
ECAI
2012

Twenty European Conference
on Artificial Intelligence

Montpellier, August 27th 2012

1st International Workshop on
Artificial Intelligence meets the Web of Data

AImWD 2012

Christophe Gueret
Vrije Universiteit Amsterdam

Francois Sharffle
LIRMM Montpellier

Dino Ienco
IRSTEA Montpellier

Serena Villata
INRIA Sophia Antipolis

The First Workshop on

Artificial Intelligence meets the Web of Data

The Linked Data initiative aims at improving data publication on the Web, thereby creating a
“Web of Data”: an interconnected, distributed, global data space. The Web of Data enables
people to share structured data on the Web as easily as they can currently share documents on
the Web of Documents (WWW). The basic assumption behind the Web of Data is that the
value and usefulness of data increases with the amount of interlinking with other data. The
emerging Web of Data includes datasets as extensive and diverse as DBpedia, Flickr, and
DBLP. A “tip of the iceberg” representation of its content is behind maintained at http://lod-
cloud.net

The availability of this global data space creates new opportunities for the exploitation of
Artificial Intelligence techniques in relation with knowledge representation, information
extraction, information integration, and intelligent agents. Two approaches can emerge: (i)
using Artificial Intelligence techniques to address the problems the Web of Data faces or, (ii)
using the design principles of the Web of Data to improve knowledge representation within
Artificial Intelligence techniques.

The workshop brings together researchers and practitioners working on the Web of Data
and/or Artificial Intelligence to discuss the union of these two research areas. Several core
challenges, such as the interconnection of heterogeneous datasets, the provenance of the
information and trust issues are at the centre of the discussion. With this workshop, our goal is
to contribute to the birth of a community having a shared interest around publishing data on
the Web and exploring it using AI technologies – or the inverse, developing and improving
Artificial Intelligence technologies which use tools from the Web of Data.

Christophe Guéret, Dino Ienco, François Scharffe and Serena Villata

Workshop Chairs:
Christophe Guéret, Vrije Universiteit Amsterdam
Dino Ienco, IRSTEA Montpellier
François Scharffe, LIRMM Montpellier
Serena Villata, INRIA Sophia Antipolis

AImWD-2012 Program Committee

Program Committee

Martin Atzmueller University of Kassel
Dominik Benz University of Kassel
Bettina Berendt K.U. Leuven
Antonis Bikakis University College London
Paolo Bouquet University of Trento (Italy)
Madalina Croitoru LIRMM, Univ. Montpellier II
Richard Cyganiak Digital Enterprise Research Institute, NUI Galway
Jerome David INRIA Rhône-Alpes
Gianluca Demartini University of Fribourg
Peter Edwards University of Aberdeen
Nicola Fanizzi Dipartimento di Informatica, Università di Bari
Fabien Gandon INRIA
Guido Governatori NICTA
Christophe Gueret Vrije Universiteit Amsterdam
Harry Halpin University of Edinburgh
Dino Ienco University of Torino
Michel Leclère LIRMM (CNRS - UM2)
Roberto Navigli Sapienza Universita’ di Roma
Matteo Palmonari University of Milano-Bicocca
Domenico Redavid University of Bari
Francois Scharffe LIRMM, University of Montpellier
Andrea G. B. Tettamanzi Università degli Studi di Milano
Serena Villata INRIA Sophia Antipolis
Jun Zhao University of Oxford

1

AImWD-2012 Table of Contents

Table of Contents

Vocabutek: An Electronic Auction of Knowledge for Linked Data . 1

Harry Halpin and Ronald Reck

Diamond: A SPARQL Query Engine, for Linked Data Based on the Rete Match. 7

Daniel P. Miranker, Rodolfo K. Depena, Hyun Joon Jung, Juan F. Sequeda and
Carlos Reyna

Implementation of a SPARQL Integrated Recommendation Engine for Linked Data with
Hybrid Capabilities . 13

Sean Policarpio, Sören Brunk and Giovanni Tummarello

Bridging the Gap between RIF and SPARQL: Implementation of a RIF Dialect with a
SPARQL Rule Engine . 19

Oumy Seye, Catherine Faron Zucker, Olivier Corby and Corentin Follenfant

1

AImWD-2012 Author Index

Author Index

Brunk, Sören 13

Corby, Olivier 19

Depena, Rodolfo K. 7

Faron Zucker, Catherine 19
Follenfant, Corentin 19

Halpin, Harry 1

Jung, Hyun Joon 7

Miranker, Daniel P. 7

Policarpio, Sean 13

Reck, Ronald 1
Reyna, Carlos 7

Sequeda, Juan F. 7
Seye, Oumy 19

Tummarello, Giovanni 13

1

Vocabutek: An Electronic Auction of Knowledge for
Linked Data

Harry Halpin1 and Ron Reck2

Abstract.
In this paper, we present ongoing work on Vocabutek, an online

electronic auction for knowledge in the form of Semantic Webvo-
cabularies as used in Linked Data. Our online service plans to solve
one of the most long-standing problems on the Semantic Web: How
can users of the Semantic Web easily find and create vocabularies
that satisfy their needs? Outside of work in Semantic Web search en-
gines, there has been little work in making it easy for users to specify
what kinds of requirements they have for expressing vocabularies and
communicating those needs directly to people who create vocabular-
ies. In Vocabutek, a consumer specifies their information need for
a vocabulary in the form of constraints over multi-valued attributes.
Then the service, which maintains an index of vocabularies,uses the
these constraints to match vocabularies produced by providers that
may fully or even partially match those constraints. In the case of
where there is not a match it can prompt providers to create a new
vocabulary to match the constraints. Lastly, an auction canfully or
partially automate the determination of the cost of vocabularies that
match the constraints expressed by the user.

Despite the large amount of work on the foundations of the Seman-
tic Web over the last decade, there remains a gaping hole in the entire
stack: There is no way for consumers of Semantic Web technology
to easily discover whether or not a Semantic Web vocabulary that is
suitable for their particular need exists. Even more importantly, as-
suming that there doesnot exist a vocabulary that matches the needs
of a user, there exists no way to communicate this to the community
of people who create Semantic Web vocabularies. Furthermore, even
if these needs exist, there is little incentive to create vocabularies, and
even less to maintain them.

A quick aside on terminology: We use the termvocabulary in a
more broad-ranging way that is often conceived, to include almost
all digital information produced primarily to fulfill some informa-
tion need. This includes both RDF Schema, SKOS, and OWL, and
all non-Semantic Web vocabularies on Vocabutek are given a de-
fault Semantic Web form so they can be indexed and stored by our
Sesame triple-store. Acategory is metadata about the subject of the
vocabulary.Attributes describe any aspect of the vocabulary, includ-
ing metadata about its provenance and maintenance. A vocabulary
consists ofterms with a structure, where the terms may be terms in
a natural language or a machine-processable language, or data such
as numeric and image data. Therefore, we do not restrict the notion
of vocabulary to be RDF Schemas or OWLTBox, but allow instance
data (ABox) in a vocabulary. Aninformation need is the desire for
information that can be satisfied by a vocabulary. For example, a list

1 W3C/Institut Recherce et la innovation du Centre Pompidou,email:
hhalpin@w3.org

2 RReckTek LLC, email:rreck@rrecktek.com

of all the names of gangs with a taxonomy of their kinds of relation-
ships could fulfill the information need of a law enforcementagency,
and a list of all the parts of a kind of antique bicycle could fulfill the
need of an bicycling enthusiast attempting to rebuild an oldbicycle.
Consumers are users of vocabularies, usually individual humans or
humans working on the bequest of an organization, whileproviders
are those who can either produce or provide vocabularies that satisfy
the information need of one or more consumers, usually because they
are domain experts in an area.

1 The Vocabulary Crisis

The first issue one encounters using the Semantic Web - and in in-
formation integration in general - is an inability to discover accu-
rate and well-maintained vocabularies for their particular problem
or domain. This ‘vocabulary crisis’ undermines the confidence of
the wider information technology world in the Semantic Web,since
the entire Semantic Web crucially relies upon distributed vocabular-
ies given URIs to share information. There are a number of long-
standing centralized vocabulary hosting sites that offer indexes, such
as rdfs.org and vocab.org, to locally hosted sites, or sites such as
semanticweb.org that offer pointers to popular vocabularies hosted
by other sties. However, to a large extent, none of these vocabulary
directories have very large coverage or are even well-maintained.
Therefore, currently the common practice is to use a Semantic Web
search engine like FALCON-S Concept Search [1] and to type in
keywords in order to locate a Semantic Web vocabulary in the do-
main of interest. This particular technique often is very limited, as it
produces too many results for a human to feasibly go through,partic-
ularly as displaying and parsing Semantic Web vocabulariesis diffi-
cult for the ordinary, even technically competent, user. Asshown in
previous experiments having deploying humans to rank for relevance
rankings to the Semantic Web, even with commonly used key-words
describing general purpose entities and concepts, currently it appears
that Semantic Web search engines can only find relevant information
approximately for two-thirds of queries, and of those relevant vocab-
ularies, approximately half the time the relevant vocabulary is not
the first vocabulary returned by the Semantic Web search engine [2].
The original Semantic Web vision expected that, in general,ordinary
end-users and organizations would create their own vocabularies if
they could not find them otherwise, such as by using a SemanticWeb
search engine. This is possible because there exists a number of on-
tology creation tools exist like Protege [4]. However, manyusers find
these tools hard to use, as these are tools built for the ‘working ontol-
ogist’ and not the ordinary end-user who has some information need
he would simply like to easily specify. Also, those with specific do-
main expertise may not be versed in ontology creation. Lastly, none
of these tools offer an easy-to-use and well-maintained Web-based
1

interface for the creation of vocabularies, instead relying on users to
install large programs locally, which historically users are unwilling
to do. While tools that offer a Web-based form interface likeNeol-
ogism from DERI3 and the commercial serviceknoodl.org promise
to help satisfy this need, Neologism is still under development and
not for public use, whileknoodl.org does not let users download and
store their vocabulary elsewhere. Combined with the recenttechni-
cal problems of long-standing pieces of Semantic Web infrastructure
like purl.org and the FOAF documentation, it is clear that more effort
must be made to provide some some guarantee of stability and main-
tenance of the vocabulary, particularly for users like businesses and
governments, as well as clear legal guidelines for vocabulary use and
patents. This general vocabulary hosting disaster around the Seman-
tic Web has led commercial companies like Google who are investing
in RDFa to focus on creating and hosting their own URIS4 rather than
use any of the Semantic Web community-driven approaches.

2 Monetary Incentives for Vocabularies

Most importantly, the ‘vocabulary crisis’ exists because there is no
coherent incentives for the creation of vocabularies. Yet there are few
things more valuable in the information economy than knowledge.
Ranging from general purpose vocabularies describing geographical
locations to up-to-date descriptions of the MP3 players, accurate and
well-maintained knowledge may very well have amonetary worth.
Therefore, we hypothesize that consumers of information may very
well pay both domain experts and experts in vocabulary some mone-
tary value for accurate vocabularies. There are few clearerincentives
for the creation and maintenance of vocabularies. To us thisseems
more realistic than attempts to like OntoGame, inspired by the work
of von Ahn, to make ontology creation a ‘game’ [6]. We also consider
this market-driven approach a likely superior approach fordetermin-
ing the monetary worth of vocabulary rather than methods like ON-
TOCOM, that provide a an approach to determining ontology cost
that factors in projections such as personnel and project overhead.
While ONTOCOM is a valuable approach, the financial value of vo-
cabularies is an inherently subjective phenomenon that canbest be
determined by market forces rather than either a-priori attempting to
estimate the value of ontologies. The real problem is findinga way to
bring together vocabulary providers and consumers and a wayto let
them jointly determine the monetary price of an existing vocabulary
or a new vocabulary.

The most visible online focus for the commercial vocabularycom-
munity is arguablyhttp://www.taxonomywarehouse.com, a website
operated by the Dow Jones company Factiva. As of July 2009 they
have listings for almost seven hundred taxonomies and thesauri,
which are categorized into at least one hundred different subject do-
mains. Each vocabulary listed on the website may be described by
approximately twenty metadata elements including the typeof vo-
cabulary, a description, number of terms, types of relationships, lan-
guages, available formats, and URIs that point to more information.
However, the vocabularies themselves are given only a set price, and
there is little incentive or way for users of Taxonomy Warehouse to
determine what a realistic market-value for their vocabulary is. Thus,
there are only a handful of companies that actively market knowledge
collections, the most notable is Intellisophic who createsvocabular-
ies via an patented automatic computer program, but there isoften
problems of validation and quality. Other companies like Gail spe-
cialize in hand-made vocabularies for particular institutional needs,

3 http://neologism.deri.ie/
4 http://rdf.data-vocabulary.org/rdf.xml

like educational vocabularies. The type of challenges faced by con-
sumers of vocabularies is often not solved by merely the vocabular-
ies themselves. Several types of problems surround the use of subsets
or supersets of the vocabularies. An intelligence analyst focused on
Middle Eastern developments may need precise and accurate coding
for only a few of the country codes listed in ISO 3166. A subsetin-
cluding the only the codes they use daily can suffice and the rest of
the codes in the list are noise. In stark contrast, organizations like the
U.S. Navy can leverage all the country codes ISO 3166 can provide
but could benefit from extensions to the list that cover bodies of wa-
ter, and subdivisions thereof. Either group might copy the values they
need from the original country code list, but would then needa mech-
anism and workflow to update their copy should the original ISO
3166 list get updated. Further, if copies of the code list aremodified,
then how can future authoritative updates get folded in without col-
lisions between the idiosyncratic modifications and futurechanges?
A version control system with an easy-to-use editor would help, as
would the ability to select only portions of vocabularies and recom-
bine them using Semantic Web technology.

A further challenge involves authoritative mapping between vo-
cabularies. Situations arise where a significant amount of legacy in-
formation coded with one vocabulary such as FIPS10-4 needs to
be integrated or interoperable with information coded withsimilar
yet different vocabularies for the same domain such as ISO3166-2.
Whereas there is an authoritative source for each of the respective
vocabularies, it is difficult to say who might be the correct source
for the mapping between vocabularies. While most users versed in
geography can agree that Myanmar is indeed Burma, in other lesser
known domains this can pose a difficulty that absolutely requires do-
main expertise. Mappings can be created but need to be maintained
and updated as vocabularies change over time. The Semantic Web
is an ideal solution for this problem. Yet there exists no Semantic
Web-based vocabulary infrastructure capable of meeting this need.

