z :?] is called an analogical
equation and represents the set of it solutions. In the sequel, we call
x-form, y-form, z-form and t-form the first, second, third and fourth
forms respectively of [x : y :: z : t]. Also, we sometime refer the
2-first steps of the inference as the generator, while we call the third
one the aggregator.

Let’s illustrate this on a tiny example where the task is to asso-
ciate a sequence of part-of-speech (POS) tags to any given sentence
considered as a sequence of words. Let L = {(he loves her, PRP VBZ

PRP), (she loved him, PRP VBD PRP), (he smiles at her, PRP VBZ

IN PRP)} be our training set which maps sequences of words (input)
to sequences of POS tags (output). Tagging a (new) sentence such
as she smiled at him, involves: (i) identifying analogies in the input
space: [he loves her : she loved him :: he smiles at her : she smiled
at him] would be found, (ii) solving the corresponding equations in
the output space: [PRP VBZ PRP : PRP VBD PRP :: PRP VBZ IN PRP

: ?] would be solved, and (iii) selecting the solution. Here, PRP VBD

IN PRP would be the only solution produced.
There are three important aspects to consider when deploying the

above learning procedure. First, the search stage (step-1) has a time
complexity which is prohibitive in most applications of interest (cu-
bic in the size of I). Second, the aggregation (step-3) of the possi-
bly numerous spurious3 solutions produced during step-2 is difficult.
Last, it might happen that the overall approach does not produce any
solution at all, simply because no source analogy is identified dur-
ing step-1, or because the source analogies identified do not lead to
analogies in the output space (failure of the inductive bias).

3 ISSUES WITH ANALOGICAL LEARNING
3.1 Formal Analogy
We mentioned that several definitions of formal analogy have been
proposed. There are two of them that stand above the others in the
sense that they can account for a larger variety of relations than the
others: the one defined in [22] and the one defined in [36]; the latter
generalizing the former. The choice of the definition to work with
has some practical impact, since simpler relations (such as prefixa-
tion) are easier to recognize than more complex ones. Although we
normally work with the second definition (because it is the most gen-
eral one we know of), the discussion in this paper generally applies
for all sensible definitions we know.

3.2 Searching in the Input Space
Identifying analogies in the input space (step-1) is a process cubic in
the size of I. Clearly, a brute-force approach would be manageable
for toy problems only. This is why several authors have worked out
some strategies we discuss in this section.
2 We also use [x : y :: z : t] as a predicate.
3 A solver typically produces several analogical solutions, among which a

few are valid.

3.2.1 A quadratic search procedure

The search for input analogies can be transformed into a quadratic
number of equation solving [19] thanks to the symmetry property of
analogical relations ([x : y :: z : t]⇔ [y : x :: t : z]). Unfortunately,
this solution barely scales to sets of a few thousands of representa-
tives (a typical vocabulary in an NLP application has in the order of
105 words). Therefore, sampling has to be performed.

More precisely, for an element t to be treated, we solve analogi-
cal equations [y : x :: i(t) :?] for some pairs 〈x, y〉 belonging to
the neighborhood of i(t). Those solutions that belong to the input
space are the z-forms we are interested in. This strategy reduces the
search procedure to the resolution of a number of analogical equa-
tions which grows quadratically with the size of the neighborhood
setN :

EI(t) = { 〈x, y, z〉 | 〈x, y〉 ∈ N (i(t))×N (i(t)),
[y : x :: i(t) : z] }

For instance, in [14] the authors deal with an input space in the
order of tens of thousand forms by sampling x and y among the
closest forms, in terms of edit-distance, to the form i(t) .

3.2.2 Exhaustive tree-count search

In [15], the authors developed algorithms for scaling up the search
procedure. The main idea is to exploit a property of formal analogies
[22]:

[x : y :: z : t]⇒ |x|c + |t |c = |y|c + |z|c ∀c ∈ A (1)

whereA is the alphabet on which the forms are built, and |x|c stands
for the number of occurrences of character c in x . In the sequel, we
denote C(〈x, t〉) = {〈y, z〉 ∈ I2 | |x|c + |t |c = |y|c + |z|c ∀c ∈
A} the set of pairs satisfying the count property with respect to 〈x, t〉.

Their strategy, called tree-count, consists in first selecting an x-
form in the input space. This enforces a set of necessary constraints
on the counts of characters that any two forms y and z must satisfy
for [x : y :: z : t] to hold. By considering all forms x in turn4, we
collect a set of candidate triplets for t . A verification of those that
actually define with t an analogy must then be carried out. Formally,
they build:

EI(t) = { 〈x, y, z〉 | x ∈ I,
〈y, z〉 ∈ C(〈x, i(t)〉),
[x : y :: z : i(t)] }

This strategy will only work if (i) the number of quadruplets to check
is much smaller than the number of triplets we can form in the input
space (which happens to be the case in practice), and if (ii) we can
efficiently identify the pairs 〈y, z〉 that satisfy a set of constraints on
character counts. To this end, the authors proposed to organize the
input space thanks to a data structure they call a tree-count (hence the
name of the search procedure), which is easy to build and supports
efficient runtime retrieval.5

3.2.3 Sampled tree-count search

The tree-count search strategy allows to exhaustively solve step 1 for
reasonably large input spaces (tens of thousands of forms). However,

4 Anagram forms do not have to be considered separately.
5 Possibly involving filtering.
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computing analogies in very large input space (hundreds of thousand
of forms) remains computationally demanding, as the retrieval algo-
rithm must be carried out o(I) times. In this case, in [15], the authors
proposed to sample the x-forms:

EI(t) = { 〈x, y, z〉 | x ∈ N (i(t)),
〈y, z〉 ∈ C(〈x, i(t)〉),
[x : y :: i(t) : z] }

The authors proposed a sampling strategy which selects x-forms
that share with t some sequences of symbols. To this end, input forms
are represented in a k-dimensional vector space, whose dimensions
are frequent symbol n-grams, where n ∈ [min;max]6. A form is
thus encoded as a binary vector of dimension k, in which the ith
coefficient indicates whether the form contains an occurrence of the
ith n-gram. At runtime, we select the N forms that are the closest to
a given form t , according to a distance (i.e. cosine).

3.2.4 Checking for analogies

For all the aforementioned search strategies, we need to verify that 4
forms are indeed in analogical relation. Stroppa [29] proposed a dy-
namic programming algorithm for checking [x : y :: z : t] when the
definition in [36] is being used. The complexity of this algorithm is in
o(|x| × |y| × |z| × |t |). Since a large number of calls to the analogy
checking algorithm must be performed during step 1 of analogical
learning. The following property may come at help [15]:

[x : y :: z : t]⇒
(x[1] ∈ {y[1], z[1]}) ∨ (t [1] ∈ {y[1], z[1]})
(x[$] ∈ {y[$], z[$]}) ∨ (t [$] ∈ {y[$], z[$]})

(2)

where s[$] indicates the last symbol of s. A simple trick consists in
calling for the verification of an analogy only for the quadruplets that
pass this test.

3.2.5 Open issues

One can already go a long way with the sampled tree-count approach
we described. Still, it is unclear which sampling strategy should be
considered for a given application. The vector space model proposed
in [15] seems to work well in practice, but more experiments should
confirm this.

More fundamentally, none of the search procedures proposed so
far take into account the fact that many analogies might be redundant.
For instance, to relate the masculine French noun directeur to its fem-
inine form directrice , it is enough to consider [recteur : rectrice ::
directeur : directrice]. Other analogies (i.e. [fondateur :
fondatrice :: directeur : directrice]) would simply confirm this
relation. In [29], Stroppa formalizes this redundancy by the concept
of analogical support set. Formally, A is an analogical support set of
E iff:

{[x : y :: z :?] : 〈x, y, z〉 ∈ A3} ⊇ E
This raises the question of whether it would be possible to iden-

tify a minimal subset of the training set, such that analogical learning
would perform equally well in this subset. Determining such a subset
would reduce computation time drastically. Also, it would be invalu-
able for modelling how forms in an input system are related to forms
in an output one. We are not aware of studies working on this.

6 Typical values are min=max=3 and k=20000.

3.3 Solving Equations

Algorithms for solving analogical equations have been proposed for
both definitions of interest we mentioned. For the definition of [36],
it can be shown [35] that the set of solutions to an analogical equation
is a rational language, therefore we can build a finite-state machine
for encoding those solutions. In practice however, the automaton is
non deterministic, and in the worst case, enumerating the solutions
can be exponential in the length of the sequences being involved in
the equation. The solution proposed in [16] consists in sampling this
automaton without building it. The more we sample this automaton
the more solutions we produce. In our implementation, we call sam-
pling rate (ρ) the number of samplings considered.7 It is important
to note that typically, a solver produces several solutions to an equa-
tion, many being simply spurious, which means that they obey the
definition of formal analogy, but are not valid forms.

