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Handling of NULL Values
in Preference Database Queries

Endres Markus and Roocks Patrick and Wenzel Florian and Huhn Alfons and Kießling Werner 1

Abstract. In the last decade there has been much interest in pref-

erence query processing for various applications like personalized

information or decision making systems. Preference queries aim to

find only those objects that are most preferred by the user. However,

the underlying data set may contain NULL values which represent

unknown or incomplete data. Most of the existing algorithms for pref-

erence query evaluation do not know how to treat these NULL values

and consider them worse than any other value. Other algorithms do

not allow NULLs in their input data set. However, NULL values are

common in data sets and must be considered in preference query

evaluation. In this paper we introduce an approach to handle NULL

values in preference queries which extends preference algebra, a for-

mal model for preference specification. Our approach can be adopted

by all preference query algorithms which rely on strict partial orders,

because it does not violate the transitivity relation as other methods

do.

1 Introduction

Preferences in databases – as shown by a recent survey [18] – as

well as preferences in artificial intelligence and social choice theory

(cp. [17]) are a well established framework to create personalized in-

formation systems. By using well designed preference models, users

can be provided with just the information they need, thereby over-

coming the dreaded empty result set and flooding effect [10].

However, the data set behind these information systems may con-

tain unknown data, known as NULL values in database systems.

NULL is a special marker to indicate that a data value does not exist

in the database and therefore represents missing and inapplicable in-

formation. In standard SQL the handling of NULL values has been

the focus of controversy for more than 30 years resulting in a three-

valued logic [6]. Hence, comparisons with NULL can never result in

either true or false, but always in a third logical result, unknown.

However, the discussion of NULLs in preference database queries

is an open issue. Almost all algorithms for preference evaluation

(e.g., [1, 5, 7, 14, 16]) rely mainly on two assumptions: First, all

preference algorithms assume transitivity in the dominance relation,

and second, data is complete, i.e., all dimensions are available for all

data objects. The first assumption of dominance transitivity is one

of the most used properties in preference algorithms. If a data tu-

ple t1 dominates tuple t2 while t2 dominates t3, then t1 dominates

t3, too. Using transitivity, preference query processing algorithms

exploit various ways of data pruning and indexing. Obviously, the

second assumption of completeness is not practical in a real world

database, where NULL values frequently occur, cp. [13].
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kiessling}@informatik.uni-augsburg.de

Table 1. Sample table of hiking tours.

tours id length difficulty rating vista

1 23.5 medium 4 excellent
2 NULL easy 5 bad
3 NULL NULL 2 bad
4 13.1 hard 2 good
5 7.3 NULL 1 excellent

For example, in a hiking tour database (cp. Table 1) it is highly

unlikely that all data for all attributes of a tour are always known.

The column length contains two NULL entries, because it was not

possible to determine the length of the tours. Furthermore users may

fill a global database with their own hiking tours. If a hiking tourist

wants to set the length but doesn’t know it or does not want to rate the

difficulty of the tour, he omits the input value. Thus the missing data

has to interpreted correctly by setting this value to NULL instead of

default value, e.g. 0.

If there are NULLs in the database, how should one compare the

unknown to the known values in preference queries? For example,

if a users’ preference is to find hiking tours with a length of 20 km,

how are the given values {23.5, 13.1, 7.3} compared to NULL?

One may state that NULL should be always worse than all other

values. This would be good for a hiking tourist which is a cautious

and accurate person and plans all tours in detail. However, for an

user who is adventurous, ready to tackle new challenges and who

likes to get surprised by new tours, NULL values in the result of

the preference query would be a welcome variety. Hence, this user

prefers tours with unknown values over fully documented tours.

The same question also arises for Pareto preference (Skyline)

queries [1, 10], where two or more preferences are equally impor-

tant. In a Pareto preference a tuple t1 is said to dominate a tuple t2
if t1 is better than or equal to t2 in all dimensions and is strictly

better than t2 in at least one dimension. Unfortunately, with the exis-

tence of some incomplete dimensions, we cannot simply use the tra-

ditional definition of the dominance relation as it is not immediately

clear how to compare an incomplete dimension with a corresponding

complete dimension. For example, consider the wish for a tour hav-

ing a difficulty of ’hard’ and a rating of 2. We cannot judge which

tuple of t1 = (hard,2) and t2 = (NULL,2) is superior in the first

dimension.

The aim of this paper is to extend preference queries to cope with

the existence of incomplete data. We provide an approach to handle

NULL values in preference queries such that the transitivity relation

will be preserved and the assumption of data completeness is not nec-

essary for preference evaluation algorithms. Furthermore we suggest

a syntax extension for Preference SQL queries [12] to specify the

treatment of NULLs in our preference database system.



The rest of this paper is organized as follows: Section 2 highlights

related work. An overview of the used preference model is given in

Section 3. Section 4 introduces our NULL value handling in pref-

erence algebra. Afterwards, we extend the syntax of the Preference

SQL query language in Section 5. Finally, we conclude in Section 6.

2 Related Work

Preference queries are more general than the well known Skyline

queries introduced more than ten years ago by Börzsönyi et al. [1].

Skyline queries are a special kind of Pareto preference queries and

aim to find tuples which are not dominated by others. Since then,

several algorithms have been proposed for preference and Skyline

query evaluation that include index-based solutions, pre-sorting and

no pre-processing, cp. [1, 5, 7, 16] to name a few. Unfortunately,

all these algorithms consider only the case of complete data, i.e. data

where all values are known. However, NULL values occur frequently

in real life data sets.

Several papers have studied the evaluation of Skyline queries over

uncertain (probabilistic) data [15]. Uncertain data in those works is

generally caused by data randomness, incompleteness, limitations of

measuring equipment, etc. Due to the importance of those applica-

tions and the rapidly increasing amount of collected and accumu-

lated data containing uncertainty, analyzing large collections of un-

certain data has become an important task. However, how to con-

duct advanced analysis on uncertain data remains an open problem

at large [15].

One of the first works on incomplete data and NULL values was

done by Chan et al. [2]. They consider a tuple to dominate another

tuple only if a subset of a given size of the dimensions dominates

the corresponding dimensions in another tuple. Under this defini-

tion, the dominance relation becomes non-transitive. Therefore, tra-

ditional preference algorithms cannot be applied.

The closest work to ours is the Skyline querying in the presence

of incomplete data [9], which is based on the former mentioned pa-

per. In this work for any two incomplete tuples only the common di-

mensions that are known in both tuples are considered. Among these

common dimensions only, they apply the traditional dominance re-

lation to decide which tuple dominates the other, if any. However,

this fails if there are no common dimensions. Furthermore, Chomicki

rightly asks ”What is the right logic for defining such preference re-

lations?”, cp. [4].

We introduce an approach of NULL value handling which main-

tains the transitivity of the dominance relation. Therefore every pref-

erence algorithm requiring transitivity can be applied to evaluate

preferences on incomplete data.

3 Preferences in Database Systems

Preference modeling has been in focus for some time, leading to di-

verse approaches, e.g. [3, 10, 11]. We follow the preference model

from [11] which is a direct mapping to relational algebra and declar-

ative query languages, e.g., Preference SQL which is discussed in

Section 5. It is semantically rich, easy to handle and very flexible to

represent user preferences which are ubiquitous in our life.

Formally, a preference P on a set of attributes A is defined as

P ∶= (A,<P ), where <P is a strict partial order on the domain of

dom(A) × dom(A). For x, y ∈ dom(A) the term x <P y is inter-

preted as “I like y more than x”. We say x and y are indifferent, if

¬(x <P y) ∧ ¬(y <P x), i.e., neither x is better than y nor y is better

than x. Note that the preference order <P is irreflexive and transitive.

The Best-Matches-Only-set (BMO-set) of a preference contains

all tuples from a data set that are not dominated w.r.t. the prefer-

ence. Best-Matches-Only offers a cooperative query answering be-

havior by automatic matchmaking: The BMO query result adapts to

the quality of the data in the database, defeating the empty result

effect and reducing the flooding effect by filtering out worse results.

To specify a preference, a variety of intuitive base preference con-

structors together with some complex preference constructors has

been defined. Subsequently, we present some selected preference

constructors used in this paper. More preference constructors as well

as their formal definition can be found in [10, 11, 12].

3.1 Base Preference Constructors

Preferences on single attributes are called base preferences. There

are base preference constructors for discrete (categorical) and for

continuous (numerical) domains. Figure 1 shows the taxonomy of

several frequently occurring base preferences [12].

POS NEG LOWESTd HIGHESTd

EXPLICIT

POS/POS POS/NEG AROUNDd

LAYEREDm BETWEENd

SCOREd

CONTAINS SPATIALd

NEARBYd WITHINd

BUFFERdONROUTEd

Figure 1. Taxonomy of base preference constructors

Subsequently we describe some numerical base preferences.

Definition 1 (SCOREd Preference). Given a scoring function f ∶
dom(A) → R

+
0 , and some d ∈ R

+
0 . Then P is called a SCOREd

preference, iff for x, y ∈ dom(A):

x <P y ⇐⇒ fd(x) > fd(y)

where fd ∶ dom(A)→ R
+
0 is defined as:

fd(v) ∶=
⎧⎪⎪⎨⎪⎪⎩
f(v) if d = 0

⌈ f(v)
d
⌉ if d > 0

Note that in the case of d = 0 the function f(v) models the dis-

tance to the best value. That means fd(v) describes how far the do-

main value v is away from the optimal value. A d-parameter d > 0

represents a discretization of f(v), which is used to group ranges of

scores together. The d-parameter maps different function values to

a single number. Choosing d > 0 effects that attribute values with

identical fd(v) value become indifferent.

The BETWEENd preference is a sub-constructor of SCOREd. It

expresses the wish for a value between a lower and an upper bound.

A deviation of d does not matter. For BETWEENd(A, [low,up])we

have f(v) = max{low − v,0, v − up}. Specifying low = up (=∶ z)
in BETWEENd we get the AROUNDd(A, z) preference, where the

desired value should be z, i.e. f(v) = ∣z − v∣. Furthermore, the

LOWESTd(A) and HIGHESTd(A) constructors prefer the mini-

mum and maximum of the domain of A.

Example 1. The P1 ∶= AROUND2(rating,4) preference on Table 1

expresses the wish for a tour rating around 4 where a difference of 2

does not matter. Obviously, the tuple with ID 1 is the most preferred

value.



All categorical preferences are sub-constructors of LAYEREDm.

Definition 2 (LAYEREDm Preference). Let L = (L1,⋯, Lm) be

an ordered list of m sets forming a partition of dom(A) for an at-

tribute A. The preference P is a LAYEREDm(A, (L1, . . . , Lm))
preference if it is a SCOREd preference with the following scoring

function: f(v) ∶= i − 1 ⇐⇒ x ∈ Li. For convenience, one of the

Li may be named “OTHERS”, representing the set dom(A) with-

out the elements of the other subsets. This implies OTHERS contains

also NULL, if NULL is not contained in any other layer.

Furthermore, sub-constructors of LAYEREDm for frequently

occuring cases exist, e.g. POS(A, POS-set), which is equal to

LAYERED2(A, POS-set, OTHERS). It expresses that a user has

a set of preferred values, the POS-set, in the domain of A. There

is also a NEG-preference NEG(A,NEG-set). Moreover, it is pos-

sible to combine these preferences to POS/POS or POS/NEG. For

the POS/POS(A,POS1-set,POS2-set) preference a desired value

should be amongst a finite set POS1-set. Otherwise it should be from

a disjoint finite set of alternatives POS2-set. If this is also not feasi-

ble, better than getting nothing any other value is acceptable. There

are many more base preference constructors (cp. Figure 1), all de-

scribed in [10, 11, 12, 19].

Example 2. Let P2 ∶= POS(vista,{excellent, good}). That means

that we are looking for tours having an excellent or good vista. From

Table 1 we get the BMO-set with IDs {1,4,5}.

3.2 Complex Preference Constructors

If one wants to combine several preferences into more complex pref-

erences, one has to decide the relative importance of these given pref-

erences. Intuitively, people speak of “this preference is more impor-

tant to me than that one” or “these preferences are all equally im-

portant to me”. Equal importance is modeled by the so-called Pareto

preference.

Definition 3 (Pareto Preference). In a Pareto preference P ∶= P1 ⊗
P2 = (A1 ×A2,<P ) all preferences Pi = (Ai,<Pi

) on the attributes

Ai are of equal importance, i.e., for two tuples x = (x1, x2), y =
(y1, y2) ∈ dom(A1) × dom(A2) we define:

(x1, x2) <P (y1, y2) iff

(x1 <P1
y1 ∧ (x2 <P2

y2 ∨ x2 =P y2)) ∨
(x2 <P2

y2 ∧ (x1 <P1
y1 ∨ x1 =P y1))

The Prioritization preference allows the modeling of combina-

tions of preferences that have different importance.

Definition 4 (Prioritization). Assume preferences P1 = (A1,<P1
)

and P2 = (A2,<P2
), then prioritization denoted by P ∶= P1 & P2 is

defined as:

(x1, x2) <P (y1, y2) iff x1 <P y1 ∨ (x1 =P y1 ∧ x2 <P2
y2)

Example 3. Reconsider the preferences P1 and P2 from Example

1 and 2. In the Pareto preference P ∶= P1 ⊗ P2 both preferences

are equally important. Tuple 1 dominates tuple 2 and 3, because it is

better in both dimensions. Tuple 1 is better than tuple 5 concerning

the rating and equal in the vista. Therefore tuple 5 is dominated by

tuple 1. Tuple 4 and tuple 2 are indifferent. Tuple 4 is better concern-

ing the rating, but incomparable concerning the vista (excellent is not

equal to good). Therefore, the BMO-set is given by the IDs {1, 4}.

3.3 Preferences with SV-Semantics

There are situations where indifferent objects should be treated as

substitutable. That means for base preferences that all objects v

with equal fd(v) function value can be designated as equally good.

This behavior is called regular Substitutable-Values-Semantics (SV-

semantics). Using regular SV-semantics, all objects with the same

fd(v) value are positioned on the same level. Obviously, level 0 con-

tains the perfect matches, higher levels are worse. Having trivial SV-

semantics only equal values are considered as equally good. Follow-

ing [11] we write P = C(A,<P ,≅P ) for a preference having any SV

relation. We use ∼P for regular and =P for trivial SV-semantics.

For base preferences regular SV-semantics does not affect <P it-

self, but expresses that it is admissible to substitute values for each

other. A complex constructor using ∼P instead of =P in its definition

(cp. Def. 3 and 4) does affect <P , as we can see in the next example.

Example 4. Consider the Pareto preference P ∶= P1 ⊗ P2 from Ex-

ample 3. From this example we know that the result of P using trivial

SV-semantics is given by the IDs {1, 4}. Using regular SV-semantics

for vista the values excellent and good are equally good. Since tu-

ple 1 is better than tuple 4 concerning the rating and excellent is

substitutable to good, tuple 1 is preferred over tuple 4.

4 NULL Values in Preference Database Queries

In this section we formally introduce the handling of NULL values in

preferences. In our proposed approach, NULL is fully integrated in

the preference order, i.e. comparisons of NULL and any other value

of the domain are possible. To this end we define the NULL-extended

domain by

domN(A) ∶= dom(A) ∪ {NULL}

Note that in standard SQL NULLs are not special domain val-

ues. A three-valued logic is used, where comparisons with NULL

return the third truth value unknown. We will use a two-valued

boolean logic. An expression x <P NULL or NULL <P x with

x ∈ domN(A) is either true or false. Additionally we require the

NULL-extended preference relation <p to be transitive. Due to these

requirements we can use traditional algorithms for the evaluation of

preferences.

In the following sections we adapt the preference constructors

from Section 3 to the NULL-extended domain. SV-semantics (Sec-

tion 3.3) are also extended to NULL-values, i.e. the user may specify

for which values of x the expression x ≅P NULL is true.

4.1 Insertion Strategies

One possibility to extend preferences to domN(A) is to treat the

NULL-value like a value of the original domain, i.e. NULL is in-

serted into the order at the same place as a value from dom(A).
In the case of base preferences, we distinguish between categorical

and numerical preferences: For a categorical preference, NULL can

be written in the POS-set, OTHERS-set, one of the LAYERED-sets,

etc. while for numerical preferences one can either define a NULL-

equivalent value (NULL equals 4.5) or place NULL at the top or

bottom of the preference order.

Another approach to handle NULL-values is to make the NULL

incomparable to all other values, i.e. the expression x <P NULL is

false for all x. This models the missing information character of the

NULL-values: If one knows nothing about a given value, one does

not assume any better than relations to other values.



Incomparable NULL values are not dominated by any value of

dom(A) and do not dominate any of these values. Hence tuples with

NULL-values in the respective attribute always occur in the BMO-set

of the preference.

4.2 Extended Categorical Preference Constructors

In the categorical preference constructors, NULL can be used like a

usual domain value as shown in the following example:

Example 5. Consider the LAYEREDm-preference on attribute A.

NULL can be contained in one of the Li, e.g.

LAYERED4(difficulty, ({’easy’},{’medium’},
{’hard’,NULL},OTHERS))

which means that NULL in the difficulty attribute of the hiking tour

is equally disliked as hard.

Analogously POS, NEG, POS/POS, etc. are extended in the same

manner, i.e. NULL may be written in the POS-set, NEG-setc, etc.

To specify that NULL is incomparable or NULL is placed in the

worst layer we introduce a NULL-handling parameter for the con-

structors. Thereby N? means NULL is incomparable to all other val-

ues whereas Nmax places NULL in the worst layer, formally:

Definition 5. Let C be a preference constructor, A an attribute,

X an parameter (Layered-sets, POS-set, etc.) for C and ≅ the SV-

relation. Then for a preference P = C(A,X,≅P ) we define:

1. Let P ′ = C(A,X,≅P ,N?), then <P ′ is given by:

x <P ′ y =
⎧⎪⎪
⎨
⎪⎪⎩

false if x = NULL ∨ y = NULL

x <P y otherwise

2. Let P ′ = C(A,X,≅P ,Nmax). We set the SCORE-function

(Def. 1) for NULL to the maximum of the other values of the do-

main:

f(NULL) =max{f(v) ∣ v ∈ dom(A)}

4.3 Extended Numerical Preferences Constructors

For the numerical preference constructors we introduce a constructor

which assigns a level or a distance to the NULL-value; additionally

NULL may be incomparable, as defined before.

Definition 6. For a numerical preference constructor C, attribute

A, SV-Relation ≅ and an optional d-Parameter d and parameter X

we define the preference P = Cd(A,X,≅P ,N), where N may be:

● N = N?: cp. Def. 5, i.e. NULL is incomparable to all other values

● N = Ndist
v : NULL is on distance v.

● N = Nlevel
v : NULL is on level v – only if d-Parameter is set with

d > 0 and regular SV-semantics are used.

where v = max means that the f(NULL) is set to the highest level

or distance which occurs in dom(A), cp. Def. 5.

We have the special cases:

● N = Ndist
0 : NULL is as good as the best values.

● N = Ndist
∞ : NULL is the worse than all values of dom(A)

Thereby distance refers to the f -function in Def. 1 whereas level

refers to the fd function. In this case we have the equivalences

Ndist
0 ≡ Nlevel

0 , Ndist
∞ ≡ Nlevel

∞ and Ndist
max ≡ Nlevel

max, where ≡ means that

the corresponding preference order is the same.

Example 6. Let P3 = AROUND10(length,20,∼P ,N) and consider

the tours attribute in the sample data in Table 1. There is no perfect

match, i.e. no tour with length 20. Thus for Nlevel
1 only NULL is in

the BMO-set. The length values 23.5 and 13.1 are on level 1 and

they are the best matches in dom(length), hence for Nlevel
1 and Nlevel

?

they are together with NULL in the BMO-set. As the maximum level

for P3 is 2, for Nlevel
max and Nlevel

v with v ≥ 2 the NULL value is less

preferred than 23.5 and 13.1. In summary we have:

N BMO-set of values for “length”

Nlevel
0 {NULL}

Nlevel
1 ,Nlevel

? {NULL,23.5,13.1}
Nlevel

max,Nlevel
2 ,Nlevel

3 , ...,Nlevel
∞ {23.5,13.1}

4.4 Complex Preferences and SV-Semantics

We defined how NULL values are placed in the preference order.

Now we consider SV-semantics and complex preferences.

NULL is now a part of the domain and the NULL-extended pref-

erences are still strict partial orders. Therefore the composition of

complex preferences can be straight-forward applied to preferences

with domain domN(A). For the SV-semantics the same holds: For

trivial SV-Semantics x =P x holds while x =P y is false for x ≠ y.

Note that this implies that NULL =P NULL is always true (in con-

trast to the trivalent logic in standard SQL). For regular SV-semantics

NULL becomes substitutable with all values v having the same level

(for Nlevel
v ) or the same distance (for Ndist

v ). If N = N? is used, NULL

is not substitutable with any value.

The grouping preference P grouping A evaluates the preference

P for all groups with the same value of A separately. It is also ex-

tended to NULL values: For P grouping A a group with A = NULL

is also considered. To avoid this, P grouping¬N A is the grouping

preference, where a NULL-group is only considered if no other val-

ues for A exist.

5 NULL Values in Preference SQL

While previous sections describe a formal framework for NULL han-

dling in preference queries, we now present the extension of the Pref-

erence SQL query language. First, we summarize basic features of

Preference SQL before describing the extended syntax. Finally, a use

case scenario illustrates the applicability of the novel approach.

5.1 Preference SQL

Preference SQL [12] is a declarative extension of standard SQL by

strict partial order preferences, behaving like soft constraints under

the BMO query model. The BMO-set as result of a preference query

contains all database tuples which are not dominated by any other

tuple concerning the users preferences, cp. [10]. Syntactically, Pref-

erence SQL extends the SELECT statement of SQL by an optional

PREFERRING clause leading to the following schematic design:

SELECT . . . <selection>

FROM . . . <table reference>

WHERE . . . <hard conditions>

PREFERRING . . . <soft conditions>

GROUPING . . . <attribute list>

BUT ONLY . . . <but only condition>

TOP . . . <number>

GROUP BY . . . <attribute list>

HAVING . . . <hard conditions>

ORDER BY . . . <attribute list>

LIMIT . . . <number>



The keywords SELECT, FROM, WHERE, GROUP BY, HAV-

ING, and ORDER BY are treated as standard SQL keywords. The

PREFERRING clause specifies a preference by means of the prefer-

ence constructors given in Section 3. Furthermore, the Pareto pref-

erence can be expressed using the AND keyword in the PREFER-

RING clause, PRIOR TO expresses a Prioritization. Keywords such

as GROUPING are provided to modify preference evaluation, BUT

ONLY for the definition of post-filter or TOP and LIMIT to regulate

the number of results.

A specified preference is evaluated on the result of the hard condi-

tions stated in the WHERE clause. Therefore, preference queries can

be cleanly composed with standard SQL queries, even if the standard

SQL handling of NULL values uses a three-valued logic in contrast

to the two-valued boolean logic used in our preference queries.

Example 7. The preferences P1 ⊗ P2 from Example 4 can be ex-

pressed in Preference SQL as follows:

SELECT ID FROM tours

PREFERRING length AROUND 4, 2

AND vista IN ('excellent', 'good');

5.2 Extended Preference SQL Syntax

Following the formal framework presented in Section 4, the Prefer-

ence SQL syntax has to be intuitively extended to allow the expres-

sion of newly defined NULL handling possibilities.

For NULL-insertion into the layers of categorical preferences this

is straight-forward, as shown in the following example:

Example 8. We translate Example 5 into Preference SQL:

... PREFERRING difficulty LAYERED

(('easy'), ('medium'),

('hard', NULL), OTHERS)

For the other placements of NULL the syntax

[Attribute] [Constructor] [Parameter] [NULL-handling]

is used. The first three parts of the term are interpreted as usual, say

that they are formally P = Cd(A,X,≅P ). If the optional [NULL-

handling] term is set, then a preference P = Cd(A,X,≅P ,N) is

constructed, where N is assigned as follows:

● AVOID NULL: NULL becomes least preferred, i.e. N = Ndist
∞ .

● WITH NULL AT BMO: NULL is incomparable, i.e. N = N?. Note

that an incomparable NULL implies that NULL always occurs in

the BMO-set, because incomparable values cannot be dominated

by any other value.

● WITH NULL AT DISTANCE v: NULL is placed at distance v from

optimal value, i.e. N = Ndist
v .

● WITH NULL AT LEVEL v: NULL is placed at level v, i.e. N =
Nlevel

v .

● WITH NULL WORST: NULL is placed at the same distance as the

worst value of dom(A), i.e. N = Ndist
max.

If the [NULL-handling] term is omitted, the placement N = Ndist
max

is used, i.e. WITH NULL WORST is the default NULL-handling.

To avoid the NULL-group in the grouping preference, i.e. to use

“P grouping¬N A”, the syntax [P] GROUPING [A] AVOID NULL is

used. Then a NULL-group is only considered if no other values for

A exist.

5.3 Use Case

Each of the presented NULL handling strategies can be assigned to a

user type. Given the database relation in Table 1 we can define four

different types of user:

● experienced user: Sue is an experienced tour guide, knowing a lot

of tours by heart. Hence, she wants to substitute unknown values

with concrete values from her experience.

● indifferent user: Bob is quite spontaneous and doesn’t care about

the functionality of database systems. He knows nothing about

unknown values and just wants to get best matching tours with no

strings attached.

● cautious user: Mark is a cautious and accurate person who plans

all tours in detail. He prefers tours that give him all the information

to make a conscious decision. Thus, unknown values are the last

thing that he wants.

● adventurous user: Tina is adventurous and ready to tackle new

challenges. She likes to get surprised by new tours and to correct

missing values with her own hiking records. Hence, she prefers

tours with unknown values over fully documented tours.

Given the extended Preference SQL syntax, all these users are now

able to express their individual opinions concerning NULL values.

Example 9. Sue as experienced user knows that the average tour

length in the desired area is about 35 kilometers and that tours with

unknown difficulty level are rarely difficult tours. Since she generally

prefers tours with a length around 50 kilometers and a hard difficulty

level she poses the following Preference SQL query:

SELECT * FROM tours PREFERRING

length AROUND 50 WITH NULL AT DISTANCE 15

AND

difficulty IN ('hard') with NULL AT LEVEL 1;

Sue specified an explicit distance value that should be used for com-

parisons with NULL. Additionally, she placed NULL at level 1 of

a POS-preference, thus putting it into the same level as easy and

medium. As result the following tuples are returned from Table 1:

id length difficulty rating vista

2 NULL easy 5 bad
3 NULL NULL 2 bad
4 13.1 hard 2 good

Because NULL is put at distance 15, thus equally preferred as the

the value 50 − 15 = 35 for the length attribute, the tuples with id 2

and 3 are best matches w.r.t. the stated AROUND preference. Fur-

thermore, NULL is in the same level as easy, hence both tuples are

retrieved. Additionally, the tuple with id 4 best matches the prefer-

ence for tours of difficulty hard. Consequently, tuples with NULL

values can be part of the BMO-set in Sue’s case.

Example 10. Bob as indifferent user prefers tours with excellent

vista and lowest tour length:

SELECT * FROM tours PREFERRING

vista IN ('excellent') AND length LOWEST;

Since Bob doesn’t know much about NULL values, he posed a query

without explicit NULL handling, hence the default behavior is in

place. Here, NULL values are treated as being equally preferable to

the worst known attribute values, similar to NULL WORST. As result

the following tuples are returned from Table 1:



id length difficulty rating vista

5 7.3 NULL 1 excellent

The tuple with id 5 is a best match considering the POS prefer-

ence and has the lowest length of all tours. For other preferences

terms, NULL values might still occur but less frequently compared

to Example 9 or 12.

Example 11. Mark as cautious user is looking for tours of difficulty

very easy and thus poses the following Preference SQL query:

SELECT * FROM tours PREFERRING

difficulty IN ('very easy') AVOID NULL;

Mark choses to avoid NULL values in the difficulty attribute if pos-

sible, hence NULL is treated as worse than the worst known attribute

values. As result the following tuples are returned from Table 1:

id length difficulty rating vista

1 23.5 medium 4 excellent
2 NULL easy 5 bad
4 13.1 hard 2 good

Mark didn’t get any tuples containing NULL values in the diffi-

culty attribute. Even in the absence of perfect matches for his prefer-

ence, the best alternatives that are not of value NULL are returned.

Example 12. Tina as adventurous user likes tours with a length be-

tween 15 and 20 kilometers with a tolerance of 5 kilometers. With a

lower priority she is also interested in a medium difficulty:

SELECT * FROM tours PREFERRING

length BETWEEN 15,20,5 WITH NULL AT BMO

PRIOR TO

difficulty IN ('medium') WITH NULL AT BMO;

She specifies NULL to be a best match for each base preference. As

result the following tuples are returned from Table 1:

id length difficulty rating vista

1 23.5 medium 4 excellent
3 NULL NULL 2 bad

Without having the NULL-handling parameter Tina would get the

tuple 1. Since she is adventurous the tuple 4 having NULLs in both

attributes is also returned. She may decide now.

The presented examples illustrate that the different possibilities of

treating NULL values in Preference SQL have a direct impact on the

returned BMO-sets. In contrast to hard constraints, none of the pre-

sented possibilities for NULL handling can guarantee that no NULL

values enter the BMO-set. Even by selecting “AVOID NULL” as han-

dling strategy, complex preference queries might still return a BMO-

set containing NULLs, e.g. if a tuple with NULL in one dimension

is a perfect match considering another dimension in a Skyline query.

6 Summary and Outlook

In this workshop paper we have addressed the problem of preference

database queries over incomplete data, i.e., data having NULL val-

ues. We introduced a NULL handling which extends preference al-

gebra and can easily be integrated in preference query languages. We

have proposed an insertion strategy for NULL in common preference

constructors and extended the syntax of Preference SQL to handle in-

complete data. In contrast to other approaches for incomplete data,

the transitivity relation among data tuples is preserved, thus all ex-

isting techniques for preference or Skyline query evaluation are still

applicable. However, we observed that some preference optimization

laws [3, 8] – independent of our NULL handling approach – can-

not be applied if NULL values exist in a database relation. Although

we proposed a model for NULL handling, its benefit must be evalu-

ated in an practical use-case. For this we will extend Preference SQL

with our NULL handling behavior and will do some case-studies. Of

course, our approach for NULL handling is not restricted to database

queries. It can also be adopted by other preference models, e.g., in

the wide area of artificial intelligence and social choice theory.
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Issue-by-issue voting: an experimental evaluation
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Abstract. Multiple referenda consists in making a common deci-

sion about each of a set of binary issues, given the preferences of a set

of voters. Asking voters for their preferences on all combinations of

values is not feasible in practice, because of the exponentially large

number of such combinations; on the other hand, voting issue-by-

issue on each of the issues can lead to strongly paradoxical outcomes.

This paper proposes to measure experimentally to which extent it is

suboptimal to vote issue-by-issue voting, in function of the voting

rule to be implemented, and the nature of the voters’ preferences (ar-

bitrary, separable or additive). For this we use randomly generated

separable profiles, which turns out to be a difficult problem.

keywords. Computational social choice; preferences; voting;

combinatorial domains; random generation.

1 Introduction

In many practical group decision making contexts, voters have to

agree on a value to be given to each of a set of variables, or issues.

The simplest approach – which is the one generally used in practice

– consists in decomposing the voting process into a set of elementary

voting processes, each bearing on a single variable, and processed si-

multaneously (i.e., in issue-by-issue). When voters have preferential

dependencies, however, such a decomposition may (in theory) lead to

counterintuitive results [5, 15, 1, 19]. Consider a first example, with

500 voters and two Boolean issues A and B, whose value domains

are respectively {a, ā} and {b, b̄}. The voters’ preferences are:

200 voters: ab̄ ≻ āb ≻ āb̄ ≻ ab
200 voters: āb ≻ ab̄ ≻ āb̄ ≻ ab
100 voter: ab ≻ ab̄ ≻ āb ≻ āb̄

The last group of voters prefer a to ā , whatever the (fixed) value

of B, and vice versa: their preference order is separable. In contrast,

the other 400 voters have nonseparable preferences: for example, the

first two prefer A = a to A = ā if B = b̄ and prefer A = ā to

A = a if B = b. If one asks voters to vote issue-by-issue, and if

they majoritarily behave optimistically (i.e, the first group majoritar-

ily chooses A = a), then we get a majority for A = a and a majority

for B = b: the final decision (a, b) is the worst for 80% of the voters.

As remarked by Lacy and Niou [15], issue-by-issue voting is much

less of a problem when voters’ preferences are separable3. However,

separability is a highly demanding condition; moreover, it does not

allow to avoid all paradoxes, even in its strongest version, as shown

on the following example, that issue-by-issue voting does not satisfy

Pareto efficiency[1, 17, 19].

Example 1. We have three Boolean issues and three voters whose

preferences are:

1 IRIT – University of Toulouse; {lastname}@irit.fr
2 LAMSADE – University of Paris-Dauphine; lang@irit.fr
3 Three forms of separability will be defined in Section 2; here it is enough

to say that the argument holds for each form.

v1: abc̄ ≻ ab̄c̄ ≻ ābc̄ ≻ āb̄c̄ ≻ abc ≻ ab̄c ≻ ābc ≻ āb̄c
v2: ab̄c ≻ ab̄c̄ ≻ āb̄c ≻ āb̄c̄ ≻ abc ≻ ābc ≻ abc̄ ≻ ābc̄
v3: ābc ≻ āb̄c ≻ ābc̄ ≻ āb̄c̄ ≻ abc ≻ abc̄ ≻ ab̄c ≻ ab̄c̄

Issue-by-issue voting leads to the decision abc, which is Pareto-

dominated by āb̄c̄, that is to say all voters prefer āb̄c̄ to abc.

These two problems raise concerns on the social acceptability of

issue-by-issue voting. On the other hand, voting on combinations (or

“bundles”) of values, which may be the only way to escape them,

is practically impossible to implement, because of the combinatorial

nature of the problem. As a matter of fact, issue-by-issue voting, as

imperfect as it may be, is used in quite many contexts, and in partic-

ular in multiple referenda, as they are held for example in California

[5]. Other solutions have been suggested, such as sequential voting

[16, 18, 10], using compact representation languages such as in [7];

each of them shows to have some benefits but also some pitfalls.

In this paper we stick to issue-by-issue voting. We would like to

know to which extent this procedure can approximate a voting rule on

a combinatorial domain, comparing the outcome of this procedure to

the one that we would have got if preferences over bundles had been

elicited and aggregated using a given voting rule. Some rather nega-

tive results have been given in [8], who consider a few rules based on

scores, and for each of them, give worst-case approximation bounds

of the ratio between the score of the alternative chosen by issue-by-

issue voting and the score of the alternative chosen by the voting

rule, for separable profiles. However, these worst-case negative re-

sults do not give much information about the average-case of issue-

by-issue voting. Here we address this question experimentally, via

a random generation of profiles; however, generating separable pro-

files appear to be a difficult problem, because the ratio between the

number of separable preferences and the number of arbitrary prefer-

ences is very low [11]; we address the problem by several random

generation methods in Section 3. In Section 4 we use these methods

to assess the average quality of issue-by-issue voting.

2 Background

2.1 Voting

Let X be a finite set of m alternatives. A vote over X is a linear order

≻ over X . A profile P = (≻1, . . . ,≻n) is a collection of n votes

over X , where ≻i is the vote of voter i. The vote of i represents

her preferences, assuming that votes are sincere. A voting rule is a

function r that associates to each profile P an alternative r(P ) ∈ X .

Several classical voting rules have been extensively studied (see

e.g. [4] for a panorama of voting rules). In this paper, we are mainly

interested in two groups of voting rules. The first group is that of

scoring voting rules, that associate a score with each alternative,

based on the ranks of the alternative in the votes. More precisely,

given a vote ≻ and an alternative x ∈ X , let rk(≻, x) ∈ {1, . . . , m}



denote the rank of x in ≻. A scoring voting rule is defined by a vec-

tor of scores 〈s1, . . . , sm〉, such that s1 ≥ . . . ≥ sm, so that si

is the score associated with rank i. Every time an alternative x is

ranked ith for some voter, this vote contributes si to the overall score

of x. Given a profile P = 〈≻1, . . . ,≻n〉, the score of x for P is

therefore s(P, x) = Σm
i=1srk(≻i,x). The alternatives are then ranked

according to their global score s(P, x), and r(P ) is the alternative x
that maximizes s(P, x). Three distinguished scoring rules that will

be considered in this paper are:

Borda: s1 = m − 1, s2 = m − 2, . . . , sm = 0;

Plurality: s1 = 1, s2 = . . . = sm = 0;
m
2

-approval: s1 = s2 = . . . = s m

2
= 1, s m

2
+1 = . . . = sm = 0

Given a profile P , x is a Condorcet winner if for every y 6= x, a

majority of voters rank x ahead of y. A voting rule r is said to be

Condorcet-consistent if, for every profile P for which there is Con-

dorcet winner x, r(P ) = x. It is well-known that no scoring rule is

Condorcet-consistent. The second group of rules that we study in the

sequel contains Condorcet-consistent rules. For most of these rules,

the winner can be determined from the majority graph associated

with profile P : this graph contains an oriented edge from alterna-

tive x to y if a majority of voters ranks x ahead of y. More gener-

ally, a weighted majority graph associated with P indicates, for every

pair of alternatives (x, y), the number of voters NP (x, y) that rank x
ahead of y. In particular, we will consider two Condorcet-consistent

voting rules in the sequel:

Copeland: the alternative that wins the most duels wins;

Maximin: the alternative x that maximizes miny 6=x NP (x, y) wins.

2.2 Combinatorial domains

We consider a set I = {A, B, C, ...} of p issues, each issue being

associated with a binary domain (the possible answers): D(A) =
D(B) = D(C) = · · · = {0, 1}. Then X = D(A) × D(B) ×
D(C) × . . . is the set of the possible alternatives, or, using voting

terminology, candidates. The number of alternatives is thus m = 2p.

The elements of X are vectors ~x, ~x′; we will often concatenate the

answers to describe a particular alternative. For instance, if I =
{A, B, C}, (1, 0, 1) denotes the alternative that has answer 1 for is-

sue A, answer 0 for issue B, and answer 1 for issue C. We will also

use concatenation for vectors of answers for disjoint sequences of is-

sues: for instance, if I = {A, B, C, D}, Y = (A, B), Z = (C, D),

~y = (1, 0), ~z = (0, 1), then ~y.~z denotes the alternative (1, 0, 0, 1).

Lastly, for every X ⊆ I, DX is the set of assignments ~x of elements

of X in their respective domains.

When considering orderings over combinatorial domains, there

exist three definitions of separability.
Let ≻ be a vote over X , it is:

weakly separable if for every variable A ∈ I, every v, v′ ∈ DA,

~x, ~x′ ∈ DI\{A}: v.~x ≻ v′.~x ⇐⇒ v.~x′ ≻ v′.~x′

strongly separable if for every partition {X, Y } of I and every

~x, ~x′ ∈ DX , ~y, ~y′ ∈ DY : ~x.~y ≻ ~x′.~y ⇐⇒ ~x.~y′ ≻ ~x′.~y′

additively separable if for every issue Xi ∈ I there exists a func-

tion ui : Di → R
+ such that for every ~x, ~y ∈ X we have ~x ≻ ~y

if and only if
∑

i ui(xi) >
∑

i ui(yi).

Example 1. (cont.) The voters on example 1 have strongly

separable preferences. For instance, we have a ≻1 ā, ∀B, C.

Strong separability is sometimes called mutual preferential inde-

pendence, as in [13]. It requires that preferences over combinations

of values of any subset of variables do not depend on the values of

other variables. Weak separability only requires that preferences over

values of a single variable do not depend on the fixed values of other

variables; it is met by preference relations associated with a CP-net

with no edge in the dependency graph [2]. Additive separability im-

plies strong separability, which in turn implies weak separability. As

soon as p ≥ 5, additive separability is strictly stronger than strong

separability [14], whereas both notions coincide for p ≤ 4 [3]. There-

fore, we have only one notion of separability for p = 2, two distinct

notions for p = 3 and p = 4. On continuous domains, strong and

additive separability are equivalent [9].

2.3 Problematics

Our main objective is to compare the results of the strict application

of a voting rule over a combinatorial domain with the results obtained

when issue-by-issue voting is used. It is known that as soon as p ≥ 3,

issue-by-issue voting does not satisfy neutrality nor efficiency [1,

19], which implies that any voting rule on a combinatorial domain

with more than two variables that satisfies any of these two properties

(and all commonly used voting rules do) does not coincide with the

issue-by-issue voting rule. For instance, in Example 1, the issue-by-

issue winner is abc, whereas the Plurality cowinners are abc̄, ab̄c and

ābc, and the Borda winner is āb̄c̄, which is also a Condorcet winner.

However, this impossibility theorem does not exclude the possi-

bility that the outcomes do coincide in general. The rest of the paper

addresses this question by trying to determine the probability that

the outcomes coincide. Because of the difficulty of an analytical ap-

proach, we estimate this probability experimentally. Ideally it would

be interesting to conduct these experiments with real-world data, but

such voting data are rarely available, and, to our knowledge, there

exist no available data of significant size for multiple referenda (in

the data on multiple referenda used in [5], only the combination of

the preferred values of each voter is given, not their entire preference

relations). Therefore we choose to generate random samples.

3 Generation of separable profiles

The generation of random profiles in social choice is not a new prob-

lem: the impartial culture assumption, which assumes a uniform dis-

tribution over the set of possible profiles, is often made. In our case,

we have m = 2p alternatives, thus there are 2p! possible votes for

each voter. Generating uniformly distributed profiles over such do-

mains is not a problem as long as the number p of issues is low.

However, the probability of obtaining a weakly separable (or, a for-

tiori, a strongly or additively separable) profile among the 2p! pos-

sibilities is extremely weak. For instance, when p = 4, of the 16!
possible orderings only 5376 are strongly (and additively) separa-

ble (a ratio of around 1/108), and 26886144 are weakly separable

(a ratio of around 1/106). The exact numbers of orderings that are

weakly (resp. additively, resp strongly) separable for p > 5 (resp.

p > 6, resp. p > 7) are currently unknown – to our knowledge.