3 The Vocabutek Solution

We have begun development on a soliution this problem, whichwe
call Vocabutek. Vocabutek attempts to solve the above-mentioned
shortcomings of vocabulary discovery, creation, hosting,and pric-
ing by deploying Semantic Web technologies in combination with
an auction approach based on consumer-driven constraints to deter-
mine the monetary cost of a vocabulary. By consumer-driven con-
straints we mean the selection of attributes of the vocabulary by an
consumer, such as the desired upper limit of the monetary price, the
data formats, the number of nodes and relationships in the vocabu-
lary, quality assurance, and the like. The cost of a vocabulary is any
real-valued number or unit of exchange that can be assigned to a vo-
cabulary in order for there to be a transaction of the vocabulary from
the consumer to the provider,and in the case of Vocabutek is usually
monetary price.

Vocabutek uses auction mechanism between the consumer in com-
bination with a match of consumer-driven constraints to determine a
monetary price for the vocabulary. This can be considered similar to
using a market likeeBay to discover the price of vocabularies. The
key insight is that deploying auction mechanisms in a decentralized
environment can help provide both an optimal vocabulary andan op-
timal price for the vocabulary. By matching or causing the produc-
tion of the vocabulary with the constraints given by the consumer,
and then using these to determine price, the service helps insure that
the consumer will actually use and, if needed, purchase the vocab-
ulary, while this furthermore makes it easy for the providerto align

2

their vocabulary with actual information needs and to exchange their
vocabulary with as many consumers as possible. The feedbackpro-
duced by this type of alignment can drive efforts to solve thechal-
lenges facing consumers and providers.

Vocabutek also provides a number of ‘Web 2.0’ features to in-
crease the likelihood of a successful transaction for both the con-
sumer and the provider. First, Vocabutek can be considered acommu-
nity portal and social networking site for knowledge representation
users and professionals. We provide personal profiles detailing exper-
tise for provider and consumers respectively that allow consumers
and providers to discover each other. Secondly, after each transac-
tion, reviews and ratings systems allow providers and consumers to
determine the reliability, expertise, and other qualitiesthat may lead
to a successful transaction. Producers, seeking to improvetheir rat-
ings, are encouraged by the feedback given by consumers to improve
the marketability of their offering.

While currently the front-end of Vocabutek is based on Drupal,
the actual function of the service is a Sesame back-end consisting of
an index of vocabularies, where the vocabularies are storednatively
in a Sesame triplestore. The matching is performed via SPARQL
queries generated the constraint-based mechanism as well as infor-
mation retrieval over the raw text of the vocabularies. Semantic Web
technology is crucial to allow vocabularies to be kept distinct and
inter-operate. We convert each term in the vocabulary, regardless of
its original form (often XML-based on using some text-basedfor-
mat), to a Semantic Web term and assign it a unique URI. For XML-
based vocabularies, we simply concatenate the namespace URI with
(if needed) a fragment identifier and the local name, while for text-
based vocabularies we generate our own URI identifiers for each
term. This lets us represent relationships between components in dis-
tinctly separate vocabularies to facilitate interoperability between vo-
cabularies through use of terms likeskos:broader and even the infa-
mousowl:sameAs. This architecture for supporting crosswalks be-
tween vocabularies strengthens each and every URI.

4 Detailed Description of Vocabutek

In this section, we explore the functionality of Vocabutek in a step-
by-step manner. Vocabutek users can assume two distinct roles, con-
sumers and providers, and an auction mechanism unites them.These
roles are thoroughly visualized in the flowchart given in Figure
2, where for purposes of space, vocabularies are called ‘KR’for
‘knowledge representation.’ In the following text, we stepthrough
the typical interactions with Vocabutek as given in the flowchart.
When a user attempts to access the service, if the user has never
used the service before, then their personal details are gathered and
a secure OpenID-compatible login is given. In order to facilitate suc-
cessful transactions, much like oneBay.com, the identity of the users
can be hidden to some extent as Vocabutek takes care of any fi-
nancial details of the transaction, although of course it isimpossi-
ble for Vocabutek to completely hide anyone’s identity. This does
lead to the possibility that users will contact each other using Vo-
cabutek and then arrange the financial transaction for the vocabulary
off-line. However, we believe our easy-to-use services forfinding,
creating, updating, buying, and selling vocabularies, as well as our
value-added services for vocabulary maintenance and URI persis-
tence will provide enough added benefit for users to keep coming
back to Vocabutek. Much like a social-networking site, eachuser
maintains both contacts as well as a list of requests for vocabular-
ies and vocabularies they maintain, as well as updates from their co
services to build a community of consumers and providers, such as a

calendar for upcoming events for the vocabulary community and a li-
brary of related online articles and tutorials on creating vocabularies.
Upon logging on, the user is given the chance to either request a vo-
cabulary be created, and so instantiates consumer role, or create and
modify a vocabulary, and thus instantiate a provider. Note that users
may assume either one of these roles using the systems at different
times. We first will explicate the role of the consumer.

4.1 Consumers

When a consumer has visited the service before, the consumercan
check if any of their information needs for vocabularies have been
satisfied by providers using the service. A consumer may alsoup-
date their personal details at any time once they have logged-in, and
browse through the vocabularies hosted by Vocabutek, as shown in
the screenshot given by Figure 1. Most importantly, once they have
logged in, the consumer then can formulate their information need to
the service in for current or future providers to be aware of their need.
First, the consumer completes a form describing their information
need in a request for a vocabulary. This form can provide a number
of constraints over attributes each of which can have multiple val-
ues. Some of these values may range over free natural language text,
while others may be range over integers, real numbers, dates, rela-
tionship types, provenance, or some other ordinal or nominal value.
While some of the attributes, and thus constraints, will usually be
shared between various vocabulary requests, such as a free text de-
scription of the information need, these multi-valued attributes can
not necessarily be predicted by the service and listed beforehand, and
so a user may enter a new kind of attribute in a structured manner us-
ing a form that allows them to create new kinds of constraintsto the
vocabulary. In order to expedite the user and to allow easiermatching
of the constraints, a number of templates are given to the provider,
who then selects what the name, description, and value ranges of the
attribute are.

For example, some of the default kinds of constraints that are pro-
vided by Vocabutek are ranges over attribute values are preferred
maximum price of vocabulary, size of vocabulary, description of the
information need in natural language, which natural languages the
documentation of the vocabulary is provided in, obligatoryterms
needed to be in the vocabulary, dates vocabulary is needed by, sub-
ject of the vocabulary, and the formal languages that express the vo-
cabulary, ranging from simple RDF Schemas to non-Semantic Web
formats such as KIF (Knowledge Interchange Format). These con-
straints are built using a number of HTML forms, ranging froma
free text box for a natural language description of the information
need to be provided, while a drop-down menu with possible cate-
gories that describe the information need, calendar that describes the
date the vocabulary is needed by, an drop-down box that allows pop-
ular natural languages the vocabulary should be provided tobe cho-
sen, and a radio-button that specifies which popular vocabulary for-
mat that the vocabulary is wanted in. Importantly, a preferred price
range for the vocabulary may also be given. In order to maximize the
likelihood that the provider’s vocabularies ranges over some of the
same attributes as the consumer’s vocabulary request does,the ser-
vice suggests templates for possible attributes in order ofpopularity
of those used by previous users, although those forms used byother
consumers of vocabularies in the same category are provided. In this
way, the matching process between vocabulary request and vocabu-
laries stored by the service are more likely to match, as it iseasier
to automatically match known attributes with constraints rather than
do indexing and searching over novel constraints. The vocabulary re-

3

Figure 1. Browsing and Searching Vocabutek

quest is then recorded in the database. This information need, now
phrased as a request for a vocabulary using the constraints provided
by Vocabutek, is then publicly available to other users of the sites,
including providers. Now we move to describing the role of Vocabu-
lary providers.

4.2 Vocabulary Providers

When specifying their role as an provider, the personal details are
gathered as is done for consumers, but in addition information about
their expertise is gathered via a series of free-text and multi-valued
attributes, including allowing the provider to provide viacheck-box
their expertise in a taxonomy of vocabulary types. Once registered
as an provider, they may search and browse the various requests for
vocabularies. The information concerning their expertiseis gathered
by the system and can also then be used to alert the provider for any
possible relevant vocabulary requests they can fulfill. A provider may
register a vocabulary with the service at any time. This may include
any number of vocabularies that provider has created regardless of
their possible applicability to any particular vocabularyrequest on
Vocabutek. There are, in general, two kinds of vocabularieson Vo-
cabutek. The first is those that are directly stored on Vocabutek, and
the other is the kind that has simply been reference by Vocabutek,
but is hosted elsewhere. There are two other options in between host-
ing and storing the vocabulary completely independently. The first
one one in which Vocabutek provides a redirect service for persistent
URIs for a vocabulary already existing elsewhere, and the second
where Vocabutek provides documentation and hosting services for a
vocabulary whose URIs are already in a domain name owned else-
where. Regardless, there is an advantage to registering a vocabulary
with Vocabutek, as it allows this vocabulary to be discovered by con-
sumers using Vocabutek even if the vocabulary is hosted elsewhere.

In any case, the provider can fill out a form describing the at-
tributes of their vocabulary and post this vocabulary description to
be available to other consumers. As the vocabulary is usually digi-

tal, the vocabulary may be uploaded directly to the service and then
the attributes can be partially derived and recorded by the system in
a database of vocabularies. For example, the system may automati-
cally record the number of items in the vocabulary, what formats the
vocabulary is in, the properties of the relationships between terms
(i.e. associative/hierarchical), and the time of upload tothe service
of the vocabulary. Some attributes of the vocabulary may notbe au-
tomatically derived from the vocabulary. In particular, the estimated
selling price of the vocabulary may be initiated by the provider. The
provider also enters information such as their intended maintenance
of the vocabulary, its original reason for production, and the other
pertinent information, including social and contractual information.
Note some vocabularies that are available without any charge (and so
are available free of cost, even though payment may be required for
maintenance or changes), the entire vocabulary may be available us-
ing Vocabutek, including being being exposed to the Web for normal
hypertext search engines to locate. Otherwise, only a limited part or
none of the vocabulary may be publicly available for consumers of
Vocabutek and will not be indexed by search engines, as totalaccess
to the vocabulary may require a financial transaction.

Furthermore, Vocabutek provides a Web-based interface forthe
modification and creation of vocabularies, as many users maynot
have their own custom-made tools for creating new vocabularies, and
it is in the best interest of satisfying requests to allow as many people
as possible to participate. These providers may possess vocabularies
that they have gathered from other sources or have them in some non-
digital medium, but lack the ability to easily modify them and pro-
vide them in formats for use by other users. Thus, one capability of
our service is a mechanism that may be used online for creating and
modifying vocabularies. The interface allows the providerto easily
list a number of terms they are aware of. This interface also supports
automated or semi-automated extraction of such terms from various
sources of information, such as the extraction of high-information
value terms and named entities from documents. Once a potential
list of terms is created, the interface allows these vocabulary items

4

to be related systematically using a number of terms from SKOS,
OWL, and RDF(S), as determined by our empirical analysis of vo-
cabularies given earlier [2]. Whether or not the lists of vocabulary
items is ordered (and thus anrdf:List) can be provided. Annotations,
such as comments viardf:comment and natural language labels via
rdf:label all be added to the terms, and the option to do in multiple
natural languages is given, and then the language types are tracked
in the creation of the literal values of the vocabularies. The interface
then allows new terms to be added dynamically as more structure is
added to the initial list. If the terms are from RDF(S) or OWL,the
interface can automate this process of inference by using Pellet on
the back-end and provide the results to the provider in orderfor them
to be better understand and possibly modify their vocabulary. As the
process is iterated by the user over time, a list of terms, which by
itself is a very simple hierarchical vocabulary, can be transformed by
the provider into a more structured vocabulary. Vocabutek provides
revision-based changed control, comments, and a discussion forum
to encourage communication. In particular, these facilities allow mul-
tiple providers to collaborate over time, and we imagine that often
collaborations will develop between domain experts and knowledge
representation engineers. We also allow providers to pass the control
and maintenance of a vocabulary to other providers. The provider
may even sell or relinquish the rights to further control anddele-
gate a vocabulary to another provider. The provider can, viaa form,
establish a legal contract with Vocabutek for maintenance of vocab-
ulary. We allow a range of options, ranging from a vocabularythat is
free to distribute and modify with royalty-free status to vocabularies
that may not be distributed or sold without the service, or even pass
legal ownership of the vocabulary to the service, perhaps for some
pre-determined time.

4.3 Auctions for Determining Vocabulary Cost

Our system deploys the multi-valued constraint matching algorithm
that generates SPARQL requests from the constraints given by re-
quests and the existing vocabularies in the index of Vocabutek. The
constraints of the consumer are not usually totally satisfied by one
or more vocabulary, but only partially satisfied by any number of vo-
cabulary indexed by the service. For example, often one constraint
of the vocabulary is that it is has a coverage of certain termsand
therefore has a certain minimum size. However, very rarely will a
pre-existing vocabulary cover all the terms needed by a consumer.
Furthermore, the vocabulary will usually have many terms orat-
tributes not needed by an consumer. So, the constraint of themin-
imum number of terms can only be partially matched to a number
of vocabularies, which often feature too many terms. The constraints
given by the user then partially match a potentially large number of
vocabularies. Vocabutek retrieves from its index each of the vocab-
ularies that match at least one of the constraints given by the con-
sumer. Then, ranking the vocabularies by the weighted number of
constraints matched, where the constraints are weighted inthe order
they are given by the user, the vocabularies are presented tothe con-
sumer based on a ranking determined by the number of constraints
that are matched, and for data-ranking, LuceneSail is used over the
Sesame triple-store.5 The consumer can then inspect each vocabu-
lary that potentially matches their constraints in order todiscover
the best match for their information need. Furthermore, itspossible
that the consumer may not be satisfied with any of the vocabularies
for whatever reason, so the request may be fulfilled at any time by

5 http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail

custom-made vocabularies, and providers may attempt to modify an
exiting representation so it better fits the current vocabulary request.