To illustrate this, Figure 1 reports the solutions produced to the
equation [even : usual :: unevenly :?] by our implementation of
the solver defined in [16]. Clearly, many solutions are not valid forms
in English, although they define proper solutions according to the
definition of formal analogy proposed in [36]. Indeed, this definition
recognizes no less than 72 different legitimate solutions, which we
were able to produce with enough sampling (ρ ≥ 2000) in less than
a few tenth of milliseconds.

Figure 1. 3-most frequent solutions to [even : usual :: unevenly :?]
along with their frequency, as produced by our solver, as a function of the

sampling rate ρ. nb stands for the total number of solutions produced.

ρ nb solutions
20 12 usuaunlly (3) unusually (2) usunually (2)

100 34 unusually (6) usuaunlly (6) uunsually (4)

1000 67 unusually (57) uunsually (23) usuunally (19)

2000 72 unusually (130) uunsually (77) usunually (43)

The problem of multiple solutions to an equation is exacerbated
when we deal with longer forms. In such cases, the number of spu-
rious solutions can become quite large. As a simple illustration of
this, consider the equation e = [this guy drinks too much :
this boat sinks :: those guys drink too much :?] where forms
are considered as strings of characters (the space character does not
have a special meaning here). Figure 2 reports the number of solu-
tions produced as a function of sampling rate. For small values of ρ,
the solution might be missed by the solver (i.e. ρ ≤ 20). For larger
sampling rates, the expected solution typically appears (with frequent
exceptions) among the most frequently generated ones. Note that
the number of solutions generated also increases quite drastically.
Clearly, enumerating all the solutions is not a good idea (too much
solutions, too time consuming).

The fact that a solver can (and typically does) produce spurious so-
lutions means that we must devise a way to distinguish ”good” solu-
tions from spurious ones. We defer this issue to the next section. Yet,
we want to stress that currently, our sampling of the automaton that
recognizes the solutions to an equation is done entirely randomly.
It would be much more efficient to learn to sample the automaton,
such that more likely solutions are enumerated first. Several algo-
rithms might be applied for this task, among which the Expectation-
Maximization algorithm for transducers described in [9].

7 We leave this notion unspecified, read [16] for details.
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Figure 2. 3-most frequent solutions produced by our solver at different
sampling rates for the equation e. r indicates the position of the expected

solution in the list if present (φ otherwise). nb indicates the number of
solutions produced, and t the time counted in seconds taken by the solver.

For readability, spaces are represented with the symbol .

ρ = 20 nb = 8 ρ = 100 nb = 28
t = 0.0003 r = φ t = 0.001 r = 13

thos boate sinks (2) thoboatse sinks (2)

tho boatse sinks (2) tho boatse sinks (2)

thoboatse sinks (2) those sboat sink (2)

ρ = 1000 nb = 28 ρ = 106 nb = 19 796
t = 0.009 r = 2 t = 3.82 r = 10

those boat ssink (5) thoes boat sinks (2550)

those boats sink (5) thoses boat sink (1037)

thoes tboa sinks (5) those boat ssink (999)

3.4 Aggregating Solutions

Step-3 of analogical learning consists in aggregating all the solu-
tions produced. We saw in the previous section that the number of
solutions to an analogical equation can be rather large. Also, there
might be quite a large number of analogical equations to solve dur-
ing step-2, which simply increases the number of solutions gathered
in Eo(t). In many works we know, this problem is not discussed,
why our experiments indicate this is a important issue. In [20], Lep-
age and Lardilleux filter out solutions which contain sequences of
symbols not seen in the output space of the training set. This typi-
cally leaves many solutions alive, including spurious ones. In [19],
Lepage and Denoual propose to keep the most frequently generated
solution. The rationale being that forms that are generated by various
analogical equations are more likely to be good ones. Also, Ando and
Lepage [1] show that the closeness of objects in analogical relations
is another interesting feature for ranking solutions generated.

In [16], the authors investigate the use of a classifier trained in
a supervised way to recognize good solutions from bad ones. This
approach improved the selection mechanism over several baselines
(such as selecting the most frequently generated solution), but proved
to be difficult to implement, in part because many examples have
to be classified, which is time consuming, but also because most of
the solutions in Eo are spurious ones, leaving us with a very unbal-
anced task, which is challenging. Last but not least, the best classi-
fiers trained were using features computed on the whole set Eo, such
as the frequency with which a solution is proposed. This means that
it cannot be used to early filter the unlikely solutions generated.

Improving the classifier paradigm deserves further investigations.
Notably, in [16], only a small number of features have been consid-
ered. Better feature engineering, as well as more systematic tests on
different tasks must be carried out for better understanding the limits
of the approach.

As discussed in [1], it is intuitively more suited to see the problem
of separating good from spurious solutions as a ranking problem.
Ranking is an active research topic in machine learning. We refer the
reader to the LETOR (LEarning TO Rank) website for an extensive
list of resources on this subject.8 Ranking the solutions proposed by
the two-first steps of analogical learning must be investigated as a
replacement of the classification solution proposed in [16].

8 http://research.microsoft.com/en-us/um/beijing/
projects/letor//

3.5 Dealing with Silence

In most experiments we conducted, we faced the problem that the
learning mechanism we described might produce no solution for a
given entity. This might happen because no source analogy has been
identified, or because the source analogies identified do not lead to
target equations that have a solution. Depending on the nature of the
input space and the training material available, this problem can be
rather important.

On a task of translating medical terms [16], the authors submitted
the silent cases to another approach (in their case a statistical transla-
tion engine). Combining analogical learning with statistical machine
translation has also been investigated in [6]. In [19], the authors pro-
posed to split the form to treat in two parts and apply analogical
learning to solve those two subforms. This raises a number of issues
which do not seem to have received attention. Knowing where to split
the input form in order to maximize the chance of being able to solve
the two new sub-problems is one of those.

3.6 Learning over Tree Structures

Few authors have discussed the possibility of manipulating tree struc-
tures instead of sequences of symbols in analogical learning. Stroppa
[29] proposed a definition of formal analogies on trees, based on the
notion of factorization of trees, very much in line with the definition
of formal analogies between sequences of symbols defined in [36].
Based on this definition, the authors of [30] described an exact algo-
rithm for solving an analogical equation on trees which complexity
is at least exponential in the number of nodes of the largest tree in the
equation. They also proposed two approximate solvers by constrain-
ing the type of analogies captured (notably, passive/active alterna-
tions are not anymore possible). Ben Hassena [2] proposed a solution
for reasoning with trees based on tree alignment. The constraints im-
posed over the possible alignments are much more restrictive than the
ones of [30], but the author reports a solver (a dynamic programing
algorithm) which has a polynomial complexity. Unfortunately, none
of the aforementioned approaches scale to even medium-sized cor-
pora of trees. For instance in [2] the author applied analogical learn-
ing on a training set of less than 300 tree structures, a very small
corpus by today’s standards. See also the work of Ando and Lepage
[1] for a very similar setting.

4 CASE STUDY

4.1 Settings

In order to illustrate some of the elements we discussed in the previ-
ous section, we applied analogical learning to the task of transliter-
ating English proper names into Chinese. The task we studied is part
of the NEWS evaluation campaign conducted in 2009 [23]. Translit-
eration is generally defined as phonetic translation of names across
languages and is often thought as a critical technology in many do-
mains, such as machine translation and cross-language information
retrieval or extraction [23]. Examples of transliteration from English
proper names into Chinese are reported in Table 4.

The organizers of the NEWS campaign kindly provided us with
the data that was distributed to the participants of the task. Its main
characteristics are reported in Table 1, after the English letters have
been lowercased. The distribution of Chinese characters is typically
Zipfian, and 116 out of the 370 different characters seen in the train-
ing set appear less than 10 times (30 characters appear only once).
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In order to transliterate the English proper names of the test set,
we gathered a training set L1 = train + dev by concatenating the
training set and the development set that were released, that is, 34 857
pairs of English and Chinese proper names. Including the develop-
ment set in the training material is fine, since there is no training
involved when generating the set of solutions. In parallel to this, we
also generated solutions for the development set (dev), using the re-
leased training material only (L2 = train); the solutions produced
were used for training a classifier to recognize good from spurious
solutions. This classifier was then applied to the solutions produced
for the test set (test) thanks to L1.

Table 1. Main characteristics of the English-Chinese data provided in
NEWS 2009.

train dev test examples
examples 31 961 2 896 2 896 Emission 埃米申
EN symbols 26 26 26 Blagrove 布格夫
CH symbols 370 275 283 Aposhian 阿波希安

We ran two configurations of our generator: FULL-TC corresponds
to the exhaustive tree-count setting described in Section 3.2.2, while
SAMP-TC corresponds to the sampled version described in Sec-
tion 3.2.3.9 Since the number of source analogies identified can be
quite large for some test forms, we enforced a timeout of 1 minute
per English proper name for accomplishing step-1 of the inference in
the FULL-TC setting and a timeout of 20 seconds for the SAMP-TC

configuration. In both cases, the solver was run with a sampling rate
of ρ = 200.