We have investigated several ways of generating random separable

orders. A first, naive method, consists in picking random orders uni-

formly distributed and keeping only the (weakly/strongly/addtively)

separable ones. Given the very low probability of picking a separable

order, this method is practically not feasible as soon as p > 4.

Generating additively separable orders by random
utility generation

When the value of p becomes too large for an explicit enumera-

tion, we shall rely on multiattribute utility theory as a way of gen-



Figure 1. The lattice of options for p = 3, after the first four options have
been chosen: (a) three possible choices, (b): one possible choice.

erating additively separable orders. The method consists in doing

the following: for each variable Xi, we generate a random utility

ui(xi) ∈ (0, 1] for each of the possible values xi ∈ D(Xi); this

results in a utility function on alternatives u : X → R, and then we

rank alternatives according to u. This method is a simplified version

of the one developed in [6]. The distribution we get reaches ev-

ery additively separable order with a positive probability, but is not

uniform. It nevertheless has the advantage of being based on a well

characterized model of rational decision makers.

Storing all normalized orders (weak and strong
separability)

An ordering is normalized [11] if (i) the best alternative is (1, ...., 1)
and (ii) (0, 1, 1, ..., 1) ≻ (1, 0, 1, ..., 1) ≻ · · · ≻ (1, 1, 1, ..., 0). Ev-

ery separable order can be obtained from some normalized, separable

order by permutation of some issues and inversion of some answers.

Thus, in order to generate separable orders, we can first build a table

of all normalized, separable orders, and then pick some of them at

random and apply some permutations and inversions at random.

This method can be used for generating weakly separable orders

if there are no more than p = 4 issues: for p = 5 issues our first

experiments show that one would need a table of at least 5 terabytes

(probably much more). For strongly separable orders, this method

works well in practice for up to p = 6 issues

Generating weakly separable orders by lattice
exploration

Normalized, weakly separable orders can be directly generated by

considering the partial order ≻0 that contains all pairs of the form

(1.~x, 0.~x) for every ~x ∈ DI\{A}, for every A ∈ I. All completions

of ≻0 are then normalized, weakly separable orders (and random per-

mutations of issues and random inversions of answers will generate

any weakly separable order). Such completions can be generated by

random, top-down traversal of the graph that corresponds to ≻0. The

traversal must be such that no alternative is reached before preferred

alternatives. The order in which the alternatives is reached is then a

weakly separable order. More precisely, the first alternative ~x1 is the

one that has the preferred value for every issue, 11 . . . 1 if we build a

normalized order. We can then pick at random the second preferred

alternative ~x2 among those that are dominated by ~x1 only. The third

preferred alternative is then picked at random among those that are

only dominated by ~x1 and ~x2, and so on.

However, a uniform distribution over all possible alternatives ev-

ery time a new alternative must be picked does not guarantee that

the resulting distribution over complete, normalized, weakly separa-

ble orders will be uniform. This is due to the fact that the number

of possible alternatives at a given step depends on the already cho-

sen alternatives. Figure 3 depicts two different possibilities to pick

the first four alternatives when there are p = 3 issues: it shows that

the number of possible alternatives at this step is not constant. The

probabilities of the most frequent and of the least frequent complete

orders generated in this way can be calculated. For p = 4 issues, they

are 1/331776 and 1/238878720 respectively.

A better idea to complete the partial order ≻0 is to proceed level

by level, top-down. After all the alternatives above a given level in

the lattice have been ranked, we consider all alternatives ~x at the next

level: we determine the possible ranks for each of them in the current

order, so as to respect the weak separability property: the rank of ~x
will then be picked randomly among these possible ranks. The alter-

native ~x which has the lowest number of possible ranks is ranked first

– since ranking the other alternatives will not change its set of possi-

ble ranks, whereas ranking an alternative highly constrained may di-

minish the number of possible ranks for alternatives less constrained.

Once all alternatives at this level have been ranked, we proceed to the

next level of the lattice of ≻0.

For instance, consider the following order obtained after adding

the two first levels; 111 ≻ 011 ≻ 101 ≻ 110. At the next level, the

least restricted alternative is 001, since there are two possible choices

for it (and only one for 100 and for 010). If we insert first 001, it will

have a probability one half to be in the fourth position, and one half to

be between the positions 5 and 7 (since 100 and 010 will be inserted

afterwards). If 001 is inserted last, there is one 1
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to have it finally

ranked at each of its possible locations (4, 5, 6 and 7).

Generating weakly separable orders by reparation
of non-separable orders

Another method to generate weakly separable preferences consists in

randomly generating (not necessarily separable) orders ~x1 ≻ ~x2 ≻
. . . ≻ ~xm over X with a uniform distribution, and “reparing” each

such order so as to make it weakly separable. The reparation works

issue by issue, as follows: for every issue A ∈ I, we first record

the value that ~x1 has for A as being the preferred value for A; then

we scan the entire ordering, making permutations every time we en-

counter pairs of alternatives that violate the weak separability con-

dition with respect to A and the chosen preferred value. It can be

proved that the resulting order, when it has been repaired w.r.t. all is-

sues, is weakly separable. The order in which the issues are repaired

has to be generated at random, since it has an effect on the resulting

order over the alternatives.

However, using this algorithm to repair randomly, uniformly gen-

erated orders does not give a uniform distribution over weakly sepa-

rable orders: this reparation procedure can be seen as a local search

in the neighbourhood of the initial order; so if a weakly separable or-

der has more not separable neighbours than another one, it has more

chances of being obtained.

Evaluating the random generators

We thus get the utility-based generator (for that seems natural for

additively separable preferences), the storing generator (for weakly

separable preferences up to p = 4 and strongly separable preferences

up to p = 6), and the reparation- and exploration- based generators,

that have been designed to generate weakly separable preference for

higher values of p in a way close to equiprobability.

In order to compare the quality of the random generators described

above, we have tested them in the case of p = 4. We know in



Figure 2. Success rate of issue-by-issue voting w.r.t. the number of voters; 4 issues

this case that there are 70016 normalized weakly separable orders

(and therefore 70016 × 24 × 4! = 26886144 weakly separable or-

ders), and 14 strongly separable normalized orders (and therefore

14 × 24 × 4! = 5376 strongly separable orders). Each generator

was run at least 107 times so as to generate a normalized order, and

we counted apparition of each preference order. The following table

gives the frequencies of occurrence of the least frequent and most

frequent orders, the ratio between these two frequencies, as well as

an estimation as the entropy of each generator — the entropy mea-

sures the closeness of a probability distribution to equiprobability,

and varies from 1 (equiprobability) to 0 (determinism).

Storing Utility Reparation Exploration

Weak sep. X X X

Strong sep. X

additive sep. X

Max. freq. 4/25 1/3900 1/44050

Min. freq. 1/25 1/1400000 1/133333

max. freq.

min. freq.
1 4 360 3

Entropy 1 0,92 0,97 0,9994

Table 1. Entropy, minimal and maximal frequencies of apparition of the
generated orders, by generator

Generating by storing is the only perfectly equiprobable generator.

It can be used when the number of issues remains low: up to 4 for

weakly separable orders, and up to 6 for strongly separable orders.

As we could expect, the utility-based generator has a bad entropy

in the case of 4 issues. Nevertheless, it has the advantage of being

simple, fast, and based on a realistic voter preference model, there-

fore this is the one we shall use to generate additively separable pref-

erences for more than 6 issues. We do not currently know how to ef-

ficiently do this for more than 6 issues; therefore, this generator will

also be used for strong separability, although it gives a zero probabil-

ity to any strongly separable order which is not additively separable.

As to generating weakly separable preferences, our experiments

suggest that the generator by lattice exploration is better than the

reparation-based generator; we will use this argument to choose this

generator for our experiments reported in Section 4.

4 Experimental study

The aim of the following experiments is to evaluate the interest of

issue-by-issue voting for multiple referenda as an approximation of

the application of a specific voting rule, applied to a profile over

a combinatorial domain. We consider five voting rules: Borda, m
2

-

approval, Plurality, Maximin and Copeland, and we study the influ-

ence, on the quality of the approximation, of parameters such as the

number of issues, the number of voters and the type of preference

(weakly separable, strongly separable, additively separable).

Since the issues are binary, issue-by-issue voting leads to applying

majority voting on each issue. When the profiles are not separable,

we suppose that the voters adopt an optimistic attitude and prefer the

values as prescribed by their preferred alternative. In order to limit

the occurrence of ties, we assume the number of voters to be odd.

The outcome of the issue-by-issue voting is then compared to the

alternative chosen by the application of each specific voting rule r.

As for the generation of general profiles, without any assumption

of separability, we use a uniform distribution over all profiles. For

the generation of weakly/strongly/additively separable profiles, we

use the storing-based generator for p ≤ 4. When p > 4, we use the

exploration-based generator and the utility based generator.

In the first experiment (Figures 2 to 5), we count the percentage of

profiles that lead to the success of issue-by-issue voting (that is, the

proportion of the generated profiles for which the original rule and

issue-by-issue voting elect the same alternative; in case the applica-

tion of the original voting rule gives a tie, we consider that issue-by-

issue succeeds as soon as it elects one of the tied winners). Each of

the following experiments repeats the test 10000 times (each point in

the curve is computed on 10000 profiles).



4.1 Influence of separability

Unsurprisingly, the experimental results (cf. Figure 2; notice that for

p = 4, strong and additive separability are equivalent, hence the

figures draw only one curve for both concepts) are consistent with

the theoretical results of [15] and [12]: issue-by-issue is sounder on

separable profiles. For all the voting rules considered but Plurality,

the success rate is better on separable samples than on the purely

random samples. The result keeps holding when the number of voters

increases (Figure 2) and when the number of issues increases (see

Figure 3 for Borda; for the other rules studied, except Plurality, we

get a similar behaviour). Notice that the success rate seems slightly

better for weakly separable profiles than for strongly separable ones;

we do not have a clear interpretation of this fact. For Plurality, the

same results are obtained, whether or not separability is assumed.

This can be easily explained by the fact that Plurality, like issue-by-

issue voting, is tops-only, i.e., the outcome is determined from the

top of the votes, which implies that separability has no influence.

Figure 3. Borda’s rule: success rate of issue-by-issue voting w.r.t. the
number of issues; 11 voters.

From now on, we conduct the experiments on separable samples

only: first, because purely random preferences lead to a quite bad

success rate; and second, because a voter with non separable pref-

erences can hardly give her preference issue by issue; we made the

assumption that they report votes optimistically, which seems to be

observed in practice, but this assumption can be questioned.

4.2 Comparison of voting rules

Let us first look at the case p = 4 (Figure 2; Figure 4 summarizes the

5 rules on the weakly separable sample).

We first observe that the three scoring rules are badly approxi-

mated; as soon a the number of voters reaches 7, the success rate of

the approximation goes below the 60%, that is, for at least 6 cases

among 10, issue-by-issue voting elects a winner that is different than

the one designated by the application of the original voting rule. This

rate is especially bad for Plurality and for m/2-approval.

Some rules, like plurality, m/2-approval or maximin generate

many ties when the number of voters is low; this boosts the success

rate of these rules for a few voters samples. That’s why, for exam-

ple, the success rate of maximin is 100% with 3 voters but decreases

quickly when the number of voters increase.

It can moreover be noticed that the success rate gets worse as the

number of voters increase. In a second series of tests, we measure

the success rate for samples of 7 voters, letting the number of issues

increase from 2 to 10, for the rules that were not too badly approx-

imated according to the first experiment, namely Borda, Copeland

and Maximin. Figure 5 reports our results for weakly separable pro-

files, generated by exploration (similar ones have been obtained for

separable profiles and additively separable profiles): the success rate

clearly depends on the number of issues (the more issues, the worst).

Figure 4. Success rate for Borda, Plurality, m/2-approval, Copeland,
Maximin w.r.t. number of voters; weakly separable profiles, 4 issues

Figure 5. Success rate for Borda, Copeland, Maximin w.r.t. the number of
issues, 7 voters

In summary, the success rate of issue-by-issue voting thus gets

worse as the number of voters increases and, to a larger extent, as

the number of issues increases. It quickly becomes very bad for Plu-

rality and m
2

-approval (once again). Results are better for Borda, but

nevertheless falls below 50% for 5 issues (for 7 voters) or 10 voters

(for 4 issues), which is disappointing. Finally, it is much better for

Copeland and (to a lesser extent) Maximin; in both cases, a closer

look to the sample reveals that bad results are highly correlated with

the absence of a Condorcet winner.

4.3 Quality of the approximation

For 5 issues, the success rate of issue-by-issue falls below 50% for

all considered scoring rules, and below 80% for Copeland and Max-

imin.However, the probability that both winners coincide is perhaps

not the best way of measuring the approximation of a voting rule; as

in [8], we may consider instead, for any voting rule r based on the

maximization of some numerical score, the ratio between the score

of the alternative elected by the issue-by-issue rule and the score of

the winner of r. The following table gives these ratios. The first three

lines of the table gives the average ratio taking all generated profiles

into account, and the last one the average ratio when only the ‘unsuc-

cessful’ profiles, that is, those for which the issue-by-issue winner

and the winner for r differ. (Note that using these ratios for compar-

ing different rules should be done with care, as these ratios depend

heavily on the definition of the score.) For the sake of completeness

we also give the success rate for separable profiles.

Once again, the best results are obtained for Borda, Copeland and

Maximin: for these rules, the average approximation ratio is above

97%). The result are not as good for Plurality and m
2

-approval.



rule: Borda plur. m
2

-app. Cop. maxim.

General case
Average score of the real winner 72.71 1.9 5.73 14.22 3.47
Average score of the issue-by-
issue winner

70.98 1.3 5.08 13.94 3.38

Ratio 0.976 0.684 0.887 0.98 0.974
Success rate 0.608 0.570 0.527 0.838 0.907

Unsuccessful profiles
Average score of the real winner 70.59 1.99 5.77 13.36 3
Average score of the issue-by-
issue winner

66.18 0.6 4.39 11.65 1.97

Ratio 0.938 0.302 0.761 0.872 0.657
Maximal distance 21 3 4 8 2
Minimal distance 1 1 1 1 1

Figure 6. Distance in the scores of the real and issue-by-issue winners , 7
voters and 4 issues, weakly separable profiles.

4.4 Pareto Efficiency

Recall that one of the drawbacks of issue-by-issue voting is its fail-

ure to satisfy efficiency as soon as p ≥ 3. We give here the probabil-

ity that the issue-by-issue winner is Pareto-dominated. An analytical

study for p = 3, m = 3 gives a probability of 1
2304

for strongly sepa-

rable profiles and 1
18432

for weakly separable profiles. For more than

3 issues or 3 voters, computing the probability analytically seems dif-

ficult, therefore we have once again proceeded to experiments with

randomly generated profiles. For each couple (#issue, #voters)
we generated a set of 106 additively profiles, and for each of them,

checked if the outcome is Pareto-dominated. Figure 7 give our results

for additive separable profiles.

m = 3 m = 5 m = 7 m = 9 m = 11

p = 3 436 20 4 0 0

p = 4 1699 111 6 0 0

p = 5 4211 329 23 4 0

p = 6 8268 671 34 4 0

p = 7 14052 1360 86 3 0

p = 8 21984 2217 150 14 0

p = 9 32324 3378 284 16 0

Figure 7. Pareto-dominated profiles for 10
6 profiles; additive separability

We can see that even if the probability of having a Pareto-

dominated outcome is non-negligible when the number of voters is

low (up to 3,2% for 3 voters and 9 issues), this probability decreases

very quickly as the number of voters increases, and becomes negli-

gible from 9 voters on – which is of course very unsurprising. Sim-

ilar tests on weakly separable profiles give a probability of getting a

Pareto-dominated outcome 10 to 100 times smaller than with addi-

tively separable profiles, the shape of the graphics being similar.

5 Conclusion

Although the initial motivation of this paper was an experimental

comparison between issue-by-issue voting and common voting rules

applied to separable profiles, it turned out that a surprisingly difficult

issue that had to be addressed first was the random generation of sep-

arable profiles. As soon as there are at least 5 issues, we do not know

how to generate weakly separable, separable nor additively separable

profiles with an equiprobable distribution; we remedied this to some

extent, by proposing two methods that generate distributions ‘not too

far’ from equiprobability, and finally chose an algorithm based on the

exploration of the lattice of alternatives for the generation of weakly

separable profiles, and an algorithm relying on a utility-based repre-

sentation of preferences, for strongly separable profiles. The first one

performs well in terms of entropy (it is close to be equiprobable) and

the second one has the advantage of being based on a well known

(and well characterized) model of rational decision makers.

Concerning issue-by-issue voting, our result are rather negative,

confirming the theoretical results in [8]. Although they show that the

violation of efficiency is rare (which was expected), they also show

that issue-by-issue voting is a bad approximation of scoring rules,

in particular plurality. For r = plurality, Borda or m
2

-approval, the

issue-by-issue winner is different of the one elected by r for more

than 70% of the profiles, even for only 4 issues and 5 voters. These

results become worse when the number of issues or the number of

voters increase. Copeland and (to a lesser extent) maximin do better:

for instance, their winners coincide with the issue-by-issue winner

for 80%of the profiles, for 4 issues. Unsurprisingly, our results also

confirm that issue-by-issue behaves better on separable preference

than on purely random profiles.

REFERENCES

[1] J.-P. Benoit and L.A. Kornhauser, ‘Only a dictatorship is efficient or
neutral’, Technical report, NYU Law School, (2006).

[2] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole, ‘CP-
nets: a tool for representing and reasoning with conditional ceteris
paribus preference statements’, JAIR, 21, 135–191, (2004).

[3] W. Bradley, J. Hodge, and M Kilgour, ‘Separable discrete preferences’,
Mathematical Social Sciences, 49(3), 335–353, (2005).

[4] S. Brams and P. Fishburn, ‘Voting procedures’, in Handbook of Social

Choice and Welfare, Volume 1, eds., K. Arrow, A. Sen, and K. Suzu-
mura, 173–236, Elsevier, (2002).

[5] S. Brams, W. Zwicker, and M. Kilgour, ‘The paradox of multiple elec-
tions’, Social Choice and Welfare, 15(2), 211–236, (1998).

[6] D. Braziunas and C. Boutilier, ‘Local utility elicitation in gai models’,
in Proceedings of UAI’05, pp. 42–49, (2005).

[7] V. Conitzer, J. Lang, and L. Xia, ‘Hypercubewise preference aggrega-
tion on multi-issue domains’, in IJCAI, (2011).

[8] V. Conitzer and L. Xia, ‘Approximation of common voting rules by se-
quential voting rules on multi-issue domains’, in KR, (2012). to appear.

[9] W.M. Gorman, ‘The structure of utility functions’, Review of Economic

Studies, 35, 367–390, (1968).
[10] U. Grandi and U. Endriss, ‘Aggregating dependency graphs into voting

agendas in multi-issue elections’, in IJCAI, pp. 18–23, (2011).
[11] J. Hodge, ‘Permutations of separable preference orders’, Discrete Appl.

Math., 154, 1478–1499, (2006).
[12] J. Hodge and P. Schwallier, ‘How does separability affect the desir-

ability of referendum election outcomes?’, Theory and Decision, 61(3),
251–276, (2006).

[13] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Pref-

erences and Value Tradeoffs, John Wiley and Sons, 1976.
[14] C. Kraft, J. Pratt, and A. Seidenberg, ‘Intuitive probability on finite

sets’, The Annals of Mathematical Statistics, 30(2), 408–419, (1959).
[15] D. Lacy and E. Niou, ‘A problem with referenda’, J. of Theoretical

Politics, 12(1), 5–31, (2000).
[16] J. Lang and L. Xia, ‘Sequential composition of voting rules in multi-

issue domains’, Mathematical Social Sciences, 304–324, (2009).
[17] I. Oskal-Sanver and R. Sanver, ‘Ensuring pareto optimality by referen-

dum voting’, Social Choice and Welfare, 27(1), 211–219, (Aug. 2006).
[18] G. Dalla Pozza, F. Rossi, M.-S. Pini, and B. Venable, ‘Multi-agent soft

constraint aggregation via sequential voting’, in IJCAI, pp. 172–177,
(2011).

[19] L. Xia and J. Lang, ‘A dichotomy theorem on the existence of efficient
or neutral sequential voting correspondences’, in IJCAI, (2009).



Elicitation-free Protocols for Allocating Indivisble Goods

Thomas Kalinowski1 and Nina Narodytska2 and Toby Walsh3 and Lirong Xia4

Abstract. We study in detail a simple sequential procedure for al-

locating a set of indivisible goods to multiple agents. Agents take

turns to pick items according to a policy. For example, in the alter-

nating policy, agents simply alternate who picks the next item. A sim-

ilar procedure has been used by Harvard Business School to allocate

courses to students. We study here the impact of strategic behavior

on the complete-information extensive-form game of such sequential

allocation procedures. We show that computing the subgame-perfect

Nash equilibrium is PSPACE-hard in general, but takes only linear

time with two agents. Finally we compute the optimal policies for

two agents in different settings, including when agents behave strate-

gically and when agents can give away items.

1 Introduction

Suppose you are coaching a soccer team. To divide the players into

two teams, you select the two best players as captains and then let

them alternate at picking the remaining team members. Is this the

best way to get an evenly matched game? Perhaps it would be better

to reverse the order of their picks every round (so that the captain

who picks first in the first round picks second in the second round)?

This is an example of a problem in allocating indivisible goods. A

number of real world problems involve allocating indivisible goods

“fairly” between competing agents subject to possibly different pref-

erences for these goods. For example, assigning courses to students

at a business school is a problem of allocating indivisible goods. Stu-

dents are competing for places on the popular courses, but have dif-

ferent preferences as to which courses to study. As a second example,

the allocation of landing and take-off slots at an airport is a problem

of allocating indivisible goods. Airlines are competing for popular

landing and take-off times, but have different preferences as to pre-

cisely which slots they want. As a third and final example, sharing

time slots on an expensive telescope is a problem of allocating indi-

visible goods. Astronomers are competing for observation time but

have different preferences as to precisely which time slots are useful

for their experiments.

Different properties might be demanded of a procedure for allo-

cating indivisble goods. For example, we might look for allocations

which are envy-free in the sense that every agent likes their alloca-

tion at least as much as the allocation to any other agent. However,

envy-freeness by itself is not sufficient to ensure a “good” allocation.

Not allocating any items is envy-fee, and there are also many situa-

tions where no envy-free allocation exists. We might consider other

criteria including efficiency (e.g. Pareto optimality) and truthfulness

1 Universität Rostock, Rostock, Germany. email: thomas.kalinowski@uni-
rostock.de

2 NICTA and UNSW, Sydney, Australia. email:
nina.narodytska@nicta.com.au
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(e.g. can agents profit by acting strategically?). There is, however,

a tension between these properties. Svensson showed that the only

strategy-proof, nonbossy5 and neutral mechanism is a serial dictator-

ship in which agents take turns according to some order to pick their

complete allocation of goods [5]. Unfortunately, a serial dictatorship

can have a low efficiency in the utilitarian or egalitarian sense. In this

paper, we focus on efficiency, and consider the impact on efficiency

of such issues like the strategic behavior of the agents.

2 Existing methods

Several non-strategy proof procedures for allocating indivisible

goods have been studied. For example, Brams, Kilgour and Klam-

ler have proposed the undercut procedure for two agents [2]. This is

the discrete analog of the “cut-and-choose” cake cutting procedure

for divisible goods. The first agent divides the contested goods into

two sets, and offers one set to the other agent. The second agent can

either accept this set or take any strict subset of the goods in the com-

plement set. They characterize when this procedure leads to an envy-

free division. Whilst the undercut procedure is not strategy proof, the

maximin strategy is truthfulness.

As a second example, the Harvard Business School has been us-

ing a mechanism called Draft to allocate courses to students [3]. The

Draft mechanism generates a priority order over all students uni-

formly at random. Course are then allocated to students in rounds. In

odd rounds, each student is assigned to their favorite course that still

has availability using the priority order. In even rounds, the mech-

anism uses the reverse priority order. The Draft mechanism is not

strategy-proof. Indeed, students at Harvard have been observed to

behave strategically [3]. Such strategic behavior can be harmful to

the ex post social welfare. However, the expected (ex ante) social

welfare is higher than that of a strategy-proof mechanism like serial

dictatorship. To obivate the need for certain types of manipulation,

Kominers, Ruberry and Ullman [4] proposed a mechanism in which

proxies play strategically. They prove that with lexicographical pref-

erences, this proxy mechanism is Pareto efficient.

As a third example, Bouveret and Lang ([1]) consider a simple se-

quential allocation procedure which generalizes many aspects of the

Draft mechanism (but ignores the inital randomization of the order

of the students). The procedure is parameterized by a policy, the se-

quence in which agents take turns to pick items. This policy is fixed

and assumed to be known to the agents in advance. For example,

as in the Draft mechanism, with two agents and four items, the pol-

icy 1221 gives first and last pick to the first agent, and second and

third pick to the second agent. This procedure has the advantage the

preference of the agents do not need to be elicited. Bouveret and

5 A mechanism is nonbossy if when an agent submits different preferneces
and their allocation does not change then the overall allocation does not
change.



Lang assume agents have additive utilities given by a common scor-

ing function (e.g. Borda, lexicographic or quasi-indifferent scores).

They consider two extreme cases: full correlation in which prefer-

ence orderings of the agents are identical, and full independence in

which all preference orderings are equally probable. With full cor-

relation, all policies give the same expected sum of utilities, and the

sequential allocation procedure is strategy proof. With lexicograph-

ical scores, they show that the optimal strategy for an agent given

a particular policy can be computed in polynomial time supposing

other agents pick truthfully. The contribution of our paper is to study

this sequential allocation procedure in more detail.

3 Preliminaries

Let I = {c1, . . . , cm} denote a set of m indivisible goods, and A =
{A1, . . . , An} denote a set of n agents. For any j ≤ n, let uj :
I→R denote the utility function of agent Aj over I. We assume

m ≥ n, and all agents have strict preferences. That is, for any j ≤ n
and any pair of items {c, c′}, uj(c) 6= uj(c

′). We suppose that an

agent’s utility function is additive. For any j ≤ n and any set of

items G ⊆ I, uj(G) =
∑

c∈G
uj(c). For any j ≤ n, let Oj denote

the ordinal preferences of agent j. That is, Oj is a total strict order

over I and for any pair of items {c, c′}, c ≻ c′ in Oj if and only if

uj(c) > uj(c
′). An agent has Borda utility, if for any i ≤ m, the

utility of the item ranked in i-th position in Oj is m−i. An agent has

lexicographic utility, if for any i ≤ m, the utility of the item ranked

in i-th position in Oj is 2m−i. An allocation is a function f : I→A.

For any agent A ∈ A, f−1(A) denote the set of items allocated to A.

A sequential allocation is a mechanism parameterized by a policy P .

This can be represented by an ordering over m elements taken from

A (e.g. P = [A1 ≻ A2 ≻ A1]). Agents take turns to pick items

according to this ordering.

4 Optimal Policies

Bouveret and Lang considered which policies maximize the social

welfare of the agents supposing the preference of agents are indepen-

dent and every preference ordering is equally likely [1]. They consid-

ered an utilitarian principle in which social welfare is measured by

the expected sum of the utilities of the agents (EXPSUMUTIL). They

demonstrated that the simple alternating policy 121212 . . . optimizes

the social welfare when utilities are Borda score (i.e. where the ith
ranked of m items has an utility of m − i) and up to 12 items. In-

terestingly, there exist situations where the policy that maximizes the

sum of the utilities is not alternating. In fact, it need not even be bal-

anced (that is, it might not assign an equal number of items to both

agents).

Example 1. Consider 8 items, a to h, 2 agents and utilities which are

Borda scores. Suppose agent 1 has the preference order a > . . . > h
whilst agent 2 has the order a > h > b > c > d > e > f > g.

Then, supposing the agents pick items truthfully, the alternating pol-

icy 12121212 gives a social welfare of 22+16=38 but the optimal

policy is 22111111 which gives a social welfare of 27+15=42. Note

that the optimal policy does not Pareto dominate the alternating pol-

icy since, whilst the optimal policy increaes the utility for agent 1,

the utility for agent 2 decreases slightly.

Of course, an alternating policy can still be the best policy in ex-

pectation even if there are individual situations like the above where

it is not the best. Bouveret and Lang also considered a rather un-

usual egalitarian principle in which social welfare is measured by

the minimum of the expected utilities of the different agents (MIN-

EXPUTIL). We consider two more “usual” measures of egalitarian

social welfare: the expected minimum utility of the different agents

(EXPMINUTIL) and the minimum utility of the different agents over

all possible worlds (MINUTIL). In the economics literature, MINEX-

PUTIL is called the ex-ante egalitarian utility, whilt EXPMINUTIL is

called the ex-post egalitarian utility.

To illustrate the difference between the three measures, consider

the following two protocols. In the first, we toss a coin. If it lands

on heads, we assign all m items to agent 1, otherwise we assign all

items to agent 2. In the second protocol, we assign m/2 items at ran-

dom to agent 1 and the rest to agent 2. The second protocol is more

egalitarian than the first since one agent is sure to get no items in

the first protocol whilst each agent is allocated m/2 items in the sec-

ond protocol. This is reflected in the expected minimum of the two

utilities (which is zero for the first protocol and half the total utility

for the second protocol), and in the minimum utility (which is zero

for the first protocol, and the sum of utilities of the least valuable

m/2 items for the second protocol). However, the minimum of the

expected utilities hides this difference as both protocols have a min-

imum expected utility that is half the total. We have the following

proposition, whose proof is straightforward and is omitted.

Proposition 1. For any policy and any distribution over utility func-

tions: MINUTIL<EXPMINUTIL<MINEXPUTIL

Note that, whilst the minimum utility (MINUTIL) often occurs in

the full correlation case where agents utilities are identical [1], it can

also occur when the utilities of the agents are different. For instance,

suppose we are dividing just two items between two agents. Consider

the protocol where the two agents declare which of the two items

that they like most. If the two agents most prefer the same item, then

we toss a coin to decide which agent gets this item, and assign the

remaining, less preferred item to the other agent. On the other hand,

if the two agents most prefers different items, we toss a coin and

assign both items to an agent chosen at random. The minimum utility

is now zero and occurs when the two agents most prefer different

items. The full correlation case increases MINUTIL to the smallest

utility assigned to either object.

For the case of two agents, we computed the policies that maxi-

mize the three different egalitarian measures of social welfare using

brute force search. Table 1 demonstrates that the optimal policies for

maximizing ExpMinUtil and MinExpUtil differ. We conjecture

that the optimal ExpMinUtil policy has the form: (12)k2 for m =
2k+1, (12)k(21)k for m = 4k and (12)k(21)k−1 for m = 4k− 2.

In addition, we conjecture that the optimal ExpMinUtil policy for

an even number of items is also an optimal MinUtil policy.

To return to our soccer example, suppose there are ten players to

divide into two teams, utilities are Borda scores, and we adopt an

egalitarian position to help ensure a balanced match. We might then

select the two best players as team captains and, based on the opti-

mality of the policy 12122121, have the first team captain pick first,

third, sixth and eigth, and the second team captain pick otherwise.

As in [1], we also considered two other scoring models: lexico-

graphic scoring (where an item at position k is scored 2−k) and

quasi-indifferent (where an item at position k is scored a − k for

a ≫ n). We consider both an egalitarian model (the EXPMINUTIL

and MINUTIL policies in which we maximize the expected or ac-

tual minimum utilities) and an utilitarian model (the EXPSUMUTIL

policy in which we maximize the expected sum of the utilities). In

Tables 2 and 3, we report the optimal policies for lexicographical

and quasi-indifferent scoring.



m MINEXPUTIL EXPMINUTIL MINUTIL

1 1 1 1
2 12 12 12
3 122 122 122
4 1221 1221 1221
5 11222 12122 12122, 12212, 12211
6 121221 121221 121221, . . .
7 1122122 1212122 1212212, . . .
8 12212112 12122121 11222122, . . .

Table 1. Optimal policies that maximize the minimum of the two expected
utilities (MinExpUtil), the expected minimum of the two utilities

(ExpMinUtil) and the minimun utility (MinUtil). In each case, we
allocate m items, assign utilities using Borda scoring, and assume full

independence between the two agents. Emphasis is added to highlight when
policies start to differ.

EXPMINUTIL MINUTIL EXPSUMUTIL

m egalitarian egalitarian utilitarian

1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1222 1212
5 12122 12222 12121
6 122121 122222 121212
7 1221211 1222222 1212121
8 12212112 12222222 12121212

Table 2. Optimal policies that maximize the expected minimum of the
utilities (EXPMINUTIL), maximize the minimun utility (MINUTIL) and

maximize the expected sum of utilities (EXPSUMUTIL). In each case, we
allocate m objects, assign utilities using lexicographical scoring, and assume

full independence between the two agents.

EXPMINUTIL MINUTIL EXPSUMUTIL

m egalitarian egalitarian utilitarian

1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1221 1212
5 11222 11222 12121
6 121221 121221, . . . 121212
7 1112222 1112222 1212121
8 12122121 11222211, . . . 12121212

Table 3. Optimal policies that maximize the expected minimum of the
utilities (EXPMINUTIL), maximize the minimun utility (MINUTIL) and

maximize the expected sum of utilities (EXPSUMUTIL). In each case, we
allocate m objects, assign utilities using quasi-indifferent scoring, and

assume full independence between the two agents.

We make some observations about these results. First, in both scor-

ing models, a simple alternating policy is optimal under the utilitarian

assumption. It seems likely that the expected sum of utilities is max-

imized for a wide variety of scoring functions by this policy. Second,

for the quasi-indifferent scoring function, the same policy is optimal

for EXPMINUTIL and MINUTIL. This was not the case for the lex-

icographial scoring model. For Borda scoring, the same policy was

optimal for EXPMINUTIL and MINUTIL only for even n.

5 Strategic Behavior

Another desirable property of an allocation procedure is strategy-

proofness. A sequential allocation procedure is strategy-proof if for

any utility functions, the agents are best off choosing their top ranked

item still available at every step. Unfortunately, the sequential alloca-

tion procedure is not strategy-proof in general. For instance, the first

agent to pick an item might not pick their most preferred item if this

is the item least preferred by the other agent. The first agent might

strategically pick some other item as the second agent will not pick

this first item unless there is no other choice. Bouveret and Lang [1]

argue that the sequential allocation procedure is strategy-proof when

agents have the same preference rankings. They also gave a polyno-

mial time method for a single agent to compute a manipulation sup-

posing all other agents act truthfully and utilities are lexicographic.

Supposing all agents but the manipulator act truthfully is a strong

assumption. If one agent is acting strategically, why not the others?

The sequential allocation procedure naturally lends itself to a

game theoretic analysis in which all agents can act strategically. As-

suming that the agents know the utility functions of other agents, we

can model the sequential allocation procedure as a complete infor-

mation extensive-form game. The subgame-perfect Nash equilibrium

(SPNE) gives the (perhaps untruthful) strategy in which agents can-

not improve their allocation by deviating unilaterally. The SPNE can

be computed by backward-induction as follows. We start with the last

agent A in the order P . For any allocation of items in the previous

rounds, only one item remains, and A will get it. Then, we move to

the second to the last agent A′ in P . For any allocation of items in

previous round, A′ can predict the final allocation for any item she

picks. Therefore, she can pick an item that maximizes her total utility

in the final allocation. We then move on to the third to the last agent

in P , etc. Since an agent can obtain the same total utility for picking

different items, there might be multiple SPNE.

Example 2. Suppose there are two agents and four items. Agent

1’s ordinal preferences are O1 = c1 ≻ c2 ≻ c3 ≻ c4 and agent

2’s ordinal preferences are O2 = c2 ≻ c3 ≻ c4 ≻ c1. Let P =
A1 ≻ A2 ≻ A2 ≻ A1. If all agents behave truthfully, then A1

chooses c1 in the first round, A2 chooses c2 and c3 in the second and

third rounds, respectively, and A1 chooses c4 in the last round. If the

agents behave strategically, then A1 can choose c2 in the first round,

and still get c1 in the last round. The unique SPNE allocation in this

game has A1 getting {c1, c2} and A2 getting {c3, c4}.

In the above example, even though there are multiple SPNE, the

final allocation is unique regardless of the utility functions. We will

see later that this is not a coincidence. When there are two agents, the

SPNE allocation is always unique (and indeed can be computed in

linear time). The next example shows that with three or more agents,

there can be multiple SPNE allocations.

Example 3. Suppose there are four items and three agents with

Borda utilities. The ordinal preferences of the agents are as fol-

lows. A1 : c1 ≻ c2 ≻ c3 ≻ c4, A2 : c3 ≻ c4 ≻ . . ., and



A3 : c1 ≻ c2 ≻ l . . . . Let P = A1 ≻ A2 ≻ A3 ≻ A1. There

are two SPNE allocations: (1) if A1 picks c1 in the first round, then

in the SPNE A1 gets {c1, c4}, A2 gets c3, and A3 gets c2; (2) if A1

picks c3 in the first round, then in the SPNE A1 gets {c2, c3}, A2

gets c4, and A3 gets c1.

5.1 Computing SPNE for Two Agents

With two agents and m items, computing the subgame-perfect Nash

equilibrium by backward induction takes Ω(m!) time. This will be

prohibitive when we have many items. The SPNE can, however, be

computed in just O(m) time by means of the following result. Let

u1, u2 be the utility functions of the two agents, O1, O2 be their or-

dinal preferences, and P be the policy. We let Seq(O1, O2, P ) denote

the truthful sequential allocation. We use SPNE(u1, u2, P ) to denote

the subgame-perfect Nash equilibrium allocation. For any total strict

order O, let rev(O) denote the reversed order. Then, we can show

that the SPNE allocation is unique, and can be computed from the

truthful sequential allocation for the reversed preference orderings

and policy.

Theorem 1. When there are two agents, the SPNE allocation is

unique. Moreover,

SPNE(u1, u2, P ) = Seq(rev(O2), rev(O1), rev(P ))

Proof: (Sketch) W.l.o.g. suppose agent 1 has the last pick in policy

P (and thus the first pick in policy rev(P )). Then, agent 1 knows

that the item that is ranked last in O2 is “safe”, as agent 2 has no

incentive to pick it in earlier rounds. Therefore, agent 1 can safely

pick this item in her last round, and leave opportunities in previous

rounds in P to pick more popular items. The formal proof is much

more involved and is proved by induction on the number of items m.

♣

Example 4. Suppose there are two agents and four items. The

agents’ preferences and the policy are the same as in Example 2. We

have rev(P ) = P . In Seq(rev(O2), rev(O1), rev(P )), A1 picks c1
in the first round, A2 picks c3 and c4 in the second round and third

round respectively, and A1 picks c2 in the last round. This outcome

is the same as the SPNE allocation in Example 2.

5.2 Computing SPNE for more than Two Agents

When the number of agents n is comparable to the number of items

m (more precisely, when n = O(m)), we prove that computing the

SPNE is intractable. Consider the decision problem SUBGAMEPER-

FECT, where we are given the utility functions of n agents over m
items, a particular agent A, a policy P , and a threshold T , and we

are asked whether the utility of A is larger than T in any SPNE.

Theorem 2. SUBGAMEPERFECT is PSPACE-complete for Borda

scoring of utilities.

Proof: Backward induction shows that it is in PSPACE. To show

hardness, we give a reduction from QSAT, which is a standard

PSPACE-complete problem. In a QSAT instance, We are given a

quantified formula ∃x1∀x2∃x3 · · · ∀xq . ϕ where q is even and we

are ask whether the formula is true. Let ϕ = C1 ∧ · · · ∧ Ct, where

Cj is a 3-clause, l1j ∨ l2j ∨ l3j . We construct a SUBGAMEPERFECT in-

stance where there is a unique SPNE with a utility to the first player

larger than a threshold if and only if the formula is true.

In the SUBGAMEPERFECT instance, there are q agents who rep-

resent the binary variables. Each of these agents choosing one out of

two items represents a valuation of the variable. The agents that cor-

respond to ∃ quantifiers (that is, agents 1, 3,. . ., q − 1) obtain higher

utility if ϕ is true under the current valuation, and the agents that

correspond to ∀ quantifiers (that is, agents 2, 4,. . ., q) obtain higher

utility if ϕ is false under the current valuation. There are also some

other agents that are used to encode the QSAT instance, which we

will specify later.

Let a be an item, and k, p be natural numbers. We define an

ordering Ok
p(a) that will be used as part of the policy P as follows. It

introduces 2k+1 new agents A1
p, . . . , A

2k+1
p and 5k+1 new items

{ap, b
1
p, . . . , b

k
p, c1p, . . . , c

k
p, d

1
p, . . . , d

k
p, e

1
p, . . . , e

k
p, f

1
p , . . . , f

k
p }.

The preferences of the new agents are as follows:

Agent Preferences

A1
p b1p ≻ c1p ≻ d1p ≻ e1p ≻ Others

...
...

Ak
p bkp ≻ ckp ≻ dkp ≻ ekp ≻ Others

Ak+1
p c1p ≻ f1

p ≻ Others

...
...

A2k
p ckp ≻ fk

p ≻ Others

A2k+1
p a ≻ bkp ≻ · · · ≻ b1p ≻ ap ≻ Others

Let the order over agents be A1
p ≻ · · · ≻ A2k+1

p ≻ A1
p ≻ · · · ≻

A2
p. In Ok

q (a), a is the item that we want to “duplicate”, k is the

number of duplicates, and q is merely an index. We can prove by

induction that if a has not been chosen (in previous rounds), then

after agents have chosen items according to Ok
q (a), {f

1
p , . . . , f

k
p }

will be chosen and {d1p, . . . , d
k
p} will not be chosen; if a has been

chosen, then {d1p, . . . , d
k
p} will be chosen rather than {f1

p , . . . , f
k
p }.