Once one or more vocabulary that potentially matches the con-
straints are retrieved, a bidding process between the consumer and
the providers commences that determines the monetary cost of the
vocabulary. This process may be automated, semi-automated, or non-
automated. In an automated version, if multiple vocabularies match
the users constraints, then the entire process of finding thebest vo-
cabulary for the consumer can be considered a multi-attribute auc-
tion, and an algorithm that optimizes the matching constraints while
determining a new cost may be automatically determined using the
algorithm explored in Koppius and van Heck [3]. In a fully auto-
mated auction, if one of the constraints of the consumer is a minimum
cost for providing the vocabulary, then if the algorithm provides a
cost below the minimum cost, the transaction that provides the con-
sumer with the vocabulary from the provider can be fully automated.
However, if an automated algorithm to determine the cost of the vo-
cabulary is not provided, or if the cost determined by the algorithm
does not fall below whatever minimum cost could be provided by the
provider, then a non-automated process of bidding begins. The con-
sumer can then use the service to contact one or more the provider
and communicate with them over the precise constraints of the vo-
cabulary, asking them to modify the vocabulary itself and change the
associated attributes of the vocabulary, including the associated cost.
This process can then be iterated until the consumer’s constraints
are satisfied, or the consumer decides to terminate the process. If a
vocabulary is accepted, then the service automatically transfers the
vocabulary from a provider to the consumer, and then the consumer
owes the cost of the vocabulary to a provider. If the vocabulary is
given its cost in some monetary value, then monetary cost of the vo-
cabulary is securely transferred from the consumer to the provider. If
the entire vocabulary is not available without a monetary transaction,
then the vocabulary is then made available to the consumer after the
transaction.

After the transaction, the consumer may then use a number of fa-
cilities provided by the service to provide feedback about the vo-
cabulary and their interactions with the provider to the system, and
most importantly, to directly edit the vocabulary itself. This feedback
can be either metadata about a particular vocabulary produced by
an provider, a provider itself, or alterations to the vocabulary itself.
Likewise, a provider may provide metadata and feedback about their
interactions with an consumer, and update the vocabulary inrequest
to the consumer’s needs after the transactions (vocabularymainte-
nance). This feedback may take the form of a numerical rating, a
natural language comment, and other information that may beper-
tinent to those interested in future transactions with the consumer.
Some of this feedback information, such as number of completely
successfully transactions and the number of vocabularies they have
created, can be automatically gathered by the service and displayed
to potential consumers, and statistics taken gathered fromthe feed-
back of consumers. Furthermore, some of the comments and ratings
may be applied not to providers themselves, but their specific vocab-
ularies they produce, and providers may document feedback about
the behavior of an consumer. In this way, if problems or benefits are
encountered in the vocabulary in the course of its actual useafter the
time of the actual transaction, then these are recorded by Vocabutek.
The rating of both a producer and a vocabulary can be taken into ac-
count in the ranking of vocabularies for a consumer in response to a
request.
5

Start
Does user

need a login for
access?

Server prompts
user for details

INITIAL STATE
Service displays user

personal profile, updates
and KR requests

Yes

No

Does user
 wish to fulfill

KR need?

User instantiates
consumer role

Yes

Has user
posted KR

before?

Will
user create,

modify or auction
a KR

No

Service notifies if
needs were

satisfied by KR on
the service

Yes

Will user post
KR request?

No

No

Consumer
completes form

expressing
constraints on KR

Yes

Consumer add
a constraint?

Consumer
chooses from

types of
constraints to

express new one

Yes

User match
constraints

against KRs?

No

Consumer can
save constraints

for future request

Use constraints to
rank candidate
KRs fulfilling

request

No

Yes

Is consumer
satisfied with
KR choices?

No
Notify producer of
satisfaction and

begin auction

Yes

Has auction
completed to

satisfaction of
consumer and

producer?

No

Transfer KR from
producer to
consumer

If necessary
transfer monetary

value from
consumer to

producer

Allow consumer to
provide feedback

Allow producer to
provide feedback

Yes

Does
consumer want

another KR?

Yes

END

No

User instantiates
provider role,

document
expertise and legal

contract

Service may alert
providers to fulfill

KR request

Yes

No

Does
 provider’s KR

match consumer’s
request

Yes

Does
provider wish to

create or update a
KR?

No

Present provider
with options to

constrain, create
or modify a KR

Yes

Does
provider wish to

exit service?

No Yes

No

Figure 2. Flowchart of Vocabutek

5 Conclusion

There is of course much work to be done in the future, and work on
Vocabutek has only just started. Vocabutek does not solve the entire
‘vocabulary crisis’ on the Semantic Web, and there still needs to be at
least one non-profit, and ideally a few, large general purpose hubs of
free vocabularies that can meet the information needs of many peo-
ple. However, for information needs that are of commercial or spe-
cialist interest, Vocabutek provides a way for these users to commu-
nicate their interest to those who create Semantic Web vocabularies.
First, it provides a simple yet extensible form-based constraint mech-
anism to specify needs for vocabularies. Then, we provide the ability
for providers of knowledge to upload or notify the system of their
vocabularies, and to produce vocabularies in response to user-needs,
either with their own tools or using our form-based system. Finally,
we provide an incentive by allowing users to charge monetarycosts,
as determined by an auction, for their vocabularies and their main-
tenance. . The next step is to create a community of users around
Vocabutek and to empirically measure how they create and maintain
vocabularies in order to determine if the auction-based methodology
of Vocabutek works: Can we bootstrap the Semantic Web by bring-
ing market forces to bear on the problem of finding and consuming
information? Given the success of combining market-based forces
with mass participation in general, this may very well be possible.

REFERENCES

[1] Gong Cheng, Weiyi Ge, and Yuzhong Qu. FALCONS: Searchingand
browsing entities on the Semantic Web. InProceedings of the World
Wide Web Conference, 2008.

[2] Harry Halpin. Is there anything worth finding on SemanticWeb? In
Proceedings of the World Wide Web Conference, 2009.

[3] Otto Koppius and Eric van Heck Information architectureand electronic
market performance in multidimensional auctions Erasmus Research
Institute of Management. Rotterdam, Erasmus, 2002

[4] Holger Knublauch, Ray Fergerson, Natalya Noy, and Mark Musen. The
Protege OWL Plugin: An Open Development Environment for Semantic
Web Applications InProceedings of the International Semantic Web
Converence, 2004, pp. 229-243.

[5] Elena Simperl, Igor Popov, and Tobias Brger ONTOCOM Revisited:
Towards Accurate Cost Predictions for Ontology Development Projects
In Proceedings of the European Semantic Web Conference, 2009.

[6] Katharina Siorpaes and Martin Hepp OntoGame: Weaving the Semantic
Web by Online Gaming InProceedings of the European Semantic Web
Conference, 2008.

6

Diamond: A SPARQL Query Engine, for Linked Data
Based on the Rete Match

Daniel P. Miranker, Rodolfo K. Depena, Hyunjoon Jung, Juan F. Sequeda and Carlos Reyna 1

Abstract. This paper describes a system, Diamond, which uses the
Rete Match algorithm to evaluate SPARQL queries on distributed
RDF data in the Linked Data model. In the Linked Data model, as
a query is being evaluated, additional linked data can be identified
as additional data to be evaluated by the query; the process may re-
peat indefinitely. Casting Linked Data query evaluation as a cyclic
behavior enables making a constructive analogy with the behavior of
a forward-chaining AI production system. The Rete match algorithm
is the most commonly used implementation technique for AI pro-
duction systems. Where AI production systems are known to make
a relatively consistent number of changes to working memory per
cycle, dereferencing URIs in the linked data model is a potentially
volatile process. The paper provides an overview of Diamonds ar-
chitectural elements that concern integrating the Rete match with the
crawling of Linked Data and provides an overview of a set of Rete
operators needed to implement SPARQL.

1 INTRODUCTION
Linked Data defines a set of best practices in order to treat data as
a distributed interconnected graph just as the Web, through hyper-
links, has enabled documents to be interconnected and distributed
[9]. In the Linked Data model directed, labeled graph edges, known
as triples, are defined using RDF, the Resource Description Frame-
work; a triple is comprised of a subject, a predicate and an object.
Each component of a triple may be represented by a URI. By defini-
tion, the URI will be associated with an Internet server. The Linked
Data principles stipulate that when a URI is dereferenced, the server
should return a set of triples [2]. Those triples, in turn, may contain
URIs for different servers. Thus, there is a potential for a triple on
one server to logically connect one to three graph-edges, such that
additional graph structured data may be gathered from distributed
servers.

SPARQL is a query language for RDF graphs, and is itself com-
monly described as a language for describing graph patterns [12, 13].
Hartig et al. present an approach to execute SPARQL queries over
Linked Data called Link Traversal Based Query Execution [7, 8]. In
this approach, if a triple satisfies just one clause in a SPARQL query,
then the connected components of that triple, linked by URI, may
satisfy other clauses. Thus, in the course of evaluating a SPARQL
query, if a triple satisfies a clause, each of its embedded URIs must
be dereferenced. In other words, for each such URI, it may be neces-
sary to go to a server and collect an additional set of triples.

Observe that a consequence of evaluating a SPARQL query over
Linked Data may result in additional data being collected from over
1 Department of Computer Science, University of Texas at Austin,

email: {miranker, jsequeda}@cs.utexas.edu, email: {rudy.depena, po-
laris79, creynam89}@gmail.com

the Internet, and further evaluating the SPARQL query in a context
that includes this new data. This can be viewed as an iterative process
that may continue indefinitely [5, 6, 7, 8].

We observe a similarity in the execution of SPARQL queries over
Linked Data queries and forward-chaining rule systems in Artifi-
cial Intelligence. In the latter a set of rule antecedents are evaluated
against a repository of working memory. A satisfied rule is selected
and its consequent executed. The consequent may insert or delete
additional working memory elements. The rule sets antecedents are
reevaluated. The cycle may proceed indefinitely. Thus, in the Linked
Data model, dereferencing a URI and the additional triples fetched
can be seen, operationally, as the same as firing a rule that adds ele-
ments to working memory.

Forgy’s Rete match is the defacto standard for implementing
forward-chaining rule systems[3]. Rather than reevaluating the rule
antecedents at each cycle, the Rete Match processes incremental
changes to the working memory as incremental changes to the set
of satisfied rules. This is accomplished by interposing state opera-
tors, or memory nodes, in between a network of filtering operators.
Incremental changes to working memory are processed as cascading
incremental changes to the memory nodes. See Section 3.

2 DIAMOND ARCHITECTURE

The Diamond architecture is illustrated in Figure 1. The Rete net-
work is created, on demand, as queries are entered by a user. The
URI dereferencing object is static and not at all complicated. The
most critical architectural component is the pair of queues, one for
triples, and one for URIs, that connect the Rete network object with
the URI dereferencing object, and their manager. These queues are
intended to form the basis of parallel, asynchronous, execution of
query evaluation and URI dereferencing.

Correctness of the Rete match algorithm requires a change initi-
ated at the top of the network to be processed, depth-first to comple-
tion before beginning to process another change. Early in the execu-
tion of a query, little data will have been consumed, the network will
be nearly empty, and processing will be fast. As data accumulates,
one can anticipate query processing to slow, just as a query on a large
database will take longer than the same query on a smaller database.
Dereferencing a URI may yield an arbitrary number of additional
triples. Some of those triples may not match any basic triple patterns
in the query and the Rete network will dispatch them quickly. Other
triples may propagate through the entire Rete network, and yield new
solutions to the query. Even the number of solutions so produced is
unpredictable. Thus, the queues act both as buffers, and the synchro-
nization mechanism between two processes whose execution behav-
ior is anticipated to be volatile.

7

Figure 1. Diamond Architecture Diagram

Figure 2. SPARQL rule graphical debugger

8

The function, initially, of the triple & URI manager is to avoid
redundant dereferencing of a URI and, similarly, redundant process-
ing of triples through the Rete network. The manager is currently
implemented using the Sesame2 triplestore. The intrinsic depth-first
processing requirement of the Rete match coupled with the intuition
behind the Link Traversal model suggests treating the dereferencing
queue as a stack (LIFO) is a natural, good fit. Or, the triple queue
may be treated as a stack. If priority is given to both the most re-
cent URI, and the ensuing triples, it is plausible that processing will
focus strictly on the first few triple patterns of the query. It is easy
to construct adversarial graphs such that no progress can be made in
completing the full pattern of the query until traversals satisfying the
first few triple patterns are exhausted.

As the research moves forward we may consider the use of prior-
ity queues ordered by means of heuristics concerning provenance or
develop optimization strategies driven by statistical models based on
historical behavior. In other words we may bias the system to fetch
data from higher quality and/or historically faster data sources. The
formal semantics of Linked Data queries is still being determined
[6]. It is possible that open issues may be resolved in ways that limit
operational behaviors. For example, if fairness properties are stip-
ulated, deterministic methods that favor certain servers may induce
starvation of other servers.

Implementing the triple & URI manager by using an embedded
triple store adds flexibility per two additional open issues, one con-
cerns speed, the other semantics. Motivated, in part, by Big Data
computing, some linked data systems compute queries against a large
local cache of precrawled data [11]. By committing, at the onset, to
embedding a triple store in the cache manager, the evaluation of this
approach can be compared to a strict crawling of live data while min-
imizing additional engineering and thereby maximizing the control
of the experiments. The semantic issue concerns the Link Traversal
Based Query Execution Model. Consistent with thath model, our first
implementation only dereferences URIs of triples that have passed
the initial Rete-Match filters and are recorded in a memory node.
However, we promptly observed the following. If query solutions are
subgraphs of disconnected graphs, following an initial set of links
may yield only a subset of the possible solutions.

The system includes a SPARQL rule debugger typical of graphical
debuggers in Rete-based rule execution systems shown in Figure 2.