Regarding the classifier, we followed [16] and trained a voted-
perceptron [10]. We computed a total of 19 features including the
frequency of a solution, its rank in the list, input and output degrees (a
notion defined for instance in [29]), language models likelihoods, etc.
A greedy search over the feature set revealed that a handful of fea-
tures only where useful. We trained the classifier over 5 000 epochs.
The same classifier was used for both the FULL-TC and the SAMP-TC

configurations we tested.

4.2 Monitoring Analogical Inference
We describe in the following the FULL-TC configuration, while Ta-
ble 2 reports the figures of interest for both configurations. For the ex-
haustive configuration, the average time spent on step-1 per English
form is 17 seconds. For 327 forms, the timeout applied, which means
that we likely missed useful source analogies involving those forms.
Most of the time spent during step-1 was devoted to check candidate
analogies, that is, the quadruplets that pass the test in Equation 1. The
trick we mentioned in Equation 2 avoided 63.8% of the verifications,
a very nice speed up.

An average of 4 517 input analogies were identified per test form
(with a maximum of 32 016); for 18 of them however, we could not
identify any source analogy, leading to no response in those cases.
Out of the 2878 test forms for which we could identify at least one
source analogy, 2838 of them lead to an average of 487 output equa-
tions, the other 50 were left without answer. Solving all those equa-
tions led to an average of 405 solutions per test form (minimum 2,
maximum 2221). Note that many equations solved did not lead to any
solution, which explains why on average, the number of solutions is
lower than the number of equations solved. The average time for

9 The 1000-closest input forms to each English test forms where considered,
based on a vector space representing the k = 1000 most frequent 3-grams
of characters observed in I, and the cosine distance.

Table 2. Main characteristics of the two configurations tested.

FULL-TC SAMP-TC
avg. time (step-1) 17s 2
avg. time (step-2) 0.22s 0.01s
number of timeouts 327 1
avg. input analogies 4517 158
avg. output equations 487 18
avg. number of solutions 405 37.5
silence (step-1) 18 76
silence (step-2) 50 249

solving the equations per form was 0.22 seconds (maximum 1.5s). In
the end, we decided to keep up to the 100 most frequently generated
solutions for a given test form (a solution is typically generated by
several equations).

It is interesting to note the discrepancy between the number of
source analogies identified and the number of target equations ef-
fectively solved, which is much lower. This indicates either that the
source analogies were in large part fortuitous, or that the inference
bias (one analogy in the input space corresponds to an analogy in the
output space) does not apply well for this task.

4.3 Evaluation

Table 3. Number of reference solutions among the 100-top frequent
solutions proposed by the FULL-TC configuration. Read the text for more.

rank nb r2374% rall% nb r1659% rall%
1 1093 46.0 37.7 1410 85.0 48.7
2 1418 59.7 48.9 1627 98.1 56.2
3 1582 66.6 54.6 1657 99.9 57.2
4 1699 71.6 58.7 1659 100.0 57.3
5 1796 75.7 62.0 . . .
...

...
...

...
...

...
...

100 2374 100.0 82.0 1659 100.0 57.3

The left part of Table 3 reports the number of reference translit-
erations identified in the first rank positions of the list of solutions
proposed by the generator. We note that we could treat at most 2374
test forms correctly if we consider the 100-most frequently gener-
ated solutions produced. This represents only 82% of the test forms.
Looking only at the most frequently generated solution10, we observe
that 37.7% of the test forms were transliterated correctly. This rep-
resents an accuracy of 46% (see r2374) if we only consider the 2374
test forms where the reference transliteration was identified correctly
among the first 100 solutions. These figures clearly show that being
able to distinguish good from spurious solutions has the potential to
improve the overall approach by more than 30 absolute points.

The right part of Table 3 indicates the performance of the FULL-
TC inference after the aggregation step. Out of the 2374 test forms
for which the correct solution was identified in the first 100 posi-
tions, only 1659 (70%) ones now receive a good solution. This shows
that the classifier is too aggressive. On the other hand, 48.7% of the
test forms now have the correct solution in the first position. This
represents an increase of 11 absolute points over keeping the most-
frequent solution. Actually, we can observe that for most of the test
forms, the reference solution is either in the 2-first positions, either
not present at all. Considering the fact that we did not spend much
time for engineering features for the task, this is rather encouraging.

10 Ties are broken randomly.
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Table 4. Random excerpt of analogical transliterations produced by
FULL-TC. rc (resp. r) indicates the rank of the correct transliteration in the

candidate list after (resp. before) the aggregation step. nb indicates the
number of solutions generated. We replaced the Chinese characters we could

not print correctly with our LATEX processor by roman letters.

EN forms reference solutions rc r nb
auchter x克特 x克特 (218) 1 1 380
sundell 森德 y 森德 y (692) 1 5 664
fannin 范宁 范妮恩 (54) φ 5 104
frere 弗里 y 弗里 y (6113) 1 1 630
shurkin 舒金 舒 y金 (237) 2 3 386

舒金 (208)

Table 4 provides a random excerpt of the output produced by the
FULL-TC configuration. Table 5 reports the results of our system as
measured by the official metrics that were used to evaluate the dif-
ferent participating systems [23]. Clearly, our system is not among
the leading ones. In fact, we would have ended up at the 14th rank
according to accuracy (ACC); 18 systems participated to the 2009 ex-
ercise. Since our major goal was to monitor analogical learning, we
did not put efforts yet into improving those figures, although there
are straightforward things that could be done, such as always pro-
viding 10 candidate solutions, even if the classifier filtered in much
less (except for accuracy, the other metrics are assuming a list of
10 candidates). Also, we did not attempt anything for dealing with
silent test forms. In [6], the authors show that combining in a simple
way analogical learning with statistical machine translation can im-
prove upon the performance of individual systems. Last, it is shown
in [6] that representing examples as sequences of syllables instead
of characters (as we did here) leads to a significant improvement of
analogical learning on a English-to-Indi transliteration task.

Table 5. Metrics used at the NEWS 2009 evaluation campaign. For
comparisons, 1st and last indicates respectively the first and last

performing systems, as reported in [23].

metric FULL-TC SAMP-TC 1st last
ACC: 0.486 0.308 0.731 0.199
F-score 0.772 0.612 0.895 0.606
MRR 0.527 0.330 0.812 0.229
MAPref 0.486 0.308 0.652 0.199

5 CONCLUSION

We presented a number of works on formal analogy dedicated to var-
ious NLP tasks. We discussed a number of issues that we feel remain
to be investigated for the approach to meet higher acceptance among
the NLP community. We presented a case study, transliteration of
proper names, for which we reported encouraging results. More im-
portantly, we used this case study for illustrating some of the issues
behind the scene of analogical learning.
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(Re-)discovering the graphical structure of
Chinese characters

Yves Lepage1

Abstract. The purpose of this paper is to show how it is possible to
efficiently extract the structure of a set of objects by use of the no-
tion of proportional analogy. As a proportional analogy involves four
objects, the very naı̈ve approach to the problem, has basically a com-
plexity of O(n4) for a given set of n objects. We show, under some
conditions on proportional analogy, how to reduce this complexity
to O(n2) by considering an equivalent problem, that of enumerat-
ing analogical clusters that are informative and not redundant. We
further show how some improvements make the task tractable. We
illustrate our technique with a task related with natural language pro-
cessing, that of clustering Sino-Japanese characters. In this way, we
re-discover the graphical structure of these characters.

1 INTRODUCTION
1.1 Background
Analogy is defined in various ways by different recent authors [1, 7,
21]. Referring back to the most ancient definitions, one can reach an
agreement on the following definition of proportional analogy:

Four objectsA,B, C andD, are in analogical relation (propor-
tional analogy) if the first object is to the second object in the
same way as the third object is to the fourth object. Proportional
analogy is noted A : B :: C : D.

In all generality, if the relation between two objects (noted by the
colon :) is called a ratio and the relation between the two pairs of ob-
jects (noted by the two colons ::) is called a conformity, then propor-
tional analogy is a conformity of ratios between two pairs of objects.

Proportional analogy can be seen between words on the level of
form or on the level of meaning or on both at the same time (see [2]
for abnormal cases).

Form but not meaning:

to walk : walked :: he : heed

Meaning but not form:

to walk : walked :: to be : was

Form and meaning:

to walk : walked :: to work : worked

Proportional analogies on the levels of form and meaning at
the same time are called true analogies. Between chunks or short

1 IPS, Waseda University, Japan. Email: yves.lepage@waseda.jp

sentences, their number has been shown to be quite important
[10, 12, 13]. Many studies, too many to cite here, address the effi-
ciency of analogy for segmenting words or grouping them according
to word families (as for Chinese, see for instance [19]). Forms which
depart from declension or conjugation paradigms (groups of pro-
portions in [14]) were called anomalies in Classical grammar [18].
Recently, analogies between word meanings (water : riverbed ::
traffic : road) have been shown to be reproduceable on computers
using large corpora and vector space models [17, 16, 15].