We now specify the sequential allocation instance by using the

orderings Ok
p(a). All agents introduced in Ok

p(a) will not appear in

other places in the policy P . For each i ≤ q, there are two items 0i
and 1i that represent the two values of xi, an agent Ai corresponding

to the valuation and another agent Bi that is used to make sure that

Ai chooses 0i or 1i in the (q+2i−1)th round. For each i ≤ q, Di is

an agent whose preferences are di ≻ Others, where di is a new item

that creates a “gap” between items available to agent Ai. The first

(2t + 4)q agents in P are the following: D1 ≻ · · · ≻ Dq ≻ A1 ≻
· · · ≻ Aq ≻ Ot

1(01) ≻ · · · ≻ Ot
q(0q) ≻ B1 ≻ · · · ≻ Bq . The

preferences of Bi are 0i ≻ 1i ≻ Others. The preferences of Ai will

be defined after we have defined all items and have specified P . For

notational convenience, for each i ≤ q and each j ≤ t we rename dji
to be 0ji , and rename f j

i to be 1ji .

For each clause Ci, we have an agent denoted by Ci. Suppose vj1 ,

vj2 , and vj3 correspond to the 3 valuations that satisfy Ci, then we

let the preferences of Ci be vij1 ≻ vij2 ≻ vij3 ≻ g ≻ g′i ≻ Others,

where g and g′i are new items. g is used to detect whether a clause

is not satisfied. For example, suppose Ci = x1 ∨ ¬x2 ∨ x3, then

the preferences of Ci are 1i1 ≻ 0i2 ≻ 1i3 ≻ g ≻ g′i ≻ Others. The

remaining agents in the P are: C1 ≻ · · · ≻ Ct ≻ Oq
q+1(g) ≻ A1 ≻

· · · ≻ Aq .

The agents and new items introduced in Oq
q+1(g) impose “feed-

back” on A1 through Aq , such that if g is allocated before Oq
q+1(g)

(which means that the formula is not satisfied under the valuation en-

coded in the first q rounds), then some items that are more valuable

to the agents that correspond to the ∀ quantifiers are made avail-

able; if g is not allocated before Oq
q+1(g), then some items that

are more valuable to the agents that correspond to the ∃ quantifiers

are made available. Finally, for each i ≤ q, we define the ordinal

preferences of Ai as follows. If i is odd, then Ai’s preferences are



0i ≻ 1i ≻ diq+1 ≻ di ≻ f i
q+1 ≻ . . .. If i is even, then Ai’s prefer-

ences are 0i ≻ 1i ≻ f i
q+1 ≻ di ≻ diq+1 ≻ . . ..

To summarize, in the sequential allocation instance, there are 3q+
t+(2t+1)q+2q+1 agents and m = 3q+(5t+1)q+1+t+5q+1
items, which are polynomial in the size of the formula (Ω(t + q)).
Table 4 summarizes the items introduced in the reduction. Final, the

for items Introduced in

i ≤ q di Di

i ≤ q 0i, 1i Ai

i ≤ q, j ≤ t

ai

b
j
i

c
j
i

d
j
i (a.k.a. 0ji )

e
j
i

f
j
i (a.k.a. 1ji )

O
j
i (0i)

g C1

j ≤ t g′t Cj

j ≤ q aq+1, b
j
q+1

, c
j
q+1

, O
q
q+1

(g)

d
j
q+1

, e
j
q+1

, f
j
q+1

Table 4. Items introduced in the reduction.

policy P ordering over agents is the following.

D1 ≻ · · · ≻ Dq ≻ A1 ≻ · · · ≻ Aq ≻ Ot
1(01) ≻ · · · ≻ Ot

q(0q)

≻ B1 ≻ · · · ≻ Bq ≻ C1 ≻ · · · ≻ Ct ≻ Oq
q+1(g)

≻ A1 ≻ · · · ≻ Aq

If we must allocate all items then we can add some dummy agents to

the end of the ordering.

We note that if an agent only appears once in the ordering, then it

is her strictly dominant strategy to pick her most preferred available

item. In any SPNE, in the first q rounds d1, . . . , dq will be chosen. In

the next q rounds, agent i must choose either 0i or 1i, otherwise 0i
will be chosen by agent A2t+1

i introduced in Ot
i(0i) and 1i will be

chosen by Bi. Hence, the choices of agents Ai correspond to valua-

tions of the variables, and these valuations are duplicated by Ot
i(0i)

that will be used to satisfy clauses. (We note that if Ai chooses 0i,
then after Ot

i(0i), {0
1
i , . . . , 0

t
i} are still available, but {11i , . . . , 1

t
i}

are not available; and vice versa.) Then, a clause Ci is satisfied if

and only if at least one of the top 3 items of agent Ci is available

(otherwise Ci chooses g). Hence, after agent Ct, g is available if and

only if all clauses are satisfied. Finally, if g is available after agent

Ct, then the agents that correspond to the ∃ quantifiers can choose

dq+1’s to increase their total utility by m−3, but the agents that cor-

respond to the ∀ quantifiers can only choose dq+1’s to increase their

utility by m−5; and vice versa. Hence, the agents that correspond to

∃ quantifiers will choose valuations to make F true, while the agents

that correspond to ∀ quantifiers will choose valuations to make F
false. It can be verified that there is a unique SPNE allocation, where

agent A1’s utility is at least 2m− 5 (that is, she gets one of {01, 11}
and d1q+1) if and only if the formula F is true. ♣

6 Optimal Policies for Strategic Behavior

Suppose agents act strategically instead of truthfully. For example,

suppose they pick items according to the subgame-perfect Nash

equilibrium. The policies which maximize social welfare can now

change. For a reversal symmetric scoring function like Borda, and a

reversal symmetric policy like the simple alternating policy, it is easy

to see that the situations where strategic behavior decreases social

welfare will be exactly balanced by the symmetric situations where

it increases social welfare. As a result, we did not observe any differ-

ence in the policies that optimizes social welfare for Borda scoring

when agents behave strategically instead of truthfully. For example,

brute force calculation with up to 8 items show that the expected

sum of the utilities of the agents supposing Borda scoring is max-

imized by the same simple alternating policy whether agents pick

either truthfully or strategically.

Strategic behavior can sometimes increase the social welfare of the

agents. In other cases, it can decrease the social welfare of the agents

or leave it unchanged. In fact, given the reversal symmetry of the

optimal policy, and of the subgame perfect equilibrium, Borda scor-

ing and the utilitarian criterium, we can prove that the cases when

the utilitarian social welfare increases are exactly matched by cases

where it decreases. With an egalitarian criterium, strategic behavior

can improve social welfare slightly more often than it can decrease

it. Averaged over all possible preference profiles, brute force calcu-

lations suggest that the expected sum of the utilities barely changes,

whilst the expected minimum increases by less than 1%.

For scoring functions that are not symmetric, the optimal policy

can change. For example, with lexicographical scores, the optimal

policy for strategic behavior is different from that for truthful be-

havior. Table 5 summarizes results based on brute force calculation.

When maximizing the expected minimum utility, the optimal poli-

cies for agents playing strategically are optimal policies for agents

playing truthfully for 6 or fewer items. However, the optimal pol-

icy for strategic play with 7 items is 1221122 but for truthful play is

1221211. Similarly, for 8 items, the optimal policy for strategic play

is 12212211 but for truthful play is 12212112. When maximizing

the minimum utility, the optimal policies for strategic play are opti-

mal policies for truthful play. When maximizing the expected sum of

utilities and 4 or more items, the optimal policies for strategic play

are not optimal alternating policies for truthful play.

ExpMinUtil MinUtil ExpSumUtil

n egalitarian egalitarian utilitarian

1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1222 1212, 1221

5 12122 12222 12122

6 122121 122222 122112

7 1221122 1222222 1212122

8 12212211 12222222 12211221

Table 5. Optimal policies when we assign utilities using lexicographical
scoring, and assume agents play strategically by computing the

subgame-perfect Nash equilibrium. Emphasis is added to highlight when
policies differ from the optimal truthful policies.

We conjecture that the optimal ExpMinUtil policy supposing

strategic behavior has the alternating form: (1221)k21 for m = 4k+
2, (1221)k122 for m = 4k + 3 and (1221)k2211 for m = 4k + 4.

We also conjecture that the optimal ExpSumUtil policy supposing

strategic behavior has the alternating form: (12)k122 for m = 2k +
3, 1(2211)k2 for m = 4k + 2, and 1(2211)k221 for m = 4k + 4.

Strategic play also carries a small cost. Averaged over all possible

preference profiles, the utility decreases by 5% or less for both the



expected sum and minimum of utilities.

As in [1], we also considered quasi-indifferent scoring. With

quasi-indifferent scoring, an item at position k in an agent’s ordering

is given score a − k where a ≫ n and n is the number of items. In

Table 6, we give the optimal policies for agents playing strategically

when agents are quasi-indifferent between items. The optimal policy

for agents playing strategically is also the optimal policy for agents

playing truthfully except n = 6 and the egalitarian criterium of maxi-

mizing the expected minimum utility. When agents play strategically,

the optimal policy in this case is 122121. However, when agents play

truthfully, the optimal policy in this case is 121221.

ExpMinUtil MinUtil ExpSumUtil

n egalitarian egalitarian utilitarian

1 1 1 1
2 12 12 12
3 122 122 121
4 1221 1221 1212
5 11222 11222 12121
6 122121 121221, . . . 121212
7 1112222 1112222 1212121
8 12122121 12211221, . . . 12121212

Table 6. Optimal policies when we assign utilities using a quasi-indifferent
scoring function, and assume agents play strategically by computing the

subgame perfect equilibrium.

7 Disposal of Items

One inefficiency of the policies considered so far is that one agent

may use one of their early choices to select an item that the other

agent would happily give away. There is an inherent asymmetry in

agents declaring items that they like most but not the items that they

like least. To address this issue, we suppose agentscan select the item

that they least like to give to the other agent. For instance, the policy

11̄21 describes a protocol in which the first agent starts by picking

their most preferred item, then picks their least preferred item to give

to the second agent, the second agent then picks the most preferred

of the two items that remain, and the first agent then gets the last

remaining item. 1̄ means that agent 1 gives the item remaining that

she likes least to agent 2.

ExpMinUtil ExpSumUtil

n egalitarian utilitarian

1 1 1
2 12 12
3 122 121, 1̄21
4 1221, 11̄21, 12̄22, 1̄211 11̄21
5 12122, 1̄1̄2̄12 122̄12, 1̄22̄12
6 12̄1̄1̄21, 1̄21121 11̄2121, 11̄2̄1̄21
7 121̄1̄2̄12 12122̄12, 12̄1̄22̄12, 1̄2122̄12, 1̄2̄1̄22̄12
8 12̄1̄1̄2̄1̄21, 1̄2112121 11̄212121, . . . 11̄2̄1̄2̄1̄21

Table 7. Optimal policy for dividing n items with utility measured using
Borda scoring assuming egalitarianism or utilitarianism and full

independence between the two agents. Note that when computing the
optimal policy, we consider all possible policies including those in which
agents only pick items, and those in which agents only give items away.

In Table 7, we give the optimal policies assuming strategic behav-

ior, and Borda scoring of utilities when agents can dispose of items

as well as pick them. We again put policies into a canonical form in

which agent 1 makes the first move. There is a symmetric policy in

which we swap agent 1 with agent 2 throughout. We also ignore poli-

cies which result in the same division of items. For instance, a policy

containing the moves 1̄1 is equivalent one containing 11̄. Our canon-

ical form has agents picking items before giving give them away. For

example, a policy that ends with the moves 2̄1 gives the last two items

to the first agent so is equivalent to one that ends with the moves 11.

Our canonical form describes a policy by the lexicographically least

equivalent policy supposing that 1 and 2 are ordered before 1̄ and 2̄.

We make some observations about the results. First, we can often

increase social welfare by having agents declare items that they dis-

like. There are a few optimal policies in which agents only pick items

that they like (e.g. for n = 5, one of the optimal egalitarian poli-

cies is 12122). However, in most cases, the optimal policy has agents

declaring both items that they like and dislike. Second, when dividing

4 items between two agents, there is a policy, 11̄21 that is optimal for

both the egalitarian and utilitarian measures of social welfare. Third,

unlike protocols in which agents pick just items that they like, there

are often several different protocols which maximize social welfare.

8 Conclusions

We have studied a simple sequential allocation procedure where

agents get to choose items according to a policy, and agents have

simple additive utilities over items given by Borda, lexicographical

or quasi-indifferent scores. We have computed optimal policies as-

suming both truthful and strategic behavior of the agents for both

egalitarian and utilitarian measure of social welfare. We have also

proved that with two agents, the subgame perfect Nash equilibrium

is polynomial to compute by simply reversing the agents’ prefer-

ences and the policy. On the other hand, with more than two agents,

we proved that computing the subgame perfect Nash equilibrium is

PSPACE-hard. There are many directions for future work. One di-

rection would be to prove the conjectures about the optimal policies

for maximizing social welfare assuming truthful or strategic behav-

ior and Borda or lexicographical scoring. Another direction would be

to determine if we can compute the subgame-perfect Nash equilib-

rium in polynomial time for a fixed number agents k where k > 2.

More generally, when we want to allocate multiple indivisible goods,

how can we design simple, elicitation free mechanisms that balance

efficiency and strategy-proofness?
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Explanation of the robust additive preference model
by even swap sequences

Christophe Labreuche1 and Nicolas Maudet2 and Vincent Mousseau3 and Wassila Ouerdane4

Abstract. The even swap method is an interesting approach for

identifying the best alternative among several options [5]. This con-

structive method is intuitively attracting: only two attributes are in-

volved in even swaps, and utilities are never explicitely mentioned

to the Decision Maker (DM). The aim of this paper is to investigate

whether this approach can be generalized to robust preference rela-

tions and used to generate convincing explanations.

1 Introduction

The problem of constructing or providing convincing explanations

to a Decision Maker (DM) in order to justify recommended deci-

sions is a central concern for decision-aiding tools (see for instance

[1, 8, 11]). This issue raises many questions. What is an explanation?

How to construct an explanation? What is the information, beyond

the utility functions, that is useful or necessary to get to construct

a “good” explanation? Roughly speaking, the aim is to increase the

user’s acceptance of the recommended choice, by providing support-

ing evidence that this choice is justified [6].

One of the difficulties of this question lies on the fact that the rel-

evant concept of an explanation may be different, depending on the

decision problem at hand and on the targeted audience. Depending

on the situations, explanations may be required to be precise (like

a proof), or instead to be only convincing arguments. Also, the in-

formation that may be put forward to generate an explanation may

greatly vary: a convincing explanation for the decision analyst may

be impossible to understand for the DM, simply because their level

of understanding of the problem differ. This problem is especially

difficult in the context of multi-attribute models [9, 10], where dif-

ferent criteria are at stake, where the DM is not necessarily able to

fully assess how important are criteria or to understand the way cri-

teria interact. In such models, explaining the result is certainly not an

easy task.

In this paper we shall concentrate on the basic additive utility

model. This well-known (quantitative) model assumes independence

among criteria, although of course different criteria may have dif-

ferent weights. In other words, no synergy (either positive or nega-

tive) occurs between the different criteria. In this model, the basic

approach is to construct, by elicitation techniques, a so-called util-

ity function which hopefully captures the DM preferences. A natural

1 Thales Research & Technology, 91767 Palaiseau Cedex, France, email:
christophe.labreuche@thalesgroup.com

2 LIP6, Université Paris-6, 75006 Paris Cedex 06, France, email: nico-
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cent.Mousseau@ecp.fr

4 LGI, Ecole Centrale de Paris, Chatenay Malabry, France, email: was-
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way to generate an explanation would thus be to use this constructed

function and to justify the decision by exploiting this function. Un-

fortunately, this constructed function is often not very meaningful to

the DM.

Within the additive model, an alternative interesting approach for

identifying the best decision is based on so-called even swaps [5].

This is basically an elimination process based on trade-offs between

pairs of attributes (hence the name even swaps). Broadly speaking,

in such a swap, the DM changes the consequence (or score) of an

alternative on one attribute, and compensates this change with one

on another attribute, so that the new alternative is equally preferred

in the end. What is the point of making such swaps? Suppose you

want to compare two options but that none dominates (in the Pareto

sense) the other one. By replacing one option with a different but

equally preferred one, the hope is that dominance will occur. The

process is thus repeated until dominance can be shown to hold, al-

lowing to progressively eliminate options. An intuitive interpretation

of this method is thus to see it as a scattered exploration of the iso-

preference curve (the curve where lies, even virtually, the alternatives

equally preferred) of the DM. This constructive method is quite in-

tuitive as only two attributes are involved in even swaps, and utilities

are never explicitly mentioned to the DM. The idea is then that it may

constitute a good starting point to justify a recommendation without

refereeing explicitely to the utility function or the model used to get

the solution. However this approach suffers from a limitation: by re-

quiring each new generated option to be equally preferred to the ini-

tial one, this makes the technique poorly adapted to the context of

incomplete preferences where such equivalence virtually never hold.

When utility functions are only partially known, a conservative

approach consists in relying on a robust (or necessary) preference

relation. In words, the relation holds if any possible completion of the

available preferential information yields the preferential statement.

The aim of this paper is to investigate whether this approach can

be generalized to robust preference relations and used to generate

convincing explanations. In fact, the sequence of swaps obtained at

the end of the process can be seen as the reasoning steps allowing to

highlight why an alternative is the best choice.

The remainder of the paper is as follows. In the next section, we

provide the necessary background notions and concepts that we shall

use for formulating explanations. In Section 3 we describe what is an

explanation based on sequence of preference-swaps and we address

the problem of its length in Section 4. In general, we argue that the

simplicity of an explanation is not directly captured by its length.

However, we focus on a specific case where such a simplified view is

possible, and provide first results. Section 5 discusses related works.



2 Background and basic definitions

We consider a finite set N = {1, . . . , n} of criteria. Each crite-

rion i 2 N is described by an attribute Xi. We assume that all

attributes are numerical. For discrete attributes, Xi represents inte-

gers. For continuous attributes, Xi is an interval (possibly infinite).

Alternatives are considered as elements of the Cartesian product of

the attributes: X = X1 ⇥ · · · ⇥Xn.

2.1 Comparison of two alternatives with even swap
sequences

We ground our work on the even swaps method [5] which relies on an

additive utility function to compare multi-attribute alternatives x =
(x1, x2, · · · , xn) and y = (y1, y2, · · · , yn):

x % y ,
X

i2N

ui(xi) ≥
X

i2N

ui(yi)

So as to choose the best alternative, this method does not require to

fully elicit the marginal utility functions, but only a limited number

of trade-offs between pairs of attributes (swaps). In other words, the

DM does not have to explicitly define the preferences over the at-

tributes in general or to make any assumption about the form of the

utility function. More precisely, the DM changes the consequence (or

score) of an alternative on one attribute, and compensates this change

with a preferentially equal change on another attribute. This creates a

new fictitious alternative, that is indifferent to the previous one, with

revised consequences. We use this alternative to try to eliminate the

other ones. The aim of this process is to carry out even swaps that

make either alternatives dominated or attributes irrelevant. To get an

intuitive understanding of the process, consider the following exam-

ple, largely inspired from the original example provided in [5].

Example 1. You need to rent an office for your business and you have

the choice between four alternatives {x, y, t, z}. Such options are

evaluated, as it is depicted in the Table 1, on four criteria {commute

(min), office services (A%B%C), size (m2), cost (e) }. Of course you

want to minimize the cost and commute time, while you seek to maxi-

mize the quality of service and the size. The problem is to identify the

best option.

Table 1. Evaluation of available offices

Commute (min) Service Size (m2) Cost (e)

x 25 B 700 1700
y 20 C 500 1500
z 25 A 950 1900
t 30 C 700 1750

y0 25 C 550 1500
y00 25 B 500 1750

First, we can observe that x dominates t, so t can be removed from

the list of considered offices. As no more dominance exists among

the remaining alternatives, the method proceeds by constructing a

first trade-off (a swap), starting for instance with the office y, by ask-

ing the following question: “What increase δ in Size would exactly

compensate a loss of 5 min on Commute?”

This defines a new alternative y0 = (25, C, 500 + δ, 1500) that

is considered by the DM indifferent to y. Suppose, for instance that

δ = 50, then y can be substituted by y0 = (25, C, 550, 1500) in

the analysis. As dominance cannot be applied, new trade-offs are as-

sessed to neutralize the criterion Service using Cost as reference.

This can be done in two ways as follows:

• what maximal increase in Cost would you be prepared to pay to

go from C to B on Service for y0 ? if the answer is 250 e, so y0

is indifferent to y00 = (25, B, 550, 1750)
• what minimal decrease in Cost would you ask if we go from A

to B on service for z? if the answer is 100 e, so z is indifferent to

z0 = (25, B, 950, 1800)

Obtaining two new fictitious alternatives we can again check the

dominance among the set of alternatives. We can observe that y00 is

dominated by x, therefore y can be dropped. We continue the process

by alternating phases of dominance and construction of trade-offs

until obtaining the best alternative.

Originally, this method was designed to select the best alternative,

by eliciting progressively the necessary swaps. What we can observe

from this small example is that following the reasoning steps of the

even swaps process we can deduce an intuitive and simple manner

to explain the result to the decision maker. In fact, such an expla-

nation will involve statements like “an increase of δi on criterion i

is compensated by a decrease of δj on criterion j”, together with

dominance analysis, rather than utility computation. That is, we can

simply rely on the sequence of even swaps used to identify the best

alternative rather than discuss the parameters and values of the multi-

attributes models.

For instance, in our example the statement x % y can be explained

in the following way: “an increase in Size from 500m2 to 550m2 com-

pensates a degradation from 20mn to 25mn in Commute, therefore

office y=(20,C,500,1500) is indifferent to office y0=(25,C,550,1500).

Moreover an improvement from C to B on Service is compen-

sated by an increase in Cost from 1500e to 1750e, therefore office

y0=(25,C,550,1500) is indifferent to office y00=(25,B,550,1750)”.

Now observe that x is at least as good as y00 on all attributes, then x

is preferred to y00. As y00 is indifferent to y, x is preferred to y.”

Note that even if the utility functions ui are known precisely and

have been elicited with a technique different from the even swaps

process, then it is possible from these utility functions to construct

a sequence of even swaps that allows to show why x is preferred

to y (assuming x % y of course). This sequence can be used as an

explanation of why x % y.

In a sense, the even swaps method already deals with some sort

of incomplete preferences, as it does not require the full knowledge

of the value function. The trick of the method is precisely to explore

certain alternatives which stand on the same isopreference curve of

the DM, until dominance occurs. However, at each step, the DM is

required to answer equivalence queries, which may be difficult in

practice. Consider again the question “What increase in Size would

exactly compensate a loss of 5 min on Commute?”. To such a ques-

tion, the DM may be more comfortable to reply: “I don’t know, but

100 additional square meters would certainly compensate this ad-

ditional commute time”. Or, on the other hand, “20 square meters

are certainly not enough to compensate”. By doing so however, the

DM does not allow a proper even swap to occur. Instead of creating

a fictitious alternative with the same utility, such statements gener-

ates a mere inequality constraint in the preferential information avail-

able. For instance, the last statement would create a new alternative

y000 = (25, C, 500+20, 1500), and it would be known that y % y000.

In the remainder of this paper, we investigate whether the swap

principle can be extended in order to allow such a wider range of

preference statements.



2.2 Robust relation with the additive utility model

In what follows, we assume the decision-maker (DM) provides us

some Preferential Information (PI) denoted by P . We may consider

the following types of PI:

• The most classical one is a comparison of two alternatives x and

y in X , which can take different forms x⌅ y (x is at least as good

as y), x⇤ y (x is strictly preferred to y) or x ⌘ y (x is indifferent

to y)

• When Xi is an interval, one may also express the existence of

saturation threshold. Value s+i (resp. s−i ) is an upper (resp. lower)

saturation threshold on attribute i if for all x−i 2 X−i and all

xi 2 Xi with xi ≥ s+i (resp. xi  s−i ), (xi, x−i) ⌘ (s+i , x−i)
(resp. (xi, x−i) ⌘ (s−i , x−i)).

• When Xi is an interval, the DM may also express that the prefer-

ence over attribute Xi is concave or convex.

Given two alternatives z, z0 2 X , we need to determine whether

z is necessarily preferred (resp. similar) to z0 given the previous PI

[3, 4].

For each i 2 N , we define bVi as the set of values on attributes Xi

appearing in the PI (i.e. the union of {xi, yi} for all [x ⌅ y], [x ⇤ y]
or [x ⌘ y] in the PI P , of the thresholds s+i , s

−
i of the PI). Moreover,

we define Vi = bVi [ {zi, z
0
i}. The elements of Vi are denoted by

v1i < v2i < · · · < v
pi
i , where pi = |Vi|. The unknown variables of

the model are the utility ui(v
1
i ), ui(v

2
i ), . . . , ui(v

pi
i ) of these points.

Throughout this paper, we will assume that the utility functions

are non-decreasing, so that

8i 2 N ui(v
1
i )  ui(v

2
i )  · · ·  ui(v

pi
i ). (1)

Concerning the PI on the comparison of two alternatives, we have

the following constraints:

If [x ⌅ y] 2 P , then
X

i2N

ui(xi) ≥
X

i2N

ui(yi) (2)

If [x ⇤ y] 2 P , then
X

i2N

ui(xi) >
X

i2N

ui(yi) (3)

If [x ⌘ y] 2 P , then
X

i2N

ui(xi) =
X

i2N

ui(yi) (4)

Now if the DM expresses an upper-saturation level on attribute i, the

following constraint is added:

8vi 2 Vi with vi > s
+
i ui(vi) = ui(s

+
i ), (5)

and if the DM expresses a lower-saturation level on attribute i, the

following constraint is added:

8vi 2 Vi with vi < s
−
i ui(vi) = ui(s

−
i ). (6)

Finally, if the DM expresses that the utility function on criterion i is

concave, then the following constraint is added:

8j 2 {3, . . . , pi}

ui(v
j
i )  ui(v

j−2
i ) + (ui(v

j−1
i )− ui(v

j−2
i ))

v
j
i − v

j−2
i

v
j−1
i − v

j−2
i

(7)

and if the DM expresses that the utility function on criterion i is

convex, then the following constraint is added:

8j 2 {3, . . . , pi}

ui(v
j
i ) ≥ ui(v

j−2
i ) + (ui(v

j−1
i )− ui(v

j−2
i ))

v
j
i − v

j−2
i

v
j−1
i − v

j−2
i

(8)

Example 2. (1, ctd.) For attribute X1, we have bV1 = {20, 25, 30}.

For attribute X3, we have bV3 = {500, 550, 700, 950}. We have for

instance [y⇤y000]. Finally, the DM could express an upper-saturation

level by stating: “Frankly, I don’t need more than 100 square me-

ters.”

This provides a set of constraints resulting from the DM state-

ments. Typically, a number of utilities will be compatible with these

constraints. In order to compare the alternatives, we compute :

M :=min
X

i2N

(ui(zi)− ui(z
0
i))

under (1) – (8)

and

M :=max
X

i2N

(ui(zi)− ui(z
0
i))

under (1) – (8)

Definition 1 (see [3, 4]). We say that z is necessarily at least as good

as z0 (noted z %N z0) if M ≥ 0. Likewise, z0 is necessarily at least

as good as z (noted z0 %N z) if M  0.

We say that z is necessarily preferred to z0 (noted z %N z0) if

M > 0. Likewise, z0 is necessarily preferred to z (noted z0 %N z)

if M < 0, and z is necessarily similar to z0 (noted z ⇠N z0) if

M = M = 0.

Note that it is very unlikely that the necessarily similar relation

holds when the PI is incomplete.

2.3 Objective of this paper

We denote by ≥Pareto the Pareto ordering on X . In Section 2.1, as

we have seen, when the utilities are completely fixed, showing that

an option z is at least as good as z0 (denoted by z % z0) consists in

exhibiting a sequence z[1], z[2], . . . , z[q] in X with z[1] = z such

that

z[1] ⇠ z[2] ⇠ . . . ⇠ z[q] ≥Pareto z
0

(9)

(where ⇠ means indifference) and z[l] ⇠ z[l + 1] corresponds to an

even-swap.

The generalization of this approach to robust preference relation

is not simple. The main reason is that the robust indifference rela-

tion ⇠N almost never occur in practice. To circumvent this issue, we

propose to generalize (9) in two different ways.

First of all, the equivalence relation used in even-swaps needs to

be relaxed into a preference relation.

Definition 2. We say that z[l] %N z[l + 1] is a preference-swap if

there exists i, j 2 N such that z[l]i > z[l + 1]i, z[l]j < z[l + 1]j
and z[l]k > z[l + 1]k for all k 2 N \ {i, j}.

Secondly, one can generalize even-swap to trade-offs among coali-

tion of more than two criteria.

Definition 3. We say that z[l] %N z[l + 1] is a preference-swap of

order p (with p 2 {2, . . . , n} if there exists A ⇢ N with |A| = n−p,

8i 2 A, xi = yi and 8i 2 N \A, xi 6= yi.

Explanations in our context will thus be sequences generalizing

(9) and in particular consisting of preference swaps of order 2 or

higher. This is described more formally in the next section.



3 Explanations based on preference-swaps

We introduce the following sets:

• ∆0 is the set of pairs (x, y) in X ⇥ X such that [x ⌅ y] 2 P .

In other terms, it is the set of comparative preferential information

given by the decision maker.

• ∆1 is the set of pairs (x, y) in X ⇥ X such that there exists

(x0, y0) 2 ∆0 with x ≥Pareto x0 and y0 ≥Pareto y.

• For p 2 {2, . . . , n}, ∆p is the set of pairs of alternatives (x, y) in

X ⇥X such that x %N y is a preference-swap of order p.

∆0,∆1, . . . ,∆n are in increasing complexity to understand them.

Let ∆ := ∆0 [ ∆1 [ . . . [ ∆n. Clearly ∆ is the set of pairs

satisfying the binary relation %N .

Definition 4. An explanation of z %N z0 is a sequence

z[1], z[2], . . . , z[q] in X with z[1] = z and z[q] = z0 such that

(z[k], z[k + 1]) 2 ∆ for all k 2 {1, . . . , q − 1}. Let Ex denote the

set of explanations.

In order to define orderings over explanations, we introduce the

concept of complexity of an explanation.

Definition 5. For (z[1], . . . , z[q]) 2 Ex , The complexity of

(z[1], . . . , z[q]) 2 Ex is

comp(z[1], . . . , z[q]) :=
⇣
C(z[1],...,z[q])(0), C(z[1],...,z[q])(1), . . . ,

C(z[1],...,z[q])(n)
⌘

where

C(z[1],...,z[q])(k) =
∣∣∣{j 2 {1, . . . , q − 1} , (z[j], z[j + 1]) 2 ∆k}

∣∣∣.

We now define several possible orderings over explanations (see

Definitions 6 and 7).

Definition 6. For (z[1], . . . , z[q]), (t[1], . . . , t[q0]) 2 Ex ,

(z[1], . . . , z[q]) ⇤Ex (t[1], . . . , t[q0]) iff comp(z[1], . . . , z[q]) %lex

comp(t[1], . . . , t[q0]), where %lex is the lexicographic ordering.

(a0, . . . , an) %lex (b0, . . . , bn) if there exists i 2 {0, . . . , n} such

that ai > bi and aj = bj for all j 2 {0, . . . , n} with j > i.

Definition 7. For (z[1], . . . , z[q]), (t[1], . . . , t[q0]) 2 Ex ,

(z[1], . . . , z[q]) ⇤
0
Ex (t[1], . . . , t[q0]) iff

⇣
C(z[1],...,z[q])(0) [ C(z[1],...,z[q])(1) [ C(z[1],...,z[q])(2),

C(z[1],...,z[q])(3), . . . , C(z[1],...,z[q])(n)
⌘

%lex

⇣
C(z0[1],...,z0[q])(0) [ C(z0[1],...,z0[q])(1) [ C(z0[1],...,z0[q])(2),

C(z0[1],...,z0[q])(3), . . . , C(z0[1],...,z0[q])(n)
⌘
.

According to Definition 6, ∆0 is the less complex elements of ∆,

∆1 are the second less complex elements, . . ., and ∆n are the most

complex elements. On the other hand, in Definition 7, the three sets

∆0, ∆1 and ∆2 are of the same complexity and are combined.

We then look for a minimal explanation in the sense of ⇤Ex or

⇤
0
Ex .

Example 3. Consider the following PI on a set of 3 attributes

(10, 100, 1000) ⌅ (20, 80, 900) (10)

(20, 70, 900) ⌅ (15, 100, 1000) (11)

(0, 85, 700) ⌅ (30, 90, 500) (12)

(30, 80, 500) ⌅ (0, 85, 600) (13)

We wish to compare z = (10, 70, 700) with z0 = (15, 90, 600).
From (10) and (11) we get

(10, 70, 900) %N (15, 80, 900)

and thus from the independence property of the model:

(10, 70, 700) %N (15, 80, 700). (14)

From (12) and (13) we get

(30, 80, 700) %N (30, 90, 600)

and thus from the independence property of the model:

(15, 80, 700) %N (15, 90, 600). (15)

From (14) and (15), we get the sequence

z = (10, 70, 700) %N (15, 80, 700) %N (15, 90, 600) = z
0
.

Hence

comp((10, 70, 700), (15, 80, 700), (15, 90, 600)) = (0, 0, 2, 0)

comp((10, 70, 700), (15, 90, 600)) = (0, 0, 0, 1)

and

comp((10, 70, 700), (15, 80, 700), (15, 90, 600))

%lex comp((10, 70, 700), (15, 90, 600)).

The explanation ((10, 70, 700), (15, 80, 700), (15, 90, 600)) is sim-

pler than ((10, 70, 700), (15, 90, 600)) in the sense of ⇤Ex or ⇤
0
Ex .

This shows that the simplicity of an explanation is not directly

captured by the length of the sequence. Short sequences involving

preference-swaps of high order may not be desirable. However, if we

restrict our attention to preference-swaps of order 2, the length of the

sequence becomes very important to consider.

4 On the length of preference-swap sequences

We consider an explanation of z %N z0, that is a sequence

z[1], z[2], . . . , z[q] (see Definition 4).

Definition 8. The length of an explanation (z[1], . . . , z[q]) 2 Ex is

its number of elements, that is q.

Furthermore, we assume that (z[k], z[k + 1]) 2 ∆1 [∆2 (Pareto

ordering and preference-swap of order 2) for all k 2 {1, . . . , q− 1}.

In the case of sequences of even-swaps, it is easy to see that the

length of the sequence is at most n. Let us show in an example that

this is not the case with sequences of preference-swaps.



Example 4. Let us consider four criteria and the following PI:

(1, 0, ·, ·) ⌅ (0, 1, ·, ·) (16)

(0, ·, 1, ·) ⌅ (1, ·, 0, ·) (17)

(·, 1, ·, 0) ⌅ (·, 0, ·, 1) (18)

where ‘·’ means that the value on this attribute does not matter pro-

vided that the alternatives on the left hand side and on the right hand

side have the same value.

Consider now two alternatives (1, 0, 1, 0) and (0, 1, 0, 1). It can

be readily seen that (1, 0, 1, 0) %N (0, 1, 0, 1). One can obtain the

following sequence of only 5 comparisons from the PI (∆0):

(1, 0, 1, 0) %N| {z }
from (16)

(0, 1, 1, 0) %N| {z }
from (17)

(1, 1, 0, 0)

%N| {z }
from (18)

(1, 0, 0, 1) %N| {z }
from (16)

(0, 1, 0, 1)

We restrict ourself in the rest of this paper to preference swaps of

order 2. Can we get an upper bound on the length q?

4.1 Unboundedness of the length of the sequence

We start with a negative result. If we make no assumption on the

values of the attributes taken by the alternatives in the PI, the length

q is unbounded. This is shown by the following lemma when n ≥ 3.

Lemma 1. Consider n ≥ 3. Let z, z0 2 R
N where zi 6= zi for

at least three attributes i1, i2, i3 with zi1 < z0i1 , zi2 > z0i2 and

zi3 > z0i3 . Assume that [min(zi, z
0
i),max(zi, z

0
i)] ✓ Xi for all i 2

{i1, i2, i3}. Then for every k 2 N
⇤, there exists some PI such that

z %N z0 and the minimal length of the explanation in ∆0[∆1[∆2

is at least k.

Note that we can also add ∆1 on top of ∆2 in the previous lemma.

Proof : Let n ≥ 3, k 2 N
⇤ and p = b k

2
c. Without loss of generality,

take i1 = 1, i2 = 2, i3 = 3, z1 = 0, z2 = 0, z3 = 0, z01 = 1,

z02 = −1 and z03 = −1. Assume that X1 ◆ [0, 1], X2 ◆ [−1, 0] and

X3 ◆ [−1, 0]. Consider the following PI:

8j 2 {0, . . . , p− 1}
⇣2j

2p
,−

j

p
,−

j

p
, z−123

⌘
⌅

⇣2j + 1

2p
,−

j + 1

p
,−

j

p
, z−123

⌘

8j 2 {0, . . . , p− 1}
⇣2j + 1

2p
,−

j + 1

p
,−

j

p
, z−123

⌘

⌅

⇣2j + 2

2p
,−

j + 1

p
,−

j + 1

p
, z−123

⌘

8i 2 {4, . . . , n}

(z01, . . . z
0
i−1, zi, zi+1, . . . , zn)

⌘ (z01, . . . z
0
i−1, z

0
i, zi+1, . . . , zn)

With this PI, we clearly obtain z %N z0 and the sequence

z =(0, 0, 0, z−123) %N

( 1

2p
,−

1

p
, 0, z−123

)

%N

⇣ 2

2p
,−

1

p
,−

1

p
, z−123

⌘
%N · · ·

%N

⇣2p− 2

2p
,−

p− 1

p
,−

p− 1

p
, z−123

⌘

%N

⇣2p− 1

2p
,−1,−

p− 1

p
, z−123

⌘
%N (1,−1,−1, z−123)

⌘N (z01, . . . , z
0
4, z5 . . . , zn) ⌘N · · · ⌘N z

0
.

This sequence is of length (2 p+ 1) + (n− 3) ≥ k + (n− 3).
We obtain the following constraints from the PI

8j 2 {0, . . . , p− 1}

u1

⇣2j

2p

⌘
+ u2

⇣
−

j

p

⌘
≥ u1

⇣2j + 1

2p

⌘
+ u2

⇣
−

j + 1

p

⌘

8j 2 {0, . . . , p− 1}

u1

⇣2j + 1

2p

⌘
+ u3

⇣
−

j

p

⌘
≥ u1

⇣2j + 2

2p

⌘
+ u3

⇣
−

j + 1

p

⌘

8j 2 {0, . . . , p− 1}

u1

⇣2j

2p

⌘
 u1

⇣2j + 1

2p

⌘
 u1

⇣2j + 2

2p

⌘

8j 2 {0, . . . , p− 1}

u2

⇣
−

j

p

⌘
≥ u2

⇣
−

j + 1

p

⌘
and u3

⇣
−

j

p

⌘
≥ u3

⇣
−

j + 1

p

⌘

8i 2 {4, . . . , n} ui(zi) = ui(z
0
i)

As the alternatives appearing in the PI use different values on the

attributes, the necessary relation is composed of ⌅ with the Pareto

ordering. From this, one cannot skip any comparison in the sequence.

Hence there is no explanation sequence of preference-swap of order

2 strictly shorter than 2 p + 1. Note that the n − 3 comparisons for

the explanation of (1,−1,−1, z−123) ⌘N z0 can be done with only

one Pareto comparison (depending on the values of z and z0).

The only hope to have an upper bound on the length q is thus to

restrict the number of values that the PI can take on each attribute.

4.2 Some solution to bound the length of sequences

We take binary alternatives as an extreme case. Assume now that

there exists two values on each attribute (denoted by 0 and 1) such

that the alternatives appearing in the PI belong to {0, 1}N ✓ X .

Lemma 2. Let wi := ui(1)− ui(0). For every A,B ✓ N , we have

(1A, 0−A) %N (1B , 0−B)

()
X

i2A\B

wi ≥
X

i2B\A

wi for all w compatible with the PI.

Proof :

(1A, 0−A) %N (1B , 0−B)

()
X

i2A

ui(1) +
X

i2N\A

ui(0) ≥
X

i2B

ui(1) +
X

i2N\B

ui(0)

()
X

i2A\B

ui(1) +
X

i2B\A

ui(0) ≥
X

i2B\A

ui(1) +
X

i2A\B

ui(0)

()
X

i2A\B

wi ≥
X

i2B\A

wi



Let W be the set of w 2 R
N
+ s.t.

P
i2A\B wi ≥

P
i2B\A wi for

all PI (1A, 0−A) ⌅ (1B , 0−B).

Lemma 3. For x, y 2 {0, 1}N . If (x, y) 2 ∆2, there exist i and j

are such that xi = 1, yi = 0, xj = 0, yj = 1 and xk = yk for all

k 2 N \ {i, j}. Then we have

(x, y) 2 ∆2 () wi ≥ wj for all w 2 W.

Proof : Clear from Lemma 2.

From Lemma 3, it is apparent that the length of sequences using

only terms in ∆2 is bounded. If the length of the sequence is large

enough, one necessarily finds relations of the form wi ≥ wj and

wj ≥ wk in the sequence. Clearly, these two relations can be re-

placed by the comparison wi ≥ wk, by transitivity. We believe that

this allows to keep the length of sequences under a given value (not

provided in this paper). Let us illustrate this intuition on an example.

Example 5 (Example 4, ctd.). By Lemma 3, (16) is equivalent to

w1 ≥ w2, (19)

(17) is equivalent to

w3 ≥ w1, (20)

and (18) is equivalent to

w2 ≥ w4. (21)

Consider now the two alternatives (1, 0, 1, 0) and (0, 1, 0, 1) (note

that (1, 0, 1, 0) %N (0, 1, 0, 1)). The explanation in Example 4 may

seem simple for the user since it is based only on PI. However, it uses

the first example (16) twice, giving the feeling that it is circular.

Actually, another explanation can be constructed. First of all, let

us note that adding (19) and (20), we obtain

w3 ≥ w2, (22)

and adding (19) and (21), we get

w1 ≥ w4. (23)

Hence the following explanation is reached:

(1, 0, 1, 0) %N| {z }
from (22)

(0, 0, 1, 1) %N| {z }
from (23)

(0, 1, 0, 1).