3 RETE NETWORK
A Rete network is comprised of filter nodes, interleaved with mem-
ory nodes. To implement SPARQL using a Rete network is to map
the pattern testing primitives of SPARQL to Rete operators. Begin-
ning with the TREAT algorithm the connection between Rete op-
erators and database operators has been exploited by many [10, 4]
and we will do so here. First we illustrate, through an example, that
pattern matching in SPARQL differs little from early, Rete-based AI
rule languages, and then detail the corresponding Rete network and
its behavior with respect to incremental addition of data; See Figures
3, 4, 5.

It is convenient to think of memory nodes as containing the so-
lution to a subset of the query (rule antecedent). Memory nodes that
store the output of a unary operator are called alpha memories. Mem-
ory nodes that store the output of binary operators are called beta
memories. The last beta memory contains solutions to the query.

We explain the contents and a change of state for the example
Rete network. Initialization for a particular query starts with derefer-
2 http://www.openrdf.org/

SELECT ?age
WHERE {
<http://cs.utexas.edu/miranker> :knows ?x .
?x :age ?age.

}

(P example-rule
(http://cs.utexas.edu/miranker :knows <x>)

(<x> :age <age>)
-->

(make <age>)

Figure 3. A SPARQL Query and Its Equivalent in OPS5 Syntax

encing the URIs in the query. The <http://cs.utexas.edu/miranker>
URI is dereferenced and a set of RDF triples are returned. One
of those triples includes (<http://cs.utexas.edu/miranker> :knows
<http://web.ing.puc.cl/arenas>). As illustrated in Figure 4, a Rete
network is found in a state having processed some sample triples.
The existence of the “Arenas URI” in the first alpha-memory sug-
gests additional information may be found at http://web.ing.puc.cl
server. For simplicity assume the “Arenas URI” is dereferenced and
the return result includes the triple (<http://web.ing.puc.cl/arenas>
:age “28”). This triple now satisfies the SPARQL graph pattern. Fig-
ure 5 illustrates the state of the network after processing this new
triple that matches the one-input node on the right side and satisfies
the condition for the two-input, or Join node. A quanta of informa-
tion that moves through Rete network is commonly called a token.
Figure 5. Although our implementation is in Java, one can think of
an initial token being a pointer to the new triple, entering the root of
the network, distributed across the two filter operators, passing the
“age” filter. This success is recorded in the alpha memory. The to-
ken proceed to a join node which may identify a consistent binding
for variable ?x. Each binding is emitted from the join node as a new
token. A copy of the token recorded in a beta memory.

A Rete operator set for SPARQL follows from work by Angles
and Guitierrez concerning the semantics of SPARQL [1]. Angles and
Gutierrez proved that SPARQL is equivalent in expressive power to
non-recursive Datalog with negation. Given the relationship between
SPARQL, Datalog and relational algebra, to form a Rete operator set
for SPARQL one needs to identify a mapping, by transitivity, from
SPARQL syntax and its native logic, to relational operators. Table
1 summarizes the preceding construction including the relationship
between SPARQL constructs, SPARQL algebra, formal semantics,
and Rete operators.

Each Rete-Match operator is implemented as a unique node in the
network, with its object-oriented structure represented in Figure 5.

3.1 Root

The root node is the gateway for all data that enters the network.
When a working memory change enters the network in the form of
a tuple, it is wrapped in a structure called a token which includes a
tag indicating whether the element is to be added (+ tag) or deleted
(- tag) from memory. The root node then propagates the token to its
direct children, all of them TriplePatternTest nodes.

9

Figure 4. Rete network designed by Diamond for the SPARQL query from Figure 3; the memories have been previously filled with sample data.

!"#$%&'()&*+,&,-./0$(/12345/46/)$3789:;!

"#$%&'()*$%(+&,-./*01(/2!!31045$!")2! ")2!64*63*7(!"*7(2!

"#$%&'()*$%(+&,-./*01(/2!!31045$!!"5(8%.07%9&#%#:,*/(0*$2!
!

!"#$%&'()%)*'

+"*,!"-.)'/01*'

2&-3%'4*5067'

890,!"-.)'/01*'

:*)%'4*5067'

"5(8%.07%9&#%#:,*/(0*$2!64*63*7(!!;<=>!
!

"#$%&'()*$%(+&,-./*01(/2!!31045$!!"5(8%.07%9&#%#:,*/(0*$2!
!

"5(8%.07%9&#%#:,*/(0*$2!64*63*7(!!;<=>!
!

;00)'

86#-&*'<%=*6"'8*>)'

2&-3%'4*5067'

?0#"'

:*)%'4*5067'

Figure 5. State of the Rete network after introducing the new triple. Labels on the left correspond to the terminology used in the original Rete match
algorithm while labels on the right correspond to the names used on Diamond to convey the semantics of SPARQL.

10

Table 1. Summary of the Derivation of SPARQL Rete Operators

SPARQL
Language
Construct

SPARQL
Algebra Oper-
ators

SPARQL Op-
erators in [1]

Rete Operators

BGP eval(D(G),
BGP)

T(GroupGP) TriplePatternTest(tp,
R)

(.) JOIN(⌦1, ⌦2) P1 AND P2 R1 InnerJoin R2
OPTIONAL LEFTJOIN(⌦1,

⌦2, C)
P1 OPT P2 R1 LeftJoin R2

UNION UNION(⌦1,
⌦2)

P1 UNION P2 R1 Union R2

FILTER FILTER(C, ⌦) P1 FILTER C Select(C,R)
SELECT PROJECT(,

PV)
SELECT Project(s,R)

Figure 6. UML Class Diagram for the Rete-Mach implementation

3.2 TriplePatternTest
A unary test node that propagates only those tokens whose RDF tuple
matches the constants in a single triple pattern; matching tokens are
sent to the subsequent child alpha memory.

3.3 Memory
Alpha and Beta memories store the contents of + tokens they receive
and delete tuples matching the contents of the - tokens.

3.4 Inner Join
All Join operators have two memories as their parents. The inner join
operator is activated by receiving a token from either the left or right
side.

The token will be compared with every token contained within the
opposing memory, and two tokens are joined together if their variable
bindings are consistent or no shared variables exist in either token.
The resulting joined token will then be propagated to the succeeding
Beta memory for storage.

3.5 Left Join
Behaves like an Inner Join, but with a couple of special cases:

If a token from the left parent does not match a token from the
right hand side, then the left hand side token will propagate to the
child Beta memory without being joined; else the tokens are joined
as usual.

If a token comes from the right hand side parent, it is compared
with the left side, and for each match a token with the joined tuples is
propagated alongside with a negated token containing the matching
left side tuple.

3.6 Union

A binary operator that computes the set union between the two mem-
ories, it propagates all + tokens that are not already contained in the
succeeding child memory and only those - tokens that match a tuple
in that same child memory.

3.7 Intersection

A binary operator that computes the set intersection between the two
memories. It propagates only those + tokens that match a tuple in the
opposing side memory and are not already contained in the succeed-
ing child memory. It also propagates only those - tokens that match
a tuple in the succeeding child memory.

3.8 Cartesian Product

Whenever a token reaches one side of this binary node, a new token
with the same tag is created and propagated to the subsequent child
Beta memory for each element of the other side memory containing
the joined tuples.

3.9 Filter

Compares the contents of each + and - tokens to a local constraint,
if there is a match the token will propagate to the subsequent Beta
memory, else it stops.

4 STATUS and PRELIMINARY RESULTS

To minimize the learning curve of future project participants Dia-
mond is constructed using canonical Java compiler tools. The lexer
and parser are build using a BNF grammar description of SPARQL
and JavaCC4. Java Tree Builder6 (JTB) is the basis of internal syntax
tree. At runtime, a SPARQL query is parsed into internal form, and
the Rete network created by traversing the syntax tree and calling the
Rete network object constructors.

The system is not yet multithreaded. In other words there is no
parallelism among the query processing and the URI dereferenc-
ing objects. The two queues are both implemented as standard FIFO
queues.

The system successfully passes all 126 SELECT queries in the
RDF API for PHP test suite (RAP). The suite contains another 25
test cases consisting of SPARQL, ASK, DESCRIBE, CONSTRUCT
and solution modifier queries, which are currently not supported in
Diamond.

For our preliminary experiments, we used the Berlin SPARQL
Benchmark. We execute every experiment ten times (excluding three
warm-up runs) and calculate the average query execution speed. See
Table 2. Although the test data source was hosted on a machine on the
local network, without multithreading, the execution times include
the total network latency for dereference every URI in the query.

Table 2. Timing Results from Linked Data queries

Query Query 1 Query 2 Query 3
of Results 10 1 4
of Tokens Processed 10,246 10,106 64
Execution Time 5 min, 47 sec 3 min, 43 sec 2.12 sec

11

5 FUTURE WORK
This paper presents the architecture of Diamond, a SPARQL query
engine for Linked Data based on the Rete Match. The system has
only just recently become functional. The system architecture antici-
pates future development and evaluation of optimization with respect
to prioritizing dereferencing URIs, the processing of the resulting
triples, and local caching of linked data. Future evaluation will nec-
essarily include comparison with other Linked Data query systems,
most notably SQUIN 3. We made observation in several places in
this paper that there are open implementation choices still to be re-
searched that may be influenced or even disallowed, depending on
how the semantics of these systems are resolved.

ACKNOWLEDGEMENTS
This research was supported by NSF grant IIS-1018554. Juan F. Se-
queda was supported by the NSF Graduate Research Fellowship.

REFERENCES
[1] Renzo Angles and Claudio Gutierrez, ‘The expressive power of sparql’,

in International Semantic Web Conference, pp. 114–129, (2008).
[2] Tim Berners-Lee. Linked data - design issues.

http://www.w3.org/DesignIssues/LinkedData.html.
[3] Charles Forgy, ‘Rete: A fast algorithm for the many patterns/many ob-

jects match problem’, Artif. Intell., 19(1), 17–37, (1982).
[4] Eric N. Hanson, ‘The design and implementation of the ariel active

database rule system’, IEEE Trans. Knowl. Data Eng., 8(1), 157–172,
(1996).

[5] Olaf Hartig, ‘Zero-knowledge query planning for an iterator implemen-
tation of link traversal based query execution’, in ESWC (1), pp. 154–
169, (2011).

[6] Olaf Hartig, ‘Sparql for a web of linked data: Semantics and com-
putability’, in ESWC, pp. 8–23, (2012).

[7] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag, ‘Executing
sparql queries over the web of linked data’, in International Semantic
Web Conference, pp. 293–309, (2009).

[8] Olaf Hartig and Johann-Christoph Freytag, ‘Foundations of traversal
based query execution over linked data’, in HT, pp. 43–52, (2012).

[9] Tom Heath and Christian Bizer, Linked Data: Evolving the Web into a
Global Data Space, Synthesis Lectures on the Semantic Web, Morgan
& Claypool Publishers, 2011.

[10] Daniel P. Miranker, ‘Treat: A better match algorithm for ai production
system matching’, in AAAI, pp. 42–47, (1987).

[11] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Hol-
ger Stenzhorn, and Giovanni Tummarello, ‘Sindice.com: a document-
oriented lookup index for open linked data’, IJMSO, 3(1), 37–52,
(2008).

[12] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez, ‘Semantics and
complexity of SPARQL’, ACM Trans. Database Syst., 34(3), (2009).

[13] Eric Prud’hommeaux and Andy Seaborne. SPARQL query lan-
guage for RDF. W3C Recommendation 15 January 2008,
http://www.w3.org/TR/rdf-sparql-query/.

3 http://squin.org
12

Implementation of a SPARQL Integrated
Recommendation Engine for Linked Data with

Hybrid Capabilities

Sean Policarpio and Sören Brunk and Giovanni Tummarello 1

Abstract. Linked data can serve its purpose in many real-
world applications including recommendation engines. We
present here our approach and implementation for a recom-
mendation engine that uses linked data as input for both col-
laborative filtering and content-based recommendations. The
SPARQL query language is integrated for the purpose of al-
lowing users of the system to declaratively specify RDF data
for recommendation computation. The system has the ability
to create or augment linked data by outputting recommenda-
tions in RDF and can also perform hybrid recommendations.
It can handle large amounts of linked data input due to the
systems parallel programming framework.

1 Introduction

As the amount of data within the linked open data cloud [1, 2]
increases, the potential for its use in different applications and
purposes grows. One such field of application is in the do-
main of recommendation engines. Recommendation engines
(or simply recommenders) [6] serve the purpose of produc-
ing relevant suggestions for persons and things based on prior
knowledge (e.g. user preferences or meta-data). Their use in
companies such as Amazon and Netflix have been frequently
discussed. However, recommenders designed and actually im-
plemented for use with linked data or “the web of data” have
not been widely explored and in our opinion have potential
for improvement. We present our implementation of a rec-
ommendation engine with a capacity for linked data and the
ability to compute two types of recommendations:

• Collaborative filtering [9] is a form of recommendation
based on user preferences towards items. Recommendations
exist as probable preferences that users may have towards
items which they have not expressed before. They are com-
puted by determining similarities between users or between
entities based on preexistent user preferences.

• Content-based recommendations [9] on the other hand do
not necessarily have to involve information about user pref-
erence. Instead, they compute recommendations by directly
comparing items based on their features or meta-data. For
example, items are most similar when they share the most
common features. Similarity, indicated in most cases by
some numeric value, can be used when suggesting relevant
or related items.

1 Digital Enterprise Research Institute, National University of Ire-
land Galway, email: firstname.lastname@deri.org

What makes linked data desirable for use with recommen-
dation engines is its heterogeneous structure and ubiquitous
nature. A recommendation engine that is capable of interpret-
ing data from various and different sources has the potential
to compute diverse suggestions across multiple domains. For
example, in terms of the Resource Description Framework
(RDF), a recommender could generate content-based recom-
mendations for books (defined in an RDF graph) based on
their similarity to movies (located in another RDF graph).
This would be possible if the books and movies shared re-
latable features (e.g. genre, authors, writers, era, etc.) that
were retrievable via linked data. Recommendations could be
refined or improved by selectively including (or excluding)
features from either of the linked data sources.