Proportional analogies are not only verbal. They may hold be-
tween any kind of objects provided, generally, that the objects be of
the same kind, a point Aristotle, among other ancient and recent au-
thors, insists on. The general principle, viewed as a cognitive process,
is based on iconicity [3]. Taking the term to its restrained graphical
sense, the following two examples illustrate proportional analogies
between icons of black and white pixels.

: :: :

: :: :

The latter example is a graphical proportional analogy between
four Sino-Japanese characters. By explicitly decomposing into con-
stitutive elements, as in [20], to compute similarity between Sino-
Japanese characters, it is understandable that the left and the right
parts of the characters can be exchanged to give rise to the four dif-
ferent characters. The above analogy does not apply on the level of
meaning, as the character meanings are unrelated: ‘spouse’, ‘odd’,
‘to earn’ and ‘second (measure of time)’. It does not make an anal-
ogy on the level of pronunciation either.

The particular and practical problem which we tackle in a broader
research concerned with ease of learning of Chinese characters, is
to re-discover the graphical structure of Chinese characters in an au-
tomatic way by relying on the notion of proportional analogy. The
general and theoretical problem that we thus tackle in the following
sections is to rely on the properties of proportional analogies so as to
automatically visualize the structure of a set of objects.

1.2 The problem
The naı̈ve approach to the problem of the enumeration of all propor-
tional analogies between a set of n objects consists in examining all
possible quadruples of objects and checking for analogy. This naı̈ve
approach has a complexity of O(n4).
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Without changing the complexity, the computation time may be
reduced. For a given proportional analogy, there exists seven other
equivalent forms (see Theorem 2.1 in [9]). This is implied by the ba-
sic properties of exchange of the means (exchanging objectsB andC
in the analogy A : B :: C : D, second line below) and symmetry
of conformity (exchanging the terms on both sides of the :: sign, sixth
line below). In this way, the following eight analogies are shown to
be equivalent:

A : B :: C : D
A : C :: B : D exch. means
B : A :: D : C exch. means + sym. :: + exch. means
B : D :: A : C exch. means + sym. ::
C : A :: D : B sym. :: + exch. means
C : D :: A : B sym. ::
D : B :: C : A sym. :: + exch. means + sym. ::
D : C :: B : A exch. means + sym. :: + exch. means + sym. ::

Because of these eight equivalent forms, the enumeration time can
be divided by a factor of 8, but the complexity remains O(n4).

To make our point clear, consider the following naı̈ve estimation.
In a preliminary experiment, we estimated the average time needed
for the verification of one analogy between four Sino-Japanese char-
acters using 36 features (see Section 5.3 for a description of the fea-
tures). An average time of 0.8 ms was measured. For almost fifteen
thousand Sino-Japanese characters (see Section 5.2 for a description
of the data), and knowing that there are approximately 3.2 × 107

seconds in a year, the time needed to compute all possible analogies
would exceed a million years.2

In order to reduce the complexity of this problem, we propose to
modify our goal. Rather than aiming at individual analogies, we com-
pute all possible ratios between all possible objects at hand. This
computation is basically O(n2). The result of this computation al-
lows us to cluster pairs of objects according to their ratios. These
clusters summarize all possible analogies between all objects in a
non-redundant way that still provides the total amount of informa-
tion (see Section 2). The sequel of the paper shows how to compute
such clusters and presents some of the actual results of such a com-
putation on a set of Sino-Japanese characters.

The paper is structured as followed: Section 2 shows how the prob-
lem can be transformed into a problem of quadratic complexity and
introduces the notion of analogical clusters for this purpose. Sec-
tion 3 gives our proposed method to output analogical clusters. Sec-
tion 4 mentions some improvements that can reduce computational
time. Section 5 describes the application of the proposed method to
the problem of structuring Sino-Japanese characters, and gives the
results obtained in our experiments.

2 ANALOGICAL CLUSTERS
2.1 Objects as feature vectors
In this work, we represent an object by a vector of features with nu-
merical values. We also impose that the feature space be the same for
all objects, so that it is trivially possible to define a ratio between two

2
14, 6554 × 0.8 ms > 144 × 1012 × 0.8 ms

> 48× 1012 s
> 48× 1012 / (3.2× 107) years

> 1.5× 106 years

objects as the vector of their difference. In such a setting, conformity
is trivially reduced to equality between vectors.

The following equation illustrates a possible case of proportional
analogy between vectors in a four-dimensional space.
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Vector difference as a ratio, and equality between vectors as con-
formity, consistently define analogies that meet the intuitive no-
tions about proportional analogies. Among other properties, the eight
forms of equivalence for the same proportional analogy (see above
Section 1.2) always hold.

2.2 Transitivity of conformity: analogical clusters

It is not always the case that conformity verifies transitivity. For in-
stance, [8] shows that the intuitive notions of proportional analogy
between strings of characters imply that there is no transitivity for
conformity.3

In our setting with conformity being an equality, i.e., an equiv-
alence relation, transitivity naturally holds in addition to reflexivity
and symmetry. For proportional analogies, transitivity of conformity
implies that:

A : B :: C : D and C : D :: E : F ⇒ A : B :: E : F

For our present task of enumerating all possible proportional
analogies between all objects in a given set, a transitive conformity
can lead to an enormous economy in representation. To illustrate this
point, consider the following three proportional analogies.

A : B :: C : D
C : D :: E : F
A : B :: E : F

They can be represented in a more economical way by the following
list of equal ratios:

A : B
C : D
E : F

All ratios being equal, any possible proportional analogy formed by
taking any two ratios holds.

From the above example, it is clear that, provided conformity is
transitive, a list of n pairs of objects with the same ratio stands for a
list of n × (n − 1) / 2 non-trivial proportional analogies (see Sec-
tion 2.5 for trivial analogies). Consequently, under the assumption of
transitivity for conformity, the problem of enumerating all possible
proportional analogies between all possible objects in a given set can
be transformed into a problem of enumerating all possible pairs of
objects with the same ratio. The former problem has a complexity
of O(n4) while the latter one has a complexity of O(n2).

From now on, we shall call a list of ratios of objects with the same
value, an analogical cluster.

3 This comes from the fact that some analogies between strings of characters
admit multiple solutions. When this is the case, then, there is not transitivity
for :: in the general case for the objects considered (see [8, p. 113]).
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2.3 Equivalent forms of analogy: redundancy of
clusters

Each analogical cluster stands for a different ratio, i.e., a vector that
represents the difference between any two feature vectors each rep-
resenting an object.

Because the order in analogical clusters is not relevant, an anal-
ogy extracted from an analogical cluster stands for two equivalent
forms, obtained by symmetry of conformity (sixth line in the eight
equivalent forms of proposition analogy in Section 1.2).

A : B :: C : D ⇔ C : D :: A : B

By inversion of ratios (third line in the eight equivalent forms of
proposition analogy in Section 1.2), a proportional analogy involves
two different ratios. And by exchange of the means, (second line in
the eight equivalent forms of proposition analogy in Section 1.2),
another two different ratios.

A : B :: C : D ⇔ B : A :: D : C ⇔ A : C :: B : D

Consequently, in total, the eight different forms of the same pro-
portional analogy are to be found in four different analogical clusters
(and only four clusters) among all the possible clusters that are output
by a method yielding all the possible clusters standing for differences
between all feature vectors representing all the objects in a given set.

Figure 1 shows such four analogical clusters for the proportional
analogy A : B :: C : D. These four clusters are redundant because
of the eight equivalent forms for the same proportional analogy, as
we have just stated:

• In any cluster, the order of appearance of the pairs of objects being
irrelevant, each cluster encapsulates two equivalent forms of the
same proportional analogy. This is symmetry of conformity.

• Analogical clusters (1) and (2) together contain the same informa-
tion as clusters (3) and (4) together. The relation between (1) and
(2) (and between (3) and (4)) is the exchange of the means.

• Analogical clusters (1) and (3) are indeed the same up to an ex-
change of the objects on the left and the right of the : sign. This is
actually inversion of ratios. The same is also true for clusters (2)
and (4).

Cluster number
(1) (2) (3) (4)

A : B
...

...
...

... B : D B : A C : A

...
...

...
...

C : D A : C
... D : B

...
... D : C

...

Figure 1. For a given proportional analogy A : B :: C : D, the set of
analogical clusters output by a method that looks for all possible vector
differences between all possible feature vectors representing objects in a

given set should include four clusters.

It is trivially possible to eliminate the redundancy between clusters
(1) and (2) and clusters (3) and (4). This can be done by avoiding the

computation of the difference between two vectors and its opposite
value (the same two vectors in the reverse order). For that, it suf-
fices to sort all the vectors in some predefined increasing order, and
to compute only the differences between two vectors ranked in that
order. In this way, a particular proportional analogy will appear in
two, and only two, different analogical clusters among the set of all
clusters. As a result, globally, the set of all clusters will contain no
redundant information.