The length of this sequence is only 3 and it is composed of compar-

isons in ∆2. This explanation is more direct than the previous one,

and seams better for the user. It is better than the explanation of Ex-

ample 5 in the sense of ⇤
0
Ex .

In Example 5, the reduction of the length of the explanation is

based on the trick described just before this example.

5 Related works

The idea of even swap can be found in negotiation in multi-agent

systems [2]. There is a difference between the concession and trade-

off. In a concession, the agent give up on something and it is ready

to accept an offer which overall utility is smaller than a previous

offer. By contrast, in a trade-off analysis, the agent explores the set

of options that yield the same overall utility (a level-set), and one

looks at balancing utilities among the criteria (while remaining on the

same level curve) so that another agent will be better satisfied. This

implies decreasing the expectation on a criterion while increasing

the expectation on another criterion. For instance, a customer may be

ready to pay more if the item is delivered faster. The main idea of

[2] is to instantiate the idea of trade-off: the proposer at an iteration

of the protocol shall propose, among all options that yield a given

satisfaction to it, the option that is best for the other(s) agent(s). The

main idea of the paper is to represent the preferences of an agent by

a similarity measure to the last proposal made by this agent.

Another potentially fruitful connection to explore is with planning

problems, where the objective is to find how to sequentially apply

different operators so as to attain an objective state from an initial

state. Preference-swaps can be seen as operators, and the objective

state to reach is an alternative exhibiting the desired dominance.

6 Conclusion

This paper investigates the problem of providing minimal explana-

tion by relying on an extension of the even swaps. A first contribution

of the paper is to set up the framework allowing to generalize such

an approach to more general preference statements, and to be used

to generate convincing explanation (on the basis on so-called prefer-

ence swaps). Another natural extension is to trade-off involving more

than two criteria, although this may quickly be difficult to handle for

the DM. The first result put forward in this paper is negative: it states

that in the absence of any restriction on the size of the domain con-

sidered for the value of attributes (in particular when such a domain

is an interval over the reals), the sequence of preference-swaps may

not be bounded. This challenges the practical use of this technique in

this case. It is thus natural to consider restricted domains: we show

that in binary domains positive results (bounded sequence) can hold,

and sketch possible solutions to reduce the length of explanations.
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Resistance to bribery when aggregating soft constraints,
and exploitation of bribery cost schemes in preference

compilation and optimization

Alberto Maran1and Maria Silvia Pini2and Francesca Rossi3and Kristen Brent Venable4

Abstract. We consider a multi-agent scenario, where the prefer-

ences of several agents are modelled via soft constraint problems

and need to be aggregated to compute a single ”socially optimal”

solution. We study the resistance of various ways to compute such

a solution to attempts to influence the result, such as those based

on the notion of bribery. In doing this, we link the cost to bribe an

agent to the effort needed by the agent to make a certain solution

optimal, by only changing preferences associated to parts of the so-

lution. This leads to the definition of four notions of distance from

optimality of a solution in a soft constraint problem. The notions

differ on the amount of information considered when evaluating the

effort. We then show how to pass from such distance notions to suit-

able linearizations of the solution preference ordering, which can be

exploited in the context of computing sets of k best solutions. We also

show how the considered distances can be used in preference compi-

lation tasks, such as when encoding elicited solution preferences in

the constraint structure.

1 Introduction

Often agents need to cooperate to take a collective decision. By do-

ing this, the decision can be better than what they would have chosen,

had they reasoned in isolation. Examples are collections of experts

that have suggestions on what to do, which are then aggregated to

obtain a single suggestion. Such experts could be, for example, clas-

sifiers in machine learning tasks, or web page rankers in web search.

We model such scenarios via a collection of agents that express their

preferences over a common set of solutions to a problem. We as-

sume that such preferences are described by soft constraints [14],

more precisely either fuzzy and weighted constraints. Agents’ prefer-

ences are aggregated to compute a single ”socially optimal” solution.

To model this process, we consider some voting rules [1]. Although

voting rules have been defined and studied in the context of politi-

cal elections, they do exactly what we want: aggregating individual’s

preferences into a single collective ”winner”.

We study the resistance of this setting, considering different vot-

ing rules, to external or internal attempts to influence the result. This

happens often in political elections, but it could occur also in other

scenarios. For example, when voting to choose a date for a meeting

1 Department of Mathematics, University of Padova, Italy, email: ama-
ran@studenti.math.unipd.it

2 Department of Information Engineering, University of Padova, Italy, email:
pini@dei.unipd.it

3 Department of Mathematics, University of Padova, Italy, email:
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4 Department of Mathematics, University of Padova, Italy, email: kven-
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[10], if one participant sees how the others have voted (and thus can

compute the result by considering these votes and her true vote), she

could vote in a strategic way (that is, differently to what her true vote

would say) in order to get a better result for her. This example is

an instance of the so-called manipulation, where one or more agents

may misreport their votes in order to get a better solution. Another

kind of attempt may come from an external agent, usually called the

”briber”, who has a preferred solution, and tries to get that solution

as the result of the voting process, by paying some agents to vote

in a certain way, and by doing this while staying within its budget.

In defining bribing scenarios, it is thus necessary to decide what the

briber can ask an agent to do (for example, just making a certain can-

didate optimal, or changing more of its preference ordering) and how

costly it is for the briber to submit a certain request. The cost usually

represents the effort the agent has to make to satisfy the briber’s re-

quest.

Classical results on voting theory tell us that every voting rule can

be influenced by such attempts [1]. However, for some voting rules, it

may be computationally difficult for the manipulators, or the briber,

to understand how to design the attempt. Such rules are then said to

be resistant to these attempts [2, 9].

In this paper we study whether our soft constraint aggregation

scenarios are resistant to bribery. Resistance to manipulation has

been studied already, for example in [6]. We consider two main ap-

proaches to aggregate the preferences: a sequential one, where agents

vote on each variable at a time, and a one-step approach, where

agents vote just once on entire solutions. We then define five cost

schemes to compute the cost of satisfying a briber’s request. We

find out that the one-step approach (which uses the Plurality vot-

ing rule) is not resistant to bribery. On the other hand, the sequential

approaches (which are based on voting rules such as Plurality, Ap-

proval, and Borda), are all resistant to bribery for five out of five cost

schemes. This is very interesting, since the sequential approaches are

also better in terms of complexity of determining the collective so-

lution. The cost schemes used in the bribery setting can be seen as

a measure of the effort for an agent to respond to a briber’s request.

If the request is related to making a certain solution, say A, optimal

(which means voting for it, if we use Plurality), then the cost can be

considered a measure of how much the agent needs to change in its

soft constraint problem in order to make A optimal. By following

this line of reasoning, we exploit some of the cost schemes used for

bribery to define four notions of distance from optimality of a solu-

tion in a soft constraint problem. We then show how to pass from

such distance notions to corresponding linearizations of the solution

preference ordering, which can be exploited in the context of com-



puting sets of k best solutions. The computational complexity results

obtained for the bribery problem can then be useful to determine how

expensive it is to compute the top k solutions.

We also show how these distances can be used in preference com-

pilation tasks, such as when encoding optimal solutions in the con-

straint structure. Making a solutions optimal according to a certain

distance notion has the same computational complexity as determin-

ing the bribery cost with the corresponding cost scheme.

In the following, the formal proofs of some results have been omit-

ted for lack of space.

2 Background

Soft constraints. A soft constraint [14] involves a set of variables

and associates a value from a (partially ordered) set to each instanti-

ation of its variables. Such a value is taken from a c-semiring, which

is defined by 〈A,+,×, 0, 1〉, where A is the set of preference values,

+ induces an ordering over A (where a ≤ b iff a+ b = b), × is used

to combine preference values, and 0 and 1 are respectively the worst

and best element. A Soft Constraint Satisfaction Problem (SCSP) is

a tuple 〈V,D,C,A〉 where V is a set of variables, D is the domain

of the variables, C is a set of soft constraints (each one involving a

subset of V ), A is the set of preference values.

An instance of the SCSP framework is obtained by choosing a

specific c-semiring. For instance, a classical CSP [14] is just an

SCSP where the c-semiring is SCSP = 〈{false, true}, ∨,∧,
false, true〉. By choosing SFCSP = 〈[0, 1], max,min, 0, 1〉 in-

stead it means that preferences are in [0,1] and we want to maximize

the minimum preference. This is the setting of fuzzy CSPs (FCSPs)

[14], that we will use in the examples of this paper. In the paper we

will also consider the setting of weighted CSPs (WCSPs), where the

c-semiring is SWCSP = 〈R+, min,+, +∞, 0〉, which means that

preferences are interpreted as costs from 0 to +∞, and that we want

to minimize the sum of the costs.

Figure 1 shows the constraint graph of an FCSP where V =
{x, y, z}, D = {a, b} and C = {cx, cy, cz, cxy, cyz}. Each node

models a variable and each arc models a binary constraint, while

unary constraints define variables’ domains. For example, cy asso-

ciates preference 0.4 to y = a and 0.7 to y = b. Default constraints

such as cx and cz will often be omitted in the following examples.

x=a −> 1

x=b −> 1

(y=a,z=a) −> 0.9

(y=a,z=b) −> 0.2

(y=b,z=a) −> 0.2

(y=b,z=b) −> 0.5

(x=a,y=a) −> 0.9

(x=a,y=b) −> 0.8

(x=b,y=a) −> 0.7

(x=b,y=b) −> 0.6

 x

y=a −> 0.4 z=a −> 1

  y z

y=b −> 0.7 z=b −> 1

Figure 1. A tree-shaped FCSP.

Solving an SCSP means finding some information about the order-

ing induced by the constraints over the set of all complete variable

assignments. In the case of FCSPs and WSCSPs, such an ordering

is a total order with ties. In the example above, the induced ordering

has (x = a, y = b, z = b) and (x = b, y = b, z = b) at the top, with

preference 0.5, (x = a, y = a, z = a) and (x = b, y = a, z = a)
just below with 0.4, and all others tied at the bottom with preference

0.2. An optimal solution, say s, of an SCSP is then a complete assign-

ment with an undominated preference (thus (x = a, y = b, z = b)

or (x = b, y = b, z = b) in this example). Given a variable x, we

write s ↓ x to denote the value of x in s.

Given an FCSP Q and a preference α, we will denote as cutα(Q)
the CSP obtained from Q allowing only tuples with preference

greater than or equal to α. It is known that the set of solutions of

Q with preference greater than or equal to α coincides with the set

of solutions of cutα(Q).
Finding an optimal solution is an NP-hard problem, unless certain

restrictions are imposed, such as a tree-shaped constraint graph.

Constraint propagation may help the search for an optimal solution.

Given a variable ordering o, a FCSP is directional arc-consistent

(DAC) if, for any two variables x and y linked by a fuzzy constraint,

such that x precedes y in the ordering o, we have that, for each a
in the domain of x, fx(a) = maxb∈D(y)(min(fx(a), fxy(a, b),
fy(b))), where fx, fy , and fxy are the preference functions of cx,

cy and cxy . This definition can be generalized to any instance of

the SCSP approach by replacing max with + and min with ×.

Therefore, for WCSPs it is sufficient to replace max with min
and min with sum. DAC is enough to find the preference level of

an optimal solution when the problem has a tree-shaped constraint

graph and the variable ordering is compatible with the father-child

relation of the tree [14]. In fact, such an optimum preference level is

the best preference level in the domain of the root variable.

Voting rules. A voting rule allows a set of voters to choose

one among a set of candidates. Voters need to submit their vote, that

is, their preference ordering (or part of it) over the set of candidates,

and the voting rule aggregates such votes to yield a final result,

usually called the winner. In the classical setting [1], given a set

of candidates C, a profile is a collection of total orderings over

the set of candidates, one for each voter. Given a profile, a voting

rule maps it onto a single winning candidate (if necessary, ties are

broken appropriately). In this paper, we will often use a terminology

which is more familiar to multi-agent settings: we will sometimes

call “agents” the voters, “solutions” the candidates, and “decision”

or “best solution” the winning candidate. Some examples of widely

used voting rules, that we will study in this paper, are:

• Plurality: each voter states a single preferred candidate, and the

candidate who is preferred by the largest number of voters wins;

• Borda: given m candidates, each voter gives a ranking of all can-

didates, the ith ranked candidate gets a score of m − i, and the

candidate with the greatest sum of scores wins;

• Approval: given m candidates, each voter approves between 1
and m − 1 candidates, and the candidate with most votes of ap-

proval wins.

We know that every voting rule is manipulable [1]. However, if it

is computationally difficult to influence the result by using a certain

voting rule, we can say that the voting rule is resistant to such

attempts. Thus the computational complexity of various attempts to

influence the result of the voting process has been studied [2, 9, 5].

Besides manipulation, which refers to scenarios where there is a

voter (or a group of voters) who can get a better result by lying

on its preference ordering, another kind of attempt to influence the

result is called bribery: there is an outside agent, called the briber,

that wants to affect the result of the election by paying some voters

to change their votes, while being subject to a limitation of its budget.

Sequential preference aggregation. Assume to have a set of

agents, each one expressing its preferences over a common set of

objects via an SCSP whose variable assignments correspond to the



objects. Since the objects are common to all agents, this means

that all the SCSPs have the same set of variables and the same

variable domains but they may have different soft constraints, as

well as different preferences over the variable domains. In [7] this

is the notion of soft profile, which is formally defined as a triple

(V,D, P ) where V is a set of variables (also called issues), D is a

sequence of |V | totally ordered finite domains, and P a sequence of

m SCSPs over variables in V with domains in D. A fuzzy profile

(resp., weighted profile) is a soft profile with fuzzy (resp., weighted)

soft constraints. An example of a fuzzy profile where V = {x, y},

Dx = Dy = {a, b, c, d, e, f, g}), and P is a sequence of seven

FCSPs, is shown in Fig. 2.

x

y

(x=a,y=a)−>1

(x=b,y=b)−>0.9

(x=a,y=b)−>0.7

(x=b,y=a)−>0.5

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=d,y=d)−>1

P4
y

x

all other tuples−>0

(x=a,y=b)−>1

(x=c,y=c)−>1

(x=b,y=a)−>0.9

P3

x

y
all other tuples−>0

x

y

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=e,y=e)−>1

P5

all other tuples−>0

x

y

(x=f,y=f)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1

P6

all other tuples−>0 y

x

(x=g,y=g)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1
all other tuples−>0

P7

P1,P2

all other tuples−>0

Figure 2. A fuzzy profile.

The idea proposed in [7, 6] to aggregate the preferences in a

soft profile in order to compute the winning variable assignment

is to sequentially vote on each variable via a voting rule, possi-

bly using a different rule for each variable. Given a soft profile

(V,D, P ), assume |V | = n, and consider an ordering of such vari-

ables O = 〈v1, . . . , vn〉, and a corresponding sequence of voting

rules R = 〈r1, . . . , rn〉 (that will be called “local rules”). The se-

quential procedure is a sequence of n steps, where at each step i,

• All agents are first asked for their preference ordering over the

domain of variable vi, yielding profile pi over such a domain. To

do this, the agents achieve DAC on their SCSP, considering the

ordering O.

• Then, the voting rule ri is applied to profile pi, returning a winning

assignment for variable vi, say di. If there are ties, the first one

following the given lexicographical order will be taken.

• Finally, the constraint vi = di is added to the preferences of each

agent and DAC is applied to propagate its effect considering the

reverse ordering of O.

After all n steps have been executed, the winning assignments are

collected in the tuple 〈v1 = d1, . . . , vn = dn〉, which is declared the

winner of the election. This is denoted by SeqO,R(V,D, P ). In the

soft profile above, assume the variable ordering is 〈x, y〉 and ri =
Approval for all i = 1, . . . , 6. In step 1, agents apply DAC. This

changes the preferences of the agents over x. For example, in P1

and P2, x = a maintains preference 1, x = b gets preferences 0.9,

and all other domain values get preference 0, while in P3, x = a
and x = c maintain preference 1, x = b gets preference 0.9, while

all other values get preference 0. Then, Approval is applied on the

profile over x where the sets of approved values are all the optimals:

{a} for the first two voters and respectively {c, a}, {d, a}, {e, a},

{f, b}, and {g, b} for the others. Thus, x = a is chosen and the

constraint x = a is added to all SCSPs, and its effect is propagated

by achieving DAC on the domain of y. In step 2, achieving DAC

does not modify any preference (since y is the last variable) and the

set of approved values for y is {a, b} for P1 and P2 and {b} for the

other agents. Thus the elected solution with the sequential procedure

is s = (x = a, y = b), which has preference 0.7 for P1 and P2, 1
for P3, P4, and P5, and 0.9 for P6 and P7.

An alternative to this sequential procedure would be to generate

the preference orderings for each voter from their FCSPs, and then

to aggregate them in one step via a voting rule, for example Approval.

In our example, (x = a, y = b) gets 3 votes (that is, it is optimal for

3 agents), (x = a, y = a) and (x = b, y = a) each gets 2 votes,

(x = f, y = f), (x = d, y = d), (x = c, y = c), (x = e, y = e),
and (x = g, y = g) each gets 1 vote, while all other solutions get no

vote. Thus the winner is (x = a, y = b).

3 The bribery problem

We consider scenarios where a collection of agents need to take a

decision, by selecting it out of a common set of possible objects.

Each agent has its own preferences over such objects, described via

an SCSP, as described in Section 2, and charges the briber for chang-

ing his preferences according to a cost scheme. In this paper, by soft

constraints we mean either fuzzy or weighted constraints. Also, we

assume that all agents have tree-shaped SCSPs. Notice that the set

of solutions of such constraint problems (that is, the set of deci-

sion among which to choose one) is in general exponentially large

w.r.t. the size of the soft constraint problems. We also assume that

the number of such solutions is exponentially large w.r.t. the number

of agents. We now formally define the bribery problem of which we

will study the computational complexity:

Definition 1 Given a voting rule V and a cost scheme C, we de-

note by (V,C)-Bribery the problem of determining if it is possible

to make a preferred candidate win, when voting rule V is used, by

bribing agents according to cost scheme C and by spending less than

a certain budget according to cost scheme C.

3.1 Winner determination

It makes sense to consider only winner determination approaches

which are polynomial to compute: if it is difficult to compute the

winning decision, it is also difficult for a briber to compute how to

bribe the agents (since he needs to know who the winner is without

the bribery). We consider two main approaches: sequential and one-

step. For the sequential approach, we employ the sequential voting

procedure described in the previous section. We have an ordering O
over the variables, and we are going to consider each variable in turn

in such an ordering. At each step, each agent provides some infor-

mation about the considered variable, say X , which depends on the

voting rule we use:

• Sequential Plurality (SP): one best value for X;

• Sequential Approval (SA): all best values for X;

• Sequential Borda (SB): a total order (possibly with ties) over the

values of X , along with the preference values for each domain

element.

We then choose one value for the considered variable, as follow:

• SP and SA: the value voted by the highest number of agents;



• SB: the value with best score, where the score of a value is the sum

of its preferences over all the agents; notice that ”best” here means

maximal in the case of fuzzy constraints, while it is the minimal

in the case of weighted constraints.

Once a value is chosen for a variable, this value is broadcasted to all

agents, who fix variable X to this value in their soft constraints and

apply DAC in the reverse ordering w.r.t. O. We then continue with

the next variable, and so on until all variables have been handled. The

alternative to a sequential approach is a one-step approach, where

each agent votes over decisions regarding all variables, not just one at

a time. In this case, a possible voting rule to use is what we call One-

step Plurality (OP), where each agent provides an optimal solution

of his soft constraint problem, and then we select the solution which

is provided by the highest number of agents.

For all the voting rules we consider (SP, SA, SB, and OP), it is

computationally easy for an agent to vote. An approach like OP is

however less satisfactory that the sequential approaches in terms of

ballot expressiveness: since the number of solutions is exponentially

large with respect to the number of agents, there is an exponential

number of solutions which are not voted by any agent. However, if

we want agents to be able to compute their vote in polynomial time,

we need to set a bound to the number of solutions they can vote

for, and this means that in all cases an exponentially large number

of solutions will not be voted. So there is trade-off between ease of

computing votes and ballot expressiveness.

We don’t consider one step Approval since voting could require

exponential time due to the fact that each agent may have an expo-

nential size set of optimals.

3.2 Bribery actions and cost schemes

If we use Plurality to determine the winner, either in its sequential

or one-step version, the most natural request a briber can have for

an agent is to ask the agent to make a certain solution (or a certain

value in the sequential case) optimal in his soft constraint problem. In

order to do this, the agent can modify the preference values inside its

variable domains and/or constraints. To define the cost of a briber’s

request, which is to make a certain solution A optimal, we consider

the following approaches:

• Cequal: The cost is fixed (without loss of generality, we will as-

sume it is 1), no matter how many changes are needed to make A
optimal;

• Cdo: The cost is the distance from the preference of A, denoted

with pref(A), to the optimal preference of the soft constraint

problem of the agent, denoted with opt. If we are dealing with

fuzzy numbers and we may prefer to have integer costs, the cost

will be defined as Cdo = (opt − pref(A)) ∗ l, where l is the

number of different preference values allowed. With weighted

constraints, if costs are natural numbers, we may define Cdo =
pref(A)− opt, since opt is the smallest cost.

• Cdon: The cost is determined by considering both the distance

between the preference of A and the optimal preference, and the

number of parts of A, say t, that correspond to the projections of

A over the constraints, that must be modified in order to make A
optimal. Thus, if we have n variables, with fuzzy constraints we

may define Cdon = ((opt−pref(A))∗ l ∗M)+ t, where M is a

large integer and 1 ≤ t ≤ 2n−1. If instead we consider weighted

constraints, we define Cdon = ((pref(A) − opt) ∗ M) + t. In

both cases, the role of M is to assure a higher bribery cost for a

less preferred candidate: we want that the highest cost at a given

preference level for A, that is, d ∗M +2n− 1, where d = (opt−
pref(A)) ∗ l and n is the number of variables, to be smaller than

the lowest cost at the next preference level, that is, (d+1)M +1.

This yields M > 2n− 2.

• Cdow: The cost is computed by considering the same as in Cdon,

but each preference to be modified is associated with a cost pro-

portional to the change required on that preference. If we denote

by ti any tuple of A with preference ≤ opt, then the cost will

be ((opt − pref(A)) ∗ l ∗ M) +
∑

ti
(opt − pref(ti)) ∗ l for

fuzzy constraints, where the role of M is similar to the one in

Cdon. For weighted constraints, we analogously define Cdow =
((pref(A)− opt) ∗M) +

∑
ti
(pref(ti)− opt). However, it is

easy to see that
∑

ti
(pref(ti)− opt) = pref(A)− opt, thus we

have Cdow = ((pref(A)− opt) ∗ (M + 1)).
• Cdonw: The cost is the combination of Cdon and Cdow. For fuzzy

constraints: Cdonw = ((opt − pref(A)) ∗ l ∗ M) + t ∗ M ′ +∑
ti
(opt − pref(ti)) ∗ l, where M ′ has a similar role than M

w.r.t. the second a third component of the sum. For weighted con-

straints: Cdonw = ((pref(A)− opt) ∗M)+ t (by simplifying as

in Cdow).

In the names of the cost schemes C stands for cost, do stands for

distance from the preference of A to the optimal preference, n stands

for the number of tuples that must be changed to make A optimal,

and w stands for weighted cost. In this paper, we consider only cost

schemes that are obtained by some of these combinations. Other cost

combinations can lead to interesting cost schemes but special care

must be devoted to making sure a linearization of the solution order-

ing is induced.

4 Winner and cost determination are both
computationally easy

As noted above, voting is easy. It is easy to check that also computing

the winner is easy with any of the voting rules we consider and that

it is easy also to compute the cost to respond to a briber’s request, for

all the cost schemes we have defined. Thus we have the following

results:

Theorem 1 Winner determination takes polynomial time for SP, SA,

SB, and OP.

Proof: For each variable, SP (resp., SA) requires a (resp., all) The

fact that we are considering tree-shaped soft constraint problems en-

sures that voting, in all these cases, can be done in polynomial time

by applying DAC. Winner determination is then polynomial as well,

since it just requires a number of polynomial steps which equals the

number of variables. For OP, computing an optimal solution is poly-

nomial on tree-shaped soft constraint problems, so voting is poly-

nomial. determining the winner requires just counting the number

of votes for each of the voted candidates (which are in polynomial

number), so it is polynomial as well. �

Theorem 2 Given a tree-shaped fuzzy or weighted CSP and an out-

come A, determining the cost to make A an optimal outcome takes

polynomial time for Cequal, Cdo, Cdon, Cdow, and Cdonw .

Proof: We can check if A is already optimal in polynomial time

by first computing the optimal preference opt and then checking if it

coincides with the preference of A, denoted pref(A). If so, the cost

is 0. Otherwise, with Cequal the cost is always 1. To compute the



cost according to Cdo, Cdon, Cdow, and Cdonw, we need to compute

opt, the numbers of tuples of A with preference worse than opt, and

the distance of their preferences from opt. All of these components

can be computed in polynomial time with tree-shaped problems. �

5 Resistance to bribery

We show our complexity results about the resistance to bribery for

sequential and one-step approach.

5.1 Voting sequentially

We now study the resistance to bribery of SP, SA, and SB.

Theorem 3 (V,C)-Bribery is NP-complete (and also W[2]-

complete with parameter being the budget) for V ∈ {SP, SA, SB}
and C ∈ {Cequal, Cdo}.

Proof: Membership in NP is easy to prove. To show completeness,

we provide a polynomial reduction from the OPTIMAL LOBBYING

(OL) problem [4]. In this problem, we are given an m×n 0/1 matrix

E and a 0/1 vector ~x of length n where each column of E represents

an issue and each row of E represents a voter. We say E is a bi-

nary approval matrix with 1 corresponding to a “yes” vote and ~x is

the target group decision. We then ask if there a choice of k rows of

the matrix E such that these rows can be edited so that the major-

ity of votes in each column matches the target vector ~x. This prob-

lem is shown to be W [2]-complete with parameter k. By giving a

polynomial reduction from OL to our bribery problem, we show that

our problem is NP-complete (actually W [2]-complete with parame-

ter being the budget B). Given an instance (E, ~x, k) of OL, we con-

struct an instance of (V-Cdo)-Bribery, where V ∈ {SP, SA, SB},

containing constraints with only independent binary variables. The

number of variables, n, is equal to the number of columns in E. For

each row of E, we create a voter with the preferences over the n
variables as described in the row of E. In particular, for each vari-

able the value indicated in the row will be associated with preference

1 while the other value will be associated with preference 0. Thus,

each voter has a unique most preferred solution with preference 1
and all other complete assignments have preference 0. We set the

preferred outcome A = ~x. This means that according to Cdo, all

voters not voting for A have the same cost to be bribed, which is

(opt− pref(A)) ∗ 2 = (1− 0) ∗ 2 = 2. Finally, we set the budget

B = 2k. With Cequal, the cost is always 1 if A is not already voted

for. We note that since we have only two values for each variable,

SP, SA and SB coincide with sequential majority, thus A wins the

election if and only if there is a selection of k rows of E such that

~x becomes the winning agenda of the OL instance. Since both fuzzy

and weighted CSPs generalize CSPs, the result holds also for such

classes of soft constraints. �

Theorem 4 (V,C)-Bribery is NP-complete (and also W[2]-

complete) for V ∈ {SP, SA, SB} and C ∈ {Cdon, Cdow, Cdonw},

if M > n ∗ m, where n is the number of variables and m the

number of voters.

Proof: We use a reduction similar to the one described for Thm.

3 from the optimal lobbying problem. In particular the structure of

the soft profile is the same. The only things that vary are the costs

for each voter and the budget. With fuzzy constraints, assume that

we have l different levels of preferences and let us denote with di

the positive integer (opti − pref(A)) ∗ l, were i varies over the vot-

ers. For Cdon, the cost for voter i is di ∗ M + ti where ti is the

number of tuples where the candidate voted by voter i differs from

A. For Cdow, the cost is di ∗ M +
∑

t∈Diffi(A)(opti − pref(t)),

where Diffi(A) is the set of tuples in the soft constraint problem

of agent i which not belong to A. Let us define budget B to be

B = kl(M + n) for fuzzy constraints and B = k(M + n) for

weighted constraints. Since we have only binary variables, SP, SA

and SB coincide with sequential majority. There is a bribery strat-

egy that does not exceed B if and only if there is a way to change

at most k rows to solve the OL problem. We note that requiring

M > n ∗ m is of key importance for the connection between the

budget B and the modifications of k rows. For Cdonw, the cost is

di ∗M + ti ∗M
′ +

∑
ti∈Diffi(A)(opti − pref(ti)). Here a sim-

ilar constraint for M ′ would work for the reduction. For weighted

constraints, a similar reasoning works as well. �

5.2 Voting with OP

We now show that OP is not resistant to bribery. To do this, we will

need to compute n cheapest alternative candidates for each agent to

vote for. We will thus start by studying the computational complexity

of this task.

Theorem 5 Given a tree-shaped fuzzy or weighted CSP, computing

a set of k cheapest outcomes according to Cdo and Cequal is in P
when k is given in unary.

Proof: The cost of an outcome according to Cdo is an integer pro-

portional to the distance between the preference of the outcome and

the preference of an optimal outcome. In order to compute k cheap-

est solutions, we assume to have a linear order over the variables and

the values in their domains. Such linear orders can be provided by

the agent or can be chosen by the system. They do not need to be the

same for all agents. For tree-shaped fuzzy CSPs, it has been shown

in [3] that, given such linear orders and an outcome s, it is possible

to compute, in polynomial time, the outcome following s in the in-

duced lexicographic linearization of the preference ordering over the

outcomes. The procedure that performs this is called Next. Thus, in

order to compute k cheapest according to Cdo, we compute the first

optimal outcome according to the linearization and then we generate

the set of k cheapest candidates by applying Next k − 1 times (each

time on the outcome of the previous step). Similarly, computing the

k best solutions of a weighted CSP can be done in polynomial time

by using the procedure suggested in [13]. If we consider Cequal, an

agent will not charge the briber for changing his vote to another op-

timal candidate and will charge a fixed cost to change his vote in

favor of any other (non-optimal) candidate. Thus any of the above

procedures can be used (although, if k exceeds the cardinality of the

set of optimal solutions, the remaining ones could, in principle, be

generated randomly in a much faster way). �

Theorem 6 Given a tree-shaped weighted CSP, computing a set of

k cheapest outcomes according to Cdow is in P when k is given in

unary.

Proof: This result follows immediately from the fact that, for

weighted CSPs, Cdow is proportional to Cdo. �

For the other cost schemes, we define a general algorithm, called

KCheapest, that will work for Cdon, as well as Cdow and Cdonw,

via small modifications. In what follows we assume a voter repre-

sents his preferences with a tree-shaped fuzzy CSP. The input to



KCheapest is a tree-shaped fuzzy CSP P , an integer k, and a cost

scheme C. The output is a set of k cheapest solutions of P according

to C. KCheapest performs the following steps:

1. Find k optimal solutions of P , or all optimal solutions if they

are less than k. If the number of solutions found is k, we stop,

otherwise let k′ be the number of remaining solutions to be found.

2. Look for the remaining top solutions within non-optimal solu-

tions. More in detail, until k′ best solutions have been found or

all solutions of P have been exhausted, consider each preference

pl associated to some tuple in P in decreasing order and, for each

tuple t of P with preference pl, perform the following:

(a) Compute the new fuzzy CSP, Pt, obtained by fixing the tuple

in the constraint (that is, by forbidding all other tuples in that

constraint).

(b) Compute a new soft CSP, say Pw
t , associated to Pt, defined as

follows:

i. the constraint topology of Pw
t and Pt coincide;

ii. each tuple with a preference greater or equal than opt in Pt

has weight 0 in Pw
t ;

iii. each tuple with a preference pt such that pl ≤ pt < opt in

Pt has weight c in Pw
t defined as follows: c = 1 if C = Cdo,

c = pt − opt if C = Cdow and c = (1, pt − opt) if C =
Cdonw;

iv. each tuple with preference less than pl in Pt has weight +∞
in Pw

t .

Thus, Pw
t is a weighted CSP if C = Cdon or C = Cdow, while

it is a SCSP defined on the Cartesian product of two weighted

semirings if C = Cdonw.

(c) Compute the k′ best solutions or all the solutions if they are

less than k′ of Pw
t .

Take the k′ top solutions (or all solutions if less than k′) among the

sets of best solutions computed for Pw
t , ∀t such that pref(p) =

pl.

Theorem 7 Given a tree-shaped fuzzy CSP P , computing a set of k
cheapest outcomes according to Cdon, Cdow, and Cdonw is in P .

Proof: (Sketch) For all cost schemes, optimal solutions are always

cheaper than other solutions. Thus step 1 is correct. In step 2, the

solutions of any Pw
t correspond to solutions of P with preference

pl, and considering all such problems allows to cover all solutions

of P with such a preference. The way weights are defined in Pw
t

allows to order solutions with the same preference, respectively, in

increasing order either w.r.t. the number of tuples that need to be

changed in order to make the solution optimal (c = 1), or w.r.t. the

weighted sum of the changes (c = opt − pt) needed to make the

solutions optimal, or in lexicographic order with respect to these two

criteria where the number of tuples to be changed comes first (c =
(1, opt − pt)). These three ways of breaking ties among solutions

with the same preference correspond, respectively, to Cdon, Cdow,

and Cdonw. All remaining ties are assumed to be broken using a

lexicographic ordering induced by linear orders over the variables

and the values in the domains. In terms of computational complexity,

step 1 is achieved by computing the optimal preference level opt,
and obtaining the tree-shaped CSP corresponding to the opt-cut of

P , denoted with P opt. Then KCheapest finds a set of k solutions

of P opt. This is done by exploiting a lexicographic order over the

solutions, by finding the first optimal solution according to such an

order, and by iteratively finding the following next best solutions,

until either k − 1 steps have been performed, or the set of solutions

has been exhausted. This can be done in polynomial time as shown in

[3]. Also step 2 is polynomial, since computing the k best solutions

on a weighted tree-shaped CSP can be done in polynomial time by

using the procedure in [13]. �

Theorem 8 (OP, C)-Bribery is in P for C ∈
{Cequal, Cdo, Cdon, Cdow, Cdonw} when agents vote with tree-

shaped fuzzy CSPs and for C ∈ {Cequal, Cdo, Cdow} when agents

vote with tree-shaped weighted CSPs.

Proof: Main idea: Faliszewski [8] shows that bribery when vot-

ing with plurality in single variable elections with non-uniform cost

schemes is in P through the use of flow networks. The algorithm

requires the enumeration of all possible elements of the candidate

set as part of the construction of the flow network. In our model,

the number of candidates can be exponential in the size of the input,

so we cannot use that construction directly. However, a similar tech-

nique works by considering only a polynomial number of candidates.

However, such candidates need to be the (at most) 2n + 1 cheapest

candidates for each voter. This is why we need to be able to com-

pute such candidates in polynomial time, via the methods described

above. �

5.3 Summary of bribery results

Our complexity results about the resistance to bribery when aggre-

gating the preferences of a collection of agents, if they are modelled

via soft constraints, can be seen in Table 1. We can see that OP is

not resistant to bribery, since it is computationally easy for the briber

to compute who to bribe and what to ask for, and to check whether

he can do it within its budget. On the other hand, the sequential ap-

proaches (SP, SA, and SB) are all resistant to bribery, if agents com-

pute costs according to Cequal, Cdo, Cdon, Cdow, or Cdonw. Thus, it

is clear that sequential approaches should be preferred if resistance to

bribery is an important feature. Notice that, when a problem is poly-

nomial for soft constraints, it is also so for CSPs. Thus, OP is easy to

bribe also when agents use CSPs.

SP SA SB OP

Cequal NP-c NP-c NP-c P

Cdo NP-c NP-c NP-c P

Cdon NP-c* NP-c* NP-c* P/?

Cdow NP-c* NP-c* NP-c* P

Cdonw NP-c* NP-c* NP-c* P/?

Table 1. Our results. NP-c* stands for NP-complete with the restriction on
M (and M’ if present). When the complexity results for fuzzy constraints and
weighted constraints are different, we write X/Y, where X is the complexity

for fuzzy and Y is the complexity for weighted constraints.

6 Bribery cost schemes in preference optimization
and compilation

There are many constraint reasoning scenarios in which it is useful to

consider, given a solution, how far it is from being optimal. One natu-

ral way to evaluate this is to consider the difference between its pref-

erence and the preference of an optimal solution, or one may want to

take into account also the effort that would be required in terms of

changes needed in the soft constraints to make such a solution opti-

mal. This is the same kind of reasoning that led us to the bribery cost



schemes defined in Section 3.2. Given a tree-shaped SCSP P , let us

define for each solution s the following triple of values (ps, ts, ws)
where ps = opt(P )− pref(s), ts is the minimum number of tuples

of s that must be changed to make s optimal, and ws is the sum of the

amount of changes that must be performed on such tuples to make

s optimal. Given such a triple, we can define the following notions

of distance of a solution s from optimality: do is the distance is ps,

that is, the distance is computed only looking at the first component

of the triple; don is the distance is determined by considering first ps
and then ts; dow is the distance is determined by considering first ps
and then ws; donw is the distance is determined by first considering

ps, then ts, and then ws.

Often finding just one optimal solution may not be enough and it

may be desirable to produce a set of top solutions. This occurs, for

example, in web search or configuration problems, where we usually

want more than one answer to our query. With soft constraints, usu-

ally the number of different preference values is much smaller than

the number of solutions, thus many solutions end up having the same

preference. When computing the k best solutions, it is thus neces-

sary to employ a tie-breaking rule among solutions with the same

preference value. Some of the notions of distance from optimality

defined above provide a meaningful way to tie-break: in addition to

the distance of the solution preference from the optimal preference,

they consider also the “structural” distance of the solution from being

optimal. For example, among the solutions with the same preference,

don will put first the ones that require the minimum number of tuples

to be changed. Besides this, dow weights each tuple to be modified

with the amount by which it must be modified. A refinement of don
is donw, which considers the amount of changes needed only in case

of a tie on both the preference distance and the number of tuples to

be modified.

From results in [3] and [13], we know that computing the k best

solutions according to do is polynomial, for both fuzzy and weighted

constraints. The algorithms defined above to compute the cheapest

top solutions allow us to give the following result on the complexity

of computing the k best solutions according to the new refinements

of the solution preference ordering.

Theorem 9 Computing k best solutions is in P according to dis-

tances don, dow and donw for tree-shaped fuzzy CSPs and accord-

ing to dow for tree-shaped weighted CSPs.

Proof: It follows from the complexity of the KCheapest algorithm.

�

In the process of modeling a real-life problem via soft constraints,

it can be reasonable to allow users to require that a certain solution

be made optimal (e.g., in preference compilation) in the current soft

constraint problem. To measure the effort needed to achieve this, we

can use the distance notions defined above. Theorem 2 allows us to

state the following result:

Theorem 10 Computing the effort needed to make a solution op-

timal is in P when using fuzzy or weighted tree-shaped constraint

problems and any of the distance notions do, don, dow, and donw.

Proof: It follows from Theorem 2. �

7 Conclusions and future work

We have studied resistance to bribery when aggregating preferences

of several agents expressed via soft constraints. This has led to

several results that are interesting and useful in themselves. How-

ever, they also have a wider applicability within typical CP tasks,

such as computing the top k solutions and encoding solution pref-

erences. With regard to this, we plan to study the link with robust

CSP [12, 11]. We believe that this paper is just a first step in a very

promising multi-disciplinary research line, which creates useful links

between CP issues and voting theory.
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Manipulating Two Stage Voting Rules

Nina Narodytska1 and Toby Walsh2

Abstract. We study the computational complexity of computing a

manipulation of a two stage voting rule. An example of a two stage

voting rule is Black’s procedure. The first stage of Black’s proce-

dure selects the Condorcet winner if they exist, otherwise the second

stage selects the Borda winner. In general, we argue that there is no

connection between the computational complexity of manipulating

the two stages of such a voting rule and that of the whole. However,

we also demonstrate that we can increase the complexity of even a

very simple base rule by adding a stage to the front of the base rule.

In particular, whilst Plurality is polynomial to manipulate, we show

that the two stage rule that selects the Condorcet winner if they exist

and otherwise computes the Plurality winner is NP-hard to manip-

ulate with 3 or more candidates, weighted votes and a coalition of

manipulators. In fact, with any scoring rule, computing a coalition

manipulation of the two stage rule that selects the Condorcet win-

ner if they exist and otherwise applies the scoring rule is NP-hard

with 3 or more candidates and weighted votes. It follows that com-

puting a coalition manipulation of Black’s procedure is NP-hard with

weighted votes. With unweighted votes, we prove that the complexity

of manipulating Black’s procedure is inherited from the Borda rule

that it includes. More specifically, a single manipulator can compute

a manipulation of Black’s procedure in polynomial time, but com-

puting a manipulation is NP-hard for two manipulators.

1 Introduction

There exist several voting procedures that work in stages. For exam-

ple, Black’s procedure is a two stage voting rule whose first stage

elects the Condorcet winner, if one exists, and otherwise moves to

a second stage which elects the Borda winner [12]. As a second ex-

ample, the French presidential elections use a two stage runoff vot-

ing system. If there is a majority winner in the first stage, then this

candidate is the overall winner, otherwise we go to the second stage

where there is a runoff vote between the two candidates with the

most votes in the first round. Such two stage voting rules can in-

herit a number of attractive axiomatic properties from their parts. For

example, Black’s procedure inherits Condorcet consistency from its

first part, and properties like monotonicity, participation and the Con-

dorcet loser property from its second part. Inheriting such properties

from its parts might be considered an attractive feature of two stage

voting rules. On the other hand, a less desirable property of one of

the base rules can infect the overall two stage rule. For instance, it

has been shown that, with single peaked votes, many types of con-

trol and manipulation problems are polynomial for Black’s procedure

[4]. This polynomiality is essentially inherited from the first stage of

the rule which selects the Condorcet winner (which must exist with
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single peaked votes). Such vulnerability to manipulation and control

might be considered an undesirable property for a two stage voting

rule. This raises several interesting questions from the perspective of

computational social choice. For example, with unrestricted votes as

opposed to single peaked votes, are two stage voting rules more or

less computationally difficult to manipulate than single stage voting

rules? How does the computational complexity of manipulating a two

stage voting rule depend on the computational complexity of manip-

ulating the two rules that it composes? In this paper, we address such

questions.