A recommendation engine like this also has the potential
to create or augment linked data. Computed recommenda-
tions can be transformed into new linked data and can retain
links to the original input data by referencing a shared URI.
Besides having the recommendation data accessible through
RDF, this is advantageous because of the cyclic relationship
in which the linked recommendation data can be used to com-
pute or refine further recommendations within the engine. We
discuss this relationship in more detail when introducing our
recommenders ability to perform hybrid recommendations [3].

An aspect of linked data which we believe is both benefi-
cial and well-suited for recommendation engines is the way in
which it is usually accessed; through the use of the declara-
tive SPARQL query language. SPARQL queries provide a well
structured, expressive, and reliable way for users to define the
data that should be used for computing recommendations.
For example, in regards to a content-based recommender, a
SPARQL query for a fictional art auction house can be writ-
ten to retrieve auction items like so:

SELECT ?artPiece ?artist ?year ?medium ?influence WHERE {
?artPiece a :AuctionItem.

?artPiece :artistName ?artist.

?artPiece :created ?year.

?artPiece :medium ?medium.

?artist :influencedBy ?influence.

}
To perform similarity computation of the results, the data

can be used with a content-based algorithm such as co-
occurrence or Tanimoto similarity [7].

The challenge in such a recommendation system lies in the
framework and design to accommodate both linked data and

13

recommendation algorithms. The first intuitive approach to
integrate the use of linked data in a recommendation en-
gine is through the implementation of a SPARQL interface
for specifying and inputting RDF data like that of the pre-
vious query example. However, another aspect that must be
considered is scalability; to be truly useful, such an engine
must have the ability to work with the large volumes of avail-
able linked data. In this case, we consider a distributed model
(i.e. Hadoop/MapReduce) for recommendation computation.
Along with a number of other implementation components,
the main contribution of this paper is to present and discuss
the approach, design, and construction of a working and prac-
tical linked data recommendation engine that supports these
considerations.

Before detailing the system framework, in Section 2 we
present a formal representation of the recommendation en-
gine. We then discuss the major components of our recom-
mendation engine. Section 3 presents case studies to demon-
strate the use and workflow of the system. We define hybrid
recommenders for our system in Section 4. Finally, in Section
5 and 6 we discuss related work and conclude with future
plans.

2 A Recommendation Engine for Linked
Data

Before the construction of the engine, formal definitions of the
recommenders were written to aid in the systems design. Our
collaborative filtering and content-based recommenders have
a common workflow; they involve the retrieval (or extraction)
of data, the aggregated computation of recommendations, and
finally output. These definitions are based on general recom-
mendation algorithm approaches and have been adapted for
RDF input and output.

Collaborative Filtering The collaborative filter defined
here is called an item-based recommender [10]. For determin-
ing relevant item recommendations, this algorithm computes
similarities between items based on the preferences made by
other users. A collaborative filter is C = (T, φ,Π, L) where:

• T represents the set of tuples (u, i, p) where u ∈ U users,
i ∈ I items, and p ∈ R is a preference (rating) value.

• φ is a query on T .
• Π is {ε,R, α} where ε is the extraction function on T , R is

the recommender function, and α is the collaborative filter
similarity algorithm in place.

• The set L contains the computed recommendation tuples
(u, r, w) where u ∈ U users, r ∈ I items, and w ∈ R is a
weighted preference value.

The collaborative filter extraction function ε(T, φ) produces
the set G where φ is a query on T such that every (u, i, p) ∈ G
satisfies (`) the query pattern in φ.

G = {(u, i, p)|(u, i, p) ∈ T, φ ` {(u, i, p)}}

R is a single collaborative filter recommendation function that
returns the set of recommendations for a single user u.

R(u) = {(u, r, w)|((u, i, p) ∈ G ∧ (u, r, w) /∈ G)

→ (w = α(i, r)× p)}

The collaborative filter similarity algorithm α returns a com-
puted similarity value between an i and r (both from I) based
on the preferences for them by users in G. The collaborative
filter system produces recommendations for G as a candidate
list L for each and every (u, i, p) ∈ G based on the similarity
(α) of each i it has a preference p for.

L =
⋃

(u,i,p)∈G

R(u)

Content-based The content-based recommender deter-
mines the semantic-distance between item entities by referring
to the features for similarity computation. This approach vec-
torises each entity and its features (e.g. RDF properties and
values) to compute the semantic-distance between each item
[7]. Content-based recommendation is S = (T, φ,Π, L) where:

• T represents the set of i ∈ I items.
• φ is a query on T .
• Π is {ε,R,∆,Ψ} where ε is the extraction function on T ,
R is the recommender function, ∆ is the semantic-distance
algorithm in place, and Ψ represents the vectorisation of
an item and its features.

• The set L contains the computed recommendation tuples
(i, r, w) where i ∈ I are items, r ∈ I are the recommended
items, and w ∈ R is a computed similarity value from ∆.

The content-based recommender extraction function
ε(T, φ) produces the set G where φ is a query on T such
that all i ∈ G satisfies (`) the pattern selection in φ.

G = {i|i ∈ T, φ ` i},
R is a single content-based recommendation function that
returns the set of recommendations for a single i.

R(i) = {(i, r, w)|(i ∈ G ∧ r ∈ G)→ (w = ∆(Ψ(i),Ψ(r)))

The content-based system produces recommendations for G
as a candidate list L for each and every i ∈ G based on its
similarity (∆) to other items, r ∈ G.

L =
⋃

i∈G

R(i)

2.1 System Framework and Workflow

In the adaptation of our formal definitions for the actual de-
velopment of the recommender, the decision was for the sys-
tem to execute in a pipeline fashion. Figure 1 shows the in-
terconnectivity and flow of the pipelined modules.

The majority of the system was developed in the Java pro-
gramming language. The backend system consists of a number
of modules that generally perform preparation and processing
of RDF data for the core recommender. Inside the core recom-
mender, modules compute recommendations in parallel. The
Apache Mahout [7] machine learning library is integrated into
the recommender to perform the parallel and distributed al-
gorithmic computations. This library contains a collection of
the most prevalent recommendation algorithms for collabora-
tive filters and content-based recommendations2 and includes
an API developed for use with Apache Hadoop3.

2 Mahout’s Algorithms – https://cwiki.apache.org/confluence/
display/MAHOUT/Algorithms

3 Apache Hadoop – http://hadoop.apache.org

14

Figure 1. Recommendation Job Workflow

The front-end interface4 of the system was developed in
HTML and Javascript and utilises a REST API to interact
with the backend system. This API consists of a Java servlet
that directs communication from the user to the backend.

We describe the most prominent modules (or phases) in-
volved with the processing of RDF data and the computation
of recommendations.

Recommendation Jobs A singular recommendation job
represents the input, computation, and output of recommen-
dations for a set of data. In other words, the flow depicted
in Figure 1. When a job is created, a recommender config is
also created and acts as a backing towards the recommender
job. A config contains all the settings for the job including
the original SPARQL query and triplestore endpoint for the
recommender input, the output triplestore endpoint to store
the recommendations, options for the recommendation algo-
rithm (based on Mahout’s algorithms), plus other essential
configuration details.

Extraction – ε(T, φ) When a recommender job is cre-
ated and started, the first step of the workflow is to perform
the extraction of data from an RDF triplestore. The recom-
mender system utilises the OpenRDF Sesame Java API5 for
the execution of SPARQL queries and the retrieval of results.
The API executes the defined query by synchronously commu-
nicating with a triplestore through the HTTP protocol. For
either collaborative filters or content-based recommendations,
this module will retrieve the query results and materializes
them for preprocessing.

Preprocessing In this phase, data retrieved through the
SPARQL query is transformed to efficiently organize the large
volumes of RDF that will be input into the following recom-
mendation computation modules.

In the case of collaborative filters, data is processed into a
vector data structure. The first preprocessing step is to pro-
duce a dictionary for the results from extraction. These dic-
tionaries are used to numerically map and structure the RDF
into distinct vector representations.

4 A demo of the system interface is available at http://www.
youtube.com/playlist?list=PL82ECC533A5936472

5 OpenRDF Sesame API – http://www.openrdf.org/doc/
sesame2/api/

Algorithm 1 Preprocessing for Collaborative Filtering

procedure mapper(G)
for all (u,i,p) in G do

userkey = userdictionary.add(u)
itemkey = itemdictionary.add(i)
vectormap.push<userkey, itemkey, p>

end for
return vectormap

end procedure

With content-based recommendations, similar dictionary
and mapping preprocessing jobs are performed to restructure
the RDF data into sparse vectors. However, in addition, a flat-
tening job ensures that non-unique entities returned from the
SPARQL query are combined into singular results (Section 3
demonstrates the need for this).

Algorithm 2 Preprocessing for Content-based Recommendations

procedure mapper(G)
for all i in G do

itemkey = itemdictionary.add(i)
vectormap.push(<itemkey, i.featuresList>)

end for
return vectormap

end procedure

Algorithm 3 Flattening for Content-based Recommendations

procedure reducer(vectormap)
for all <k, featuresList> in vectormap do

if sparsevector.get(k) then
sparsevector.get(k).concatenate(featuresList)

else
sparsevector.put(k).concatenate(featuresList)

end if
end for
return sparsevector

end procedure

Computation – R, α,∆ For collaborative filters, Ma-
hout’s RecommendationJob API [7] is initialised with inputs
and configuration settings for the purpose of executing a job
(either locally on a pseudo-cluster or on a real Hadoop clus-
ter). For content-based recommendations, a similarity job is
instead created using Mahout’s RowSimilarityJob API [7], but
is generally configured in the same way as the collaborative fil-
ter. Both API’s are input with the preprocessed vectors from
the previous phase and produce recommendations in a similar
data structure format.

Post-processing and Output Due to the preprocessing
of the input RDF data performed earlier, this post-processing
step is required so that the referenced vector keys in the com-
puted recommendation are transformed back into the original
data. This ensures that data – such as URI’s or literal values –
can be output correctly as RDF recommendations. In general,
the post-processing MapReduce job resembles the preprocess-
ing algorithm in reverse.

With the recommendations computed and post-processed,
the recommender system outputs these results as RDF on
to the user-specified triplestore. Once again, the OpenRDF
Sesame API is used for interacting with the triplestore. In
this case, each result from the recommendation job is written
as a new triple6 into an RDF graph specific to the job. The

6 The vocabulary for RDF recommendations is user-defined.
15

following is an example of a single recommendation for a col-
laborative filter; User 1 has a recommendation for movie 7

with a rating (score, similarity) of 72.441532.

<http://user/1> :hasRecommendation :node16sus6lh.

:node16sus6lh :recommends <http://movie/7>.

:node16sus6lh :hasScore 72.441532.

:node16sus6lh rdf:type :Recommendation.

Each produced recommendation is added to the graph and
committed to the triplestore using SPARQL and HTTP. Ad-
ditional data is also written into the result graph. This in-
cludes the number of recommendations produced as well as
the beginning and end time of the job.

3 System Use

To demonstrate the input and output of the recommender,
we present a couple of use cases. The first example is for a
collaborative filter. In this case, a SPARQL query is written
to select all the users from a database who have indicated a
preference to a movie with a rating7.

SELECT ?user ?movie ?rating WHERE {
?user <http://www.grouplens.org/rating/hasRated> ?bn.

?bn <http://www.grouplens.org/rating/target> ?movie.

?bn <http://www.grouplens.org/rating/value> ?rating.

}
The resulting data, a triple of (user,movie, rating), is used

to determine probable ratings for the movies users have not
specified ratings for yet. It is important to note the struc-
ture of the SELECT queries output; although the user is free
to declaratively specify the SPARQL query in any way they
wish (i.e. as long as it satisfies the RDF structure of the data
graph), to properly function as a collaborative filter, the user
must adhere to some restrictions when defining the output
(i.e. projection) of the final query. The output must contain
the following data in this order:

1. A subject, user, or entity that is portraying a preference towards
something (i.e. another entity).

2. The item or other entity that the previous subject, user, or entity
is showing a preference towards.

3. A weight or level of the preference towards the item [optional].

The third parameter is optional. In the case of its absence,
the preference is presumed to be an atomic value (i.e. the
user simply demonstrates a preference with no weight). For
the above example, an excerpt of the queries output is shown
in Table 1 (* = http://www.grouplens.org).

?user ?movie ?rating
*/user/1 */movie/2115 3
*/user/1 */movie/1240 5
*/user/2 */movie/780 2
*/user/2 */movie/1240 5

Table 1. Query Results for Collaborative Filter

Users can have any number of preference data (e.g. user
1 has two preferences shown here). All the queries output
data is compiled together as input for the system so that
the recommender can determine the preference similarities
between all users and can compute probable rating values

7 All the movie preference data was adapted from the http://
www.grouplens.org/ research datasets into RDF triples for the
purpose of our experimentation.

for movies (i.e. those results returned by ?movies) that the
user has not yet shown a preference towards. For example,
the recommender produces this RDF recommendation once
computation is complete:

<*/user/1> :hasRecommendation :node79hjk1jk.

:node79hjk1jk :recommends <*/movie/780>.

:node79hjk1jk :hasScore 1.89712.

:node79hjk1jk rdf:type :Recommendation.

User 1’s probable preference to movie 780 is quite low (in
this case, preferences are in the 1-5 range). While still taking
into consideration other input data, this result is possibly due
to his similarity with user 2 and his preference to movie 780.
In regards to linked data, we can see that this result has
retained links back to the original data by referencing the
original URI’s of the user and movie entities.

For a content-based recommendation, the following
SPARQL query can be used to specify a number of items
for similarity comparison.

SELECT ?person ?birthDate ?occupation ?abstract

FROM <http://dbpedia.org>

WHERE {
?person <http://dbpedia.org/ontology/occupation> ?occupation.

?person <http://dbpedia.org/property/dateOfBirth> ?birthDate.

?person <http://dbpedia.org/ontology/nationality> ?birthPlace.

?person <http://dbpedia.org/ontology/abstract> ?abstract.

FILTER langMatches(lang(?abstract), "en")

}
Here, entities of people recorded in DBpedia’s RDF reposi-

tory (http://dbpedia.org/sparql) represent the items of com-
parison. For qualifying features, we specify predicates and
their values (URI or literal) as input. The data input, a tuple
of (person, birthDate, occupation, abstract), would be used
for comparison and computation of similarity values which
in turn could be used for the purpose of recommendation.