2.4 Equality of feature vectors: separation of space
By definition of the ratio as a vector difference, the case where A : B
and A : C belong to the same analogical cluster is only possible if
the vectors representing B and C are the same. This can only hap-
pen if the feature vectors do not separate the space of objects into
each individual object. Reciprocally, if the feature vectors are unique
for each different objects in the given set, the two ratios A : B and
A : C for different B and C will be different. For our proposed
method, this implies to check for the separation of the space of ob-
jects before proceeding to clustering.

2.5 Trivial analogies: informativity of clusters
Finally, we must mention a particular case of no interest as it does
not bring any information. This is the special case of the cluster for
the null vector; i.e., null ratio. It has the following form.

A : A
B : B
C : C

...

It represents the set of all trivial proportional analogies, i.e., propor-
tional analogies of the form: A : A :: B : B. As our interest is
the enumeration of informative analogical clusters we simply avoid
to produce this cluster.

By exchange of the means, trivial analogies are equivalent to
analogies of the form A : B :: A : B. Enumeration of pairs of
objects in a predefined sorting order trivially ensures that the differ-
ence between two objects is never computed twice. However, it does
not prevent from outputting clusters that would contain only one pair
of objects. This happens when two objects have a unique vector dif-
ference. This problem will be tackled in Section 4.1.

3 INFORMATIVE AND NON-REDUNDANT
ENUMERATION OF ANALOGICAL
CLUSTERS

3.1 Feature tree and quadratic exploration of the
feature tree

Each object is represented by a vector of features. An order can be
imposed on the features. In this way, each vector is considered as a
list with a recursive structure of a head (the first feature value) and a
tail (the remaining features). The lexicographic order, relying on the
order on integers, can be applied to such a set of lists. In this way, it
is possible to sort the feature vectors representing all objects.

A tree structure underlies such an ordered list. For the first feature,
each different value can be encoded in one node. Each such node can
be assigned the interval that represents the span over the sorted list of
objects. This can be recursively applied to each interval with the tail
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[1;2]:2 [3;3]:3 [4;4]:9 [5;5]:10

[1;2]:2 [1;2]x[1;2]:0 [1;2]x[3;3]:1 [1;2]x[4;4]:7 [1;2]x[5;5]:8
[3;3]:3 [3;3]x[4;4]:6 [3;3]x[5;5]:7
[4;4]:9 [4;4]x[5;5]:1

[5;5]:10

[4;4]:9 [5;5]:8

[1;1]:6 [1;1]x[4;4]:3
[2;2]:7 [2;2]x[4;4]:2

[3;3]:6 [3;3]x[5;5]:2

Figure 3. On the left, computation of the value differences on the first level for the feature tree of Figure 2. The blank cells are not computed to avoid
redundancy (opposite values) or trivial analogies (diagonal cells where intervals are reduced to one object). On the right, recursive computation of the value

differences on the second level for a difference of 7 on the first level. The corresponding list of pairs of intervals is [1;2] x [4;4] + [3;3] x [5;5] (refer to table on
the left). Two new lists of pairs of intervals are obtained: [1;1] x [4;4] + [3;3] x [5;5] for value 2 and [2;2] x [4;4] for value 3. The latter list of pairs of intervals

is deleted as it contains only one pair of intervals, each interval reducing to one object (degenerated cluster).
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[1;5]:none

[1;2]:2

[1;1]:6

[1;1]:2

[1;1]:3

[2;2]:7

[2:2]:1

[2;2]:2

[3;3]:3

[3;3]:6

[3;3]:10

[3;3]:7

[4;4]:9

[4;4]:8

[4;4]:1

[4;4]:1

[5;5]:10

[5;5]:8

[5;5]:9

[5;5]:5

level 1

level 2

level 3

level 4

Figure 2. The feature tree (below) corresponding to a set of five objects
represented as feature vectors (above). The intervals, noted with brackets,

are followed by the value of the feature on that level.

of the feature vectors considered as lists (thus for the second feature
and so on) to build a tree structure where the levels stand for each
different feature and where each node holds the interval of the sorted
objects with the same value for that feature, given all values above are
equal. On the last level, each interval should be reduced to one object
if the space is well separated. Such a tree structure can be traversed
in breadth-first order. Figure 2 illustrates such a data structure for a
set of 5 feature vectors.

This data structure4 is quite different from the one used in [5]
to search a space of strings of characters for analogies. Firstly, the
geometry is different. In [5], the nodes on the same level may cor-
respond to different characters (i.e. features). This is not the case
here. Each level must correspond to exactly the same feature. Conse-
quently, on the contrary to the structure in [5] no intermediate node
can stand for an object. All the objects are to be found on the leaves.
Secondly, the labels borne by the nodes are different. In our tree, the

4 The tree structure described here is the same as the one used in two of our
previous works: for the complete enumeration of all analogies between sen-
tences contained in corpora of 100,000 short sentences in Chinese, Japanese
and English [10] (with sequences of bits as features and various ratios for
various features and automatic sorting of the features for early detection of
useless zones in the cluster space so as to speed up the overall process);
and for the enumeration of clusters reflecting linguistic oppositions among
40,000 short sentences in English and Japanese [11]. In these two works,
respecting the equality of edit distance for analogies of commutation be-
tween strings of characters implied extra processing.

nodes bear the spanning interval in the sorted list of objects and the
value of the feature; the name of the feature, being useless, is forgot-
ten. This is of primary importance for the parallel traversal in sorted
order of objects with the first interval never overtaking the second
interval so as to avoid redundancy (see Section 2.3 and see below).
Thirdly, our use is different as we aim at a complete enumeration of
all possible ratios, which compelled the design of this data structure.

The computation of all ratios between all feature vectors simply
consists in traversing the same tree in parallel in breadth-first order
(a kind of a Cartesian self-product), and computing the differences
between the values on each pair of nodes. For the same difference at
a given local level, all the pairs of intervals are memorized in a list.
This procedure is recursively applied down to the last level for each
different value at a local level. Figure 3 illustrates this process for the
feature tree given in Figure 2.

Sections 4.1 and 4.2 show that it is possible to terminate the explo-
ration by checking for some structural conditions on the list of pairs
of intervals memorized.

In the parallel traversal, we impose that for two lists of pairs of in-
tervals to be processed, the first list be strictly before the second list.
This is tantamount to explore only the upper corner of a matrix ex-
cluding its diagonal. This avoids redundancy and non-informativity.
when computing all possible analogies: the ratio of two vectors is
computed once, its opposite is not (Section 2.3); intervals that are
reduced to one object on the diagonal are checked to avoid trivial
clusters (Section 2.5).

3.2 Sketch of the method

The following gives a sketch of the proposed method.

• Convert each object into a feature vector;
• check for separation of space;
• define an order on the feature vectors (we use least correlations of

values among features);
• sort the feature vectors according to lexicographic order in the

defined order of features;
• build a feature tree for the sorted feature vectors;
• traverse the feature tree in parallel in breadth-first order to com-

pute the differences between the feature vectors by blocks;
• output the list of pairs of intervals (on the last level, each interval

should be reduced to one object if the space is well separated) that
corresponds to each vector difference.

By construction and by definition, each list of pairs of objects, that
share the same feature vector difference, is an analogical cluster.
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4 IMPROVEMENTS

4.1 Elimination of clusters reduced to one ratio

We call degenerated clusters those clusters which contain only one
ratio, A : B i.e., one pair of objects. Obviously, such clusters do
not give rise to any analogy other than the trivial analogy A : B ::
A : B and are thus not worth to output. An early detection of such
cases leads to an important reduction in processing time.

The implementation of the early detection of such degenerated
clusters relies on the data structure of feature tree. After the compu-
tation of all possible differences between all possible vectors down
to a certain level in the tree, it is easy to scan all the differences and
look at the intervals they represent. If a set of pairs of intervals con-
tains only one pair of intervals, each of which being reduced to one
object, this is a case of a degenerated cluster. Such a cluster may
be immediately deleted so as to stop any further computation on the
lower levels.

A comparison of two runs of the programs with or without early
detection of degenerated clusters is given in Table 1. It shows that, for
our special case of structuring Sino-Japanese characters, a reduction
of one third of the computational time can be achieved. There exists
some overhead as is shown by the fact that an increase of 55% in
computational time is observed for 1,000 characters.

Table 1. Comparison of runtimes with or without detection of degenerated
clusters (clusters reduced to one ratio).

number of chars runtimes in seconds time reduction
processed without with in percentage

1,000 9 14 +55 %
2,000 39 36 -7 %
3,000 92 82 -10 %
4,000 173 142 -17 %
5,000 277 219 -20 %
6,000 426 313 -26 %
7,000 605 438 -27 %
8,000 739 557 -24 %
9,000 944 702 -25 %

10,000 1204 836 -30 %
11,000 1517 1123 -25 %
12,000 1864 1302 -30 %
13,000 2265 1342 -40 %
14,000 2646 1791 -32 %
14,655 2873 1889 -34 %

4.2 Conditional elimination of clusters reduced to
one proportional analogy

In Section 2.5, it was shown that an analogy appears in only two ana-
logical clusters. For economy of description, we would like to elim-
inate redundant information as most as possible. When an analogy
belongs to two clusters that contain a large number of pairs of ob-
jects, it is a priori impossible, without loss of information, to remove
those lines that correspond to this analogy from one of the cluster.
This is not the case when one of the analogy is reduced to a cluster
that contains only one analogy, i.e., exactly those two lines corre-
sponding to the analogy at hand. This situation is illustrated below:

A : B
C : D

...
A : C

...
B : D

...