2 Background

A profile is a sequence of n total orders over m candidates. A voting

rule is a function mapping a profile onto a set of winners (strictly

speaking this is a social choice correspondence). We consider some

of the most common voting rules.

Scoring rules: Given a scoring vector (w1, . . . , wm) of weights,

the ith candidate in a vote scores wi, and the winner is the candi-

date with highest total score over all the votes. The Plurality rule

has the weight vector (1, 0, . . . , 0), the Veto rule has the vector

(1, 1, . . . , 1, 0), and the Borda rule has the vector (m − 1,m −

2, . . . , 0).
Cup: The winner is the result of a series of pairwise majority elec-

tions between candidates. Given the agenda, a binary tree in which

the roots are labelled with candidates, we label the parent of two

nodes by the winner of the pairwise majority election between the

two children. The winner is the label of the root.

Black’s procedure: This rule has two stages. We first determine if

there is a Condorcet winner, a candidate that beats all others in pair-

wise majority comparions. If there is, this is the winner. Otherwise,

we return the result of the Borda rule.

Single Transferable Vote (STV): This rule requires up to m − 1
rounds. In each round, the candidate with the least number of voters

ranking them first is eliminated until one of the remaining candidates

has a majority.

Nanson’s and Baldwin’s rules: These are iterated versions of the

Borda rule. In Nanson’s rule, we compute the Borda scores and elimi-

nate any candidate with less than half the mean score. We repeat until

there is an unique winner. In Baldwin’s rule, we compute the Borda

scores and eliminate the candidate with the lowest score. We again

repeat until there is an unique winner.

Coombs’ rule: This is an iterated version of the Veto rule. We re-

peatedly eliminate the candidate with the most vetoes until we have

one candidate with a majority.

We consider both unweighted and integer weighted votes. A

weighted votes can simply be viewed as a block of identical un-

weighted votes.



3 Two stage voting rules

We consider a general class of two stage voting rules. Given voting

rules X and Y , the rule XTHENY applies the voting Y to the profile

constructed by eliminating all but the winning candidates from the

voting rule X . Both X and Y can themselves be two stage voting

rules giving us the possibility to construct multi-stage voting rules.

For example, Black’s procedure is CondorcetTHENBorda where

Condorcet is the multi-winner rule that elects the Condorcet winner

if it exists, and otherwise elects all candidates. As a second example,

Plurality with Runoff is TopTwoTHENMajority where TopTwo

is the multi-winner voting rule that elects the candidates with the two

most plurality votes. There are many possible rules that we might

choose to combine this way. Condorcet is an attractive choice for

the first rule as it guarantees that the resulting combination is Con-

dorcet consistent. However, there are other interesting choices in-

cluding:

CondorcetLoser: This is the rule that elects all candidates except,

when it exists, the Condorcet loser.

CopelandSet: This is the rule that elects all candidates in the

Copeland set. The Copeland score of a candidate is the number

of candidates that it beats less the number of candidates that beats

it. The Copeland set contains those candidates with the maximal

Copeland score. When there is a Condorcet winner, this is the only

candidate in the Copeland set.

SmithSet: This is the rule that elects all candidates in the Smith set.

This is the smallest non-empty set of candidates such that every

candidate in the set beats every candidate outside the set in pair-

wise elections. When there is a Condorcet winner, this is the only

candidate in the Smith set. Voting rules like Nanson’s and Kemeny

are guaranteed to pick candidates from the Smith set. In the Re-

lated Work section, we argue that SmithSet is used within the

Alternative Smith rule [17].

SchwartzSet: This is the rule that elects all candidates in the

Schwartz set. The Schwartz set is a subset of the Smith set and

is the union of all the undominated sets. A set is undominated if

every candidate inside the set is pairwise unbeaten by every can-

didate outside, and no non-empty proper subset satisfies this prop-

erty. When there is a Condorcet winner, this is the only candidate

in the Schwartz set.

We can also consider recursive definitions. We suppose any recur-

sion terminates when either we have a single candidate left, or the

set of candidates left does not reduce in size. For example, we can

recursively define STV by STV = PluralityLoserTHENSTV

where PluralityLoser is the rule that elects all candidates but

the candidate with the fewest first place votes. As a second ex-

ample, we can recursively define Baldwin’s rule by Baldwin =
BordaLoserTHENBaldwin where BordaLoser is the multi-

winner rule that elects all candidates but the candidate with the

lowest Borda score. Nanson’s rule can be defined recursively in a

similar way. As a third example, we can define Coombs’ rule by

Coombs = MajorityTHEN(V etoLoserTHENCoombs) where

Majority elects the candidate with a majority of first place votes or,

if there is no such candidate, elects all candidates, and V etoLoser is

the rule that elects all candidates but the candidate with the most last

placed votes.

4 Axiomatic and algebraic properties

It is interesting to consider which axiomatic properties are inherited

from the base rules being combined. For example, it is simple to

see that we can inherit Condorcet consistency or the Condorcet loser

properties.

Proposition 1. For any voting rule X , the combinations

CondorcetTHENX , CopelandSetTHENX , SmithSetTHENX

and SchwartzSetTHENX are Condorcet consistent. Similarly, for

any voting rule Y , the combination CondorcerLoserTHENY sat-

isfies the Condorcet loser property.

With recursivley defined rules, we can give a similar result. We

say that a multi-winner rule is Condorcet consistent if it includes

the Condorcet winner in the set of winners, and satisfies the Con-

dorcet loser property if the set of winners never includes the Con-

dorcet loser.

Proposition 2. Suppose Y is recursivley defined by Y = XTHENY

and X is Condorcet consistent. Then Y is also Condorcet consistent.

Similarly, if X satisfies the Condorcet loser property then Y does

also.

Note that the Borda loser is never the Condorcet winner. Hence,

the multi-winner rule BordaLoser is Condorcet consistent. Thus, it

follows from Proposition 2 that Baldwin’s rule (which is recursively

defined using BordaLoser) is also Condorcet consistent.

There are also axiomatic properties which can be lost by combin-

ing together voting rules. For example, the Borda loser rule which

eliminates the lowest Borda scoring candidate is monotonic since

increasing one’s preference for a candidate can only prevent them

from being the Borda loser. However, Baldwin’s rule, which is the

recursive version of the Borda loser rule, is not monotonic. It will

therefore be interesting to identify conditions under which two stage

voting rules are monotonic.

This combinator has a number of interesting algebraic properties.

For example, the Identity rule that returns all candidates is a left and

right identity of the THEN combinator. Note that the THEN combi-

nator is neither commutative nor associative. If a voting rule is recur-

sively defined then it is idempotent (that is, XTHENX = X). More

complex algebraic idententies can be derived such as the following.

Proposition 3. If X is idempotent then XTHEN(XTHENY ) =
XTHENY and (Y THENX)THENX = Y THENX .

More specialized properties can also be derived such as the fol-

lowing.

Proposition 4. SmithSetTHENNanson = Nanson.

Proposition 5. If X is Condorcet consistent and only returns the

Condorcet winner when they exist then CondorcetTHENX = X .

5 Complexity of manipulation

One of the main contributions of this paper is to consider the im-

pact of two stage voting rules on the computational complexity of

computing a manipulation. As in previous studies (e.g. [2, 6]), we

consider manipulation with unweighted votes and a small number of

manipulators, and manipulation with weighted votes, a coalition of

manipulators and a small number of candidates.

5.1 Weighted votes, general results

With weighted votes, we first argue that is no connection in general

between the computational complexity of computing a manipulation

of a two stage voting rule and the computational complexity of ma-

nipulating its parts.



Proposition 6. There exist voting rules X and Y with the following

properties for weighted votes:

1. computing coalition manipulations of X , Y and XTHENY are

polynomial;

2. computing coalition manipulations of X and Y are polynomial

but of XTHENY is NP-hard;

3. computing a coalition manipulation of X is polynomial and of Y

is NP-hard, but of XTHENY is polynomial;

4. computing a coalition manipulation of X is polynomial, but of Y

and XTHENY are NP-hard;

5. computing a coalition manipulation of X is NP-hard, but of Y

and XTHENY are polynomial;

6. computing a coalition manipulation of X is NP-hard and of Y is

polynomial, but of XTHENY is NP-hard;

7. computing coalition manipulations of X and Y are NP-hard but

of XTHENY is polynomial;

8. computing coalition manipulations of X , Y and XTHENY are

NP-hard.

Proof: The NP-hardness results are derived from the NP-hardness

of computing a coalition manipulation of STV with 3 or more candi-

dates [7].

1. Consider X = FirstRoundCup and Y = Cup.

FirstRoundCup is the multi-winner rule that runs one round

of the Cup voting rule. Note that FirstRoundCupTHENCup is

the Cup rule itself, and both FirstRoundCup and Cup are poly-

nomial to manipulate by a coalition even with weighted votes [7].

2. Consider X = TopTwo and Y = Majority where TopTwo

elects the two candidates with the two highest plurality scores. On

3 candidates, TopTwoTHENMajority is Plurality with runoff,

which itself is equivalent STV which is NP-hard to manipulate by

a coalition of weighted voters when we have 3 or more candidates

[7].

3. Consider X = Plurality and Y = STV . Note that XTHENY is

again Plurality which is polynomial to manipulate by a coalition

even with weighted votes [7].

4. Consider X = Identity and Y = STV where Identity is the

identity rule that elects all the candidates in the election. Note that

XTHENY is also STV .

5. Consider X = STV ′ which is the multi-winner voting rule that

elects both the STV winner and the candidate with the smallest

label, and Y elects the candidate with the smallest label. Note

that XTHENY always elects the candidate with the smallest la-

bel. Such a rule is polynomial to manipulate by a coalition even

with weighted votes.

6. Consider X = STV and Y = Identity. Note that XTHENY is

again STV .

7. Consider X = STV ′′ and Y = STV ′′′ where STV ′′ is the

multi-winner rule that elects the STV winner as well as those can-

didates with the smallest and largest labels, and STV ′′′ elects

the plurality winner between the smallest and largest candidates if

there are 3 or fewer candidates and otherwise elects the STV win-

ner. Note that XTHENY elects the plurality winner between the

smallest and largest candidates, and computing a coalition manip-

ulation of such a rule is polynomial even with weighted votes.

8. Consider X = Y = STV . Note that XTHENY is also STV .

♥

5.2 Weighted votes, specific rules

With weighted votes, we already know that several multi-stage voting

rules are NP-hard to manipulate including STV, Plurality with runoff,

Baldwin’s rule (all with 3 candidates), and Nanson’s rule (with 4

candidates) [7, 15]. We first show that computing a manipulation of

CondorcetTHENX with weighted votes is NP-hard for any scoring

rule X . This contrasts to scoring rules in general where computing a

coalition manipulation is NP-hard for any rule that is not isomorphic

to Plurality, but is polynomial for Plurality. The demonstrates that

adding the test for a Condorcet winner to give CondorcetTHENX

increases the computational complexity of manipulation over that for

the scoring rule X alone.

Proposition 7. Deciding whether there exists a coalitional manip-

ulation for CondorcetTHENPlurality with weighted votes is NP-

complete with 3 or more candidates.

Proof: We reduce from the number partitioning problem with n

numbers ki, i = 1, . . . , n,
∑

n

i=1
ki = 2K. We have n manipula-

tors with the weight ki each.

Consider a non-manipulator profile. Suppose the voters with the

total weight 2K cast (a, b, p) and the voters with the total weight

2K cast (b, a, p). The candidate p is a Condorcet loser as it loses to

both a and b. Moreover, as a and b are tied, there is no Condorcet

winner.

Note that if all manipulators put p in the first position then p wins

under plurality. However, the manipulators have to make sure that

they also do not make a or b the Condorcet winner. Note that if a

(b) gets a higher score than b (a) then a (b) is the Condorcet win-

ner. Therefore, the only way to prevent one of them from becoming

the Condorcet winner is to partition scores between a and b. Thus,

manipulators with a total score of K have to vote (p, a, b) and the

remaining manipulators have to vote (p, b, a). Therefore, there exists

a manipulation iff there is a partition with the required sum K. ♥

Proposition 8. With weighted votes and any scoring rule X that is

not isomorphic to Plurality, computing a coalition manipulation of

CondorcetTHENX is NP-hard for 3 or more candidates.

Proof: Without loss of generality, we consider a scoring rule which

gives a score of α1 for a candidate in 1st place in a vote, α2 for 2nd

place, and 0 for 3rd place. We adapt the reduction used in the proof

of Theorem 6 in [8] for the NP-hardness of manipulating any scoring

rule that is not isomorphic to Plurality voting. The reduction is from

the number partitioning problem and constructs an election with a

weight of 6α1K − 2 votes over the candidates a, b and p (who the

manipulators wish to make win). Within these votes, the manipula-

tors have a weight of 2(α1 +α2)K votes, and the rest are fixed. The

number partition problem is to divide a set of integers summing to

2K into two equal sums. There is a manipulator of weight ki for ev-

ery integer ki in the set being partitioned. We now add 6α1K − 1
triples of votes: (a, b, p), (b, p, a), (p, a, b). This has no impact on

the differences in the scores between the candidates. However, it cre-

ates a Condorcet cycle so that there cannot be a Condorcet winner

whatever the manipulators do with their votes. Hence, we must pass

to the second round where the winner is decided by the scoring rule

X . As in the proof of Theorem 6 in [8], there is a manipulation that

makes p the winner of the scoring rule X iff there is a partition

into two equal sums. Thus, computing a coalition manipulation of

CondorcetTHENX is NP-hard. ♥

It follows immediately that coalition manipulation of Black’s pro-

cedure, which is CondorcetTHENBorda is NP-hard with 3 or more

candidates.



Corollary 1. With weighted votes, coalition manipulation of Black’s

procedure is NP-hard with 3 or more candidates.

5.3 Unweighted votes, general results

As with weighted votes, there is no connection in general between

the computational complexity of computing a manipulation of a two

stage voting rule with unweighted votes and the computational com-

plexity of computing a manipulation of its parts.

Proposition 9. There exist voting rules X and Y with the following

properties:

1. computing manipulations of X , Y and XTHENY are polynomial;

2. computing manipulations of X and Y are polynomial but of

XTHENY is NP-hard;

3. computing a manipulation of X is polynomial and of Y is NP-

hard, but of XTHENY is polynomial;

4. computing a manipulation of X is polynomial, but of Y and

XTHENY are NP-hard;

5. computing a manipulation of X is NP-hard, but of Y and

XTHENY are polynomial;

6. computing a manipulation of X is NP-hard and of Y is polyno-

mial, but of XTHENY is NP-hard;

7. computing manipulations of X and Y are NP-hard but of

XTHENY is polynomial;

8. computing manipulations of X , Y and XTHENY are NP-hard.

Proof: The NP-hardnes results are derived from the NP-hardness of

manipulating STV with unweighted votes and a single manipulator

[2].

1 Identical examples to the weighted case.

2 Consider the multiwinner voting rule X that eliminates the incum-

bent candiate, and the the rule Y that elects the plurality winner

between the candidates that are preferred by at least one voter to

the incumbent or, if there are no such candidates, the STV win-

ner. Now X is polynomial to manipulate as it ignores the votes.

Similarly, Y is polynomial to manipulate since the manipulators

should always put the candidate that they wish to win in first place,

and the incumbent anywhere else in their vote. If all other voters

prefer the incumbent to any other candidate, then this vote will en-

sure that the manipulators’ preferred candidate wins. On the other

hand, if the other voters prefer one ore more candidates to the in-

cumbent, then this is the best vote for ensuring the manipulators’

preferred candidate is the plurality winner. Now XTHENY is NP-

hard to manipulate. We adapt the reduction used in [2] to prove

that STV is NP-hard to manipulate by a single manipulator. We

simply introduce an additional candidate, the incumbent into the

voting profile used in this proof.

3-8 Identical examples to the weighted case.

♥

5.4 Unweighted votes, specific rules

With unweighted votes, we already know that a number of specific

multi-stage voting rules are NP-hard to manipulate including STV

[2], Nanson’s, Baldwin’s [15] and Coombs rules [10] (all with a sin-

gle manipulator). We can add to this list Black’s procedure. Like

Borda voting on which it is based, a single manipulator can com-

pute a manipulation of Black’s procedure in polynomial time, but

coordinating two manipulators makes the problem NP-hard.

Proposition 10. Manipulation of Black’s procedure with unweighted

votes and two manipulators is NP-hard.

Proof: We adapt the reduction used in the proof of Theorem 3.1

in [3] for the NP-hardness of manipulating Borda voting. This re-

duction is from a special case of numerical matching with target

sums. It constructs an election with 5 votes, 3 fixed votes and 2

votes of the manipulators over the candidates 1 to m. We now add

6 sets of cyclic votes: (1, 2, . . . ,m − 1,m), (2, 3 . . . ,m, 1), . . . ,

(m − 1,m, . . . ,m − 3,m − 2), (m, 1, . . . ,m − 2,m − 1). This

has no impact on the differences in the scores between the candi-

dates. However, it creates a Condorcet cycle so that there cannot be a

Condorcet winner whatever the manipulators do with their two votes.

Hence, we must pass to the second round where the winner is decided

by the Borda rule. As in the proof of Theorem 3.1 in [16], there is

a manipulation that makes a chosen candidate the Borda winner iff

there is a solution to the numerical matching problem with target

sums. Thus, computing a manipulation of CondorcetTHENBorda,

which is Black’s procedure, is NP-hard. ♥

Proposition 11. Deciding whether one manipulator can make a can-

didate win for Black’s procedure with unweighted votes is polyno-

mial.

Proof: We consider several cases.

Suppose no Condorcet winner exists in ENM but there are a 6=
p and b 6= p such that beatENM

(a, b) = beatENM
(b, a), where

beatE(v1, v2) is the number of times v1 beats v2 in E. In this case, p

loses regardless of the manipulator v as v gives an advantage of one

vote to a or b in any case. Hence, one of a or b must be the Condorcet

winner.

Suppose there is the Condorcet winner in ENM and there is no

a 6= p and b 6= p such that beatENM
(a, b) = beatENM

(b, a).
Then the manipulator casts his vote v with respect to the greedy rule.

This vote does not create a Condorcet winner that is different from p,

hence it is optimum for both the Condorcet criterion and Borda rule.

Suppose there is the Condorcet winner in ENM , a 6= p. If there

is no b such that beatENM
(a, b) = beatENM

(b, a) + 1 then a is

the winner regardless of the manipulator vote v. Therefore, suppose

there exists a set B such that beatENM
(a, b) = beatENM

(b, a)+ 1,

b ∈ B. If there exists b such that scoreENM
(a) ≥ scoreENM

(b)
then a will be ranked below b in the manipulator vote v that is con-

structed based on the greedy algorithm (or we can swap a and b if

their scores are equal). Therefore,we assume that scoreENM
(a) <

scoreENM
(b). Let b∗ be the candidate with the minimum score

scoreENM
, so that b∗ = argminb∈B(scoreENM

(b)). The ma-

nipulator must rank a below b∗ to prevent a from being the Con-

dorcet winner. This is equivalent to assuming that scoreENM
(a) =

scoreENM
(b∗) and using the greedy algorithm to construct the vote

v. If v is a valid manipulation then we are done. If it is not then there

is no way to construct a manipulation. ♥

6 Multiple ballots

So far, we have assumed that voters vote only once. However, the

THEN combinator is naturally sequential. We can therefore consider

the case where voters are allowed to re-vote in each round. For exam-

ple, in the French presidential elections, voters re-vote in the second

stage. Such re-voting increases the potential for manipulation in two

ways. First, as we illustrate here, there are elections which can only

be manipulated when the manipulators vote differently in the two

rounds. Of course, all those elections where manipulators can change



the result by strategically voting the same way in both rounds remain

manipulable. Second, as we also argue in the next section, the first

round of voting reveals voters’ preferences, thereby enabling manip-

ulations to take place that require such knowledge. Third, voters man

vote strategically in the first round to give their preferred candidate

an easier contest in the second round.

If voters re-vote between rounds, we add “with re-voting” to its

name. Hence, plurality with runoff and re-voting is the two stage

election rule used in French presidential elections in which, unless

there a majority in the first round, plurality is used in the first round to

select two candidates to go through to the runoff, and voters then re-

vote in the second round to decide the winner of the runoff. The fol-

lowing example demonstrates that there exist elections where strate-

gic voting with plurality with runoff is not possible, but is with plu-

rality with runoff and re-voting.

Example 1. Suppose we have 2 votes for (a, b, p), 2 votes for

(b, a, p), 1 vote for (b, p, a), 2 votes for (p, a, b) and 2 manipula-

tors whose preferences are (p, a, b). In addition, we suppose in the

event of a tie in the first round between all 3 candidates, the manipu-

lators’ peferred candidate p and a go through to the runoff. Note that

if the manipulators vote truthfully, then p and b have the most votes

in the first round, and b wins the runoff by 5-4. To make p the winner,

the manipulators need a and p to be in the runoff. This is possible if

and only if one of the manipulators votes for a and the other votes

for p in the first round. We then have a 3-way tie and, according to

the tie-breaking rule, a and p go through to the runoff. If the manip-

ulators do not re-vote in the runoff, a wins the runoff by 5-4. On the

other hand, if the manipulators can re-vote in the runoff, both can

vote for p, and p will beat a by 5-4.

7 Revealed preferences

One of the strong assumptions made in much work on (the com-

plexity of) manipulation is that the manipulators know the other vot-

ers’ preferences [9]. There are many situations where this is unre-

alistic. When we have re-voting, it is reasonable to suppose voters’

preferences have been (partially) revealed by the first round of vot-

ing. This introduces new opportunities for manipulation. Consider

Black’s procedure with re-voting and a manipulator who lacks any

knowledge of the other voters’ preferences, so votes truthfully in the

first round. The following example demonstrates that this manipu-

lator can vote strategically in the second round based on the votes

revealed in the first round.

Example 2. Suppose the first round reveals that there are 2 votes for

(a, b, p), 2 votes for (b, p, a), 1 vote for (p, a, b), and a single ma-

nipulator’s truthful vote for (p, b, a). There is no Condorcet winner

so all candidates go through to the second round. Without re-voting,

b has the highest Borda score in the second round and is the overall

winner. On the other hand, suppose the manipulator changes their

vote in the second round to (p, a, b) based on the preferences re-

vealed in the first round. Then, assuming the other votes remain the

same, the Borda scores of all candidates are equal. If such a 3-way

tie is broken in favour of the manipulator, then the manipulator’s

preferred candidate p now wins.

It is natural to consider more game theoretic behaviours in such

two stage voting rules. Re-voting can be viewed as a finite repeated

sequential game so we can use concepts like subgame perfect Nash

equilibrium and backward induction to predict how agents will play

strategically in each round. An interesting open question is the com-

putational complexity of computing such strategic behaviour. This

sort of strategic voting has already received some attention in the lit-

erature. For example, Bag, Sabourian and Winter prove that a class of

voting rules which use repeated ballots and eliminate one candidate

in each round are Condorcet consistent [1]. They illustrate this class

with the weakest link rule in which the candidate with the fewest

ballots in each round is eliminated.

It is also natural to consider iterated voting in multiple stage vot-

ing rules. After each round of voting, we might suppose that agents

change their vote according to a best response strategy, starting per-

haps from a truthful vote. We can also consider the situation where

the full preferences of the agents are revealed in each round of voting,

as well as the situation where only partially information is revealed

like total Borda scores. However, unlike previous studies like [14],

candidates are also eliminated in each round.

8 Related work

As noted earlier, a number of well known voting rules like Black’s

procedure and Plurality with runoff are instances of this voting

schema. However, there exist many other related voting rules. For

example, Contizer and Sandholm [5] studied the impact on the com-

putational complexity of manipulation of adding an initial round of

the Cup rule to a voting rule X . This initial round eliminates half

the candidates and makes manipulation NP-hard to compute for sev-

eral voting rule including plurality and Borda. Consider the multi-

winner voting rule, Bisect which runs an election between given

pairs of candidates, and returns the winning half of the candidates.

Then Conitzer and Sandholm’s study can be viewed as of the two

stage voting rule BisectTHENX . Elkind and Lipmaa [11] extended

this idea to a general technique for combining two voting rules. The

first voting rule is run for some number of rounds to eliminate some

of the candidates, before the second voting rule is applied to the can-

didates that remain. They proved that many such combinations of

voting rules are NP-hard to manipulate.

Beside STV, Nanson’s, Baldwin’s and Coombs rule, a

number of other recursively defined rules have been put for-

wards in the literature. For example, Tideman proposed the

Alternative Smith rule [17]. This is recursively defined as

SmithSetTHEN(PluralityLoserTHENAlternativeSmith).
Other complex multi-stage rules have also been proposed. For

example, [13] has proposed a complex rule that computes the

Schwartz choice set, then iteratively applies Copeland’s procedure

to this set until a fixed point is reached. If several candidates remain

at this point, the rule then selects the plurality winners. If there are

several such winners, the rule then chooses among then according

to the number of second place votes, and so on. If this still does not

select a winner, a lottery is then used amongst the candidates that

remain.

We recently proposed a combinator for taking the consensus of

two (or more) voting rules. Given two voting rules X and Y , the

combinator X+Y computes the winners of X and Y and then recur-

sively applies X + Y to this set. If X and Y are majority consistent

(that is, given an election with just two candidates, they both return

the majority winner) then X+Y is (XORY )THENMajority where

XORY returns the union of the winners of X and Y .

9 Conclusions

We have considered voting rules which have multiple stages. For

example, Black’s procedure selects the Condorcet winner if they

exist, otherwise in the second stage, Black’s procedure selects the



Borda winner. We denoted this as CondorcetTHENBorda. We have

studied the computational complexity of computing a manipulation

for such two stage procedures. In general, we argued that there is

no connection between the computational complexity of manipu-

lating the two stages of such a voting rule and that of the whole.

However, we also demonstrated cases where the complexity of a

base rule increases by adding a stage in front of it. In particular,

whilst Plurality is polynomial to manipulate with weighted votes,

CondorcetTHENPlurality is NP-hard with 3 or more candidates

and a coalition of manipulators. In fact, with any scoring rule X ,

computing a coalition manipulation of CondorcetTHENX is NP-

hard with 3 or more candidates and weighted votes. It follows that

computing a coalition manipulation of Black’s procedure is NP-hard.

With unweighted votes, the complexity of manipulating Black’s pro-

cedure is inherited from the Borda rule that it includes. More specif-

ically, a single manipulator can compute a manipulation of Black’s

procedure in polynomial time, but computing a manipulation is NP-

hard for two manipulators. There are many directions for future

work. For instance, it would also be interesting to consider the im-

pact of such two stage voting on other types of control, on bribery

and on issues like the computation of possible winners.
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Magenda: Doodle with Preferences

Davide Navarro1 and Maria Silvia Pini2 and Francesca Rossi3 and Kristen Brent Venable4

Abstract. A typical real-life problem is deciding when to plan a

meeting or a social event that involves several people to guarantee

that most of the people will participate to the event. Doodle is a well-

known web-based tool that helps people to solve this problem in a

simple way, that avoids many phone calls and email messages. How-

ever, Doodle allows the users only to express the acceptable time-

slots for the event, but it does not allow them to express their pref-

erences over the acceptable options. In this paper, we consider this

problem. We show a simple web-based application, called Magenda,

that allows the participants to reveal their preferences over their ac-

ceptable options. Such preferences are then aggregated by the system

to find the final decision via a voting rule that is selected by the or-

ganizer of the event.

1 Introduction

Deciding when to plan a meeting or a social event that involves sev-

eral people is a typical problem in many scenarios. The goal in this

problem is to find a time slot for the event which is acceptable for

all the possible participants. Among all the acceptable options, it is

desirable to find the one which is the most preferred by the greater

number of potential participants.

Doodle [3] is a well-known web-based tool that helps scheduling

meetings and other appointments. It is simple, quick, and free and it

avoids many phone calls and email messages, that would be neces-

sary to plan the meeting without using the automated tool. However,

Doodle allows the users only to express the acceptable time slots, but

not the preferences over the acceptable options. Therefore, it could

happen that Doodle selects a time slot that is acceptable by all the

participants, but that is not the most preferred by any of them.

Preferences are a central concept of decision making [17]. Many

real-life problems contain statements which can be expressed as pref-

erences. Such preferences can be of many kinds. They may be quali-

tative (as in ”I like A more than B”) or quantitative (as in ”I like A at

level 10 and B at level 11”). The problem of representing preferences

of agents has been deeply investigated in Artificial Intelligence (AI)

community in recent past years [18, 24, 21, 16, 15, 13]. Preference

representation is an important issue when we have to represent the

desires of users or to reason about them for example in recommender

systems and in multi-agent settings.

In a multiagent scenario, agents generally have different prefer-

ences, and it can be important to aggregate these preferences, i.e.,
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to select a collectively desirable candidate from a set of candidates.

Candidates could be, for example, potential presidents, time slots,

joint plans, allocations of goods or resources, etc. A general method

for aggregating preferences in multi-agent systems, in order to take a

collective decision, is to run an election among the different options

using a voting rule [12].

Due to the importance that preferences have in decision making

and in multi-agent settings and due to the simplicity and the spread of

Doodle, we have decided to develop an online application to schedule

meetings that is very similar to Doodle, in terms of simplicity and

quickness, but that takes into account the central role of the users

preferences. Our web-based application, called Magenda, allows the

participants to reveal their preferences over acceptable options, and

takes into account these preferences to select the final decision. Such

preferences are aggregated by our automated system via a specific

voting rule that is selected by the organizer of the event.

This is not the first attempt to extend standard Doodle. Doodle

itself now has a version with three qualitative scores (yes, no and ?)

and other systems were developed along the same line: Whale [10],

developed by Sylvain Bouveret and The Decider [2], developed by

Ronen Brafman and students.

The task considered in the paper can be regarded as a group rec-

ommendation in the field of recommender systems, where different

group members usually have different preferences and this disagree-

ment among members must be resolved [14, 11, 19, 23].

The paper is organized as follows. Section 2 presents the basic

notions regarding Doodle and voting systems. Section 3 describes

Magenda. More precisely, it shows the kinds of preferences that are

allowed by Magenda, it shows step by step how to use Magenda,

and it describes the technologies that have been used to develop Ma-

genda. Section 4 summarizes the result shown in the paper and it

gives some hints for future work.

2 Basic notions

First, we will show how the web-based tool Doodle works. Then, we

will give a brief description of the voting rules that can be used to

aggregate the users preferences.

2.1 Doodle

Doodle is an online free tool that can be used when you need to

setup a meeting or a social event with more than one person but you

don’t want to send email messages or making phone calls. Doodle

eliminates the constant back and forth communication allowing your

inbox to contain only relevant e-mail.

Doodle is very easy to use for any kind of user. Due to this simplic-

ity, many users usually adopt this web-based tool to plan meetings

that involve several people.



To plan an event in Doodle, a user must perform the following

steps:

• He must go to the following url

http : //www.doodle.com

(see Figure 1(a)).

• He must create an event by specifying his name, the event title, its

location, and its description (see Figure 1(b)).

• He must select a set of possible dates for the event, via a calendar

performed by JQuery (see Figure 1(c)).

• For every selected date, he must specify some possible times for

scheduling the event (see Figure 1(d)).

• He can create a Doodle account and use it to send the invitations

to the participants by simply specifying the email addresses of the

participants in a text-area (see Figure 1(e)). At this point every

participant receives an email containing the link to a web page

similar to the one shown in Figure 1(f) where it is possible to select

the acceptable time slots.

2.2 Voting rules

A voting rule allows a set of voters to choose one among a set of

candidates. Voters need to submit their vote, that is, their preference

ordering (or part of it) over the set of candidates, and the voting rule

aggregates such votes to yield a final result, usually called the win-

ner. In the classical setting [12], given a set of candidates C, a profile

is a collection of total orderings over the set of candidates, one for

each voter. Given a profile, a voting rule maps it onto a single win-

ning candidate (if necessary, ties are broken appropriately). In this

paper, we will often use a terminology which is more familiar to

multi-agent settings: we will sometimes call “users” the voters, “op-

tions” the candidates, and “decision” or “best solution” the winning

candidate.

Some examples of widely used voting rules, that we will study in

this paper, are:

• Plurality: each voter states a single preferred candidate, and the

candidate who is preferred by the largest number of voters wins;

• Scoring: given m candidates, each voter gives a ranking of all

candidates, each candidate gets a score and the candidate with the

greatest sum of scores wins. Borda is a scoring rule such that the

ith ranked candidate gets a score of m− i.
• Approval: given m candidates, each voter approves between 1

and m − 1 candidates, and the candidate with most votes of ap-

proval wins.

• Rated: each voter can give a score to every candidate and he can

give the same score to various candidates. The candidate with the

highest total score wins.

Approval is a simple way to vote, where the users must only select

the options that they accept. Scoring rules are more sophisticated

ways of voting where the users must reveal a total order over all the

possible options. Rated voting rules require extra work to the users

since they must reveal a score for every option.

3 Magenda: Doodle with preferences

When an organizer wants to plan an event which involves several

people, he can use Doodle [3], as shown in Section 2.1. However, in

Doodle it may happen that an event is planned in a time slot that is

acceptable for every participant but that is not the most preferred by

any participant. Our web-based application Magenda extends Doo-

dle to overcome this drawback. In particular, it allows the users to

express different kinds of preferences over the acceptable time slots,

and it allows the organizer to decide how to aggregate these prefer-

ences by selecting a specific voting rule.

3.1 Allowed preferences

The developed application allows the users to express their prefer-

ences over the possible time slots (that we will call ‘options’) in four

different ways. More precisely, the kinds of preferences that can be

expressed in Magenda correspond to the following voting systems:

• Yes/No: This is the voting system used by Doodle except that a

user can avoid to express his vote if no option is acceptable for

him. In such a case the system selects the option which is the

more accepted by the users. This voting system corresponds to

Approval.

• Scoring: In this voting system every user expresses a ranking over

all the options, and then the system associates a score to them as

follows: if there are m options, the most preferred option receives a

score of m−1, the second one receives a score of m−2, and so on.

Moreover, every unacceptable option receives 0 points. The score

of an option is the sum of the received scores. The systems selects

the option which is accepted by the greater number of users and

among these it selects the one that has the highest score. In such

a way, the organizer of the event knows, for every participant, his

acceptable options and for each of them his level of preference.

This voting system corresponds to Borda.

• Sum-Points: In this voting system every user specifies a distribu-

tion of 100 points over the options. The score of an option is the

sum of the received scores. The systems selects the option which

is accepted by the greater number of users and among these it se-

lects the one that has the highest score. This voting system is a

Rated voting method.

• Minimum-Points: In this voting system the users specify a dis-

tribution of 100 points over the options. The score of an option is

the minimum of the received scores. The systems selects the op-

tion which is accepted by the greater number of users and among

these it selects the one that has the highest score. This voting sys-

tem is a Rated voting method.

3.2 How to use magenda

To plan an event in Magenda, a user must perform the following

steps:

• He must go to the following url

http : //stagemeeting.altervista.org

(see Figure 2(a)).

• If the user is a new user of Magenda, he has to perform the regis-

tration (see Figure 2(b)). In particular, he has to insert his personal

data, a username and a password that will allow him to exploit the

functionalities of Magenda. After this step, the user will receive

an e-mail containing the link to the web page that will activate his

accout.

• If the user forgets his password, he simply need to specify his

email-address (see Figure 2(c)) and then the system will send him

via e-mail the link to a new web-page where he can state a new

password (see Figure 2(d)).



• To create an event, the user first needs to insert his username and

password, and then he must specify the following things (see Fig-

ure 2(e)):

– the title of the event;

– the description of the event;

– some possible dates and times (also called ‘options’) for the

event;

– the duration of the event;

– the e-mail addresses of the people that must participate to the

event;

– the voting rule that the system has to use to compute the best

option.

The selected voting system is the rule that will be used by the sys-

tem to select the better schedule for planning the event according to

the preferences expressed by the invited people. The available vot-

ing systems in Magenda are Yes/No, Scoring, Sum-Points, and Min-

imum Points. Such voting rules, that have been described in Section

3.1, are described in the Magenda’s guide (see Figure 2(f)).

After the creation of the event, the system automatically sends an

email to all the people that have been invited to the event (see Figure

2(g)). This email contains a link to a web site where they have to

specify their preferences on the possible dates and times for schedul-

ing the event. Depending on the voting system selected by the orga-

nizer, the invited people can express their preferences over the possi-

ble options in different ways. For example, if the selected voting rule

is Sum-Points every participant needs to distribute 100 points over

all the possible options (see Figure 2(h)).

The user who has organized the event can see, via his area named

‘My events’, how many people have expressed their preferences over

it. If he thinks that this number is sufficient to decide when to plan the

event, he can terminate the process. At this point, the system sends an

e-mail to every participant that indicates the date and time computed

for the event. Such a choice is the best one according to the voting

system selected by the organizer and according to the preferences

expressed by the invited people.

3.3 Technologies

We have developed Magenda on Ubuntu 11.04. Ubuntu is a free op-

erative system that is a GNU/Linux distribution which is based on

GNOME [5]. To implement Magenda we have used HTML5 and

CC3. To test the application, we have used the following browsers

that are compatible with HTML5 and CC3:

• Safari 5.0 [9],

• Google Chrome 7.0 [6],

• Firefox 3.6 [4],

• Opera 10.63 [8],

• Internet Explorer [7].

To develop Magenda, we have used the HTML editor Bluefish

[1], since it supports HTML, Javascripts and PHP, that we have used

to create our web-based application. To public online Magenda, we

have used the free service Altervista, which is an Italian web plat-

form, that allows the user to create immediately a free web site.

More details regarding the technologies that have been used to

develop Magenda can be found in [22].

4 Conclusions and future work

We have shown a web-based application for scheduling meetings and

social events among several people. Such an application has the same

advantages of the well-known tool Doodle, that is, it is easy to use,

it is quick, and it is free. Moreover, it allows the users to reveal pref-

erences over the acceptable options and exploits such preferences to

find the better schedule.

This task can be regarded as group recommendations in the field of

recommender system. In group recommendations however, because

different group members usually have different preferences, this dis-

agreement among members must be resolved. This problem has been

studied in [14, 11, 19, 23]. It will be interesting to discuss whether

the related algorithms could achieve the goal and even perform better

as it aimed at solving the disagreement challenge. We intend also to

integrate in a suitable way Magenda with the calendars of the users.

This can be useful to show to the invited people, if they desire it, only

the options that are not already occupied in their calendar. Moreover,

we plan to add to our tool other kinds of voting systems to aggregate

user preferences, that are difficult to manipulate. An example could

be Plurality with runoff, that requires the users to vote with Plurality

first over all the possible options and then only on the two options

that have obtained the greater number of votes. Moreover, we intend

to include in the tool the possibility of using rules that are difficult

to compute, such as for example the Kemeny rule [20]. It would be

interesting also to study in a real-life scenario if users are willing to

take the extra work to assign preference score to options expecially

when there is a large number of choices.
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From Preferences over Objects
to Preferences over Concepts

Sergei Obiedkov1

Abstract. We present an approach to preference modeling and

learning preferences from data based on formal concept analysis. We

consider techniques to derive preferences over attribute subsets from

preferences over objects, including ceteris paribus preferences.

1 INTRODUCTION

If John chooses a strawberry over an apple, would he choose a rasp-

berry over a pear? If so, is it because, for Peter, red berries taste bet-

ter than tree fruit or are there other factors involved? More generally,

given a number of alternatives each described by a set of elementary

features together with a preference relation over these alternatives,

we would like to derive preferences among feature sets that would

explain, at least partially, the observed preferences over individual

alternatives.

A move from a strawberry and a raspberry to red berries is a move

from individual objects to concepts; thus, our aim is to generalize

from preferences over objects to preferences over concepts. A con-

cept can be understood extensionally, through objects it covers, or

intensionally, through attributes that define it. This duality reflects

itself in preferences over object sets and preferences over attribute

sets, so that the latter can be defined in terms of the former. The first

step is then to get from preferences over objects to preferences over

object sets, and for this there are various options extensively studied

in, e.g., preference logics [21]. We pick up two such options and see

what consequences they have for preferences over attribute sets.

In terms of preference logics, attributes can be regarded as atomic

propositions and attribute sets as atomic conjunctions. Thus, what

we present here is a simple version of propositional preference logic

where only preferences over conjunctions of atomic formulae can be

expressed. This limitation allows us to make a link to formal concept

analysis (FCA) [12], through which we develop techniques for learn-

ing preferences from empirical data. FCA provides a wide range of

computational tools, and, despite their often unattractive theoretical

complexity, they are successfully used in practical data analysis [8].

The paper is organized as follows. We start by describing the types

of preferences discussed throughout the paper including two types

of global preferences and ceteris paribus preferences. We proceed

with FCA definitions and then consider each type of preferences sep-

arately providing FCA-based semantics, discussing inference, and

describing methods for learning preferences from data. Finally, we

show a way to take into account the conceptual structure of the data

and thus reduce the learning bias down to a well-defined point.

1 National Research University Higher School of Economics, Moscow, Rus-
sia, email: sergei.obj@gmail.com

2 PREFERENCES IN PREFERENCE LOGICS

In modal preference logics [17, 21], preference relations are modeled

by accessibility relations on possible worlds, which correspond to al-

ternatives being compared. The preference relation is often assumed

to be a preorder, that is, reflexive and transitive. We stick to this as-

sumption and denote this relation by ≤. It can be extended to sets of

possible worlds in several ways, of which we consider two.

In von Wright’s version of preference logic [22], a set Y is pre-

ferred to a set X (notation: X E∀ Y ) if

∀x ∈ X∀y ∈ Y (x ≤ y), (1)

that is, every alternative in Y is preferred to every alternative in X .