Unlike collaborative filters, queries used as input for
content-based recommenders in our system do not have the
same restrictions in regards to the actual output of the query.
There is only one guideline when declaratively specifying the
query; the first projection variable of the query must repre-
sent the distinct entities that you want to perform similarities
between. In the case of the above example, we have written a
query for the DBpedia.org SPARQL endpoint that retrieves
any entities (?person) that have the following features: an oc-
cupation, a birth date, a birth place, and finally an abstract
description about themselves. Table 2 shows an excerpt of this
queries output (* = http://dbpedia.org/resource).

?subject ?birthDate ?occupation ?abstract
*/Nicanor Parra 5 */Poet ‘‘Nicanor Parra

Sandoval (born
September 5, 1914)
is...

*/Nicanor Parra 5 */Physicist ‘‘Nicanor Parra
Sandoval (born
September 5, 1914)
is...

*/Eduardo Frei Ruiz-Tagle 1942-06-24 */Civil engineering ‘‘Eduardo Alfredo
Juan Bernardo Frei
Ruiz-Tagle (born June
24, 1942) is a...

*/Eve Langley 1908-09-01 */Poet ‘‘Eve Langley (1
September 1908 -
circa 1 June 1974),
born Ethel Jane
Langley, was...

Table 2. Query Results for Content-based Recommendation

After computation, one of the results for this recommenda-
16

tion job had the following RDF triples:

<*/Eve Langley> :hasRecommendation :node45rlb8ui.

:node45rlb8ui :recommends <*/Nicanor Parra>.

:node45rlb8ui :hasScore 72.12791.

:node45rlb8ui rdf:type :Recommendation.

This particular result was most likely due to these entities
sharing the same occupation feature and also possibly having
similarities in their abstracts (e.g. month of birth). Again,
these results demonstrate how the original linked data is aug-
mented through references to their URI’s.

There are some important items to take notice of for
content-based recommendations. First, note that not all re-
sults of SPARQL queries have to be used for input into the
recommender. In the above example, although we queried sub-
jects with a ?birthPlace feature, we were not required to use
it as input. This is useful if we require filters on the data we
want to produce recommendations for but are not particu-
larly concerned with its use. Furthermore, unlike queries used
for collaborative filters, we are not limited to the number of
entity features/properties used as input. This means we can
broaden (or narrow) the similarity by selectively choosing the
features we require for recommendation computation.

The output of the above query is an interesting example as
it highlights a certain tendency of SPARQL query output; in
the case of the first entity (the DBpedia resource for ‘Nicanor
Parra’), this particular resource satisfies the query two times.
This is because ‘Nicanor Parra’ has a triple in the DBpedia
data graph which states he has two occupations: Poet and
Physicist. This is important as it demonstrates one of the
preprocessing steps that the recommendation system had to
implement (earlier we referred to it as a flattening procedure).
The system aggregates these features and performs processing
so that multiple query results like those of ‘Nicanor Parra’ are
transformed into singular results.

It is also important to take note of the variety of unexpected
output that can occur with the returned query results. In this
example, the ?birthDate feature is not consistent as we can
see that the results vary in format. Another consideration
comes from the fact that the ?abstract feature contains a
long string of literal data as opposed to a URI. Fortunately,
options are built into the recommenders preprocessing mod-
ules to handle these considerations (e.g. date and string tok-
enization). Due to space constraints, we will forgo discussing
them in full detail.

4 Hybrid-based Recommendations

Hybrid-based recommenders are a combination of different
recommender types for the purpose of producing more pre-
cise results [3]. The ability to create hybrid recommenders
are an important feature of recommendation systems. They
can help alleviate recommendation computation when data
is very sparse (i.e. the cold-start problem) [3]. In some cases,
hybrids can be utilised as “tie-breakers” when one recom-
mender does not produce relevant enough results. The limi-
tations of hybrid recommenders are based on the ability to
interconnect the functionality or input/output of individual
recommenders.

Our hybrids approach is based on the reuse of linked data
recommendations created from previous jobs. In [3], Burke
gives a number of strategies and descriptions of hybrid rec-

ommenders which in some cases are used as a basis for our
own. However, our current hybrids are not exclusively limited
to his hybrid types as we were able to define our own varia-
tions. The first hybrid we defined creates a union between the
most relevant recommendations computed by a collaborative
filter for a user u and the most relevant recommendations
computed by a content-based recommendation for a set of
items i.

Definition Simple combination:
Assuming there exists a G = ε(T, φ) and L for collaborative
filtering, and a G′ = ε(T, φ′) and L′ for content-based, for
a u and i, a simple combination of their recommendations is
H = {r|(u, r, w) ∈ L} ∪ {r′|(i, r, w) ∈ L′}, where a limiting
bound can be set on w (e.g. l ≤ w ≤ m where l is a lower
bound and m is an upper bound).

We also present two types of cascade hybrids [3]. These
hybrids involve the direct refinement of the results of one rec-
ommender within another.

Definition Cascade refinement (CF, CB):
Assuming there exists a G = ε(T, φ) and L for collabora-
tive filtering and a G′ = ε(T, φ′) and L′for content-based,
for a u, retrieve the collaborative filter recommendations:
H = {r|(u, r, w) ∈ L}. A refinement of the recommendation
H is H ′ = {(r, w′′)|r ∈ H ∧ w′′ =

∑
w′ ∈ T (r,H)}, where

T (r,H) = {w′|∀i ∈ H((i, r, w′) ∈ L′ ∧ i 6= r)}. For each r in
H ′, a total weight (score) w′′ is associated with it. A limiting
bound can be set on w′′ (e.g. l ≤ w′′ ≤ m where l is a lower
bound and m is an upper bound).

Definition Cascade refinement (CB, CF):
Assuming there exists a G = ε(T, φ) and L for content-
based, for a u, return the set of most similar users F =
{u′|(u, u′, w) ∈ L}. For the refined recommendation, a query
φ′ can be made for the set (u ∪ F) and all of their preferred
i ∈ I where I ⊂ T ; that is G′ = ε(T, φ′). L′ is the refined
collaborative filter for u based on its semantic distance to F .

These hybrids refine the results of a collaborative filter
through content-based recommendation and vice-versa. The
first cascade hybrid refines the results of a collaborative filter
by utilising the content-based recommendations of the enti-
ties to compute the sum of the similarity weights between
them. Each sum represents a new ranking of the entities and
is tupled together.

The second cascade hybrid in contrast computes the
semantic-distance of users with a content-based recommender
(possibly using feature combination of user attributes) so that
a collaborative filter can be executed for a particular user,
their neighbourhood of similar users (F), and their preferred
items. A SPARQL query (φ′) is written to reflect this and the
output is a refinement for a broader collaborative filter over,
for example, all users of a triplestore T .

5 Related Work

Implementations of recommendation engines specific to linked
data is something that has been explored before. However, we
believe our approach is quite different than most primarily due
to the integration of SPARQL as a method for the declarative

17

specification of recommender input, its ability to create new
linked data, and the use of a distributed programming model
for recommendation computation.

In [8], Passant presents his theory and implementation for
dbrec, a music recommendation system using data from DB-
pedia. His algorithm, which is primarily based on SPARQL
query patterns, disregards literal values contained within the
data entities used to compute recommendations. We consider
all values (features) of semantic data necessary to compute
similarities and eventual recommendations. However, many
of the motivations of this work are also aligned with ours,
including using linked data as a way to enhance both the
recommendation input and output.

In [5], Heitmann and Hayes discuss their work on a collab-
orative filter recommendation system that utilises linked data
in order to improve the recommendations. They propose a sys-
tem which integrates linked data with closed recommendation
data for the purpose of the data acquisition problem (i.e. not
having enough data to compute relevant recommendations).
Like our approach, they utilise SPARQL for the purpose of in-
tegrating linked data. However, our implementation not only
uses linked data as input but also produces recommendations
as new linked data. In addition, our system can be utilised to
create content-based as well as hybrid recommendations.

A comprehensive exploration is done in [4]. Cantador et al.
implement an Internet news recommendation system based on
their research with semantic ontology based knowledge mod-
els and recommenders. Their approach also covers hybrids be-
tween collaborative filters and content-based recommenders.
A similar framework was designed (e.g. RDF data storage,
machine learning library use), but is not based on modern
technologies such as RDF triplestores or SPARQL. Further-
more, although the works focus is on semantic data in general,
the implementation was based solely on RDF Site Summary
(RSS) news feeds.

Other work has shown some innovation within the more
general area of machine learning and linked data. For exam-
ple, in [11], Stankovic et al. demonstrate the use of recommen-
dation techniques and the linked open data cloud, specifically
DBpedia, for computing similarities and allocating topics or
keywords to higher-level concepts.

6 Future Work and Conclusion

In this paper we have demonstrated a practical implementa-
tion of a SPARQL integrated recommender for linked data.
Due to the capability to not only compute recommendations
with linked data but to also create and augment linked data,
we deemed the exploration and development of such an en-
gine worthwhile. This idea garnered further potential with
the decision to utilise the SPARQL query language as a user-
oriented way for declaratively specifying recommender input.
In regards to the ubiquitous and generally large volume of
linked data that can be expected to be used with a recommen-
dation system, our implementation was designed for parallel
recommendation computation and scalability through the use
of the Mahout machine learning library.

After presenting formal definitions of our recommendation
engine, we elaborated on the design and development of our
systems framework. Case studies were given to demonstrate
the use of SPARQL and the RDF output of our recommender.

Based on the idea of hybrid-based recommenders, we formally
defined and showed how our system can interconnect the out-
put of different recommendations to produce refined compu-
tations. Finally, we presented a brief review of the relevant
state of linked data recommendation systems.

With future development we plan on continuing to improve
our framework to accommodate different use cases. Commu-
nication and collaboration with small to medium sized en-
terprises (SME) has helped to establish these and future use
cases and to define desired system features. In addition, we
will explore the integration of other recommender types into
the system. Experimental benchmarking is a task that will be
undertaken before any future work is accomplished. However,
this has proved to be quite difficult as access to linked data
resources can sometimes be erratic or unreliable. Currently,
most tests have been completed with either large volumes of
local data or small volumes from externally served RDF triple-
stores or search engines (e.g. DBpedia.org, Sindice.com).

7 Acknowledgements

This research is funded by the Semantic Tools for Digital Li-
braries Project8 (SemLib) and the LOD2 Project9.

REFERENCES

[1] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked
data - the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[2] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim
Berners-Lee. Linked data on the web (ldow2008). In Pro-
ceedings of the 17th international conference on World Wide
Web, WWW ’08, pages 1265–1266, New York, NY, USA,
2008. ACM.

[3] Robin Burke. Hybrid web recommender systems. In Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The
Adaptive Web, volume 4321, pages 377–408. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[4] Iván Cantador, Pablo Castells, and Alejandro Belloǵın. An
Enhanced Semantic Layer for Hybrid Recommender Systems.
International Journal on Semantic Web and Information
Systems, 7(1):44–78, MarJan 2011.

[5] Benjamin Heitmann and Conor Hayes. Using linked data
to build open, collaborative recommender systems. In In:
AAAI Spring Symposium: Linked Data Meets Artificial In-
telligence’. (2010, 2010.

[6] Prem Melville and Vikas Sindhwani. Recommender systems.
In Encyclopedia of Machine Learning, pages 829–838. 2010.

[7] S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in
Action. Manning Publications, 2011.

[8] Alexandre Passant. dbrec - music recommendations using db-
pedia. In International Semantic Web Conference (2), pages
209–224, 2010.

[9] A. Rajaraman and J.D. Ullman. Mining of massive datasets.
Cambridge Univ Pr, 2011.

[10] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Reidl. Item-based collaborative filtering recommendation al-
gorithms. In Proceedings of the 10th international conference
on World Wide Web, WWW ’01, pages 285–295, New York,
NY, USA, 2001. ACM.

[11] Milan Stankovic, Werner Breitfuss, and Philippe Laublet.
Linked-data based suggestion of relevant topics. In Proceed-
ings of the 7th International Conference on Semantic Sys-
tems, I-Semantics ’11, pages 49–55, New York, NY, USA,
2011. ACM.

8 http://www.semlibproject.eu/
9 http://lod2.eu/

18

Bridging the Gap between RIF and SPARQL:
Implementation of a RIF Dialect
with a SPARQL Rule Engine

Oumy Seye1 and Catherine Faron-Zucker2 and Olivier Corby3 and Corentin Follenfant4

Abstract. Semantic Web knowledge representation stan-
dards have close relationships with rule-based languages and
systems. In particular, the sparql query language can be seen
as a rule language: answering a construct query is similar
to applying a rule in forward chaining to enrich an rdf base,
with the rule antecedent corresponding to the where clause
and its consequent to the construct clause of the sparql
query. In this paper we present the correspondances between
sparql and rif, the rule interchange format recommended by
the W3C. We have characterized the subset of sparql that
can be expressed in rif and, conversely, we have searched for
the maximal rif dialect that can be expressed in sparql. We
have extended the Corese semantic engine which enables to
query rdf/s data with sparql and is provided with both
a forward and a backward chaining rule system, so that it
now supports rif: we have developed (1) a rif parser which
builds an internal representation of a rif rule into an abstract
syntax tree (AST) and (2) a translator of a rif AST into a
sparql AST so that Corese has become an implementation
of a rif-sparql dialect.

1 Introduction

Semantic Web knowledge representation standards have close
relationships with rule-based languages and systems. The se-
mantics of rdfs and that of some subsets of owl - in par-
ticular owl2 rl - can be axiomatized in the form of first
order logic implications that can be used as the basis for a
rule-based implementation. Also, the coupling of a rule base
and a light vocabulary (in rdfs) appears as a real alternative
to owl vocabularies and Description Logic reasoners whose
complexity of operations is quite high. Finally, the sparql
query language for rdf restricted to the construct form can
be seen as a rule language: answering a construct query is
similar to applying a rule in forward chaining to enrich an rdf
base, with the rule antecedent corresponding to the where
clause and its consequent to the construct clause of the
sparql query.