In this case, it is possible to delete the cluster reduced to one anal-
ogy. This can be performed during the enumeration of analogical
clusters, level by level, using the feature tree. In this case, clusters
reduced to one analogy should be memorized on each level. At the
end of the exploration of each level of the feature tree, such clus-
ters can be removed from the list of clusters to explore further. This
should lead to a reduction in the total computational time. Our cur-
rent implementation does make use of this possibility and performs
the deletion of clusters reduced to one analogy after complete enu-
meration of analogical clusters in a post-processing phase.

5 EXPERIMENTS

In the frame of a larger study concerned with measuring the ease with
which learners can remember Chinese characters along with their
pronunciation, we are interested in studying the regularities and the
correspondences between the Chinese graphical forms of characters
and their pronunciation.

It is known that Chinese characters exhibit some structure and are
made of graphical elements which reflect either some iconic mean-
ing or some pronunciation. As a first step in this study, we extracted
all the possible analogies between Sino-Japanese characters using a
fixed-sized font. We report hereafter some of the results obtained.

5.1 The structure of Chinese characters

A large number of Chinese characters exhibit some structure con-
cealed in their components. The most known structure consists of
two elements, one being a pronunciation clue and the second one be-
ing a meaning clue, usually called semantic key. An illustration is
given in Figure 4.

京:先
identical left part
(semantic key)

涼:洗 氵 [water]
凉凉凉:冼冼冼 冫 [ice]
倞倞倞:侁侁侁 イ [human]

冫:イ
identical right part
(pronunciation)

冸:伴 半 PÀN
凉凉凉:倞倞倞 京 LIÀNG
冼冼冼:侁侁侁 先 ĒN

Figure 4. On the left, on each line, the characters share the same semantic
key. On the right, the characters share a same pronunciation indicated by the

right part.

This structure, although being quite common, is not valid for all
characters. It is also believed that, because of phonetic changes, many
characters that exhibited such kind of structure in ancient times can-
not be interpreted in this way anymore.

In this paper, we are not interested with the relationship between
graphical form and pronunciation. Our goal is limited to the extrac-
tion of the graphical structure of Chinese characters by automatic
means.
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5.2 Characters in monospace fonts
Monospace (or fixed-width or fixed-size) fonts are lists of characters
described as black and white icons of fixed height and width. The
font we use in our experiments is knj10B.bdf5. We use the 14,655
Sino-Japanese characters available in this font in the range between
the Unicode codepoints 13,312 (一) and 40,891 (龥). Figure 5 shows
a sample of these characters. As shown in this figure, the characters in
this font have a fixed height of 18 lines and a fixed width of 24 pixels.
The actual width used is 18 pixels, so that this font is a 18× 18 pixel
font, the value of 24 comes from the encoding of each line of the
icons on 3 bytes that we use without change. Figure 5 visualizes the
representation of three randomly selected characters from this font.
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Figure 5. Visualization of some characters from the font knj10B as icons.
White pixels are visualized as a dot, black pixels as a small circle.

5.3 Features used
The features we used are simply the number of black pixels on each
line and each column. We use 18 lines and 18 columns; making up a
sum of 36 features per characters. As an illustration, the first features
for the leftmost character in Figure 5 are:

0, 3, 7, 12, 4, 4, 9, 2, 9, 5, etc.

We checked that the space of objects is completely separated by
these features, i.e., each vector of feature values represent only one
object in the set of objects. The above 36 features discriminate each
character among the 14,655 characters used in our experiments.

5.4 Analogical clusters obtained
We applied out method to extract the graphical structure of the
14,655 characters in our selected fixed-point font. The program, writ-
ten in Python, needed less than 30 minutes to terminate on a machine
with 4 Gb memory and equipped with an Intel Core i5 processor with
a 1.7 GHz frequency.

Figure 6 shows a sample of 15 clusters output by the method.
Visual inspection reveals the typical structure of characters decom-
posed into a left and a right part. This is in no way surprising given
the features that we used and the frequency of this structure.

Figure 7 shows two examples of less usual patterns that consist in
the addition of some elements in the middle of characters or a longer
stroke in the central part of the characters.

Experiments performed with a lesser number of features show ex-
amples of clusters where the differentiation between the characters

5 Font designed by Nagao Sadakazu (snagao@tkb.att.ne.jp). We use ver-
sion 1.1 of 1999.

謌:鎶
諢:鍕
証:鉦
謞:鎬
諦:鍗
諚:錠
讀:鑟
論:錀
談:錟
諧:鍇
誘:銹
諾:鍩

惈:稞
怵:秫
忯:秖
忼:秔
怗:秥
慉:稸
悄:稍

練:鯟
結:鮚
紿:鮐
絈:鮊
純:魨
綃:鮹

詖:柀
詻:格
詭:桅
譄:橧
誡:械
議:檥

課:稞
詷:秱
謞:稿
諗:稔
謟:稻

凉:倞
冸:伴
冿:侓
冼:侁

玿:璹
沼:濤
招:擣
佋:儔

冷:冸
泠:泮
拎:拌

漻:沼
璆:玿
僇:佋

悍:猂
怚:狙
悂:狴

謞:談
槁:棪
鎬:錟

璹:瑫
濤:滔
擣:搯

曎:曈
澤:潼
擇:撞

找:括
聀:聒

鎭:稹
鎬:稿

Figure 6. A sample of 15 analogical clusters output by our clustering
method on 14,655 characters from the font knj10B. For the first six ones, the
tenth one and the last one, both characters on the same line share the same

right part (radical). The left parts (keys) are different but common to all
lines. Conversely, in the other clusters the right part of the characters is the
same in each column of the cluster. These clusters show commutations of

various keys (four, three or two only) with only two different radicals.

冂:冋
囗:回
匚:叵

叧:另
佘:余

Figure 7. Two examples of less typical cases of analogical clusters output
by our clustering method. The first one on the left shows the insertion of a

square in the middle of the character. The second one captures a longer
stroke in the center of the characters on the right.

:
消:洸
俏:侊

:

Figure 8. A cluster output by our clustering method using only the number
of horizontal black pixels as features. Taking into account the columns

eliminates this analogy.
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Figure 9. Distribution of clusters by number of pairs. In abscissae, number
of pairs in the clusters. In ordinates, number of clusters with the same

number of pairs. The largest cluster contains 55 pairs. There are only 16
clusters between 13 and 55 on the horizontal axis.

is not sufficient. An example of this is given in Figure 8. In this ex-
ample, only the number of black pixels on the lines have been used
(18 features). In this case, the vertical directions of the strokes in
the left characters on the first and second lines have not been dis-
tinguished so that the method concluded to a proportional analogy
that may be questionable (or not for reasons of equivalence between
various forms of writing).

The distribution of clusters by number of pairs of objects (36 fea-
tures) is plotted on Figure 9. This distribution exhibits a long tail.
Few clusters are very large while short clusters are more numerous
The fact that the number of clusters with 3 pairs of characters (451)
is greater than the number of clusters with only two pairs of objects
(216) is explained by the elimination of redundant clusters reduced
to one analogy. The largest cluster contains 55 pairs of characters.

5.5 Number of clusters per character

The total number of characters that appear in all analogical clusters
was 5,982. This represents 41% of the total number of characters
used (14,655). We a priori expected a higher number.

We also measured the number of (non-redundant) clusters each
character appears in. Figure 10 plots of the distribution of characters
per number of clusters they appear in. The use of logarithmic scales
suggests a Zipfian distribution that needs more enquiry. This measure
gives an estimation of the complexity of a character by the number of
oppositions it has with all other characters. This reflects its degree of
freedom in the overall graphical system. A character which does not
appear in any cluster is somehow free relatively to the overall system.
In vision of our future experiments, we hypothetize that characters
that appear in more clusters may be easier to remember if the learner
has access to the global view given by the clusters. In addition, of
course, the number of strokes should be taken into consideration.

6 RELATED WORKS AND CONCLUSION

This paper presented a method to automatically extract all possible
proportional analogies from a given set of objects represented as fea-
ture vectors. In previous works, we showed how to do this for short
sentences [10, 11] but extra computation was required to check for

Figure 10. Distribution of characters by number of clusters they appear in.
In abscissae, number of characters that appear in the same number of

clusters. In ordinates, number of clusters. Logarithmic scales.

the edit distance constraint necessary in proportional analogies of
commutation between strings of symbols6.