The induced relation E∀ is not necessarily reflexive or irreflexive:

reflexivity is violated by a set containing two incomparable alterna-

tives, while {x} E∀ {x} for every single-element set {x}. Since

X E∀ ∅ and ∅ E∀ Y for all X and Y , transitivity is not preserved,

either. However, this is the only way transitivity may fail; by disal-

lowing the empty set, we obtain a transitive relation. Besides, the E∀

relation can be easily transformed into a strict partial order:

X �∀ Y ⇐⇒ X E∀ Y and Y 5∀ X.

A different approach is to state that Y is preferred toX if, for each

alternative from X , Y contains an alternative that is at least as good:

∀x ∈ X∃y ∈ Y (x ≤ y).

We denote this by X E∃ Y . For some contexts, E∃-preferences are

more appropriate than E∀-preferences. Consider the case of a two-

person turn-based game. If X and Y are sets of positions reachable

from the current position in one turn, preferences between X and

Y are E∃-like for the player whose turn it is, since this player has

control over which position from X or Y gets chosen. For the other

player, E∀-preferences are more appropriate.

Preferences over propositions are defined as preferences over their

sets of models. Thus, φ is preferred to ψ if every model of φ is pre-

ferred to every model of ψ (for E∀-preferences) or, for every model

of ψ, there is a “better” model of φ (for E∃-preferences).

With a pinch of salt (ignoring empty sets and inconsistent propo-

sitions), E∃-preferences can be viewed as a relaxation of E∀-

preferences, but both types are global in that propositions are com-

pared w.r.t. all their models. Ceteris paribus preferences put restric-

tions on which models should be taken into account by assuming

“other things being equal” when comparing φ and ψ. We might want

to explicitly specify which other things must be equal. In the ver-

sion of preference logic from [21], this is done by parameterizing the

modal operator corresponding to the preference relation by a set of



propositions Γ. The Γ-ceteris paribus version of X E∀ Y , which we

denote by X EΓ Y , holds if

∀x ∈ X∀y ∈ Y (∀ϕ ∈ Γ(x |= ϕ ⇐⇒ y |= ϕ) → x ≤ y),

where x |= ϕ means that ϕ is true in x. Thus, it is required that

every alternative from Y is preferred to every alternative from X

that satisfies exactly the same formulae from Γ. Clearly, this is a

relaxation of the requirement specified by (1).

Interestingly, adding the ceteris paribus condition to the definition

of E∃-preferences results in stronger preferences. To say that X E∃

Y holds ceteris paribus, we must find, for each alternative x ∈ X ,

an alternative in Y that is not only at least as good, but that is also

sufficiently similar: it should satisfy exactly the same propositions

from Γ that x does.

In this paper, we consider global E∀- and E∃-preferences and

the ceteris paribus version of E∀-preferences. Our discussion is re-

stricted to rather simple propositions: we state preferences only over

atomic conjunctions and allow only sets of atomic formulae as ce-

teris paribus conditions. Thus, in the ceteris paribus case, we con-

sider preferences of the form φ 4Γ ψ, where φ and ψ are atomic

conjunctions and Γ is a set of atomic formulae. We will work with

φ, ψ, and Γ as with sets of attributes rather than as with logical for-

mulae. The next section introduces formal concept analysis, which is

the framework that we will use here.

3 FORMAL CONCEPT ANALYSIS

We start with a few definitions from FCA [12]. Given a (formal) con-

text K = (G,M, I), where G is called a set of objects, M is called a

set of attributes, and the binary relation I ⊆ G×M specifies which

objects have which attributes, the derivation operators (·)I are de-

fined for A ⊆ G and B ⊆M as follows:

AI = {m ∈M | ∀g ∈ A(gIm)}
BI = {g ∈ G | ∀m ∈ B(gIm)}

AI is the set of attributes shared by objects ofA, and BI is the set of

objects having all attributes of B. Often, (·)′ is used instead of (·)I .

The double application of (·)′ is a closure operator: (·)′′ is extensive,

idempotent, and increasing. Sets A′′ and B′′ are said to be closed.

The left-hand side of Fig. 1 shows a context where objects are

lunch options and attributes are menu items.2 For instance, l3 corre-

sponds to the choice of pumpkin soup, vegetables, and ice cream.

A (formal) concept of the context (G,M, I) is a pair (A,B),

where A ⊆ G, B ⊆ M , A = B′, and B = A′. In this case, A

and B are closed. The set A is called the extent and B is called the

intent of the concept (A,B). A concept (A,B) is less general than

(C,D) if A ⊆ C. The set of all concepts ordered by this generality

relation forms a lattice, called the concept lattice of the context K.

A line diagram of the concept lattice of the context from Fig. 1

is shown in Fig. 2. Nodes correspond to concepts, with more general

concepts placed above less general ones. Two concepts are connected

with a line if one is less general than the other and there is no con-

cept between the two. The extent of a concept can be read off by

looking at the labels immediately below the corresponding node and

below all nodes reachable by downward arcs. The intent consists of

attributes indicated just above the node and those above nodes reach-

able by upward arcs. For example, the top-right node corresponds

2 The example is inspired by the menu of the Parisian restaurant
Derrière: http://derriere-resto.com/restaurant/paris/
derriere/menus/. We use only a small part of the menu, though.
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l2 × × ×

l3 × × ×

l4 × × ×

l5 × × ×

l1

l2 l3

l4 l5

Figure 1. A preference context of lunch options

to the concept of all lunch options with pumpkin soup as a starter

(l1, l3, and l5). The node just below corresponds to its subconcept

({l1, l3}, {pumpkin soup, vegetables}).

l4 l2 l5 l1 l3

ice cream

black carrots pork

chocolate mousse vegetables pumpkin soup

Figure 2. The concept lattice of the context in Fig. 1

It can be seen from this diagram that, if someone wants an ice

cream for a dessert, she will have to have pumpkin soup as a starter

and vegetables as the main dish. This is captured by the notion of

an implication, which is, formally, an expression A → B, where

A,B ⊆ M are attribute subsets. It holds or is valid in the context K
(notation: K |= A→ B) if A′ ⊆ B′, i.e., every object of the context

with all attributes from A also has all attributes from B.

If A′ = ∅, then (G,M, I) |= A → M . We use special notation

for such zero-support implications: A → ⊥. Note that A → ⊥ is a

headless Horn clause, whereas an implication A → B is a conjunc-

tion of definite Horn clauses with the same body.

The implications valid in a context are summarized by the

Duquenne–Guigues basis [13], which has the minimal number of

implications among equivalent implication sets. Nevertheless, it may

be exponential in the size of the context, and determining its size

is a #P-complete problem [16]. Other valid implications can be ob-

tained from this basis using the Armstrong rules [4], which constitute

a sound and complete inference system for implications.

The preference context P = (G,M, I,≤) is defined in [18] as

a context (G,M, I) supplied with a reflexive and transitive (as it is

common in preference logics [21]) preference relation ≤ on G. We

write g < h if g ≤ h and h 6≤ g. The right-hand side of Fig. 1 shows

preferences over lunch options: l1 is better than l4 and l5, but worse

than l2 and l3, while l2 and l3 are incomparable, as are l4 and l5. A



preference context can be regarded as a combination of two formal

contexts: (G,M, I) and (G,G,≤). We use (·)′ for the derivation

operators of (G,M, I) and (·)≤ and (·)≥ for the derivation operators

of (G,G,≤): X≤ (X≥) is the set of all objects that are at least (at

most) as good as all objects from X ⊆ G.

4 MODELING PREFERENCES IN FCA

In Sects. 4.1 and 4.2, we recall (without proofs) results from [18]

concerning preferences based on the relations E∀ and E∃. In Sect.

4.3, we present a new approach to modeling ceteris paribus prefer-

ences.

We define semantics for preferences by describing conditions un-

der which a preference π is said to be valid in a preference context P,

denoted by P |= π. We say that a preference π follows from (or is a

semantic consequence of ) a set of preferences Π (notation: Π |= π)

if, whenever all preferences from Π are valid in some preference con-

text P (Π is sound for P; P |= Π), the preference π is also valid in

P (P |= π). A set Π of preferences (of a certain kind) is said to be

complete for P if, for all preferences π (of this kind), P |= π if and

only if Π |= π. If, in addition, none of the preferences in Π follows

from the other preferences, we say that Π is a preference basis of P.

4.1 Universal preferences

It is possible to summarize E∀-preferences over subsets of G by the

concept lattice of the formal context (G,G,≤). Indeed, X E∀ Y

holds for X,Y ⊆ G if and only if Y ⊆ X≤. Sets X and Y are max-

imal with respect to this property if and only if (X,Y ) is a formal

concept of (G,G,≤). At the same time, if X E∀ Y , then U E∀ V

for every U ⊆ X and V ⊆ Y . Thus, concepts of (G,G,≤) provide

a complete representation of E∀-preferences over object sets.

Having defined preferences over object sets, there is an easy way

to translate the definition into preferences over attribute sets by as-

sociating each attribute set A with the set of objects that have all

attributes from A or, to put it in terms of formal concept analysis,

with A′:

Definition 1. A set of attributes B ⊆ M is universally preferred to

a set of attributes A ⊆M in a preference context P = (G,M, I,≤)
if A′

E∀ B
′, i.e.,

∀x ∈ A
′∀y ∈ B

′(x ≤ y).

Notation: P |= A 4∀ B.

That is, A 4∀ B holds (or is valid) in (G,M, I,≤) if every ob-

ject with all attributes from B is preferred to every object with all

attributes from A. This is precisely the approach used in preference

logics as described in Sect. 2.

It is easy to obtain the following characterization of universal pref-

erences in terms of the derivation operators of the preference context:

Proposition 1. P |= A 4∀ B if and only if B′ ⊆ A′≤.

To give an example, in the preference context from Fig. 1, we have

{pork} 4∀ {vegetables}, since every option with vegetables is pre-

ferred to every option with pork.

Proposition 2. A sound and complete inference system for universal

preferences consists of a single rule:

A 4∀ B

A ∪ C 4∀ B ∪D
,

which allows one to add arbitrary attributes to both sides of a valid

preference.

A universal preference basis of P can be found by representing

universal preferences of P as implications in another formal context.

Definition 2. Let P = (G,M, I,≤) be a preference context. The

universal translation of P is a formal context KP

∀ = (G × G, (M ×
{1, 2}) ∪ {≤}, I∀), where

(g1, g2)I∀m1 ⇐⇒ g1Im,

(g1, g2)I∀m2 ⇐⇒ g2Im,

(g1, g2)I∀ ≤ ⇐⇒ g1 ≤ g2.

Here,m1 andm2 stand for (m, 1) and (m, 2) respectively,m ∈M .

We denote the derivation operators of KP

∀ by (·)∀.

T∀(A 4∀ B), the translation of a universal preference A 4∀ B,

is the implication

(A× {1}) ∪ (B × {2}) → {≤}

of the formal context KP

∀.

Proposition 3. A universal preference A 4∀ B is valid in a prefer-

ence context P = (G,M, I,≤) if and only if its translation is valid

in KP

∀:

P |= A 4∀ B ⇐⇒ KP

∀ |= T∀(A 4∀ B).

The context resulting from the translation has as its objects pairs

of objects of the preference context and contains two copies of each

original attribute; (g1, g2) is associated with the first copy of m if

g1 has m and with the second copy if g2 has m. For example, the

preference {pork} 4∀ {vegetables} valid in the preference context

P from Fig. 1 is translated into {(pork, 1), (vegetables, 2)} → {≤},

which is a valid implication of KP

∀.

The following proposition describes the basis of universal prefer-

ences:

Proposition 4. Let P be a preference context. The set

Σ = {A 4∀ B | (A× {1}) ∪ (B × {2}) is minimal

w.r.t. KP

∀ |= (A×{1})∪ (B×{2}) → {≤}}

is the minimal (in the number of preferences) basis of the universal

preferences valid in P.

In other words, to compute the basis of universal preferences of P,

we need to find minimal (by set-inclusion) attribute sets of KP

∀ that

have ≤ in their closure. Note that this can be done without explicit

construction of KP

∀.

4.2 Existential preferences

In this section, we transfer the definition of E∃-preferences to at-

tribute sets similarly to how it was done for E∀- preferences:

Definition 3. A set of attributes B ⊆M is existentially preferred to

a set of attributesA ⊆M in a preference context P = (G,M, I,≤),

denoted by P |= A 4∃ B, if A′
E∃ B

′, i.e.,

∀x ∈ A
′∃y ∈ B

′(x ≤ y).

Again, we can characterize existential preferences in terms of the

derivation operators of the preference context:



Proposition 5. P |= A 4∃ B if and only if A′ ⊆
S

g∈B′ g
≥.

An example of an existential preference that does not hold uni-

versally in the context from Fig. 1 is ∅ 4∃ {vegetables}: for every

lunch option, there is one with vegetables that is at least as good. On

the other hand, {pumpkin soup, vegetables} is preferred to {black

carrots, pork} both universally and existentially.

Existential preferences generalize implications:

Proposition 6. For a preference context P = (G,M, I,≤)

1. If (G,M, I) |= A→ B, then P |= A 4∃ B.

2. If ≤ is the identity relation and P |= A 4∃ B, then (G,M, I) |=
A→ B.

Proposition 7. A system of three rules

X 4∃ X
,

X 4∃ Y ∪ U

X ∪ V 4∃ Y
,

X 4∃ Y, Y 4∃ Z

X 4∃ Z

is sound and complete with respect to existential preferences.

As universal preferences, existential preferences can also be trans-

lated into implications of a formal context, although the translation

is of exponential size compared to the size the preference context.

Definition 4. The existential translation of a preference context

P = (G,M, I,≤) is a formal context KP

∃ = (G,P(M), I∃), where

P(M) is the power set of M and

gI∃A ⇐⇒ g≤ ∩A′ 6= ∅.

Definition 5. The translation of an existential preference A 4∃ B,

denoted by T∃(A 4∃ B), is the implication

{A} → {B}

of the formal context KP

∃.

Thus, existential preferences are translated into implications with

single-element premises and conclusions (both elements are sets of

original attributes). Such translation preserves the validity:

Proposition 8. An existential preference A 4∃ B is valid in a pref-

erence context P if and only if its translation is valid in KP

∃:

P |= A 4∃ B ⇐⇒ KP

∃ |= T∃(A 4∃ B).

The set {A 4∃ B | A is minimal and B is maximal w.r.t. KP

∃ |=
{A} → {B}} is sound and complete (but possibly redundant) for P.

Clearly, the existential translation of (G,M, I,≤) is infeasible for

all but very small M . However, the representation size can be re-

duced by making use of the dependencies in the data. We address

this issue in Sect. 5.

4.3 Ceteris paribus preferences

We now turn to context-based semantics for the ceteris paribus ver-

sion of universal (E∀) preferences, as described in Sect. 2.

Definition 6. A set of attributes B ⊆ M is preferred ceteris paribus

to a set of attributes A ⊆ M with respect to a set of attributes C ⊆
M in a preference context P = (G,M, I,≤) if A′

EC B′, i.e.,

∀g ∈ A
′∀h ∈ B

′({g}′ ∩ C = {h}′ ∩ C → g ≤ h).

In this case, we say that the ceteris paribus preference A 4C B is

valid in P.

The preference {chocolate mousse} 4{pumpkin soup} {ice cream}
holds in the context from Fig. 1 even though ice cream is preferred

to chocolate mousse neither universally nor existentially.

Definition 7. The ceteris paribus translation of P = (G,M, I,≤) is

a formal context KP
∼ = (G×G, (M ×{1, 2, 3})∪{≤}, I∼), where

(g1, g2)I∼(m, 1) ⇐⇒ g1Im,

(g1, g2)I∼(m, 2) ⇐⇒ g2Im,

(g1, g2)I∼(m, 3) ⇐⇒ {g1}
′ ∩ {m} = {g2}

′ ∩ {m},
(g1, g2)I∼ ≤ ⇐⇒ g1 ≤ g2.

We denote the derivation operators of KP
∼ by (·)

∼

.

T∼(A 4C B), the translation of a ceteris paribus preference

A 4C B, is the implication

(A× {1}) ∪ (B × {2}) ∪ (C × {3}) → {≤}

of the formal context KP
∼.

This is similar to the universal translation, but here we have three

copies of each original attribute. We associate (g1, g2) with the third

copy of m if either both g1 and g2 have m or neither of them does.

Proposition 9. A 4C B is valid in a preference context P =
(G,M, I,≤) if and only if its translation is valid in KP

∼:

P |= A 4C B ⇐⇒ KP

∼ |= T∼(A 4C B).

Proof. Suppose that P |= A 4C B and (A×{1})∪(B×{2})∪(C×
{3}) ⊆ (g1, g2)

∼ for some g1 ∈ G and g2 ∈ G. Then, A ⊆ {g1}
′,

B ⊆ {g2}
′, and g1Ic if and only if g2Ic for all c ∈ C. The latter

means that {g1}
′ ∩ C = {g2}

′ ∩ C. Since A 4C B holds in P, we

have g1 ≤ g2 and (g1, g2)I∼ ≤ as required.

Conversely, assume KP
∼ |= (A×{1})∪(B×{2})∪(C×{3}) →

{≤}. We need to show that g1 ≤ g2 whenever A ⊆ {g1}
′, B ⊆

{g2}
′, and {g1}

′ ∩ C = {g2}
′ ∩ C. Indeed, in this case, we have

(A×{1})∪(B×{2})∪(C×{3}) ⊆ {(g1, g2)}
∼ and, consequently,

(g1, g2)I∼ ≤, i.e., g1 ≤ g2.

Definition 8. We say that a ceteris paribus preference A 4C B is

in canonical form if A ∩B = A ∩ C = B ∩ C.

For every preference A 4C B, there is a unique preference in

canonical form equivalent to A 4C B in the sense that it holds pre-

cisely in the same preference contexts:

A ∪ (B ∩ C) 4C∪(A∩B) B ∪ (A ∩ C).

Proposition 10. Let P be a preference context. The set

Π = {A 4C B | (A× {1}) ∪ (B × {2}) ∪ (C × {3}) is minimal

w.r.t. KP

∼ |= T∀(A 4C B) and A ∩B = A ∩ C = B ∩ C}

is sound and complete for P.

Proof. Due to Proposition 9, all ceteris paribus preferences from

Π are valid in P. To see that Π is complete, we consider, without

loss of generality, an arbitrary preference A 4C B in the canon-

ical form. If P |= A 4C B, then the implication T∀(A 4C B)
holds and, therefore, either A 4C B ∈ Π or there are smaller sets

A1 ⊆ A,B1 ⊆ B, and C1 ⊆ C such that A1 4C1
B1 ∈ Π. It is not

hard to see that Π |= A 4C B holds then.



We will not describe an inference system for ceteris paribus pref-

erences similar to those provided by Propositions 2 and 7. Instead,

we give an algorithm that decides whether a preference A 4C B

follows from a set of preferences Π. By replacing A, B, and C in a

valid preference A 4C B by their arbitrary supersets, we get valid

preferences (cf. Proposition 2). The next definition captures prefer-

ences that can be obtained from other preferences in this way:

Definition 9. Let Π be a set of ceteris paribus preferences. Then

Π• = {D 4F E | ∃A 4C B ∈ Π(A ⊆ D,B ⊆ E,C ⊆ F )}.

Note that Π |= Π•. However, not all preferences that follow from

Π are in Π•.

Proposition 11. Let Π be a set of ceteris paribus preferences over

M . For any preference A 4C B in canonical form, we have Π |=
A 4C B if and only if Π• contains all canonical-form preferences

D 4F E such that A ⊆ D,B ⊆ E,C ⊆ F, and M = D ∪E ∪ F .

Proof. Let D 4F E 6∈ Π• be a preference satisfying the conditions

above. Consider a preference context P with only two objects, g1 <

g2, such that {g1}
′ = E and {g2}

′ = D. The two objects have

the same values for all attributes in F : each has all attributes in E ∩
F = D ∩ F and none of the other attributes in F . The values of all

attributes inM \F = (D∪E)\F are different for g1 and g2. Since

A ⊆ {g2}
′, B ⊆ {g1}

′, and C ⊆ F , we conclude that P 6|= A 4C

B. Consider an arbitrary P 4R Q ∈ Π. As D 4F E 6∈ Π•, either

P 6⊆ D or Q 6⊆ E or R 6⊆ F . In all these cases, P |= P 4R Q.

Thus, P |= Π, but P 6|= A 4C B. It follows that Π 6|= A 4C B.

For the other direction, suppose that Π 6|= A 4C B. Then, there

is a context P such that P |= Π, but P 6|= A 4C B. This context

must contain two objects, g1 and g2, for which A 4C B fails, i.e.,

B ⊆ {g1}
′, A ⊆ {g2}

′, {g1}
′∩C = {g2}

′∩C, but g2 6≤ g1. Denote

D = {g2}
′, E = {g1}

′, and F = (M \ (D ∪ E)) ∪ (D ∩ E).

Obviously, D 4F E is a canonical-form preference satisfying the

conditions listed in the proposition, but P 6|= D 4F E and, therefore,

Π• cannot contain D 4F E, which concludes the proof.

Proposition 11 paves the way for Algorithm 1, which checks

whether a preference A 4C B is a consequence of the set Π of

ceteris paribus preferences. The algorithm starts by computing the

canonical form of A 4C B and putting the result, A1 4C1
B1, on

a stack: A 4C B follows from Π if and only if A1 4C1
B1 does.

It then tries to find a canonical-form preference D 4F E 6∈ Π•

such that A1 ⊆ D, B1 ⊆ E, C1 ⊆ F , and M = D ∪ E ∪ F . We

know from Proposition 11 that Π 6|= A1 4C1
B1 and, consequently,

Π 6|= A 4C B, if and only if such a preference can be found. The al-

gorithm searches for it in a depth-first manner, by replacing the first

preference D 4F E on the stack with three extensions adding an

arbitrary attribute from M \ (D ∪E ∪ F ) to either of D, E, and F .

Note that the resulting preferences are still in canonical form. On the

other hand, if we add the same attribute to exactly two of D, E, and

F , the resulting preference will not be in canonical form. By adding

the same attribute to all the three sets, we obtain a weaker canonical-

form preference, which we we can ignore, since it is not contained in

Π• only if neither of the three other extensions is. If, at some point,

the algorithm comes across a preference D 4F E ∈ Π•, it simply

removes it from the stack, because all its extensions must also be in

Π•. Thus, if the stack becomes empty, we know that all canonical-

form preferences of the sort required by Proposition 11 are in Π• and

conclude that Π |= A 4C B. If we find a preference that cannot be

Algorithm 1 CETERIS PARIBUS CONSEQUENCE(A 4C B,Π)

Input: A ceteris paribus preference A 4C B and a set Π of ceteris

paribus preferences (over a universal set M ).

Output: true, if Π |= A 4C B; false, otherwise.

S := [A ∪ (B ∩ C) 4C∪(A∩B) B ∪ (A ∩ C)] {stack}
repeat

D 4F E := pop(S)
if D 4F E 6∈ Π• then

X := M \ (D ∪ E ∪ F )
if X = ∅ then

return false

choose m ∈ X

push(D ∪ {m} 4F E,S)
push(D 4F E ∪ {m},S)
push(D 4F∪{m} E,S}

until empty(S)

return true

extended with additional attributes and is not in Π•, we conclude that

Π 6|= A 4C B.

Algorithm 1 is exponential in |M | in the worst case, but there is

little hope to do better. The reason is that, although Proposition 10

makes it possible to represent ceteris paribus preferences as impli-

cations, or Horn formulae, these Horn formulae are not sufficient to

generate the theory implied by the preferences: we must add the dis-

junctions ¬mi ∨ ¬mj ∨ mk for different i, j, k ∈ {1, 2, 3} and,

crucially, m1 ∨m2 ∨m3 for each m ∈ M . The last disjunction is

not a Horn clause, which makes inference hard. However, the algo-

rithm is linear in |Π|, which makes it efficient in applications where

the language for describing preferences (and, thus, the number of at-

tributes) is fixed and small compared to the number of preferences

that need to be taken into account.

5 REDUCING BIAS

The presented approach to deriving preferences assumes that the at-

tribute combinations in the context are the only ones that matter. In

practice, the data may cover only a small fraction of possible combi-

nations. Derived preferences hold in the data, but may not hold in the

entire domain, being biased towards the observed part of the data.

In our lunch context, {pork} 4∀ {vegetables}, but every option

with pork there comes with chocolate mousse. It may well be that

the subject does not like the combination and the true preference is

weaker: {pork, chocolate mousse} 4∀ {vegetables}.

In this section, we outline a conservative approach to preference

learning, which separates knowledge about preferences from knowl-

edge about the structure of the underlying context and makes it pos-

sible to reduce bias down to a certain well-defined point. We start

by extending the definition of semantic consequence to cover both

implications and preferences under the same hood. If H is a set of

implications over M and Π is a set of preferences (of a certain kind)

over subsets of M , we say that π ∈ Π follows from (or is a seman-

tic consequence of ) H ∪ Π (notation: H ∪ Π |= π) if, whenever all

preferences from Π are valid in some preference context P over M

satisfying all implications from H (i.e., P |= Π and P |= H), the

preference π is also valid in P (i.e., P |= π).

Definition 10. The Horn bias induced by a preference context P =
(G,M, I,≤) is the set of implications that hold in (G,M, I).



The Horn bias induced by a preference context is simply the im-

plicational (i.e., Horn) theory behind its “non-preferential” part.

Definition 11. Let H be the Horn bias induced by P = (G,M, I,≤)
and Π be the set of all preferences (of a certain kind) that hold in

P. We say that a preference π ∈ Π is Horn-biased in P if there is

Π1 ⊆ Π \ {π} such that Π1 6|= π and H ∪ Π1 |= π.

Intuitively, a Horn-biased preference is one that can be deduced

from other—weaker—preferences given that we know the Horn the-

ory behind the data, but not without this additional knowledge. In the

example above, {pork} 4∀ {vegetables} is Horn-biased, since it is a

consequence of H ∪ {{pork, chocolate mousse} 4∀ {vegetables}},

where H is the set of all implications valid in the context including

{pork} → {chocolate mousse}.

For universal and existential preferences, the Horn bias can be

avoided by considering only preferences over closed attribute sets.

Any preference of the form A′′
4∀ B

′′ or A′′
4∃ B

′′ is guaranteed

not to be Horn-biased, but all other universal and existential prefer-

ences are Horn-biased. A′′ and B′′ are concept intents of (G,M, I);

thus, unbiased preferences are preferences over formal concepts.

Technically, there are at least two ways to achieve an unbiased

representation of universal preferences without constructing the ba-

sis from Proposition 4. One is to build the Duquenne–Guigues basis

of (G,M, I), transform its implications into background knowledge,

and then build the basis of KP

∀ relative to this background knowledge

(see [18] for more details). The other is to build the so-called minimal

hypotheses for ≤ in KP

∀ [11]. The results of the two approaches are

identical: it is the minimal basis of unbiased universal preferences.

If we want to keep preferences unbiased, but be able to derive bi-

ased preferences, too, we can do this using implications and a hybrid

inference system that combines the Armstrong rules [4] for implica-

tions, the rule from Proposition 2, and three additional rules:

X → ⊥

∅ 4∀ X, X 4∀ ∅
,

X → Y, X ∪ Y 4∀ Z

X 4∀ Z
,

X → Y, Z 4∀ X ∪ Y

Z 4∀ X
.

For existential preferences, an unbiased representation is actually

easier to compute than a biased one: in this case, not all attribute sets

are needed for the translation, but only concept intents of (G,M, I).

Definition 12. The conceptual existential translation of a preference

context P is a formal context CP

∃ = (G,B(G,M, I), I∃), where

B(G,M, I) is the concept set of (G,M, I) and

gI∃(A,B) ⇐⇒ g≤ ∩A 6= ∅.

For the lunch example, this translation produces a context with

fifteen attributes corresponding to the concepts shown in Fig. 2 com-

pared to 64 attributes produced by the existential translation.

Definition 13. The conceptual translation of an existential prefer-

ence A 4∃ B, denoted by TC

∃ (A 4∃ B), is the implication

{(A′
, A

′′)} → {(B′
, B

′′)}

of the formal context CP

∃.

The conceptual translation preserves the validity of existential

preferences and provides another way to summarize them:

{A 4∃ B | CP

∃ |= {(A′
, A)} → {(B′

, B)} and B 6⊆ A}

is a complete set of existential preferences relative to the implica-

tions of (G,M, I). A hybrid inference system for implications and

existential preferences includes Armstrong rules [4], the rules for ex-

istential preferences from Proposition 7, and the rule

A→ B

A 4∃ B
.

For ceteris paribus preferences, bias can be reduced even further.

Definition 14. We call the expression [A,B]C ⇒ D[E,F ] a doubly

conditional functional dependency and say that it holds in (G,M, I)
if, for every g, h ∈ G such that g ∈ A′, h ∈ B′, and {g}′ ∩ C =
{h}′ ∩ C, we have g ∈ E′, h ∈ F ′, and {g}′ ∩D = {h}′ ∩D.

This generalizes both implications and conditional functional de-

pendencies from [9]. Thus, the induced bias, which we call the 2CFD

bias, includes the Horn bias.

Definition 15. The 2CFD bias induced by a preference context

P = (G,M, I,≤) is the set of doubly conditional functional de-

pendencies that hold in the formal context (G,M, I).

Doubly conditional functional dependencies are in one-to-one cor-

respondence with implications of the context obtained from KP
∼ by

removing the ≤ attribute. To avoid the 2CFD bias, we should con-

sider only preferences translated into implications of KP
∼ whose left-

hand sideX is minimal w.r.t.X∪{≤} being a concept intent of KP
∼.

These correspond to minimal hypotheses for ≤ [11].

6 CONCLUSION

We have proposed a formalism based on concept lattices for mod-

eling several types of preferences, including preferences that hold

only ceteris paribus and showed how such preference models can

be learned from data. Our approach may seem limited for, taken

literally, it is only concerned with preferences over conjunctions of

boolean variables; even negations of variables are not covered. Com-

pare this to other approaches, such as cp-theories as defined in [23].

In this framework, one works with a set of variables V , each of which

has an associated set of values. A conditional preference is a state-

ment of the form u : x1 > x2[W ], where u is an assignment to

U ⊆ V , x1 and x2 are different assignments to some X ∈ V , and

W is a subset of V \ (U ∪ {X}). Such preference is interpreted as

follows: between two alternatives satisfying u, the one with X = x1

is preferred to the one with X = x2 provided that they agree on all

other variables with a possible exception of those in W . This may be

regarded as a generalization of CP-nets [6] and TCP-nets [7].

To model such preferences in our framework, we can build a pref-

erence context whose attribute set M consists of expressions of the

form X = x, where X ∈ U and x ranges over possible values of

X . For the boolean case, this would mean adding a negated copy for

each attribute. Then, a strict conditional preference u : x1 > x2[W ]
would have the following weak counterpart in our framework:

u ∪ {X = x2} 4{M\W} u ∪ {X = x1}.

To express strict conditional preferences, we can start with a strict

preference relation over objects. On the other hand, the language of

conditional preferences only allows preferences of a single variable,

whereas, with our approach, we can express (and learn from data)

more general preferences such as

u ∪ {X = x2, Y = y2} 4{M\W} u ∪ {X = x1, Y = y1}.



Furthermore, for variables with ordinal values, we could use at-

tributes of the form, e.g., x1 ≤ X ≤ x2 instead of just X = x.

In FCA, this is done by scaling so-called many-valued contexts, in

which attributes are not necessarily boolean [12]. Also, the ceteris

paribus conditions in the translated context from Definition 7, which

are specified through attributes from M × {3}, could be customized

to specify relations other than equality. This would make it possi-

ble to express preferences like the following: “Between two ways of

travel, I prefer a cheap one provided that it is at least as fast as the

other.” We leave a thorough treatment of these issues and a proper

comparison to other approaches to preference modeling for further

research.

We also plan to develop algorithms for learning preferences from

queries [2]. Such algorithms exist, e.g., for CP-nets [15]. Since, in our

framework, preferences can be translated into Horn clauses, it might

be possible to adapt the output-polynomial algorithm for learning

Horn theories from [3] (adaptation is needed, because the transla-

tion is not surjective, i.e., not all Horn clauses over a given set of

variables correspond to preferences). However, this algorithm uses

equivalence queries, which are hard to answer. An alternative ap-

proach is a similar technique from FCA, called attribute exploration

[10, 19, 20], which only uses queries on the validity of implications

(even though, in theory, the number of such questions may be expo-

nentially large). Note that, with this approach, the user is not asked to

specify preferences between two given examples, but rather to con-

firm or reject a stated preference. When rejecting a preference, the

user must point out two objects contradicting this preference. A pre-

cise specification of such query learning algorithm and its computa-

tional complexity are a matter of further research.

In application to real-life data analysis, it may be useful to intro-

duce some statistical considerations into the theory presented here.

One obvious approach is to replace the semantics based on implica-

tions by one based on association rules [1], thus, allowing exceptions

in derived preferences, but making sure that these preferences are

supported by a sufficiently large volume of data. On the other hand,

methods for pruning concept lattices by selecting only the most in-

teresting (in some sense) concepts [14, 5] may be of value in deriving

“unbiased” preferences from Sect. 5, which are interpreted as prefer-

ences over concepts.
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A Statistical Approach to Calibrating the Scores of
Biased Reviewers: The Linear vs. the Nonlinear Model1

Magnus Roos2 and Jörg Rothe2 and Joachim Rudolph3 and Björn Scheuermann4 and Dietrich Stoyan5

Abstract. Two methods are proposed for aggregating the scores of
reviewers in a peer-reviewing rating system. Both methods are of a
statistical nature. The simpler method, which is based on a classical
statistical approach from the field of linear models, uses the analysis
of variance and can thus be realized by means of existing statistical
software. The more advanced method, which is a slight modification
of the method proposed by Roos et al. [13], uses a nonlinear model
and numerical optimization based on a least-squares approach. Un-
der reasonable statistical assumptions, both approaches—the linear
and the nonlinear one—can be seen as using the maximum likeli-
hood principle. Application of either method implies also an evalu-
ation of the reviewers. An application example with real conference
data shows the power of the statistical methods, compared with the
common naive approach of simply taking the average scores.

1 Introduction

Evaluation of persons, papers, products, etc. is a fundamental social
activity. For example, students are evaluated by teachers,scientific
papers by journal/conference reviewers, and sportsmen by referees,
e. g., in figure skating and gymnastics. Even if all reviewersin a rat-
ing system are subjectively fair, some of them may be biased and pro-
duce scores systematically too high or too low. If then not all objects
are reviewed by all reviewers, it becomes complicated to aggregate
the scores given to the same objects in a fair way.

The present paper focuses on the problem of ranking scientific
papers submitted to conferences, where usually the relative num-
ber of reviews per paper is small. The common procedure applied
by popular conference management systems such as EasyChair6 and
ConfMaster7 is described as (quoting from the EasyChair website):
“When computing the average score, weight reviews by reviewer’s
confidence.” This means that all scores given to a paper are sim-
ply averaged, possibly weighted by reviewer-specific weights, the
confidence levels of the reviewers, which again are very subjective
because every reviewer evaluates only him- or herself. Under these

1 This work was supported in part by DFG grants RO 1202/12-1 and
RO 1202/15-1, the European Science Foundation’s EUROCORESprogram
LogICCC, an SFF grant of HHU Düsseldorf, ARC grant DP110101792,
and a DAAD-PPP grant in the PROCOPE project.
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5 Institut für Stochastik, TU Bergakademie Freiberg, 09596 Freiberg, Ger-
many, email: stoyan@math.tu-freiberg.de
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conditions it may happen that by good luck a weak scientific paper
goes to some lenient or generous reviewers, whereas a good paper
goes to a harsh reviewer and some normal reviewers. Then the weak
paper might be accepted, but the good one is rejected.

The present paper aims to improve the common “naive” (as Lauw
et al. [9] call it) approach where the overall scores of all objects
are obtained by simply averaging all given scores of the object. Of
course, paper scores can only provide some guidance on paperaccep-
tance; the final decision is usually made on deeper considerations.

It is assumed here that external information about the reviewers
is not used, such as weighting the scores. There is also no separate
“training” phase in order to characterize the reviewers’ tendencies.
Instead, the proposed methods apply cross-classification techniques
to determine the characteristics of both the reviewers and the judged
objects simultaneously in one step. All reviewers are assumed to be
“honest,” to exercise their best judgments, without any personal rela-
tion to certain objects. Nevertheless, some reviewers may be biased
in giving systematically high or low scores. As long as all papers are
evaluated by all reviewers, this is not an obstacle to fair score ag-
gregation by averaging. However, if there are only a few reviews per
paper, problems are likely to arise. The following toy example taken
from [8] shows what can happen.

Example 1 Consider the data in Table 1. There are five reviewers
(r i) and five papers (pj ). The original scores yi j from [8] are here
multiplied by10 and are thus in the range from 0 to 10. Consisting
of only15scores in total, this data set is very small.

Table 1. Data for a toy example taken from [8].

p1 p2 p3 p4 p5
r1 6 6 6 – –
r2 3 – – 4 –
r3 3 – – – 4
r4 – 3 3 4 4
r5 – 3 3 4 4

The naive approach results in the same average score of4.0 for
all five papers. This seems to be highly questionable: in their pre-
liminary discussion, Lauw et al. [8] point out that reviewerr1 is very
likely to be lenient, causing too high aggregated scores forpapers p1,
p2, and p3. In Section 2.2, this example is to be continued to show
the results that can be obtained by means of statistical methods.

Related Work

Preference aggregation is a wide field that has been intensely studied
by various scientific communities, ranging from multiagentsystems



to computational social choice. The topic of this paper—aggregating
the scores in reviewing scientific papers—has also been investigated,
although from other angles and using different methods. Forexam-
ple, Douceur [4] encoded the aggregation problem into a correspond-
ing problem on directed multigraphs and focuses on rankings(i. e.,
ordinal preferences) rather than ratings (i. e., cardinal preferences ob-
tained by assigning review scores). By contrast, Haenni [6]presents
an algebraic framework to study the problem of aggregating individ-
ual scores.

The present paper uses methods of analysis of variance from the
field of statistics, see [7]. The setting is calledtwo-way classifica-
tion there, where one “way” relates to reviewers and the other to pa-
pers. This classical statistical approach from the field of linear mod-
els is adapted here. This leads to fairer overall scores for the papers,
where “fairer” in a technical sense refers to the fact that the proposed
method leads to unbiased estimators for certain model parameters
(see Section 2.2 for details). At the same time in parallel, the method
also allows for an evaluation of the reviewers.

The papers by Lauw et al. [8, 9] tackle the same problem as
the present paper, yet with quite a different approach. Theyapply
a so-called “differential model,” which is an ad-hoc nonlinear model.
Their model includes an unknown model parameterα , which ap-
pears not to be statistically estimable. No random errors occur in this
model, although in real review processes such effects are well con-
ceivable to play a role.

We will first present the simple linear approach in Section 2.2. It
can be realized by existing statistical software. This approach is then
refined in Section 2.3 by a nonlinear method, which applies tech-
niques from quadratic programming. Under some statisticalassump-
tions, both approaches—the linear and the nonlinear one—can be
seen as using the maximum likelihood principle.

The nonlinear model is inspired by a solution to the offline
synchronization problem in broadcast networks, as discussed by
Scheuermann et al. [14]. In that work, the problem of synchroniz-
ing timestamps in a set of event log files is addressed, where each
log file has been generated with a different, potentially deviating,
local clock. “Reviewers” in the present paper take the role of “net-
work nodes” there, the role of “papers” here corresponds to “network
packet transmissions” there, and “review scores” here are in line with
“reception timestamps” there. However, the setting and assumptions
in Scheuermann et al. differ in some central aspects. In particular,
random packet reception time delays, which correspond to random
components in review scores, follow exponential distribtions and are
not Gaussian. More technically, the resulting optimization problem
is linear in [14], while it is (semi-definite) quadratic here.

There is a significant body of existing work in the area of prefer-
ence aggregation, i. e., on the question how to aggregate individual
preferences into a common, global ranking. Some of these works use
related estimators in different settings. For example, Conitzer and
Sandholm [3], Conitzer, Rognlie, and Xia [1], and Xia et al. [18, 17]
apply maximum likelihood estimation to model the “noise” invot-
ing. Relatedly, Pini et al. [12] study the issue of aggregating partially
ordered preferences with respect to Arrovian impossibility theorems.
However, their framework differs from the model used here: they
consider ordinal preferences, whereas peer-reviewing is commonly
based on scores, i. e., on cardinal preferences. Note that cardinal pref-
erences are more expressive than ordinal preferences, as they also
provide a notion of distance.

2 Models

2.1 Basic Assumptions

In the reviewing process considered, reviewers not only comment on
the weaknesses and strengths of the papers, but give a score to each
paper reviewed. The following analysis focuses on only the scores.
These scores are assumed to be integers, to which situation most eval-
uation processes can be transformed, even if decimal numbers with
one or two decimals are given. High scores mean good quality.

There areI reviewersr i andJ papersp j . For each pair(i, j), there
exists a binary numberei j , whereei j = 1 means that reviewerr i re-
views paperp j , andei j = 0 otherwise. The matrix(ei j )1≤i≤I ,1≤ j≤J
is calledincidence matrix. Let E = {(i, j) |ei j = 1}. The scores cor-
responding to pairs(i, j) ∈ E are denoted byyi j .

2.2 The Linear Model

Adapting the classical statistical linear modeling approach, the fol-
lowing model is used:

yi j = D
(

µ +αi +β j +εi j
)

for (i, j) ∈ E. (1)

Here,D is a discretization operator that transforms any real number
x into the integer scoreD(x). The other symbols have the following
meanings:

• µ is the overall mean of all scores given,
• αi is the mean difference between the scores of reviewerr i andµ,
• β j is the mean difference between the scores of paperp j andµ,
• εi j is a random error for(i, j) ∈ E.

Theαi are closely related to the “leniencies” of reviewers discussed
by Lauw et al. [8, 9], and theβ j to their paper “qualities.” The idea
is that reviewerr i does not assign a score to paperp j based on its
true quality β j (which r i does not know), but based onr i ’s own
noisy view of p j ’s quality, which isβ j + εi j . This judgment is then
linearly shifted according to the reviewer’s “leniency”. Simplifying
more general models, it is assumed that there is no interaction be-
tween reviewers and papers (which, if desired, could be expressed
by parameters(αβ )i j ).