In this paper, we focus on the relationships between
sparql, the query language for rdf recommended by the

1 INRIA Sophia-Antipolis Méditerranée, France
2 Laboratoire I3S, Université Nice Sophia Antipolis, France
3 INRIA Sophia-Antipolis Méditerranée, France
4 INRIA Sophia-Antipolis Méditerranée, France

W3C5, and rif6, the rule interchange format recommended
by the W3C for the exchange of any kind of rules on the web
and more specially on the semantic web. rif has been designed
to ensure the interoperability and portability of different rule
languages and systems; it enables the exchange and reuse of
rules by different rule engines. rif is an extensible set of di-
alects, three of which are defined in the recommendation: rif-
bld7, rif-prd8 and rif-core9. bld stands for Basic Logic
Dialect: rif-bld enables to represent logic programs, i.e. in-
ferences rules on positive facts. It corresponds to Horn Logic
with equality. Syntactically, it is extended with frames, uri
denoting concepts and xml Schema data types. prd stands
for Production Rules Dialect: rif-prd enables to represent
production rules. rif-core is the core language made of the
primitives common to rif-bld and rif-prd. It corresponds
to the Horn Logic without function symbol, i.e to Datalog,
with classical first-order logic semantics.

In the context of the semantic web, the question of the com-
patibility of rif and rdf/s or owl arises. The integration of
rif in the Semantic Web Stack and its actual use on the Web
of Data requires the writing of rif-bld rules to be applied
on rdf data and using rdfs or owl vocabularies. A typical
scenario is the exchange of rif rules with rdf data and rdfs
or owl vocabularies between rule-based systems capable to
take into account the semantics of the vocabularies while ap-
plying rif rules on rdf data. Another scenario is that of a
search engine taking into account the semantics of rif-bld
rules while evaluating sparql queries on rdf data: it will an-
swer not only facts present in the rdf dataset but also facts
inferred from the dataset by the application of rif rules. The
sparql engines which implement the semantics of rdfs or
owl run inferences, for example to find every resources of a
given type (finding also the resources declared with subtypes).
In particular, the Corese engine which we develop in our team
enables to query rdf/s data in the sparql language and im-
plements the semantics of rdfs and some owl primitives. It
is provided with both a forward and backward rule-based sys-
tem to perform inferences over an rdf/s dataset to answer
queries. Rules are viewed as part of the ontology, comple-
menting rdfs or owl statements. They are represented in

5 http://www.w3.org/TR/rdf-SPARQL-query/
6 http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/
7 http://www.w3.org/TR/rif-bld/
8 http://www.w3.org/TR/rif-prd/
9 http://www.w3.org/TR/rif-core/

19

the sparql language, using the construct query form.
After the publication of the rif recommendation, we were

interested to bring the rule engine on rif-bld. Then we tried
to define the maximal subset of rif-bld which can be ex-
pressed in sparql. We have implemented both a rif parser
which builds an internal representation of a rif rule in an ab-
stract syntax tree (AST) and a translator of a subset of this
AST into the sparql AST handled by Corese. As a result,
Corese provides an implementation of a rif-sparql dialect.

The paper is organized as follows. In Section 2 we present
preliminary material. Section 3 is dedicated to the translation
of sparql into rif and the translation of rif-bld into sparql
and the identification of the corresponding rif-sparql di-
alect. Section 4 describes our implementation work within
the Corese engine and the results we obtain on the W3C
test database.

2 Preliminaries

2.1 RIF-BLD

2.1.1 The RIF-BLD language

rif-bld is provided with two syntaxes: an abstract syntax
which will be used throughout this paper and a concrete XML
syntax which is the interchange format. In the abstract syn-
tax, as it is conventional in mathematical logic, the W3C rec-
ommendation defines rif-bld as a set of well formed formulas
built with terms based on an alphabet.

The alphabet of rif-bld comprises: a set of constant sym-
bols Const; a set of variable symbols V ar disjoint with Const,
all variable symbols starting with ‘?’; a set of argument names
ArgNames disjoint with Const and V ar; connective symbols
And, Or and :−; existential and universal quantifiers Exists
and ForAll; a few other symbols that will be introduced in
the following as and when they are used.

A rif-bld term is either:

• a simple term, i.e. a constant or a variable,
• a positional term t(t1, . . . tn) where t is a constant and

t1, . . . tn are terms,
• a term with named arguments t(s1−> v1, . . . sn−> vn)

where t is a constant, v1, . . . vn are terms and s1, . . . sn are
argument names,

• a list of terms either closed: List(t1 . . . tm), or open:
List(t1 . . . tm|t),

• an equality between base terms t1 = t2,
• a class membership t1#t2, where t1 represents an object

and t2 a class,
• a class specialization t1##t2, where t1 and t2 represent

classes,
• a frame t[p1−> v1, . . . pn−> vn], where t, p1, . . .pn,

v1, . . . vn are terms,
• an external term External(t) where t is a positional term

or a term with named arguments.

A positional term corresponds to an atomic formula in first
order logic. In a term with named arguments, symbol t repre-
sents a predicate or a function. A frame represents an object.

Arif-bld atomic formula is either a positional term, a
term with named arguments t(s1− > v1, . . . sn− > vn) where
t represents a predicate, an equality, a class membership, a
class specialization, a frame or an external terms External(ϕ)

where ϕ is an atomic formula. Others terms — constants,
variables and lists — are used for building formulas but they
are not formulas.

The set of rif-bld formulas includes:

• atomic formulas,
• conjunctive formulas And(ϕ1, . . . ϕn) where ϕ1, . . . ϕn are

atomic or conjunctive or disjunctive or existential formulas,
• disjunctive formulas Or(ϕ1, . . . ϕn) where ϕ1, . . . ϕn are

atomic or conjunctive or disjunctive or existential formulas,
• existential formulas Exist ?v1, . . . ?vn (ϕ), where

?v1, . . . ?vn are variables and ϕ is an atomic or con-
junctive or disjunctive or existential formula,

• rule implications ϕ : −ψ, where ϕ is an atomic formula
or a conjunction of atomic formulas not externally defined
and where ψ is an atomic or conjunctive or disjunctive or
existential formula; ϕ is the conclusion of the rule and ψ is
its premise,

• universal rules Forall ?v1, . . . ?vn (ϕ), where ?v1, . . . ?vn are
variables and where ϕ is an implication rule whose free vari-
ables are among ?v1, . . .?vn; universal rules are also called
rif-bld rules,

• universal facts Forall ?v1, . . . ?vn (ϕ), where ?v1, . . . ?vn are
variables and where ϕ is an atomic formula whose free vari-
ables are among ?v1, . . .?vn; universal facts can be seen as
universal rules without premise,

• groups of universal facts, variable-free rule implications,
variable-free atomic formulas, or group formulas,

• documents embedding an optional group formula and an
optional sequence of directives which are not detailed in
this paper.

A rif-bld formula is well formed if and only if each of the
constant symbols it uses belongs to a different context, i.e.
represents either an individual or a function or a predicate or
an external predicate or an external function.

2.1.2 Reasoning in RIF-BLD

Reasoning in rif-bld consists of deriving new facts by ap-
plying inference rules: universal instantiation (instantiation
of universal rules) and modus ponens, and by evaluating con-
junctive or disjunctive formulas.

Instantiation. Consider for example the universal rule
representing the well known statement that “every man is
mortal”:

Forall ?x (?x # bio:Mortal :- ?x # bio:Human)

This universal rule can be instanciated by substituting for
its variable ?x any IRI representing an individual. For ex-
ample, by substituting phil:Socrates representing a famous
man for ?x, the following rule is obtained:

phil:Socrates # bio:Mortal :- phil:Socrates # bio:Human

Modus ponens. Let us now consider a document embed-
ding the above universal rule and a positional term represent-
ing the fact that “Socrates is a man”:

Group(Forall ?x (?x # bio:Mortal :- ?x # bio:Human)
phil:Socrates # bio:Human)

20

Once the universal rule has been instanciated by replacing
its variable ?x by the constant phil:Socrates, its premise
can be asserted to be true, regarding the positional term in
the document. The modus ponens inference rule then enables
to deduce a new formula, phil:Socrates#bio:Mortal, corre-
sponding to the conclusion of the instanciated rule and rep-
resenting the fact that “Socrates is mortal”.

Evaluation of conjunctive and disjunctive formulas.
For non-atomic rule premises, evaluation rules are applied to
evaluate their truth value: a conjunctive formula is true if
every formula in the conjunction is true; a disjunctive formula
is true if at least one of the formulas in the disjunction is true.

Operationalization. These three pieces of reasoning de-
scribed above enable to operationalize the semantics of rif-
bld either with the reasoning method by forward chaining
which consists of recursively handling rules, starting with
their premises to conclude new facts which enrich the knowl-
edge base, or with the reasoning method by backward chaining
which consists of proving a fact by recursively handling rule
conclusions to come back to the facts in the knowledge base.

2.2 The SPARQL Rule Language

sparql is the query language for rdf. It is designed to meet
the requirements of the directed labeled graph model of rdf:
a sparql query basically contains a graph pattern which is a
set of triples, like rdf triples, whose subject or predicate or
object may be variables. A sparql query is evaluated on an
rdf graph by matching its graph pattern with subgraphs of
the rdf graph, rdf terms of this subgraph being substituted
for the variables of the sparql query graph.

sparql has several query forms among which the select
query form is the most common, that returns variable bind-
ings. More precisely, it returns the bindings of the variables
in the select clause of the query which enable to match the
query graph pattern in the where clause of the query with
subgraphs of the rdf graph. In addition, the ask query form
enables to test wether a query graph pattern has a solution,
i.e. matches any subgraph of the rdf graph. ask queries can
then be used to represent constraints. Finally, the construct
query form returns an rdf graph specified by a graph tem-
plate in the construct clause and instanciated with the vari-
able bindings which enable to match the graph pattern in the
where clause of the query with the rdf graph.

Such a construct query can be viewed as a rule and its
processing as the application of the forward chaining inference
rule to enrich the rdf graph. Here is the representation in
sparql of the rule “Every man is mortal”:

CONSTRUCT {?x rdf:type bio:Mortal}
WHERE {?x rdf:type bio:Human}

sparql 1.0 predates rif and has been used as a rule lan-
guage in several works on the Semantic Web. This enables to
directly handle rdf triples in the premises and conclusions of
rules applied on rdf datasets. The Corese engine [2] embeds
two rule engines, one in forward chaining and another one in
backward chaining, both of them sharing a parser for rules
represented in sparql.

spin10 stands for SParql Inferencing Notation. It pro-
poses an rdf model to represent sparql rules and con-
straints (construct, update and ask query forms). With
spin, rules are therefore expressed in sparql. This rdf no-
tation of sparql aims at integrating rules and constraints
in a knowledge base with a unified knowledge representation
language. spin is a W3C member submission since 201111.

A. Polleres provides a translation from sparql to Datalog,
the query and rule language for deductive databases [5]. He
concludes that sparql can serve as an expressive rule lan-
guage on top of rdf. Angles and Gutierrez further study the
expressive power of sparql compared with Datalog [1].

With sparql++, A. Polleres et al. use sparql as a rule
language to express alignments between rdf vocabularies and
they propose some extensions to the construct query form
for their specific purpose [6].

3 From SPARQL to RIF and back

In this section we first present a translation of the subset of
sparql that can be used as a rule language into rif, now the
standard rule interchange format. Conversely, we propose a
translation of rif into sparql. Our motivation in this second
translation is that there is still very few implementations of
rif (let us mention [4] which bases on Datalog), whereas there
is a wide range of implementations of sparql, among which
a number of them handle sparql rules.

3.1 From SPARQL to RIF

sparql queries in the construct form can be used to repre-
sent rules and therefore are candidates to be translated into
rif for interchange on the web. More precisely, if the where
clause of a sparql query contains any pattern other than a
basic graph pattern or a union of basic graph patterns, then
the query cannot be translated into rif. Else it is translated
into a universal rif rule as follows:

• the conclusion of the rif rule is the conjunction of all the
rif terms translating the triples in the graph template of
the construct clause of the sparql query;

• if the where clause of the sparql query contains a ba-
sic graph pattern(BGP) which is the conjunction of triples
with possibly filters, then the premise of the rif rule is
the conjunction of all the terms translating the triples and
the filters in the graph pattern; if the where clause of the
sparql query contains a union of basic graph patterns,
then the premise of the rif rule is the disjunction of the
translations of these basic graph pattern;

• the variables in the quantification part of the rif rule are
those of the graph pattern of the sparql query. A special
case is that of a sparql rule without variable which is then
translated into a rif rule implication.

Let us now detail which rif terms translate which triples in
a graph template or a basic graph pattern. Our translation
relies on the “rif-bld and rdf compatibility” defined in the
rif recommendation12: a triple in a sparql graph template

10 http://spinrdf.org/
11 http://www.w3.org/Submission/spin-SPARQL/
12 http://www.w3.org/TR/rif-rdf-owl/

21

or pattern is nothing else than an rdf triple with possibly
variables. The translation is as follows:

• a triple (o rdf:type c) is translated into a class membership
o#c;

• a triple (c1 rdfs:subClassOf c2) is translated into a class
specialization c1##c2;

• a set of triples representing an rdf list is translated into
an equality to a closed list;

• any other triple (o p v), with p 6= rdfs:subClassOf, p 6=
rdf:type, p 6=rdf:first, p 6=rdf:rest, is translated into a frame
o [p−> v]; a set of triples having the same subject can be
translated into a single frame o [p1−> v1 . . .pn−> vn].

In these triples, URI are translated into rif:iri constants,
literals without datatype into constants of type xs:string,
typed literals into corresponding constants, variables and
blank nodes into variables. Let us note that triples p1

rdfs:subPropertyOf p2 have no special translating term in rif.
The translation of sparql filters occuring in a graph pat-

tern is as follows:

• a conjunction or disjunction of filters is tranlated into a
conjunctive or disjunctive formula, i.e. the conjunction or
disjunction of the translations of the filters;

• an equality test is translated into an equality term;
• other sparql operators and functions are translated into

rif external terms;
• the translation of filters preserves XSD datatypes.