Relying on specific properties of our formalization of objects as
feature vectors, we defined the ratio between objects as a difference
between vectors, and conformity as equality between vectors. This
particular setting allowed us to reformulate the problem, which has
a complexity of O(n4), in an equivalent problem with a quadratic
complexity, that of enumerating analogical clusters, i.e., lists of pairs
of objects with the same ratio.

We proposed an adequate data structure this problem and, by fur-
ther exploiting the properties of proportional analogies, we showed
how to avoid redundancy in the enumeration and non-informative
clusters. With all this, we showed that the problem becomes tractable
as as to solve our problem at hand: extracting all analogies between
Sino-Japanese characters in their graphical form.

Although the iconicity of proportional analogies has already been
stressed in a broader sense of the word [3, 4], this is the first at-
tempt at solving analogies between icons of black and white pixels
using their graphical form directly. This problem had already been
mentioned in [8] but without a solution. Our formalization and appli-
cation to Sino-Japanese characters shows that an explicit description
of characters in terms of their constituents (keys or radicals) as is
proposed in [20] can be avoided.

Our proposed method does not exhaust the subject of proportional
analogies between icons made of black and white pixels. There re-
mains a number of problems. One problem is the necessary fixed size
of the icons to compare, hence our use of monospace fixed-size fonts.
Firstly, any shift of a character by one or several lines (or columns)
would disrupt the analogical relations that are made possible to com-
pute with our feature vectors because almost all characters are well
lined up with the first line and column. Secondly, analogical relations
between characters of different sizes cannot obviously be captured
with the method proposed here.

The work presented here is a preprocessing step in a larger study

6 [6] is the first mention of the edit distance constraint in terms of similarities;
[7] gives the equivalent expression with edit distances; [9] is the published
form of the proceeding in which [7] appeared, with few years delay. The
edit distance constraint is necessary between strings of symbols to avoid
too many spurious analogies that would be formed without it. Experiments
with several hundreds of thousands of short sentences in Chinese collected
from the Web confirm this point.
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of proportional analogies of graphical form and pronunciation among
Chinese or Sino-Japanese characters. We perform the same kind of
analogical clustering on the level of pronunciation and compute the
intersection between analogical clusters on the graphical and on the
pronunciation levels. We hypothesize that knowing analogical corre-
spondences between the graphical and pronunciation levels of Chi-
nese or Sino-Japanese characters would ease their memorization by
learners. We intend to test this hypothesis with subjects.
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Arguing by analogy – Towards a formal view
A preliminary discussion

Leila Amgoud and Youssef Ouannani and Henri Prade1

Abstract. Although arguing by analogy is a current practice, little
attention has been devoted to the study of this form of argumentation,
especially at a formal level. This research note provides a preliminary
study of what could be done in that direction. The discussion relies in
particular on a logical modeling of analogical proportions (i.e., state-
ments of the form “A is to B as C is to D”), in terms of similarity
and dissimilarity, which has been recently proposed.

1 Introduction

The use of analogies plays an important role in many reasoning
tasks, and analogical reasoning is usually recognized as a powerful,
although heuristic, way to look for solutions by adaptation of
existing ones, to jump to plausible conclusions, or to boost creativity
in various areas [5] (including ancient [29] as well as modern
mathematics [21]).

Analogical reasoning has been extensively studied in cognitive
psychology [10, 8] and has been implemented in computational
models [7, 17, 28]. The use of analogies in argumentation is often
encountered, since arguments based on analogies are easy to grasp,
are intuitively appealing, and may be especially convincing in public
uses. However, analogical argumentation has been little studied if
we except some works by philosophers [13, 2, 31] or linguists [20],
or studies in legal reasoning [12, 14, 19]. Although argumentation
has been extensively studied in artificial intelligence in the last two
decades (see, e.g., [26], analogical arguments have almost not been
considered (an exception is [3, 4]).

A reason for this state of fact might be related to the difference
of nature between deductive reasoning and analogical reasoning.
Deductive reasoning relies on a well known formal apparatus
developed for a long time, and provides conclusions that are as much
reliable as the premises are. While deductive reasoning handles
generic knowledge as well as pieces of factual evidence, analogical
reasoning rather considers particular cases or situations, and is much
more brittle since it only provides tentative conclusions. Moreover,
the formal studies of analogical reasoning, even if there has been
a number of proposals, remain less developed and somewhat scat-
tered, and roughly speaking, analogical reasoning is often thought
as something which is beyond logic. This probably contributes to
make more difficult a formal theory of argumentation able to handle
analogical arguments.

1 University of Toulouse, IRIT-CNRS, France, email: amgoud,
youssef.ouannani, prade@irit.fr

In this short note, we take advantage of the existence of a propo-
sitional logic modeling of analogical proportions, (i.e., statements of
the form “A is to B as C is to D”) that has been recently developed,
for offering some analysis of analogical arguments and for suggest-
ing a formal view of their treatment. The rest of the paper is organized
in two main parts. We first present an introductory overview of ana-
logical reasoning based on analogical proportions, and then propose
a preliminary study of analogical arguments.

2 A brief introduction to formal analogical
reasoning

Analogy is currently understood as a weak form of similarity. For
many authors, when comparing two objects S and T , one has to dis-
tinguish between identity, resemblance, and analogy. Resemblance
is strictly weaker than identity. The fact that S resembles T if they
belong to the same domain and have common features (which are
easily observable), while S is analogous to T rather means that S
and T may belong to different domains, and that S has the same
relation with an object U as T has with another object V [11]. For
instance, taking a famous example from Aristotle, “Fish (S) breathe
through their gills (U ), mammal (T ) breathe through their lungs
(V )”. This idea of viewing analogy as making a parallel between
two system of objects, each related by similar relations, or even
equations, has been investigated for a long time (see, e.g., [33]), and
is at the core of the structure-mapping model [9, 7].

Case-based reasoning [1] also relies on the comparison between
two pairs, which may be denoted (Prob1, Sol1) and (Prob2, Sol2),
where Prob1 and Prob2 are the multiple-features descriptions of
two problems, whose solutions Sol1 and Sol2 are respectively
known and unknown. Case-based reasoning then amounts to suggest
that Sol2 may be obtained by adapting Sol1 on the basis of the simi-
larities and differences between Prob1 and Prob2. Indeed analogy is
as much a matter of dissimilarity as a matter of similarity. This what
has been also put in evidence in the logical definition of an analogical
proportion, which is now recalled.

2.1 A propositional logic view of an analogical
proportion

An analogical proportion is a statement of the form “A is to B as C
is to D”, often denoted as A : B :: C : D, where A, B, C, D stand
for objects, or situations. They may be described by means of sets of
features. We assume here for simplicity that these features are binary.
Thus, each of A, B, C, and D may be viewed as sets of properties
(possessed by the corresponding items). Then, one may say that the
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analogical proportion A : B :: C : D holds if we have both

A ∩B = C ∩D and A ∩B = C ∩D,

where the overbar denotes set complementation. This means that “A
differs fromB asC differs fromD andB differs fromA asD differs
from C”. This definition [18] refines previous proposals [15, 30]. A
logical counterpart of this idea [18] amounts to state that for each
binary feature viewed as a Boolean variable, the corresponding ana-
logical proportion, denoted a : b :: c : d, is specified by the following
pair of constraints:

((a→ b) ≡ (c→ d)) ∧ ((b→ a) ≡ (d→ c)) is true

Thus, the proportion a : b :: c : d can now be viewed as a Boolean
formula. It can checked that it takes the truth value 1 only for the
6 following 4-tuples (among 16 possible patterns) that are shown in
Table 1. For all other valuations of (a, b, c, d), the formula a :b ::c :d

Table 1. Truth table for analogical proportion

a b c d
0 0 0 0
1 1 1 1
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0

is false. It is easy to check that such a formal definition satisfies
the properties that are usually assumed for an analogical proportion,
namely:

• a : b :: a : b and a : a :: b : b hold, but a : b :: b : a does not hold
in general;

• if a : b :: c : d holds then a : c :: b : d should hold (central
permutation);

• if a : b :: c : d holds then c : d :: a : b should hold (symmetry).

The reader is referred to [18] for a study of other properties with
respect to connectives (e.g., a : b :: ¬b : ¬a holds), to [24] for an
overview of related notions and potential applications, and to [25] for
illustrations and the relation to case-based reasoning.