The strategy in the following is to ignore the discretization in the
statistics and to assume that the discretized data belong tothe truly
linear model

yi j = µ +αi +β j +εi j for (i, j) ∈ E. (2)

with
Eεi j ≡ 0 and var εi j ≡ σ2 for (i, j) ∈ E, (3)

where theεi j are independent andE andvar denote the expectation
and variance, respectively. The error of this simplified approach will
be discussed in the full version of this paper.

Model (2) is calledtwo-way classificationin the analysis of vari-
ance, see, e. g., the book by Draper and Smith [5].

As mentioned above, the naive estimators of the sumsµ +β j , here

denoted byµ̂ +β j , are the averages of all review scores assigned to
the respective paper:

µ̂ +β j = y∗ j =
1

n∗ j
∑

i:(i, j)∈E

yi j , (4)

wheren∗ j is the number of reviews for paperp j . No serious statisti-
cian will use them, since these estimators are not unbiased and better
estimators are possible.



Theory says that only the differences of the effectsαi andβ j can
be estimated without bias. Fortunately, for the problem of ranking
papers it completely suffices to have estimates of the differencesβ j −
β1. And for evaluating the reviewers, estimates of the differences
αi −α1 are fully sufficient. Thus, one may assume that

I

∑
i=1

αi = 0 and
J

∑
j=1

β j = 0. (5)

In many statistical textbooks such as [5] and [15], it is assumed
that for each pair(i, j) a fixed, strictly positive numbern of observa-
tions is given (where, in typical settings,n≫ 1). If so, least-squares
estimates ofµ, αi , andβ j are easy to determine. They directly follow
from the means

y∗∗ =
1
IJ

I

∑
i=1

J

∑
j=1

yi j , yi∗ =
1
J

J

∑
j=1

yi j , and y∗ j =
1
I

I

∑
i=1

yi j

asµ = y∗∗, αi = yi∗−y∗∗, andβ j = y∗ j −y∗∗. These estimators are
unbiased. In this case, the naive approach is the best. However, in the
situation typical for peer reviewing, the “observation” countsni j are
0 (revieweri does not review paperj) or 1 (revieweri reviews pa-
per j). (Note thatni j = 2 would mean that revieweri reviews paper
j twice, independently.) We are confronted with a so-called “incom-
plete” (and “unbalanced”) experimental design. The corresponding
theory is described by Koch [7, Sections 3.4.2 and 3.4.3]. The case
of interest here is there referred to astwo-way cross-classification.

The parameters are estimated by the least-squares approach, i. e.,
the sum over all

(yi j −µ −αi −β j )
2

is minimized. To this end, Koch [7] describes numerical approaches
based on normal equations. Standard statistical software offers vari-
ous ways to obtain estimators of theαi , theβ j , and ofµ, which differ
in the so-called reparametrization conditions.

The model varianceσ2 is estimated by the mean squared error,
which is the sum of quadratic deviations(yi j − ŷi j )

2 with ŷi j =

µ̂ + α̂i + β̂ j divided by their number minus one. The estimators ob-
tained are unbiased and in some sense “best.” In the case of normally
distributedεi j , the least-squares estimators are also maximum likeli-
hood estimators.

For the practical statistical analysis, the statistical software pack-
age IBM-SPSS Statistics 20 (which we abbreviate by SPSS), proce-
dure UNIANOVA, was used. The procedure UNIANOVA does not
use the conditions (5), but it is preset such thatαI andβJ are set to
zero in the model discussed here.

Alternatively, also the program that will be mentioned in the next
section (see Algorithm 1) can be used by settingγi = 1 in (6) below,
which leads to (1). Both programs yield identical results.

The parameters determined by SPSS can easily be transformed
into the parametersµ, αi , andβ j . Simulations and direct calculation
of model parameters are easily possible based on the matrix module
of SPSS.

Example 2 (continuing Example 1) Table 2 shows the values for
the parameters in the linear model; the parameterµ is estimated
as4.0. The model parameters indicate that reviewer r1 indeed has to
be considered as lenient, while the other reviewers are estimated to
have the same degree of rigor. The papers are now divided intotwo
classes: p1, p2, and p3 seem to be weaker papers with lower scores,
while the other two papers appear to be of the same higher quality.
It cannot surprise that Lauw et al. [8] arrive at the same conclusions
for this extremely simple example.

Table 2. Parameters for the toy example from [8].

i, j α i β j
1 2.4 −0.4
2 −0.6 −0.4
3 −0.6 −0.4
4 −0.6 0.6
5 −0.6 0.6

Note that in the example above, the estimated parameter values
exactly reproduce the scores from Table 1 when used in (2) with all
εi j = 0. Essentially, this means that no random deviations at all are
necessary to “explain” the reviewers’ scores. Therefore, this example
has to be considered extremely simple.

2.3 The Nonlinear Model

The linear model from the previous section is now refined to a nonlin-
ear model, which modifies the method proposed by Roos et al. [13]
so as to generalize (1) to

yi j = D
(

µ +γi(αi +β j +εi j )
)

for (i, j) ∈ E (6)

with positive parametersγi . For the special case ofγi ≡ 1, (6) co-
incides with (1). The termγi(αi + β j + εi j ) models the interaction
between reviewerr i and paperp j ; γi is a proportionality factor; and
µ, αi , β j , andεi j have the same meaning as in the linear case.

Reviewerr i ’s perceived, noisy quality levelβ j + εi j is, just like
in the linear model, added to this reviewer’s systematic bias αi . In
addition, though, the result is transformed by multiplication with the
reviewer-specific scaling factorγi . This factor modelsr i ’s individual
rigor: in essence,γi describes by how much revieweri’s review score
changes, given a fixed change in (perceived) paper quality.

Even though this nonlinear model is relatively simple, it allows to
capture a wide range of reviewer characteristics.

An assumption similar to∑I
i=1 αi = 0 in the linear case (see Sec-

tion 2.2) is now done by

αI = 0. (7)

This leads to a problem slightly smaller than that with∑I
i=1 αi = 0.

Both restrictions are possible and plausible, and the results can sim-
ply be transformed to each other by choosing a suitable parameterµ.
The aim is to estimate the parametersαi , β j , γi , andµ. Again the
least-squares approach is used, which minimizes the sum of squared
errorsεi j ,

∑
(i, j)∈E

(

yi j

γi
−

µ
γi
−αi −β j

)2

. (8)

Since this does not affect the optimization itself, in this setting µ
can be set to zero. After getting the result, one may shift thevalues
so that a condition like∑J

j=1 β j = 0 as in (5) is fulfilled. It is easy to
see that the resulting parameter estimators are maximum likelihood
estimators if the errorsεi j are i. i. d. Gaussian as in (3).

Numerically, the minimization procedure is carried out by means
of a direct optimization program such as a so-called quadratic pro-
gram, see, e. g., the book by Nocedal and Wright [11]. In general, a
quadratic program(QP) is an optimization problem of the form:

minimize
1
2

xTQx+cTx (9)

subject to Ax≥ b, (10)



where (lettingQ denote the set of rational numbers)x ∈ Qn, Q ∈
Qn×n, c ∈ Qn, A ∈ Qm×n, andb ∈ Qm. The solution of a QP is a
vectorx that minimizes the expression in (9), simultaneously fulfill-
ing all constraints in (10).

With the simple substitutioñγi = 1/γi in (8) one obtains

∑
(i, j)∈E

(

yi j γ̃i −µγ̃i −αi −β j
)2

, (11)

which can be transformed into the form of a QP as required by (9)
and (10). In the following, the estimators ofαi , β j , andγ̃i are denoted
by α̂i , β̂ j , andγ̂i . With respect to the QP discussed so far, note that

a trivial solution can be achieved by settingγ̂i , α̂i , and β̂ j each to
zero, which clearly is not reasonable. Assuming typical reviewers to
be “rational”, one may require the normalization constraint:

1
I

I

∑
i=1

γ̂i = 1. (12)

Defining a vectorx =
(

β̂1, . . . , β̂J, γ̂1, . . . , γ̂I , α̂1, . . . , α̂I

)T
, con-

taining the variables to estimate, one obtains the QP:

minimize
1
2

xTQx (13)

subject to Ax≥ b

with a square matrixQ (see lines 2–13 of Algorithm 1 below), and a
matrixA representing the normalization constraint (12).

A QP with a positive definite matrixQ has a unique solution and
can be solved in polynomial time using interior-point methods, see,
e. g., [16]. In this specific QP, the matrixQ is at least positive semi-
definite, i. e., all eigenvalues ofA are nonnegative, because it can be
written asH ·HT (see Algorithm 1 below for the definition of ma-
trix H). Analogously to the linear model in Section 2.2, one does
not have any global, absolute “reference” to which the overall scores
could be adjusted. This leads to an additional degree of freedom in
the optimization, which precludes obtaining a unique maximum. In
fact, a similar issue also occurred in the work of Scheuermann et
al. [14], and along similar lines as there it is easy to overcome: one
may setαI = 0, thus using one reviewer as a “fixed” reference point.
In this paper, the last reviewer is picked for this constraint, see Equa-
tion (7). Yet, also with this modification it isstill possible to come
up with pathological instances where the solution is not unique. This
lies in the nature of the problem: For instance, it is impossible to
compare the relative “rigor” of two groups of reviewers, if there is
no paper that has been reviewed by at least one reviewer out ofeach
of the two groups. In general, such ambiguities are easily identified
and can always be resolved by introducing additional constraints as
needed (or, alternatively, by assigning additional reviews). This then
yields a positive definite matrixQ and consequently a unique solu-
tion of the QP.

To solve the resulting QP, one can use existing solvers such as
MINQ [10], a MATLAB script for bound constrained indefinite
quadratic programming. Algorithm 1 illustrates this approach. The
scoresyi j for (i, j) ∈ E are assumed to be nonnegative for line 5 to
work. Any negative number (e. g.,−1) at position(i, j) in the in-
put matrixM indicates that reviewerr i did not review submissionp j
(i. e., (i, j) 6∈ E). M thus encodes bothE and the review scoresyi j .

Note that the resulting estimated scores inβ̂ may exceed the interval
of the input scores. This can, however, be overcome by subsequently
scaling to results as desired, as discussed above; this yields the scaled
score estimates, in the following denoted byβ∗

j , for all submissions.

Algorithm 1 Computing the estimated scores

1: Input: M ∈Qm×n // M contains the given scores.
2: H =

[

0
]

∈Q(2m+n)×(m·n)

3: for j ∈ {1,2, . . . ,m} do
4: for k∈ {1,2, . . . ,n} do
5: if M( j,k) ≥ 0 then
6: H(k,(k−1)·m+ j) = 1
7: H(n+ j,(k−1)·m+ j) = −M( j,k)
8: H(n+m+ j,(k−1)·m+ j) = 1
9: end if

10: end for
11: end for
12: remove the last row fromH // normalization
13: Q = 2·H ·HT

14: h1 =
(

0 · · · 0
)

∈Qn

15: h2 =
(

1 · · · 1
)

∈Qm

16: h3 =
(

0 · · · 0
)

∈Qm−1

17: A =

[

h1
1
m ·h2 h3

h1 − 1
m ·h2 h3

]

18: b =

(

1
−1

)

19: solve: min 1
2xTQx subject toAx≥ b

20: β̂ =
(

x1 · · · xn
)T

21: Output: β̂ ∈Qn

3 A Case Study

The following discusses data from theThird International Workshop
on Computational Social Choice(COMSOC-2010) that took place in
September 2010 in Düsseldorf, Germany [2]. There were 57 submis-
sions (where submissions that had to be rejected on formal grounds
are disregarded) and 20 reviewers. Every submission was reviewed
by at least two reviewers; a third reviewer was assigned to some sub-
missions later on, and one paper was even reviewed by four review-
ers. (The fact that these extra reviews were somehow relatedto the
evaluation of the papers in the first two reports is ignored inthe fol-
lowing.) Table 3 shows the data, the results of the reviewingprocess.
It contains the scores given by the reviewers to the papers, where
“–” means “no review.” As is common in EasyChair, the scores were
integers between−3 and 3, which are here shifted to the integers
between 1 and 7, where 7 is the best possible score.

Table 4 shows the main results of applying the methods proposed
in this paper to real conference data: the estimated COMSOC-2010
paper scores obtained by the two approaches presented here,which
are closely related to theβ j . The acceptance threshold of the con-
ference was around 4.5, based on the naive approach. This led to
acceptance of a total of 40 submissions, while 17 were rejected.

Table 5 shows the parametersαi andγi of the reviewers, which
allow to evaluate them as well. This is simpler in the linear than in
the nonlinear approach. According to the linear approach, reviewer
7 with α7 = 2.3662 is the most lenient reviewer. In the nonlinear
approach, the relatively large value ofγ7 = 6.1283 also leads to high
review scores even if the paper quality is only moderate. By contrast,
reviewer r19 with α19 = −0.8523 (in the linear model) has some
tendency of being harsh. The parameters in the nonlinear approach,
α19 = −0.6411 andγ19 = 1.8889, allow for a more differentiated
representation of this reviewer’s mapping of paper qualityto review
score.

The differences in modeling and reducing reviewer bias between
the approaches results in different paper rankings. Consider, for ex-



Table 3. Input data from the review process for COMSOC-2010. The
scores of 20 reviewers for 57 papers are shown. (Note that thedata matrix
given here is transposed compared with Table 1.) The papers are ordered

with respect to their rank obtained by the naive approach.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
p1 − − − − − − − − − − 7 − − − 7 − − − − 7
p2 7 − − − − − − − − 7 − − − − − − − − − −
p3 − − − − − − − − − − 7 − − − 7 − − − − 7
p4 − − − − − − − − − − − − 7 − − 7 − − − −
p5 − 7 − − − − − − − − − − − 6 − − − − − −
p6 − − − − − − − − − − − 7 − 6 − − − − − −
p7 − − − − − − − − − 7 − − − − 6 − − − − −
p8 − − − − − − − − − − − − 7 − − − − − 6 −
p9 − − − − − − − − − − − − − − 7 − − − − 6

p10 − − − − 6 − − − − − − − − − − 7 − − − −
p11 6 − − − − − − − − − − 7 − − − − − − − −
p12 7 − − − − − − − − 6 − − − 6 − − − − − −
p13 − − − − − − − − − − − − − − 7 − − − 5 −
p14 6 − − − − − − − − − − − − − − − − 6 − −
p15 − 6 − − − 6 − − − − − − − − − − − − − −
p16 − 6 − − − − − − − − 6 − − − − − 6 − − −
p17 − − − − − − 6 − − 6 − − − − − − − − − −
p18 − − − − − − − − 6 − − − − 6 − − − − − −
p19 6 − − − − − − − − − − − − − 6 − − − − −
p20 − − − 6 − − − − − − − − − − − − 6 − − −
p21 − − − − 6 − − − − − − − 6 − − − − − − −
p22 − − 6 − − − − − − − − − − − − − 6 − − −
p23 − − − − 5 − − − − − − − − − − − − − 7 −
p24 7 − − − 5 − − − − − − − − − − − − − − −
p25 − − − − 5 − − − 6 − − − − − − − − − − −
p26 − − − 6 − − 5 − − − − − − − − − − − − −
p27 − 6 5 − − − − − − − − − − − − − − − − −
p28 − − − − − − − 5 − 6 − − − − − − − − − −
p29 − − − − − − − − − − − 5 − − − 6 − − − −
p30 − − 6 − − − − − 5 − − − − − − − − − − −
p31 − − − − − − − 5 − − − − − − − 6 − − − −
p32 − − − − − 5 6 − − − − − − − − − − − − −
p33 − 5 − − − − − 6 − − − − − − − − − − − −
p34 − − − 5 − − 6 − − − − − − − − − − − − −
p35 − − − − − − − 5 6 − − − − − − − − − − −
p36 − − − − − − − − − − − − − − − − − 5 − 6
p37 − − − − − − − − 5 − − − 5 − − − − − − −
p38 − − − − − 7 − − − − 5 − − 3 − − − − − −
p39 − − − − − − − − − − 7 − − − − − − − 3 4
p40 − − − − − − − − − − − − 5 − − − − − − 4
p41 − 4 − 5 − − − − − − − − − − − − − − − −
p42 − − − − − 4 − − − − 3 − − − − 6 − − − −
p43 − − − − 5 − − − − − 3 5 − − − − − − − −
p44 − − 4 − − 6 − − − − 3 − − − − − − − − −
p45 − − − − − − − − − − 2 5 − − − − 5 − − −
p46 − − 3 − − 6 − − − − − − − 3 − − − − − −
p47 − − − − − − 3 − − − − − − − − − − 4 − −
p48 − − − 5 − − − 2 − − − − − − − − − − − −
p49 − − − − − − − − 5 − − − − − − − − − 2 −
p50 − − − − − − − − − − 3 − 4 − − − 3 − − −
p51 − 1 − − − − 7 − − − − − − − − − 1 4 − −
p52 − − − − − − − 4 − 2 − − − − − − − − − −
p53 − − 3 − − − − − − − − − − − − − − 3 − −
p54 − − − − − − − 3 − − − − − − − − − 3 − −
p55 − − − 2 − − − − − − − − − − − − − 3 − −
p56 − − − − − − − − − − − 1 − − − 2 − − − −
p57 − − − − − − − − − − − − − − − − 1 − 1 −

Table 4. The scores in all three approaches. Theβ j in the linear approach
are shifted byµlin = 0.6698 and the nonlinearβ j by µnonlin = 2.8864 in

order to achieve the same average scores as in the naive approach. Note that
this means a slightly modified righthand side in (5).

Number of Naive approach Linear model Nonlinear model
paper score rank score rank score rank

1 7.000 1 7.557 1 6.549 7
2 7.000 2 6.831 8 6.132 15
3 7.000 3 7.557 2 6.549 8
4 7.000 4 6.315 15 7.538 2
5 6.500 5 7.305 3 6.230 13
6 6.500 6 6.815 9 6.957 5
7 6.500 7 6.602 10 5.150 29
8 6.500 8 7.195 4 7.229 3
9 6.500 9 6.965 6 6.477 10

10 6.500 10 6.249 17 7.651 1
11 6.500 11 6.123 19 6.352 11
12 6.333 12 6.588 12 6.179 14
13 6.000 13 6.891 7 6.482 9
14 6.000 14 5.552 28 5.913 19
15 6.000 15 5.697 25 5.194 28
16 6.000 16 6.598 11 5.462 22
17 6.000 17 5.124 33 5.078 31
18 6.000 18 6.528 13 6.550 6
19 6.000 19 5.989 20 4.922 34
20 6.000 20 5.783 24 5.039 32
21 6.000 21 6.303 16 7.205 4
22 6.000 22 6.483 14 5.227 25
23 6.000 23 7.130 5 6.323 12
24 6.000 24 6.228 18 5.931 18
25 5.500 25 5.846 22 5.971 16
26 5.500 26 4.162 43 4.719 36
27 5.500 27 5.964 21 5.218 26
28 5.500 28 5.509 31 5.456 23
29 5.500 29 4.644 38 4.405 47
30 5.500 30 5.687 26 4.806 35
31 5.500 31 4.917 34 5.210 27
32 5.500 32 4.095 46 4.550 39
33 5.500 33 5.791 23 5.660 21
34 5.500 34 4.162 44 4.513 43
35 5.500 35 5.514 30 5.962 17
36 5.500 36 5.527 29 5.784 20
37 5.000 37 4.911 35 4.691 37
38 5.000 38 5.243 32 4.999 33
39 4.667 39 5.644 27 5.444 24
40 4.500 40 4.769 36 5.089 30
41 4.500 41 4.264 41 4.647 38
42 4.333 42 3.796 47 4.507 44
43 4.333 43 4.668 37 4.532 41
44 4.333 44 4.271 40 4.204 50
45 4.000 45 4.349 39 4.544 40
46 4.000 46 4.136 45 4.434 45
47 3.500 47 3.718 48 4.183 51
48 3.500 48 2.344 54 4.247 48
49 3.500 49 3.047 49 3.855 53
50 3.333 50 2.936 51 4.235 49
51 3.250 51 3.009 50 4.515 42
52 3.000 52 4.238 42 4.430 46
53 3.000 53 2.903 52 3.614 55
54 3.000 54 2.729 53 3.649 54
55 2.500 55 1.702 56 2.973 56
56 1.500 56 0.644 57 −3.745 57
57 1.000 57 2.034 55 3.962 52



Table 5. The reviewers’ parameters. Note that the zeros in theα columns
of the last row result from the normalization according to (7).

Numberi Linear model Nonlinear model
of reviewer α i α i γi

1 0.9511 4.0540 0.9190
2 0.1620 −0.7132 3.0569
3 0.2494 0.3388 2.1501
4 1.6499 1.3767 1.7379
5 −0.0676 10.3078 0.3896
6 1.7839 0.2520 2.7372
7 2.3662 −0.7730 6.1283
8 0.5962 0.9447 1.4482
9 0.7156 9.8857 0.4435

10 0.7260 −0.8439 3.3569
11 −0.0703 -0.2022 2.2902
12 1.1419 7.9980 0.5621
13 0.8011 4.3951 0.7558
14 −0.4330 0.3932 1.4713
15 0.4097 12.2399 0.4336
16 1.9088 11.6348 0.4356
17 0.1235 −0.7309 4.0056
18 1.2852 2.7802 0.9436
19 −0.8523 −0.6411 1.8889
20 0 0 1.8305

ample, papersp17 and p23: p17 was (by good luck for the authors)
reviewed by reviewersr7 andr10. As noted above, reviewerr7 tends
to be lenient; the same appears to apply (though to a lesser extent)
to reviewerr10. Thus, in the naive approach, paperp17 is likely to
have been ranked higher than merited. Paperp23 was reviewed byr5
and r19. Reviewerr5 seems to be neutral with at most a slight ten-
dency of being harsh, reviewerr19 exhibits a more distinct tendency
towards harshness. Thus, in the two approaches presented here, pa-
per p23 is assigned better scores and jumps from rank 23 in the naive
approach to rank 5 in the linear and to rank 12 in the nonlinearmodel.
The corresponding mean squared errors (wheren = 116 is the total
number of reviews) are 0.4533 for the linear model and 0.1739 for
the nonlinear model. It is not surprising that the additional parame-
tersγi reduce the error.

4 Conclusions

In this paper, we introduced two statistical methods for fairer rating
(and thus, ranking) of scientific papers based on scores of potentially
biased, partially blindfolded reviewers. These methods work well
also in cases where each paper is reviewed only by a small number of
reviewers; in particular, there is no need for every reviewer to assess
each paper. This approach clearly improves on the classical, naive,
yet currently common method of averaging the individual reviewers’
scores. The linear approach can be carried out by means of existing
statistical standard software. The nonlinear approach, however, al-
lows for a more detailed modeling of the behavior of reviewers. On
the other hand, it requires more sophisticated software tools to be
carried out. The authors assume that Section 3 provides sufficient in-
formation for its use, and they offer their help in analyzingdata based
on a data table like Table 3. We applied both methods to real data
from a scientific conference, and pointed out some effects and im-
plications that are visible in the results. This displays their potential
to improve decision-making in peer-reviewed scientific publication
venues.
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Proportional Representation as Resource
Allocation: Approximability Results

Piotr Skowron1
and Piotr Faliszewski2 and Arkadii Slinko3

Abstract. We model Monroe’s and Chamberlin and
Courant’s multiwinner voting systems as a certain resource
allocation problem. We show that for many restricted vari-
ants of this problem, under standard complexity-theoretic as-
sumptions there are no constant-factor approximation algo-
rithms. Yet, we also show cases where good approximation
algorithms exist (these variants correspond to optimizing to-
tal voter satisfaction under Borda scores, within Monroe’s and
Chamberlin and Courant’s voting systems).

1 Introduction

Resource allocation is one of the most important issues in mul-
tiagent systems, equally important both to human societies
and to artificial software agents [20]. For example, if there
is a set of items (or a set of bundles of items) to distribute
among agents then we may use one of many auction mecha-
nisms (see, e.g., [15,20] for an introduction and a review, and
numerous recent papers on auction theory for current results).
Typically, in auctions if an agent obtains an item (a resource)
then this agent has exclusive access to it. In this paper we con-
sider resource allocation for items that can be shared, and we
are interested in computing (approximately) optimal assign-
ments (focusing on cases that reduce to multiwinner voting).
We do not make any strategic considerations.

Let us explain our resource allocation problem through an
example. Consider a company that wants to provide free sport
classes to its employees. We have a set N = {1, . . . , n} of em-
ployees and a set A = {a1, . . . , am} of classes. Naturally, not
every class is equally appealing to each employee and, thus,
each employee orders the classes from the most desirable one
to the least desirable one. For example, the first employee
might have preference order a1 ≻ a3 ≻ · · · ≻ am, meaning
that for him or her a1 is the most attractive class, a3 is sec-
ond, and so on, until am, which is least appealing. Further,
each class ai has some maximum capacity capai

, that is, a
maximum number of people that can comfortably participate,
and a cost, denoted cai

, of opening the class (independent of
the number of participants). The company wants to assign the
employees to the classes so that it does not exceed its sport-
classes budget B and the employees’ satisfaction is maximal
(or, equivalently, their dissatisfaction is minimal).

There are many ways to measure (dis)satisfaction. For ex-
ample, we may measure an employee’s dissatisfaction as the

1 University of Warsaw, Warsaw, Poland
2 AGH University of Science and Technology, Krakow, Poland
3 University of Auckland, Auckland, New Zealand

position of the class to which he or she was assigned in his
or her preference order (and satisfaction as m less the voter’s
dissatisfaction). We may demand that, for example, the maxi-
mum dissatisfaction of an employee is as low as possible (min-
imal satisfaction is as high as possible; in economics this cor-
responds to egalitarian social welfare) or that the sum of dis-
satisfactions is minimal (the sum of satisfactions is maximal;
this corresponds to the utilitarian approach in economics).

It turns out that our model generalizes two well-known mul-
tiwinner voting rules; namely, those of Monroe [13] and of
Chamberlin and Courant [7]. Under both these rules voters
from the set N submit preference orders regarding alterna-
tives from the set A, and the goal is to select K candidates
(the representatives) best representing the voters. For simplic-
ity, let us assume that K divides ‖N‖.4 Under Monroe’s rule

we have to match each selected representative to ‖N‖
K

voters
so that each voter has a unique representative and so that the
sum of voters’ dissatisfactions is minimal (dissatisfaction is,
again, measured by the position of the representative in the
voter’s preference order). Chamberlin and Courant’s rule is
similar except that there are no restrictions on the number of
voters a given alternative represents (in this case it is better
to think of the alternatives as political parties rather than
particular politicians). It is easy to see that both methods are
special cases of our setting: For example, for Monroe it suf-
fices to set the “cost” of each alternative to be 1, to set the
budget to be K, and to set the “capacity” of each alternative
to be ‖N‖

K
. We can consider variants of these two systems us-

ing different measures of voter (dis)satisfaction, as indicated
above (see also the works of Potthoff and Brams [17], Betzler
et al. [3] and of Lu and Boutilier [12]).

It is known that both Monroe’s method and Chamberlin
and Courant’s method are NP-hard to compute in essentially
all nontrivial settings [3,12,18]. This holds even if various nat-
ural parameters of the election are low [3]. Notable exceptions
include, e.g., the case where K is bounded by a fixed constant
and the case where voter preferences are single-peaked [3].

Nonetheless, Lu and Boutilier [12]—starting from a very
different motivation and context—propose to rectify the high
computational complexity of Chamberlin and Courant’s sys-
tem by designing approximation algorithms. In particular,
they show that if one focuses on the sum of voters’ satis-
factions, then there is a polynomial-time approximation al-
gorithm with approximation ratio (1 − 1

e
) ≈ 0.63 (i.e., their

4 This assumption does not affect our results. Our algorithms main-
tain their quality without it. Yet, modeling Monroe’s and Cham-
berlin and Courant’s systems without it would be more tedious.



algorithm outputs an assignment that achieves no less than
about 0.63 of optimal voter satisfaction). Unfortunately, to-
tal satisfaction is a tricky measure. For example, under stan-
dard Chamberlin and Courant’s system, a 1

2
-approximation

algorithm is allowed to match each voter to an alternative
somewhere in the middle of this voter’s preference order,
even if there is a feasible solution that matches each voter
to his or her most preferred candidate. On the other hand, it
seems that a 1

2
-approximation focusing on total dissatisfac-

tion would give results of very high quality.
The goal of this paper is to provide an analysis of our re-

source allocation scenario, focusing on approximation algo-
rithms for the special cases of Monroe’s and Chamberlin and
Courant’s voting systems. We obtain the following results:

1. Monroe’s and Chamberlin and Courant’s systems are hard
to approximate up to any constant factor for the case where
we measure dissatisfaction, irrespective of whether we mea-
sure the total dissatisfaction or the dissatisfaction of the
most dissatisfied voter (Theorems 1 and 2).

2. Monroe’s and Chamberlin and Courant’s systems are hard
to approximate within any constant factor for the case
where we measure satisfaction of the least satisfied voter
(Theorems 3 and 4). However, there are good approxi-
mation algorithms for total satisfaction—for the Monroe’s
system we achieve approximation ratio arbitrarily close to
0.715 (and often a much better one; see Section 4). For
Chamberlin and Courant’s system we give a polynomial-
time approximation scheme (Theorem 9).

Related work. Hardness of winner determination for mul-
tiwinner voting rules was studied by Procaccia, Rosenschein,
and Zohar [18], by Lu and Boutilier [12] (who also gave the
first approximation algorithm for Chamberlin and Courant’s
system), and by Betzler, Slinko and Uhlman [3]. Naturally,
there is also a well-established line of work on winner-
determination for single-winner voting rules, with results
for, for example, Dodgson’s rule [2,5,6,10], Ranked Pairs
method [4], and many others.

In the context of resource allocation, our model resembles
multi-unit resource allocation with single-unit demand [20,
Chapter 11] (see also the work of Chevaleyre et al. [8] for a sur-
vey of the most fundamental issues in the multiagent resource
allocation theory). The problem of multi-unit resource alloca-
tion is mostly addressed in the context of auctions (and so it is
referred in the literature as multi-unit auctions); in contrast,
we consider the problem of finding a solution maximizing the
social welfare given the agents’ preferences. More generally,
our model is similar to resource allocation with sharable indi-
visible goods [1,8]. The most substantial difference is that we
require each agent to be assigned to exactly one alternative.
In the context of resource allocation with sharable items, it is
often assumed that the agents’ satisfaction is affected by the
number of agents using the alternatives (the congestion on the
alternatives; compare to congestion games [19]). Finally, it is
worth mentioning that in the literature on resource allocation
it is common to consider other criteria of optimality, such as
envy-freeness [11], Pareto optimality, Nash equilibria [1], and
others.

Our paper is very close in spirit (especially in terms of the
motivation of the resource allocation problem) to the recent
work of Darmann et al. [9].

2 Preliminaries

Alternatives, Profiles, Positional Scoring Functions.

For each n ∈ N, we take [n] to mean {1, . . . , n}. We assume
that there is a set N = [n] of agents and a set A = {a1, . . . am}
of alternatives. Each agent i has weight wi ∈ N, and each al-
ternative a has capacity capa ∈ N and cost ca ∈ N. The weight
of an agent corresponds to its size (measured in some abstract
way). An alternative’s capacity gives the total weight of the
agents that can be assigned to it, and its cost gives the price
of selecting the alternative (the price is the same irrespective
of the weight of the agents assigned to the alternative). Fur-
ther, each agent i has a preference order ≻i over A, i.e., a
strict linear order of the form aπ(1) ≻i aπ(2) ≻i · · · ≻i aπ(m)

for some permutation π of [m]. For an alternative a, by
posi(a) we mean the position of a in i’th agent’s preference
order. For example, if a is the most preferred alternative for
i then posi(a) = 1, and if a is the most despised one then
posi(a) = m. A collection V = (≻1, . . . ,≻n) of agents’ pref-
erence orders is called a preference profile. We write L(A) to
denote the set of all possible preference orders over A. Thus,
for preference profile V of n agents we have V ∈ L(A)n.

In our computational hardness proofs, we will often include
subsets of alternatives in the descriptions of preference orders.
For example, if A is the set of alternatives and B is some
nonempty strict subset of A, then by saying that some agent
has preference order of the form B ≻ A − B, we mean that
this agent ranks all the alternatives in B ahead of all the alter-
natives outside of B, and that the order in which this agent
ranks alternatives within B and within A − B is irrelevant
(and, thus, one can assume any easily computable order).

A positional scoring function (PSF) is a function αm :
[m]→ N. A PSF αm is an increasing positional scoring func-
tion (IPSF) if for each i, j ∈ [m], if i < j then αm(i) < α(j).
Analogously, a PSF αm is a decreasing positional scoring func-
tion (DPSF) if for each i, j ∈ [m], if i < j then αm(i) > αm(j).

Intuitively, if βm is an IPSF then βm(i) gives the dissatis-
faction that an agent suffers from when assigned to an alter-
native that is ranked i’th on his or her preference order. Thus,
we assume that for each IPSF βm it holds that βm(1) = 0 (an
agent is not dissatisfied by his or her top alternative). Sim-
ilarly, a DPSF γm measures an agent’s satisfaction and we
assume that for each DPSF γm it holds that γm(m) = 0.

We will often speak of families α of IPSFs (DPSFs) of the
form {αm | m ∈ N, αm is a PSF}, where the following holds:

1. If we are dealing with IPSFs, then for each m ∈ N it holds
that (∀i ∈ [m])[αm+1(i) = αm(i)].

2. If we are dealing with DPSFs, then for each m ∈ N it holds
that (∀i ∈ [m])[αm+1(i+ 1) = αm(i)].

In other words, we build our families of IPSFs (DPSFs) by
appending (prepending) values to functions with smaller do-
mains. We assume that each function αm from a family can be
computed in polynomial time with respect to m. To simplify
notation, we will refer to such families of IPSFs (DPSFs) as
normal IPSFs (normal DPSFs).

We are particularly interested in normal IPSFs (normal
DPSFs) corresponding to the Borda count method. That is,
in the families of IPSFs αm

B,inc(i) = i − 1 (in the families of
DPSFs αm

B,dec(i) = m− i).

Our Resource Allocation Problem. We consider a prob-



lem of finding function Φ : N → A that assigns each agent to
some alternative (we will call Φ an assignment function). We
say that Φ is feasible if for each alternative a it holds that the
total weight of the agents assigned to it does not exceed its
capacity capa. Further, we define the cost of assignment Φ to
be cost(Φ) =

∑

a:Φ−1(a) 6=∅ ca.

Given an IPSF (DPSF) αm, we consider two dissatisfac-
tion functions, ℓα1 (Φ) and ℓα∞(Φ), (two satisfaction functions,
ℓα1 (Φ) and minα(Φ)):

1. ℓα1 (Φ) =
∑n

i=1 α(posi(Φ(i))).
2. ℓα∞(Φ) = maxn

i=1α(posi(Φ(i))) (or, minα(Φ) =
minn

i=1α(posi(Φ(i)))).

The former one measures agents’ total dissatisfaction (satis-
faction), whereas the latter one considers the most dissatisfied
(the least satisfied) agent only. In welfare economics and mul-
tiagent resource allocation theory the two metrics correspond
to, respectively, utilitarian and egalitarian social welfare. We
define our resource allocation problem as follows.

Definition 1 Let α be a normal IPSF. An instance of α-
Assignment-Inc problem consists of a set of agents N = [n],
a set of alternatives A = {a1, . . . am}, a preference profile V

of the agents, a sequence (w1, . . . , wn) of agents’ weights, se-
quences (capa1

, . . . , capam
) and (ca1 , . . . , cam) of alternatives’

capacities and costs, respectively, and budget B ∈ N. We ask
for the assignment function Φ such that: (1) cost(Φ) ≤ B, (2)
∀a∈A

∑

i:Φ(i)=a wi ≤ capa, and (3) ℓα1 (Φ) is minimized.

In other words, in α-Assignment-Inc we ask for a feasi-
ble assignment that minimizes the total dissatisfaction of the
agents without exceeding the budget.

Problem α-Assignment-Dec is defined identically except
that α is a normal DPSF and in the third condition we seek
to maximize ℓα1 (Φ) (that is, in α-Assignment-Dec our goal
is to maximize total satisfaction). If we replace ℓα1 with ℓα∞
in α-Assignment-Inc then we obtain problem α-Minmax-
Assignment-Inc, where we seek to minimize the dissatisfac-
tion of the most dissatisfied agent. If we replace ℓα1 with minα

in α-Assignment-Dec then we obtain problem α-Minmax-
Assignment-Dec, where we seek to maximize the satisfac-
tion of the least satisfied agent.

Focusing on either satisfaction or dissatisfaction is imma-
terial from the perspective of the optimal solution, but leads
to very different approximation properties.

Clearly, each of our four Assignment problems is NP-
complete: Even without costs they reduce to the standard
NP-complete Partition problem, where we ask if a set of in-
tegers (in our case these integers would be agents’ weights)
can be split evenly between two sets (in our case, two alter-
natives with the capacities equal to half of the total agent
weight). However, in very many applications (for example, in
the sport classes example from the introduction) it suffices to
consider unit-weight agents and we focus on this case.

Our four problems can be viewed as generalizations of Mon-
roe’s [13] and Chamberlin and Courant’s [7] multiwinner vot-
ing systems (see the introduction for their definitions). For
Monroe’s system, it suffices to set the budget B = K, the
cost of each alternative to be 1, and the capacity of each
alternative to be ‖N‖

K
(for simplicity, throughout the paper

we assume that K divides ‖N‖). We will refer to such vari-
ants of our problems as Monroe-Assignment variants. For

Chamberlin and Courant’s system, it suffices to take the same
restrictions as for Monroe’s system, except that each alterna-
tive has capacity equal to ‖N‖. We will refer to such variants
of our problems as CC-Assignment variants.
Approximation Algorithms. For many normal IPSFs
α (e.g., for Borda count), even the above-mentioned re-
stricted versions of the original problem, namely, α-Monroe-
Assignment-Inc, α-Minmax-Monroe-Assignment-Inc, α-
CC-Assignment-Inc, and α-Minmax-CC-Assignment-Inc
are NP-complete [3,18] (the same holds for the Dec variants).
Thus, we seek approximate solutions.

Definition 2 Let β be a real number such that β ≥ 1 (0 <

β ≤ 1) and let α be a normal IPSF (a normal DPSF). An al-
gorithm is a β-approximation algorithm for α-Assignment-
Inc problem (for α-Assignment-Dec problem) if on each in-
stance I it returns a feasible assignment Φ that meets the
budget restriction and such that ℓα1 (Φ) ≤ β · OPT (and such
that ℓα1 (Φ) ≥ β ·OPT), where OPT is the optimal aggregated
dissatisfaction (satisfaction) ℓα1 (ΦOPT).

We define β-approximation algorithms for the Minmax vari-
ants analogously. For example, Lu and Boutilier [12] present
a (1 − 1

e
)-approximation algorithm for the case of CC-

Assignment-Dec.
Throughout this paper, we will consider each of the

Monroe-Assignment and CC-Assignment variants of the
problem and for each we will either prove inapproximability
with respect to any constant β (under standard complexity-
theoretic assumptions) or we will show an approximation al-
gorithm. We use the following NP-complete problems.

Definition 3 An instance I of Set-Cover consists of set
U = [n] (called the ground set), family F = {F1, F2, . . . , Fm}
of subsets of U , and positive integer K. We ask if there exists
a set I ⊆ [m] such that ‖I‖ ≤ K and

⋃

i∈I Fi = U . X3C is a
special case of Set-Cover where ‖U‖ is divisible by 3, each
member of F has exactly three elements, and K = n

3
.

X3C is NP-hard even if we assume that n is divisible by 2
and each member of U appears in at most 3 sets from F .

3 Hardness of Approximation

In this section we present our inapproximability results for
Monroe-Assignment and CC-Assignment variants of the
resource allocation problem. In particular, we show that if
we focus on voter dissatisfaction (i.e., on the Inc variants)
then for each β > 1, neither Monroe’s nor Chamberlin and
Courant’s system has a polynomial-time β-approximation al-
gorithm. Further, we show that analogous results hold if we
focus on the satisfaction of the least satisfied voter.

Naturally, these inapproximability results carry over to
more general settings. In particular, unless P = NP, there
are no polynomial-time constant-factor approximation algo-
rithms for the general resource allocation problem for the case
where we focus on voter dissatisfaction. On the other hand,
our results do not preclude good approximation algorithms
for the case where we measure agents’ total satisfaction.

Theorem 1 For each normal IPSF α and each constant fac-
tor β, β > 1, there are no polynomial-time β-approximation
algorithms for either of α-Monroe-Assignment-Inc and α-
Minmax-Monroe-Assignment-Inc, unless P = NP.



Figure 1. The alignment of the positions in the preference
orders of the agents. The positions are numbered from left to
right. The left wavy line shows the positions mf (·), each no

greater than 3. The right wavy line shows the positions ml(·),
each higher than n · α(3) · β. The alternatives from A2 (one such
alternative is illustrated with a circle) are placed only between the
peripheral wavy lines. Each alternative from A2 is placed on the

left from the middle wavy line exactly 2 times.

Proof We give a proof for the case of α-Monroe-
Assignment-Inc only. Let us fix a normal IPSF α and let
us assume, for the sake of contradiction, that there is some
constant β, β > 1, and a polynomial-time β-approximation
algorithm A for α-Monroe-Assignment-Inc.

Let I be an instance of X3C with ground set U = [n] and
family F = {F1, . . . , Fm} of 3-element subsets of U . W.l.o.g.,
we assume that n is divisible by 6 and that each member of
U appears in at most 3 sets from F .

Given I, we build instance IM of α-Monroe-Assignment-
Inc as follows. We set N = U (that is, the elements of the
ground set are the agents) and we set A = A1 ∪ A2, where
A1 = {a1, . . . , am} is a set of alternatives corresponding to

the sets from the family F and A2, ‖A2‖ = n2·α(3)·β
2

, is a
set of dummy alternatives needed for our construction. We
let m′ = ‖A2‖ and we rename the alternatives in A2 so that
A2 = {b1, . . . , bm′}. We set K = n

3
.