Table 1 shows three examples of sparql queries and their
translation into rif rules.

Table 1. Translation of three sparql queries into rif-bld rules

SPARQL RIF
construct
{?x rdf:type ?z}

where
{?y rdfs:subClassOf ?z
?x rdf:type ?y}

Forall ?x ?y ?z
(?x#?z :-
and(?y##?z ?x#?y))

construct
{?x ex:uncleOf ?z}

where
{?x ex:brotherOf ?y
?y ex:parentOf ?z}

Forall ?x ?y ?z
(?x[ex:uncleOf → ?z] :-
and(?x[ex:brotherOf → ?y]

?y[ex:parentOf → ?z]))

construct
{?x rdf:type ex:Adult}

where
{?x rdf:type ex:Person
?x ex:age ?y
filter (?y >= 18)}

Forall ?x ?y ?z
(?x#ex:Adult :-
and(?x#ex:Person

?x[ex:age → ?y]
External(pred:numeric-

greater-than-or-equal(?y 18))))

In addition, a base of sparql queries may come with an rdf
base or, when considering sparql 1.1 update, a base of in-
sert data operations which both can be translated into con-
junctive formulas: the conjunction of all the frames o [p−> v]
translating the triples (o p v) in the rdf base or in the graph
template which is the operand of insert data.

3.2 From RIF-BLD to SPARQL

Let us now consider the reverse translation of rif-bld rules
into sparql, which will enable us to reason with standard
rules within a sparql engine.

3.2.1 Normalization of RIF-BLD Formulas

To characterize the rif dialect which can be translated into
sparql, a preliminary step has consisted in normalizing rif-
bld formulas to reduce their complexity. We normalized rif-
bld formulas by applying classical transformations similar to
those in [3] for the translation of a wsml ontology into Datalog
rules or those in [4] for the translation of rif-bld formulas
into Datalog rules. One of the most important transforma-
tions is the conversion of a rif formula into its disjunctive
normal form. Such a normalization enables to simplify the
translation of rif-bld formulas into sparql: the translation
of a rif-bld formula is then the composition of elementary
translations applied recursively.

3.2.2 The RIF-SPARQL Dialect

Among rif-bld formulas, rule implications and universal
rules are translated into sparql queries of the construct
form. The premise of a rif rule is translated into a graph
pattern and its conclusion into a graph template (which is a
special case of basic graph pattern with no filter). In other
words, the atomic, conjunctive, disjunctive or existential for-
mulas occuring in the premise or conclusion of rif rules are
translated into sparql graph patterns:

• a conjunctive formula is translated into a basic graph pat-
tern

• a disjunctive formula is translated into a union of basic
graph patterns;

• an atomic formula is translated as described in the follow-
ing;

• existential quantification is automatic: the variables which
do not appear in the universal quantification part of a rule
are automatically interpreted as existentially quantified in
the graph patterns tranlating its conclusion and its premise.

The translation function from rif-bld frames, class mem-
berships, and class specializations to sparql basic graph pat-
terns is the inverse of the translation function of basic graph
patterns described in the previous section:

• membership, subclass, and frame terms are each translated
into a triple;

• equality tests between a constant or variable and a list are
each translated into a set of triples describing a list;

• equality terms involving two variables or constants or two
lists are each translated into an equality test in a filter;
other equality terms are not translated.

• External terms are translated into operators and functions
in filters.

In addition, among the terms with named arguments and po-
sitional terms, predicates are translated into basic graph pat-
terns as described in table 2. For this purpose, we defined an
rdf vocabulary identified with the rs namespace prefix.

To sum up, when compared to rif-bld, the main restric-
tions in rif-sparql is the exclusion of universal facts, of open
lists and the limitation of terms to constants, variables and
closed lists in Equal, Member, Subclass and Frame formulas .

Here is the EBNF grammar of rif-sparql for its presenta-
tion syntax:

22

Table 2. Translation of rif terms with named arguments and
positional terms into sparql bgp

RIF-BLD terms SPARQL BGP

P(n1 −> v1 . . . nn −> vn) :bn rdf:type rs:NamedArgs.
:bn rs:name P.
:bn rs:arity n.
:bn n1 v1.
:bn ...
:bn nn vn

P(t1 . . . tn) :bn rdf:type rs:Positional.
:bn rs:name P.
:bn rs:arity n.
:bn rs:arg1 t1.

. . .
:bn rs:argn tn

RULE ::= CLAUSE |
’Forall’ Var+ ’(’ CLAUSE ’)’

CLAUSE ::= ATOMIC ’:-’ FORMULA |
’And’ ’(’ ATOMIC* ’)’ ’:-’ FORMULA

FORMULA ::= ATOMIC |
(’And’ | ’Or’) ’(’ FORMULA* ’)’ |
’Exists’ Var+ ’(’ FORMULA ’)’

ATOMIC ::= Atom | Frame | Member | Subclass |
Equal

Atom ::= UNITERM
UNITERM ::= Const ’(’ TERM* ’)’ |

Const ’(’ (Name ’->’ TERM)*) ’)’
Equal ::= TERM1 ’=’ TERM1
Member ::= TERM1 ’#’ TERM1
Subclass ::= TERM1 ’##’ TERM1
Frame ::= TERM1 ’[’ (TERM1 ’->’ TERM1)* ’]’
TERM ::= TERM1 | TERM2
TERM1 ::= Const | Var | List
TERM2 ::= Expr | ’External’ ’(’ Expr ’)’
Expr ::= UNITERM
List ::= ’List’ ’(’ TERM1* ’)’

Facts, i.e. atomic formulas (not involved in the premise or
conclusion of a rule) can be translated into insert data oper-
ations in sparql 1.1 update, except for equality terms and
predicates with arity greater than 2.

4 Implementation of RIF-SPARQL

In this section we present our implementation of rif-sparql
with the Corese semantic engine. Figure 1 presents its gen-
eral architecture (in blue) and its integration with the sparql
rule engine of Corese (in green). Starting with Corese pro-
vided with a sparql parser and a sparql rule engine, we
developed a rif parser producing a rif AST and we imple-
mented a translation function of the subtree of the rif AST
corersponding to the rif-sparql dialect into the sparql AST
of Corese.

4.1 RIF-BLD Parser

Since the recommandation provides a normative mapping
from the rif-bld presentation syntax to XML, we designed
an abstract syntax tree (AST) model to be shared by the pre-
sentation syntax and the XML syntax of rif-bld13 and we
designed a parser for each of its syntax.

13 http://www.w3.org/TR/rif-bld/#sec-xml-bld

Figure 1. Architecture of our rif-sparql implementation

The Java API of our parser is very simple. An abstract
class RIFDocument is provided with three main methods: cre-
ate(), compile() and getPayload() which enable to create
a RIFDocument from a file, compile it and get its AST. It
is specialized by two concrete classes RIFPSDocument and
RIFXMLDocument whose instances are created from files
either in the presentation syntax or the XML syntax.

We used the JavaCC parser generator to generate a Java
parser from the EBNF grammar of rif-bld presentation syn-
tax14. Each grammar rule expressed in JavaCC is compiled
into a Java method implementing the semantic actions de-
scribed in the rule. Since the presentation syntax of rif is a
human-oriented syntax, its grammar cannot be efficiently in-
terpreted (it does not belong to LALR(1) class). Our parser
computes lookahead sets for some rules in the grammar.

We used the JAXB API to automatically build a Java class
hierarchy from the normative XML schema for rif-bld15. To
each class of this automatically built AST model, we added a
method to connect it with the Java classes of the AST model
manually designed. These methods enable to create instances
of classes defined in the rif AST model from instances of
classes in the automatically built AST model and therefore
to translate an AST in the automatically built model into an
AST in the model manually defined. The JAXB API is used
with this class hierarchy to parse a rif document in the XML
syntax and automatically generate its corresponding AST.

4.2 Corese SPARQL Rule Engine

Corese includes a backward and a forward rule engine and an
implementation of sparql 1.1. We have implemented a par-
tial conversion of the abstract syntax tree of a rif document
into the abstract syntax tree of sparql defined in Corese.
The subtree of the AST model which can be translated cor-
responds to the rif-sparql dialect we have defined.

Rif-bld axioms are translated into sparql update insert
data operations that are run to construct the rdf graph on
which rif universal rules will be applied after their translation
into sparql construct queries.

14 http://www.w3.org/TR/rif-bld
15 http://www.w3.org/TR/rif-bld/#sec-xsd-bld

23

Let us consider for example the rif document taken from
the positive entailment test of the W3C test base16. It com-
prises two axioms and one universal rule:

Group (
Forall ?C ?I ?P ?V (

?I[?P->?V]
:- And(?C[?P -> ?V] , ?I # ?C))

ppl:john # cpt:Person
cpt:Person[tax:phylum -> tax:Chordata])

They are translated into the following two insert data op-
erations and construct query:

INSERT DATA {ppl:john rdf:type cpt:Person} (T1)
INSERT DATA {cpt:Person tax:phylum tax:Chordata}(T2)
CONSTRUCT { ?I ?P ?V } (Q1)
WHERE { ?C ?P ?V . ?I rdf:type ?C }

The two insert data operations are first performed to enrich
an rdf graph or to construct a new rdf graph in case there is
no additional rdf data. In forward chaining, the application of
the construct query calls for the execution of the following
ask query (whose graph pattern is the graph pattern of the
construct query, i.e. the premise of the rule):

SELECT * {?C ?P ?V . ?I rdf:type ?C} (Q2)

When the graph pattern in the where clause of this query is
matched with the rdf graph, the query is answered the set
of bindings {(?C, cpt:Person), (?P, tax:phylum), (?V,
tax:Chordata), (?I, ppl:john)}. The triple in the con-
struct clause of the query is then instanciated by substi-
tuting for its variables their binding values. This activates
the materialization of the following triple in the rdf graph:

ppl:john tax:phylum tax:Chordata (T3)

Triple T3 is the instantiation of the graph template in the
construct clause of query Q1 by substituting for its variables
their binding values found when matching the graph pattern
in the where clause of query Q1.

In backward chaining, let us for instance consider the eval-
uation of the following ask query Q3:

ASK { ppl:john tax:phylum tax:Chordata } (Q3)

It calls for the search of the construct queries which graph
template in the construct clause matches with its graph
pattern. For each query found, this in turn calls for the eval-
uation of an ask query which graph pattern is built by in-
stanciating the graph pattern of the query with the bindings
found for the variables of the graph template of this query
when matching it with query Q3. In our running example,
the graph template of query Q1 matches with query Q3 and
therefore the following ask query is built and evaluated:

ASK { ppl:john rdf:type ?x . (Q4)
?x tax:phylum tax:Chordata }

This query is answered true and then query Q3 is answered
true too.

4.3 Evaluation

To evaluate our method, we have used the rif-bld test cases
proposed by the W3C rif working group for positive entail-
ment and negative entailment17. There are 26 positive en-
tailment test cases and 4 negative entailment test cases for

16 http://www.w3.org/2005/rules/wiki/Classification-inheritance
17 http://www.w3.org/2005/rules/test/repository/zips/BLD v1.22.zip

rif-bld. A positive entailment test case comprises a given
rif condition (the goal to prove) which is entailed by a given
rif document (rules and facts) and a negative entailment test
case comprises a given rif condition which is not entailed by
a given rif document.

Positive entailment test cases enable to test if a rule engine
can find that a given goal is entailed by a given set of facts and
rules. Among the 26 such cases in the base, Corese succeeded
on 13 of them. Three failures can be explained by the fact
that in backward chaning, our sparql rule engine does not
handle some recursive rules with blank nodes; the 10 other
failures are due to the fact that the rif-sparql dialect we
have defined and implemented does not handle all the rif-
bld equality terms.

Negative entailment test case enable to test if a rule engine
can find that a given premise does not entail a given conclu-
sion. Among the 5 such cases in the base, Corese succeeded
in 4 of them. The failure on one test is due to the fact that
sparql does not support open lists.

5 Conclusion and Ongoing Work

In this paper we have described a rif dialect which can be
translated into sparql. It is a subset of rif-bld, that we
call rif-sparql. Compared to rif-bld, rif-sparql excludes
universal facts, recursively defined terms and open lists.

We have implemented this dialect with the Corese semantic
engine. This implementation consists of a rif parser for both
its abstract syntax and its concrete XML syntax. It builds
an internal representation of rif rules into an abstract syn-
tax tree. This rif AST is translated into the sparql AST of
Corese. As a result, Corese is able to reason with rif rules on
rdf data.

A short term goal is the back translation of the sparql AST
into the rif AST. This will enable to produce rif rules by
writing sparql rules. We intend to propose our two parsers as
online services. Our ongoing work deals with the comparison
of rif-bld and sparql semantics and the extension of our
core rif-sparql dialect.

REFERENCES

[1] Renzo Angles and Claudio Gutierrez. The Expressive Power
of SPARQL. In Proceedings of the 7th International Semantic
Web Conference, ISWC 2008, Karlsruhe, Germany, volume
5318 of LNCS, pages 114–129. Springer, 2008.

[2] Olivier Corby, Rose Dieng-Kuntz, and Catherine Faron-Zucker.
Querying the Semantic Web with the CORESE Search Engine.
In Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI 2004, Valencia, Spain, pages 705–709. IOS
Press, 2004.

[3] Stephan Grimm, Uwe Keller, Holger Lausen, and Gábor
Nagypál. A Reasoning Framework for Rule-Based WSML. In
Proceedings of the 4th European Semantic Web Conference,
ESWC 2007, Innsbruck, Austria, volume 4519 of LNCS, pages
114–128. Springer, 2007.

[4] Adrian Marte. RIF4J - A reasoning Engine for RIF-BLD. Mas-
ter’s thesis, University of Innsbruck, 2011.

[5] Axel Polleres. From SPARQL to rules (and back). In Pro-
ceedings of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, pages 787–796.
ACM, 2007.

[6] Axel Polleres, François Scharffe, and Roman Schindlauer.
SPARQL++ for Mapping Between RDF Vocabularies. In Pro-
ceedings of the OTM Conferences (1), volume 4803 of LNCS,
pages 878–896. Springer, 2007.

24