2.2 Analogical-proportion based inference
An analogical equation a : b :: c : x where the value of x is un-
known, is solvable iff (a ≡ b) ∨ (a ≡ c) holds (e.g., 0 : 1 :: 1 : x
has no solution). When it exists, the unique solution is given by
x = c ≡ (a ≡ b). This can be stated in terms of propositional
logic entailments such as a : b :: c : d, a, b, c ` d, together with 5
other similar entailments (e.g., a : b :: c : d,¬a, b,¬c ` d) [24]. It
provides a basis for the following inference pattern

∀i ∈ [1,m], ai : bi :: ci : di
∀j ∈ [m+ 1, n], aj : bj :: cj : dj

In simple terms, this means that if the known part of the vector en-
coding D, say (d1, · · · , dm) is componentwise in analogical pro-
portion with the corresponding parts (a1, · · · , am), (b1, · · · , bm),
(c1, · · · , cm) of the vectors encoding A, B, and C, then it should
be also true for the unknown part (dm+1, · · · , dn) of the vector
encoding D with respect to the corresponding parts of A, B, and

C. Thus, if (am+1, · · · , an), (bm+1, · · · , bn), (cm+1, · · · , cn) are
known, then (dm+1, · · · , dn) can be obtained by equation solving.
This extrapolation is exactly what analogical reasoning is about: we
transfer the knowledge we have on the pair (A,B) to the pair (C,D)
to predict the missing information about D, assuming a kind of reg-
ularity property. This is has been applied to classification problems,
see [24] for references. This is obviously a form of reasoning that
is not sound, but which may be useful for trying to guess unknown
values.

A basic pattern considered when trying to formalize analogical
reasoning in the setting of first order logic (see, e.g., [27]) is the
following: We have two objects represented by terms s and t, we
observe that they share a property P , and knowing that another prop-
erty Q also holds for s, we are tempted to infer that it holds for t as
well (a conclusion that may turn to be plausible especially if some
dependency is suspected between P and Q). This “analogical jump”
corresponds to the following simple inference pattern:

P (s), P (t), Q(s)

Q(t)

The above pattern may be directly related to the idea of analogical
proportion: One may consider that “P(s) is to P(t) as Q(s) is to Q(t)”
(indeed they are similar changing s into t), or by central permutation
that “P(s) is to Q(s) as P(t) is to Q(t)” (changing P intoQ), the above
pattern may be restated as

P (s) : P (t) :: Q(s) : Q(t)
P (s), P (t), Q(s)

Q(t)

which is a valid pattern of inference, from the proposi-
tional logic view of the analogical proportion. Similarly,
on may consider richer patterns involving n-ary predi-
cates, such as from P (s), R(s, s′), Q(s′), P (t), R(t, t′) infer
Q(t′), which may correspond to the analogical proportion
P (s) ∧ R(s, s′) : P (t) ∧ R(t, t′) :: Q(s) : Q(t), itself pos-
sibly extrapolated from P (s) : R(s, s′) :: P (t) : R(t, t′) and
R(s, s′) : Q(s′) :: R(t, t′) : Q(t′).

All the above patterns are quite different at first glance from a
pattern of analogical reasoning proposed by Polya [22], which is now
recalled.

2.3 Polya’s pattern of analogical reasoning
Polya [21] advocates the idea that analogical reasoning plays an im-
portant role when trying to solve problems in mathematics. Later, in
[22] he proposed patterns of plausible reasoning in order to provide
a more accurate view of reasoning mechanisms at work in problem
solving. One of these patterns reads:

a and b are analogous
a is true

————————————————
b true is more credible

In [23], a modeling of “a and b are analogous”, denoted a ∼ b,
has been proposed using a preferential nonmonotonic consequence
relation |∼, as a ∼ b iff |∼ a ≡ b. Clearly, a ∼ b iff ¬a ∼ ¬b
holds. Semantically speaking, it amounts to state that Π(a ≡ b) >
Π(¬(a ≡ b)), where Π is a possibility measure based on a possibil-
ity distribution that rank-orders the interpretations. Viewing a and b
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as compound descriptions of situations, and using a possibility dis-
tribution on the features for assessing their importance, another more
intuitive view would amount to say that a and b are analogous as soon
as they only differ on non important features. The following patterns
have been established (among others) [23]

|∼ a : b :: c : d a ∼ b
c ∼ d

a ∼ b c ∼ d
|∼ a : b :: c : d

This shows a good agreement between the analogical proportion
view and the relation∼. The first inference pattern may be illustrated
by an example mentioned by Aristotle [6]: Iphicrates, an Athenian
general, provided the following argument about his son for whom
one wanted that he serves in a public position, “if one deals with
adults as tall children, are we going to deal with short adult as chil-
dren?”. Indeed, it can be checked that tall child : adult :: child :
short adult holds (considering that child and adult are normally
short and tall respectively. Then considering that tall child ∼ adult
leads to admit that child ∼ short adult.

3 Analogical argumentation
Let us start by quoting [2]: “An analogy is a comparison between
two objects, or systems of objects, that highlights respects in which
they are thought to be similar. Analogical reasoning is any type of
thinking that relies upon an analogy. An analogical argument is an
explicit representation of analogical reasoning that cites accepted
similarities between two systems in support of the conclusion that
some further similarity exists.” This well summarizes the basic
issues.

In the previous section, we have recalled different patterns of ana-
logical inference, and pointed out how they are underlain by the no-
tion of analogical proportion, which itself puts in balance the ideas of
dissimilarity and similarity. These different patterns provide a formal
basis for discussing different issues regarding analogical arguments:

• how analogical argumentation differs from argumentation based
on deductive reasoning,

• what kinds of attack exist against such arguments,
• how to evaluate analogical arguments.

An argument by analogy involves at least one premise which
refers to an analogy, and as such departs from deductive (as well
as inductive, or abductive) arguments [13]. An analogy may be
a simple statement relating two objects “a is analogous to b” (or
“a is like b”), or the statement of an analogical proportion. Thus,
Polya’s pattern of plausible reasoning provides the simplest form of
argument by analogy, which departs from a deductive argument “a
is true” and “a implies b”, then “b is true”.

Note also that rather stating “a is like b”, one may use premises
of the form “Objects A and B are similar in having properties P1,
..., Pn”, making explicit in what respects the objects are analogous.
For instance, given that “Peter is like Paul, they like good life”,
and that “Paul spoilt his fortune in a few years”, one may argue
that “Peter (who is presently rich) will do the same”. An example
of argument involving an analogical proportion is the follow-
ing: “credit rating agencies are useful”, since “credit rating agency

is to crisis as thermometer is to fever” and “thermometers are useful”.

Analogical argument, as any argument may be attacked, or
used in attacks against other arguments (which may have or not
an analogy form). An example of this latter case, is provided by
the Iphicrates example, where the analogical proportion is not
challenged. On the contrary, it is used to show that given this ana-
logical proportion, as soon as one accepts to consider a = tall child
and b =adult as analogous, one is led to accept an absurd conclu-
sion, namely considering c = child and s = short adult as analogous.

An analogical argument may be attacked by

• disputing the relevance of the similarities that are pointed out (in
terms of features or relations) with respect to the conclusion. This
amounts in the “analogical jump” pattern of the previous section
to say that properties P and Q are in fact unrelated. This may be
done by providing a kind of counterexample by pointing out an
object for which property P is true, but for which property Q is
false.

• disputing the alleged similarity between two objects, or challeng-
ing an analogical proportion by pointing out that the two objects
are in fact dissimilar with respect to another (relevant) property, or
by exhibiting another (relevant) feature where the analogical pro-
portion fails to hold. Thus, if we take the “credit rating agency”
example, the analogy can becomes debatable once we remark that
“credit rating agencies have an effect on the crisis” while “ther-
mometers have no effect on the fever”.

• pointing out undesirable consequences. A well-known example is
given by the philosopher David Hume who attacked the teleolog-
ical argument according to which since a complex object like a
watch requires an intelligent designer, a (more) complex object
like the universe should also have an intelligent designer. Apart
from attacks of the two previous types, Hume argued for instance
that since watches are often the result of the work of several peo-
ple, the reasoning support polytheism as well.

Besides, it is also of interest to notice that a sequence of analog-
ical arguments may be also lead to consider analogical proportions.
Typically in a debate, a discussant d may state that situation S2 is
like situation S1 and that what took place in S1 will happen in S2
as well. The opponent, discussant d′, will argue that in fact there is
an (important) feature where they differ, and that what took place
in S1 may not happen in S2. Then d may produce another pair of
situations S3, S4, where the same difference can be observed with-
out affecting the conclusion advocated by d for S2. Then d′ may
counter-argue if he knows another pair of situations S′3, S4′ where
the same difference does lead to a different conclusion. Thus this
kind of exchange can be analyzed in terms of analogical proportions.
Indeed, depending if we consider S3 : S4 :: S1 : S2, where the
same effects have been observed for S1, S3, S4, or if we consider
S′3 : S′4 :: S1 : S2 where different effects have been reported, on
may conclude in opposite ways about S2 (using the transfer pattern
of the previous section for inferring new analogical proportions). It
suggests that analogical proportions should play a role in the analysis
of analogical arguments.

4 Concluding remarks
Analogical argumentation, although it is currently used in practice,
and has been discussed by philosophers, has received very little at-
tention in artificial intelligence until now. The study of [3, 4] based
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on the structure-mapping model appears to be an exception. This re-
search note has tried to provide some formal basis for the analysis
of analogical arguments, by emphasizing the role played by analog-
ical proportions in providing a logical view of analogical reasoning.
What has been presented is clearly preliminary and much remains to
be done for developing a formal model for analogical argumentation.
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