We build agents’ preference orders using the following al-
gorithm. For each j ∈ N , set Mf (j) = {ai | j ∈ Fi} and
Ml = {ai | j 6∈ Fi}. Set mf (j) = ‖Mf (j)‖ and ml(j) =
‖Ml(j)‖; as the frequency of the elements from U is bounded
by 3, mf (j) ≤ 3. For each agent j we set his or her prefer-
ence order to be of the form Mf (j) ≻j A2 ≻j Ml(j), where
the alternatives in Mf (j) and Ml(j) are ranked in an arbi-
trary way and the alternatives from A2 are placed at posi-
tions mf (j) + 1, . . . ,mf (j) + m′ in the way described below
(see Figure 1 for a high-level illustration of the construction).

We place the alternatives from A2 in the preference orders
of the agents in such a way that for each alternative bi ∈
A2 there are at most two agents that rank bi among their
n·α(3)·β top alternatives. The following construction achieves
this effect. If (i + j)modn < 2, then alternative bi is placed
at one of the positions mf (j) + 1, . . . ,mf (j) + n · α(3) · β in
j’s preference order. Otherwise, bi is placed at a position with
index higher than mf (j)+n ·α(3) ·β (and, thus, at a position
higher than n·α(3)·β). This construction can be implemented
because for each agent j there are exactly m′ · 2

n
= n ·α(3) ·β

alternatives bi1 , bi2 , binα(3)β
such that (ik + j)modn < 2.

Let Φ be an assignment computed by A on IM . We will
show that ℓα1 (Φ) ≤ n ·α(3) ·β if and only if I is a yes-instance.

(⇐) If there exists a solution for I (i.e., an exact cover of U
with n

3
sets from F), then we can easily show an assignment

in which each agent j is assigned to an alternative from the
top mf (j) positions of his or her preference order (namely,
one that assigns each agent j to the alternative ai ∈ A1 that
corresponds to the set Fi, from the exact cover of U , that
contains j). Thus, for the optimal assignment ΦOPT it holds
that ℓα1 (ΦOPT) ≤ α(3) · n. In consequence, A must return an
assignment with the total dissatisfaction at most n · α(3) · β.

(⇒) Let us now consider the opposite direction. We assume
that A found an assignment Φ such that ℓα1 (Φ) ≤ n · α(3) · β
and we will show that I is a yes-instance of X3C. Since we
require each alternative to be assigned to either 0 or 3 agents,
if some alternative bi from A2 were assigned to some 3 agents,
at least one of them would rank him or her at a position worse
than n ·α(3) ·β. This would mean that ℓα1 (Φ) ≥ n ·α(3) ·β+1.
Analogously, no agent j can be assigned to an alternative
that is placed at one of the ml(j) bottom positions of j’s
preference order. Thus, only the alternatives in A1 have agents
assigned to them and, further, if agents x, y, z, are assigned
to some ai ∈ A1, then it holds that Fi = {x, y, z} (we will call
each set Fi for which alternative ai is assigned to some agents
x, y, z selected). Since each agent is assigned to exactly one
alternative, the selected sets are disjoint. Since the number of
selected sets is K = n

3
, it must be that the selected sets form

an exact cover of U . So I is a yes-instance of X3C. �

Is Theorem 1 an artifact of our strict bound on the cost?
This seems unlikely as there is also no β-γ-approximation al-
gorithm that finds an assignment with the following prop-
erties: (1) the aggregated dissatisfaction ℓα1 (Φ) is at most β

times higher than the optimal one, (2) the number of alter-
natives to which agents are assigned is at most γK and (3)
each selected alternative, is assigned to no more than γ⌈ n

K
⌉

and no less than 1
γ
⌈ n
K
⌉ agents.

Result analogous to Theorem 1 holds for CC as well.

Theorem 2 For each normal IPSF α and each constant fac-
tor β, β > 1, there are no polynomial-time β-approximation
algorithms for either of α-CC-Assignment-Inc and α-
Minmax-CC-Assignment-Inc, unless P = NP.

The above results show that approximating the minimal
dissatisfaction of agents is difficult. On the other hand, if we
focus on agents’ total satisfaction then constant-factor ap-
proximation exist (see [12] and the next section). Yet, the
case of satisfying the least satisfied voter remains hard.

Theorem 3 For each normal DPSF α (where each entry is
coded in unary) and each constant factor β, 0 < β ≤ 1, there
is no β-approximation algorithm for α-Minmax-Monroe-
Assignment-Dec unless P = NP.

Unfortunately, for the case of Minmax-CC-Assignment-
Dec family of problems our inapproximability argument holds
for the case of Borda DPSF only and we show a weaker col-
lapse of W[2] to FPT. (See the book of Niedermeier [14] for
an overview of parametrized complexity theory.)

Theorem 4 Let αm
B,dec be the Borda DPSF (αm

B,dec(i) =
m − i). For each constant factor β, 0 < β ≤ 1, there
is no β-approximation algorithm for αm

B,dec-Minmax-CC-
Assignment-Dec unless FPT = W[2].



Monroe Chamberlin-Courant

Maximizing total satisfaction (Borda scores)

Randomized algorithms:

(a) 0.715− ǫ; (b)
1+K

m
− K2

m2
−m

+ K3

m3
−m2

2
− ǫ

Deterministic algorithm: 1− K−1
2(m−1)

− ǫ

Deterministic algorithm: 1− 2w(K)
K

, PTAS
For general DPSFs, there is a (1 − 1

e
)-approximation al-

gorithm [12]

Minimizing total (minimal) dissatisfaction, maximizing minimal satisfaction

Inapproximability: Theorems 1 and 3 Inapproximability: Theorems 2 and 4

Table 1. Summary of results for Monroe and CC variants.

4 Approximation Algorithms

We now turn to approximation algorithms for Monroe’s
and Chamberlin and Courant’s rules. Indeed, if one focuses
on agents’ total satisfaction then it is possible to obtain
high-quality approximation results. We show the first non-
trivial approximation algorithms for Monroe’s system and
the first polynomial-time approximation scheme (PTAS) for
Chamberlin-Courant’s system. These results stand in a sharp
contrast to those from the previous section, where we have
shown that approximation is hard for essentially all remain-
ing variants of the problem.

Hardness of α-Monroe/CC-Assignment lays in selecting
the alternatives to assign to agents. Given those, finding the
optimal assignment is easy through network-flow arguments
(this is implicit in the paper of Betzler et al. [3]).

Monroe’s System. A natural iterative approach to solve
αB,dec-Monroe-Assignment-Dec is to in each step pick
some not-yet-assigned alternative ai (using some criterion)
and assign him or her to those ⌈N

K
⌉ agents that (a) are not as-

signed to any other alternative yet, and (b) whose satisfaction
of being matched with ai is maximal. This idea—implemented
formally in Algorithm 1—works very well in many cases. (For
each positive integer k, we let Hk =

∑k

i=1
1
i
be the k’th har-

monic number. Recall that Hk = Θ(log k).)

Lemma 5 Algorithm 1 is a (1− K−1
2(m−1)

−HK

K
)-approximation

algorithm for αB,dec-Monroe-Assignment-Dec that runs in
polynomial time.

Algorithm 1: The algorithm for Monroe-Assignment.

Notation: Φ← a map defining a partial assignment,
iteratively built by the algorithm.

Φ← ← the set of agents for which the assignment is
already defined.

Φ→ ← the set of alternatives already used in the
assignment.
if K ≤ 2 then

return the solution given by the algorithm of Betzler
et al. [3].

Φ = {}
for i← 1 to K do

score← {}, bests← {}
foreach ai ∈ A \ Φ→ do

agents← sort N \ Φ← so that j ≺ k in agents
=⇒ posj(ai) ≤ posk(ai)
bests[ai]← chose first ⌈N

K
⌉ elements from agents

score[ai]←
∑

j∈bests(m− posj(ai))

abest ← argmaxa∈A\Φ→score[a]

foreach j ∈ bests[abest] do
Φ[j]← abest

Proof Our algorithm computes an optimal solution for
K ≤ 2. Thus we assume K ≥ 3. Let us consider the situ-
ation in the algorithm after the i’th iteration of the outer
loop (we have i = 0 if no iteration has been executed yet).
So far, the algorithm has picked i alternatives and assigned
them to i n

K
agents (recall that for simplicity we assume that

K divides n evenly). Hence, each agent has ⌈m−i
K−i
⌉ unassigned

alternatives among his or her i + ⌈m−i
K−i
⌉ top-ranked alterna-

tives. By pigeonhole principle, this means that there is an
unassigned alternative aℓ who is ranked among top i+ ⌈m−i

K−i
⌉

positions by at least n
K

agents. To see this, note that there
are (n−i n

K
)⌈m−i

K−i
⌉ slots for unassigned alternatives among the

top i+⌈m−i
K−i
⌉ positions in the preference orders of unassigned

agents, and that there are m− i unassigned alternatives. As a
result, there must be an alternative aℓ for whom the number of
agents that rank him or her among the top i+⌈m−i

K−i
⌉ positions

is at least: 1
m−i

(

(n− i n
K
)⌈m−i

K−i
⌉
)

≥ n
m−i

(

K−i
K

)

(

m−i
K−i

)

= n
K
.

In consequence, the ⌈ n
K
⌉ agents assigned in the next step of

the algorithm will have the total satisfaction at least ⌈ n
K
⌉·(m−

i − ⌈m−i
K−i
⌉). Thus, summing over the K iterations, the total

satisfaction guaranteed by the assignment Φ computed by Al-
gorithm 1 is at least the following value (see the comment be-
low for the fourth inequality; for the last inequality we assume

K ≥ 3): ℓ
αb
1 (Φ) ≥

∑K−1
i=0

n
K
·
(

m− i− ⌈m−i
K−i
⌉
)

≥
∑K−1

i=0
n
K
·

(

m− i− m−i
K−i
− 1

)

=
∑K

i=1
n
K
·
(

m− i− m−1
K−i+1

+ i−2
K−i+1

)

=

n
K

(

K(2m−K−1)
2

− (m− 1)HK +K(HK − 1)−HK

)

> (m −

1)n
(

1− K−1
2(m−1)

− HK

K

)

. The fourth equality holds be-

cause K(HK − 1) − HK =
∑K

i=1

(

K
i
− 1

)

− HK =
∑K

i=1

(

K
K−i+1

− 1
)

− HK =
∑K

i=1
i−1

K−i+1
− HK =

∑K

i=1
i−2

K−i+1
. If each agent were assigned to his or her top

alternative, the total satisfaction would be equal to (m−1)n.

Thus we get that
ℓ
αB,dec
1 (Φ)

OPT
≤ 1− K−1

2(m−1)
− HK

K
. �

In the above proof we measure the quality of our assignment
against a perhaps-impossible solution, where each agent is
assigned to his or her top alternative. Thus for relatively large
m and K, and small K

m
ratio, the algorithm can achieve a

close-to-ideal solution irrespective of the voters’ preference
orders. This is an argument in favor of Monroe’s system.

Betzler et al. [3] showed that for each fixed constant K,
αB,dec-Monroe-Assignment-Dec can be solved in polyno-
mial time. Thus, for small values of K for which the fraction
HK

K
affects the approximation guarantees of Algorithm 1 too

much, we can use this polynomial-time algorithm to find an
optimal solution. This means that we can essentially disre-
gard the HK

K
part of Algorithm 1’s approximation ratio. In



consequence, the quality of the solution produced by Algo-
rithm 1 most strongly depends on the ratio K−1

m−1
. In most

cases we can expect it to be small. If it is not, we can use an
algorithm that randomly samples K alternatives and matches
them optimally to the agents.

Lemma 6 A single sampling step of the randomized al-
gorithm for αB,dec-Monroe-Assignment-Dec achieves ex-

pected approximation ratio of 1
2
(1+ K

m
− K2

m2−m
+ K3

m3−m2 ). Let
pǫ denote the probability that the relative deviation between the
obtained total satisfaction and the expected total satisfaction

is higher than ǫ; for K ≥ 8 we have pǫ ≤ exp
(

−Kǫ2

128

)

.

The threshold for K
m
, where the randomized algorithm is (in

expectation) better than the greedy algorithm is about 0.57.
Combining the two algorithms, we get the next result.

Theorem 7 For each fixed ǫ, there is an algorithm that
provides a (0.715 − ǫ)-approximate solution for the problem
αB,dec-Monroe-Assignment-Dec with probability λ, in time
polynomial with respect to the input size and − log(1− λ).

Chamberlin and Courant’s System. Let us now move
on to the Chamberlin and Courant’s system. It turns out
that the additional freedom of this system allows us to de-
sign a polynomial-time approximation scheme for αB,dec-CC-
Assignement-Dec.

The idea of our method is to compute a certain value x and
to greedily seek an assignment that (approximately) maxi-
mizes the number of agents assigned to their top-x alterna-
tives (and match the remaining agents arbitrarily; recall that
for nonnegative real numbers, Lambert’s W function, w(x), is
defined to be the solution of the equality x = w(x)ew(x).)

Lemma 8 There is a polynomial-time (1 − 2w(K)
K

)-
approximation algorithm for αB,dec-CC-Assignement-Dec.

(Independently, Oren [16] gave a sampling-based algorithm
with expected approximation ratio of (1− 1

K+1
)(1+ 1

m
).) Since

for each ǫ > 0 there is a value Kǫ such that for each K > Kǫ

it holds that 2w(K)
K

< ǫ, and αB,dec-CC-Assignment prob-
lem can be solved optimally in polynomial time for each fixed
constant K (see the work of Betzler et al. [3]), there is a
polynomial-time approximation scheme (PTAS) for αB,dec-
CC-Assignment (i.e., a family of algorithms such that for
each fixed β, 0 < β < 1, there is a polynomial-time β-
approximation algorithm for αB,dec-CC-Assignment).

Theorem 9 There is a PTAS for αB,dec-CC-Assignment.

5 Conclusions

We have defined a certain (shared) resource allocation prob-
lem and have shown that it generalizes multiwinner voting
rules of Monroe and of Chamberlin and Courant. Since these
rules are hard to compute [3,12,18], we have investigated the
possibility of computing approximate solutions. Our results
are summarized in Table 1. Except for the case of maximiz-
ing total voter satisfaction, both rules turned out to be hard
to approximate. However, for the the case of maximizing to-
tal voter satisfaction, we have obtained the first nontrivial

approximation algorithms for Monroe’s rule (our randomized
algorithm obtains approximation ratios arbitrarily close to
0.715) and the first PTAS for Chamberlin and Courant’s rule.
Natural open problems include seeking a PTAS for Monroe’s
system and empirical evaluation of our algorithms.
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A Non-Monotonic Goal Specification Language for
Planning with Preferences

Tran Cao Son∗ and Enrico Pontelli∗ and Chitta Baral+ 1

Abstract. This paper introduces a default logic based approach to

defining goal specification languages that can be non-monotonic and

allow for the specification of inconsistencies and priorities among

goals. The paper starts by presenting a basic goal specification lan-

guage for planning with preferences. It then defines goal default the-

ories (resp. with priorities) by embedding goal formulae into default

logic (resp. prioritizing default logic). It is possible to show that the

new language is general, as it can express several features of previ-

ously developed goal specification languages. The paper discusses

how several other features can be subsumed by extending the basic

goal specification language. Finally , we identify features that might

be important in goal specification that cannot be expressed by our

language.

1 Introduction

An important component of autonomous agent design is goal spec-

ification. In classical planning, goals deal with reaching one of a

particular set of states. Nevertheless, often goals of agents are not

just about reaching a particular state; goals are often about satisfy-

ing desirable conditions imposed on the trajectory. For example, a

person can have the following desire in preparing travel plans to con-

ferences:

(*) I prefer to fly to the conference site (since it is usually too

far to drive).

The user’s preference restricts the means that can be used in achiev-

ing her goal of reaching the conference site, which leads to the selec-

tion of a plan that reaches the conference site by airplane, whenever

possible. Ultimately, this affects what actions the person should take

in order to achieve the goal.

These observations led to the development of languages for the

specification of soft goals in planning, e.g., PP introduced in [14]

and modified in [6]. In PP , a basic desire is a temporal formula

describing desirable properties of a plan. Atomic and general pref-

erences are particular classes of formulae built over basic desires. A

preference formula Φ defines a preference order ≺Φ among the tra-

jectories that achieve the hard goal of the problem, i.e., for every pair

of trajectories α and β, α ≺Φ β indicates that α is preferable to β.

≺Φ is often a partial order and its definition relies on the notion of

satisfaction between trajectories and a preference specification. Sim-

ilar ideas have been considered in the planning community and led

to extensions of the planning domain description language PDDL,

with features for representing classes of preferences over plans using

temporal extended preferences (e.g., [10]).

1 ∗Department of Computer Science New Mexico State University, Las
Cruces, New Mexico, USA, email: tson|epontell@cs.nmsu.edu

and +Department of Computer Science and Engineering, Arizona State
University, Tempe, Arizona, USA, email: chitta@asu.edu

In [4], the authors argue that a goal specification language should

be non-monotonic for various reasons, such as elaboration tolerance

and simplicity of goal specification. For example, the same traveler

with the preference (*) would probably not mind driving at most

three hours to the conference site if the only flight to the destina-

tion requires to travel the day before the conference starts. In this

case, her preference becomes:

(**) Normally, I prefer to fly to the conference site (since it is usu-

ally too far to drive). However, if there are no flights on the same day

of the conference and the driving time is at most three hours, then I

will drive.

To address this issue, an extension of LTL [11], called N-LTL, has

been proposed, allowing weak and strong exceptions to certain rules.

A weakness of this language is that it requires the classification of

weak and strong exceptions when a goal is specified. In [5], the lan-

guage ER-LTL is introduced to address this limitation of N-LTL.

Similarly to PP , the semantics of N-LTL and ER-LTL relies on the

notion of satisfaction between plans and N-LTL or ER-LTL specifi-

cations. Observe that the issue of non-monotonicity is dealt within

PP and in the extensions of PDDL by revising the soft goals, which

is an approach that N-LTL specifically tries to avoid.

We observe that the focus of the work in [1, 4, 5, 6, 10] is on

classical planning, i.e., the planning domains are deterministic and

the initial state is complete, while the work in [14] considers non-

deterministic domains and only discusses preferences among weak

plans. In [2], it is argued that plans for non-deterministic domains

should be policies (i.e., a partial function from the set of states to

the set of actions) and the language π-CTL∗ is developed for spec-

ifying goals in non-deterministic domains. π-CTL∗ is an extension

of CTL∗ [9] with two modalities Aπ and Eπ for considering all or

some trajectories w.r.t. a given policy. In [3], the language π-CTL∗ is

extended with quantifiers over policies to increase its expressiveness.

Policies satisfying a goal specification are viewed as the solutions of

a planning problem.

In this paper, we explore an approach based on prioritizing default

logic for defining a goal specification language. The new language,

called goal default theories with priorities, is a variation of prioritiz-

ing default logic, in which formulae occurring within a default can

be temporal extended preference formulae. We show that the core of

the new language subsumes several features from existing goal lan-

guages and can be extended to subsume several other features from

other goal languages. Finally, we discuss the possible applications

of the new language in the study of existing goal languages and the

development of new ones.

2 Background

In this section, we briefly review the basic definitions of planning,

linear temporal logic (LTL) and its extension for specifying prefer-



ences in planning.

2.1 LTL and Temporal Extended Preferences

Let L be a propositional language. By 〈p〉 we denote a propositional
formula from L. LTL-formulae are defined by the following syntax

〈f〉 ::= 〈p〉 | 〈f〉 ∧ 〈f〉 | 〈f〉 ∨ 〈f〉 |
¬〈f〉 | © 〈f〉 | 2〈f〉 | 3〈f〉 | 〈f〉U〈f〉

(1)

The semantics of LTL-formulae is defined with respect to sequences

of interpretations of L. For later use, we will refer to an interpretation

of L as a state and a possibly infinite sequence of interpretations of

L, s0, s1, . . ., as a trajectory. For a trajectory σ = s0, s1, . . . , by σi

we denote the suffix si, si+1, . . . of σ. A trajectory σ = s0, s1, . . .

satisfies an LTL-formula f , denoted by σ |= f , if σ0 |= f where

• σj |= p iff sj |= p

• σj |= ¬f iff σj 6|= f

• σj |= f1 ∧ f2 iff σj |= f1 and σj |= f2

• σj |= f1 ∨ f2 iff σj |= f1 or σj |= f2

• σj |= ©f iff σj+1 |= f

• σj |= 2f iff σk |= f , for all k ≥ j

• σj |= 3f iff σi |= f for some i ≥ j

• σj |= f1 U f2 iff there exists k ≥ j such that

σk |= f2 and for all i, j ≤ i < k, σi |= f1.

A finite trajectory s0, . . . , sn satisfies an LTL-formula f if its exten-

sion s0, . . . , sn, sn+1, . . . satisfies f , where sk = sn for k > n.

In order to deal with planning problems, LTL is extended with the

following constructs

at end 〈p〉 | 〈p〉 sometime before 〈p〉 |
〈p〉 sometime after 〈p〉

(2)

Formulae of the extended LTL are referred to as Temporal Extended

Preferences (TEP). Note that the last two are syntactic sugars for LTL

formulae. Temporal extended preferences are interpreted over finite

trajectories. The notion of satisfaction for standard LTL-formulae is

defined as above, while satisfaction of TEP formulae is as follows:

given a finite trajectory σ = s0, . . . , sn:

• σ |= at end p iff sn |= p;

• σ |= p1 sometime before p2 iff for every i, 0 ≤ i ≤ n, if

σi |= p1 then σj |= p2 for some i ≤ j ≤ n; and

• σj |= p1 sometime after p2 iff for every i, 0 ≤ i ≤ n, if

σi |= p1 then σj |= p2 for some 0 ≤ j < i ≤ n.

2.2 Planning

In this paper, we describe a dynamic domain as a labeled transition

system T = (F,A, S, L), where:

• F is a set of fluents (or propositions),

• A is a set of actions,

• S is a set of interpretations (or states) of F , and

• L ⊆ S ×A× S.

Each triple 〈s1, a, s2〉 ∈ L indicates that the execution of the action

a in the state s1 might result in the state s2. T is deterministic if for

each state s and action a, L contains at most one triple 〈s, a, s2〉;
otherwise, T is non-deterministic.

Given a transition system T , a finite or infinite sequence

s0a0s1a1 . . . snansn+1 . . . of alternate states and actions is called

a run if 〈si, ai, si+1〉 ∈ L for every i = 0, . . . A policy π in a transi-

tion system T is a partial function π : S → A from the set of states

to the set of actions. A run s0a0s1a1 . . . skaksk+1 . . . is said to be

induced by a policy π if ai = π(si) for every i = 0, . . . , k, . . .
Definition 1. A planning problem is a triple 〈T, Si, Sf 〉 where T =
(F,A, S, L) is a transition system, Si ⊆ S is the set of initial states,

and Sf ⊆ S is the set of final states.

Intuitively, a planning problem asks for a plan which transforms

the transition system from any state belonging to Si to some state in

Sf . In the rest of the discussion, we assume Si and Sf to be finite

sets. We distinguish two classes of planning problems:

◦ Deterministic planning: in this case, T is deterministic and a so-

lution (or plan) of 〈T, Si, Sf 〉 is an action sequence [a0; . . . ; an]
such that, for every s0 ∈ Si, s0a0s1a1 . . . ansn+1 is a run in T

and sn+1 ∈ Sf ;

◦ Non-deterministic planning: in this case, T is non-deterministic

and a solution (or plan) of 〈T, Si, Sf 〉 is a policy π such that, for

every s0 ∈ Si and every run induced by π in T , π is finite and is

of the form s0a0s1a1 . . . skaksk+1 where sk+1 ∈ Sf .

In the following, whenever we refer to a possible plan in a transition

system T , we mean a sequence of actions (resp. a policy) if T is de-

terministic (resp. non-deterministic) that can generate a correct run.

Let us illustrate these basic definitions using the following simple

example.

Example 1. Consider a transportation robot. There are different lo-

cations, say l1, . . . , lk, whose connectivity is given by a graph and

there might be different objects at each location. LetO be a set of ob-

jects. The robot can travel between two directly connected locations.

It can pick up objects at a location, hold them, drop them, and carry

them between locations. We assume that, for each pair of connected

locations li and lj , the robot has an action ai,j for traveling from li
to lj . The robot can hold only one object at a time. The domain can

be represented by a transition system T1 = (F,A, S, L):2

• F contains the following types of propositions:

◦ at(i) denotes that the robot is at the location li;

◦ o at(o, i) denotes that the object o is at the location li;

◦ h(o) denotes that the robot is holding the object o.

• A contains of the following types of actions:

◦ ai,j the robot moves from li to lj;

◦ release(o) the robot drops the object o;

◦ pickup(o) the robot picks up the object o.

• S contains the interpretations of F which satisfy the basic con-

straints, such as the robot is at one location at a time, it holds only

one object, etc.

• L contains transitions of the form 〈s, a, s′〉 such that s′ is the

result of the execution of a in s; for example, if a = ai,j and

at(i) ∈ s then s′ = s \ {at(i)} ∪ {at(j)}.

T1 is a deterministic transition system. We will also refer to T2 as

the non-deterministic version of T1 by defining T2 = (F,A, S, L′)
where L′ = L∪{〈si, ai,j , si〉 | ai,j ∈ A} and at(i) ∈ s. Intuitively,

T2 encodes the fact that the action ai,j might fail and, when it does,

the robot will stay where it was after the execution of ai,j .

A planning problem P in this domain is given by specifying the

initial location of the robot and of the objects and the final loca-

tion of the robot and of the objects. It is deterministic (resp. non-

deterministic) if T1 (resp. T2) is considered.

For example, Pi = 〈Ti, {{at(1)}}, Sf 〉 where for each s ∈ Sf ,

at(k) ∈ s is a planning problem for Ti. A solution for P1 is a se-

quence [a1,2; . . . ; ak−1,k]. On the other hand, a solution for P2 is a

policy π defined by π(s) = at,t+1 iff at(t) ∈ s for t < k.

2 We simplify the definitions of S and L for readability.



3 A Basic Goal Specification Language for
Planning with Preferences

In the literature, a planning problem with preferences is defined

as a pair (P,Φ) of a planning problem P = 〈T, Si, Sf 〉, where

T = (F,A, S, L), and a preference formula Φ in a goal specifica-

tion language. A plan δ of P is called a preferred plan if it is a plan

for P and satisfies Φ, where the notion of satisfaction of a preference

formula by a plan is language dependent.

In general, we can characterize a goal specification language G
over a transition system T by a set of preference formulae F and a

satisfaction relation |=G between the set of possible plans of T and

formulae in F . We will write δ |=G Φ to denote that the plan δ

satisfies the formula Φ under the language G.

For later use, we will define a basic goal specification language for

a transition system T = (F,A, S, L), written as Gb = (Fb, |=Gb
), as

follows:

• the set of preference formulae Fb is the set of TEP-formulae over

F ∪A, and

• for a planning problem P = 〈T, Si, Sf 〉, |=Gb
is defined as fol-

lows:

◦ if T is deterministic, a plan δ = [a0, . . . , an] for a planning

problem P is said to satisfy a formula Φ in Fb if for ev-

ery s0 ∈ Si, s0a0s1a1 . . . ansn+1 is a run in T and (s0 ∪
{a0}), . . . , (sn ∪ {an}), sn+1 is a trajectory satisfying Φ (in

the TEP-language over F ∪A);

◦ if T is non-deterministic, a solution (policy) π for P is said

to satisfy a formula Φ in Fb if for every s0 ∈ Si and ev-

ery run s0a0s1a1 . . . skaksk+1 in T induced by π, (s0 ∪
{a0}), . . . , (sn ∪ {an}), sn+1 is a trajectory satisfying Φ (in

the TEP-language over F ∪A).

In the following, we will assume that any goal specification language

G is a conservative extension of Gb, i.e., (i) G contains all formulae

in Gb; and (ii) for every planning problem P and a formula Φ in G, if

Φ ∈ Gb and δ |=Gb
Φ with respect to Gb then δ |=G Φ with respect

to G.

Example 2. Some preference formulae in Gb for the transition sys-

tems in Ex. 1 are:

• 3at(2): the robot should visit the location l2 during the execu-

tion of the plan;

• at(1)∧3at(2): the robot must (i) start in a state satisfying at(1)
(or the robot is at the location l1 initially); and (ii) visit the loca-

tion l2 at some point during the execution of the plan;

• 2[at(2) ⇒ (
∨

i 6=2 a2i)]: whenever the robot visits l2, it should

leave that location immediately by executing an action going to

one of its neighbors;

• h(o) ⇒ ©©¬h(o): if the robot holds an object o in the initial

state then it should release o after the execution of one action;

• 2[h(o) ⇒ © © ¬h(o)]: whenever the robot holds an object o

it should release o after the execution of an action;

• h(o) sometime before at(5): whenever the robot holds the

object o, it must visit the location l5 thereafter before reaching

the goal;

• at end [
∧

o∈O ¬h(o)]: at the end, the robot should not hold any

object. 2

With a slight abuse of notation, let us view a state s as a formula

∧

s |= f f ∧
∧

s |= ¬f ¬f . Let Si and Sf be two sets of states and

Φ =






∨

s∈Si

s

︸ ︷︷ ︸

Φ1

∧ at end [
∨

s∈Sf

s]

︸ ︷︷ ︸

Φ2






It is easy to see that any plan satisfying Φ requires its execution to

start from a state satisfying Φ1, which is one of the states in Si, and

end in a state satisfying Φ2, which is one of the states in Sf . For this

reason, the description of the initial and final states can be folded into

a preference formula. We will therefore define planning problems as

follows.

Definition 2. Given a transition system T and a goal specification

language G = (F , |=G) over T , a goal formula Φ in F is called a

planning problem. A solution of Φ is a plan δ in T such that δ |=G Φ.

By Def. 2, a goal formula represents a planning problem. The lit-

erature is quite diversified when a user faces two or more goal for-

mulae which are contradictory with each other. For example, the for-

mula 3at(2) is contradictory with 2¬at(2); 2¬(
∧

o∈O h(o)) con-

flicts with 3h(o1); etc. A possibility is to consider a possible plan

as solution if it satisfies some goal formulae. Another possibility is

to rank the goal formulae and identify solutions as plans that satisfy

the formula with the highest possible ranking. In the following, we

will show that a uniform framework for dealing with conflicting goal

formulae can be obtained by embedding goal formulae into Reiter’s

default logic.

4 Goal Default Theories

In this section, we will introduce a new goal specification language,

called goal default theory. A goal default theory is a variation of Re-

iter’s default theory [12], whose defaults can contain preference for-

mulae. Goal default theories provide a possible treatment of planning

with multiple goal formulae.

A goal default theory is defined over a transition system T =
(F,A, S, L) and a goal specification language G = (F , |=G).

Given a goal specification language (F , |=G), we say that two for-

mulae ϕ,ψ in F are equivalent w.r.t. |=G if, for each plan δ of T ,

we have that δ |=G ϕ ⇔ ψ.3 We can easily extend this notion to

define the notion of logical consequence w.r.t. |=G—if S is a set of

formulae from F and f is another formula in F , then S |=G f if for

each plan δ of T we have that δ |=G

∧

ϕ∈S ϕ implies δ |=G f . Given

a set of formulae S, we define Decl(S) = {ϕ | ϕ ∈ F , S |=G ϕ}.

A preference default (or p-default) d over G is of the following

form
α : β

γ
(3)

where α, β, and γ are formulae in F . We call α the precondition,

β the justification, and γ the consequence of d, and we denote them

with prec(d), just(d), and cons(d), respectively. A default d is said

to be

• Normal if its justification is equivalent to its conclusion;

• Prerequisite-free if its precondition is equivalent to true; and

• Supernormal if it is normal and prerequisite-free.

Given a set of formulae S from F , a default d is said to be defeated

in S if S |= ¬just(d). Some preferences and their representation as

p-defaults over Gb for the domain from Example 1 are given next.

Example 3. In these examples, o denotes a particular object in the

domain.

3 ϕ⇔ ψ is a shorthand for (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).



• If there is no evidence that the robot is initially at the location l2,

then it should go to l2:

⊤ : ¬at(2)

3at(2)
(4)

• Assume that objects might be defective, represented by the propo-

sition defective. We can write

⊤ : 2[¬defective(o)]

2[at(2) ⇒ h(o)]
(5)

to indicate that normally, we would like that the robot holds the

object o whenever it is at the location l2. An exception to this rule

is possible if the object o is defective.

• If the robot is not required to hold the object o in the final state

and there is no evidence that it initially holds o, then it should not

execute the action of picking up the object o:

⊤ : at end (¬h(o)) ∧ ¬h(o)

2[¬pickup(o)]
(6)

• If there is no evidence that the object o is initially in the wrong

place then the robot should not start by executing the action of

picking up the object o:

at end (o at(o, i)) :
∧

i 6=j ¬o at(o, j)

¬pickup(o)
(7)

• A stronger version of (7) is

at end (o at(o, i)) :
∧

i 6=j ¬o at(o, j)

2¬pickup(o)
(8)

indicates that the robot should never pick up the object o if o could

already be in the desired final location.

• If there is the possibility that the robot might reach location l2,

then it must leave the location immediately after its arrival at l2.

⊤ : 3[at(2)]

2[at(2) ⇒ ©
∨

i 6=2 a2,i]
(9)

• If there is no evidence that an object o will ever appear in loca-

tion i then the robot should never go there.

⊤ : 2[¬o at(o, i)]

2[
∨

j 6=i ¬aj,i]
(10)

In the following, we will refer to the p-defaults in (4)-(9) by

p1, . . . , p6, respectively. 2

We next define the notion of a goal default theory.

Definition 3. A goal default theory over a goal language G =
(F , |=G) and a transition system T is a pair Σ = (D,W ) where

D is a set of p-defaults over G and W ⊆ F .

Given a set of p-defaults D, we denote with cons(D) the set

cons(D) = {cons(d) | d ∈ D}. A p-default d is applicable w.r.t. a

set of F formulae S if S |=G prec(d) and S 6|=G ¬just(d). Let us

denote with ΠD(S) the set of p-defaults from D that are applicable

w.r.t. S.

Definition 4 (From [12]). Let Σ = (D,W ) be a goal default theory

over G = (F , |=G) and T . An extension of Σ is a minimal setE ⊆ F
that satisfies the conditionE = Decl(W ∪Cons(ΠD(E))). We say

that Σ is consistent if it has at least one extension.

From this definition, any default over the propositional language

F∪A is a p-default, and any Reiter’s default theory over the language

F ∪A is a goal default theory.

Definition 5. Given a transition system T = (F,A, S, L) and a goal

specification language G = (F , |=G) over T , a planning problem

over T and G is a goal default theory Σ = (D,W ) over G and T .

The notion of a solution to a planning problem is modified as fol-

lows.

Definition 6. Given a transition system T = (F,A, S, L), a goal

specification language G = (F , |=G) over T , and a planning prob-

lem Σ over T and G, a solution of Σ is a plan δ in T such that

δ |=G E for some extension E of Σ.

Some planning problems over the transition systems in Exp. 1 and

the language Gb are given in the next example.

Example 4 (Continuation of Example 3). • Let Σ1 =
({p1}, {at(1), at end at(5)}) where p1 is the default (4).

Intuitively, we have that Σ1 identifies plans where the robot starts

at location l1, goes through the location l2, and ends in location

l5.

• Let Σ2 = ({p6}, {at(1), at end at(5)}) where p6 is the default

(9). This identifies plans where the robot starts at location l1, ends

in location l5, and either (i) never goes through the location l2; or

(ii) never stays in the location l2 within two consecutive steps. 2

The planning problems in Example 4 are simple, in that they are

specified by goal default theories whose set of defaults is a singleton.

Let us consider a more complicated example. Assume that we have

two temporal formulae Φ and Ψ such that there exists no plan that can

satisfy both Φ and Ψ. In this case, the use of goal default theory as a

goal formula comes in handy. Indeed, every solution of the planning

problem expressed by the goal default theory

ΣΦ,Ψ =

({
⊤ : ¬Ψ

Φ
,
⊤ : ¬Φ

Ψ

}

, ∅

)

(11)

satisfies either Φ or Ψ. The following result generalizes this observa-

tion.

Proposition 1. Let T = (F,A, S, L) be a transition system, G =
(F , |=G) be a goal specification language, and ∆ = {Φ1, . . . ,Φn}
be a set of preference formulae in F . Furthermore, let

Σ∆ =
({

⊤ : Ψ
Ψ

Ψ ∈ ∆
}
, ∅
)

(12)

• For every solution δ to the problem Σ∆ there exists a maximal

(w.r.t. ⊆) set of preferences ∆δ ⊆ ∆ such that δ |=G

∧

Ψ∈∆δ
Ψ;

• For every pair of solutions δ and δ′ of Σ∆, either ∆δ = ∆δ′ or

∆δ 6⊆ ∆δ′ and ∆δ′ 6⊆ ∆δ .

5 Goals Default Theories with Priorities

Proposition 1 shows that goal default theories can be used to spec-

ify planning problems with multiple preferences which might not be

consistent with each other. For instance, consider a traveler from New

York to San Francisco who has two preferences: reach the destination

as fast as possible (Φ1) and spend the least amount of money (Φ2). In

general, these two preferences cannot be satisfied at the same time. In

this case, it is more reasonable to assume that a plan satisfying one of

the criteria is an acceptable solution. Thus, Σ{Φ1,Φ2} is a reasonable

goal specification if the traveler is impartial about Φ1 and Φ2. On

the other hand, if the traveler prefers Φ1 over Φ2 (or vice versa), we

will need to change the goal specification or provide additional ways

for the traveler to specify this priority. As it turns out, the literature

is rich with approaches for adding priorities to default theories [7, 8]

which can be easily adapted to goal default theories. We next define



goal default theories with priorities by adapting the work of [7] to

goal default theories.

Let us start by introducing static priorities, encoded by a well-

ordering relation ≺ among p-defaults—i.e., ≺ is transitive, irreflex-

ive, and each set of elements admits the least element in the ordering.

We denote with min≺(X) the least element of X with respect to ≺.

We define goal default theory with priorities as follows.

Definition 7. A goal default theory with priorities over a goal lan-

guage G = (F , |=G) and a transition system T is a triple (D,W,≺)
where D is a set of p-defaults over G, ≺ is a well-ordering relation

over D, and W ⊆ F .

Following the general design of prioritizing default theory [7], the

notion of preferred extension can be defined by successively simpli-

fying the structure of the defaults.

Let us identify a construction of preferred extension through the

application of defaults according to the ordering imposed by ≺. Let

us introduce the PR operator which computes the next “preferred”

set of goal formulae from an existing one:

• PR≺(S) = Decl(S ∪ {cons(d)})
if Π∗

D(S) 6= ∅ ∧ d = min≺({x | x ∈ Π∗
D(S)});

• PR≺(S) = S if Π∗
D(S) = ∅

where Π∗
D(S) = {d | d ∈ ΠD(S), S 6|= cons(d)}. If the el-

ements in D (for a goal default theory (D,W )) are supernormal,

then it is possible to use PR≺ to produce a monotone sequence

of goal formulae, by setting S0 = Decl(W ), Si+1 = PR≺(Si)
for any successor ordinal i + 1 and Si = Decl(

⋃

j≤i Sj) for any

limit ordinal i. We will denote the result of this construction as

Pref≺(D,W ) =
⋃

i≥0 Si.

The process of determining a preferred extension will apply

Pref≺ on a reduced version of the theory, in a style similar to that

used in the Gelfond-Lifschitz reduct. Following the model proposed

in [7], the reduct of a goal default theory with priorities (D,W,≺)
w.r.t. a set of goal formulae S, denoted (DS ,W,≺S), is obtained as

follows:

• Determine D′ = {⊤ : just(d)
cons(d)

| d ∈ D,S |=G prec(d)}

• Determine DS = {d ∈ D′ | cons(d) 6∈ S or S 6|=G ¬just(d)}
and ≺S is such that d′1 ≺S d′2 if d1 ≺ d2 and d1 (d2) is the

≺-least element that introduced d′1 (d′2) in D′.

We define preferred extensions as follows.

Definition 8. Let (D,W,≺) be a goal default theory with priorities

over G = (F , |=G) and T . A preferred extension E of (D,W,≺) is

a set of goal formulae in F such that E is an extension of (D,W )
and E = Pref≺E (DE ,W ).

Similar to [7], we can generalize the above definitions and define

(i) a goal default theory with priorities as a triple (D,W,≺) where

(D,W ) is a goal default theory and ≺ is a partial order among de-

faults in D; and (ii) a set of formulae E is a preferred extension

of (D,W,≺) if it is a preferred extension of some (D,W,≺E) for

some well-ordering ≺E which is an extension of ≺. For brevity, we

omit the precise definitions. Definitions 5 and 6 can be extended in

the obvious way: a planning problem is a goal default theory with

priorities (D,W,≺) and its solutions are preferred extensions of

(D,W,≺).
Example 5. Let us consider the domain in Example 1. Let us assume

that, among the objects, there is a very valuable object o1 and a

dangerous object o2. Furthermore, let us assume that the robot is

equipped with actions that can detect the object o2 whenever the

robot is at the same location as o2. However, the equipment might not

be working. We will denote with working the fact that the equipment

is working properly. Let us consider the two formulae:

• ϕ :=3h(o1): the robot should try to get the object o1
• ψ :=2[

∧

i∈{1,...,k}(o at(o2, i) ⇒ ¬at(i))]: the robot should not

be at the same place with object o2 at any time.

With these formulae, we can define the following p-defaults:

g1 ≡
⊤ : working

ψ ∧ ϕ
g2 ≡

⊤ : ¬working

ϕ

g1 indicates that if the equipment is initially working, then the robot

will get o1 while trying to avoid o2. g2 states that if the equipment

is not working, then the robot will only worry about getting o1. The

theory ({g1, g2}, ∅, {g1 ≺ g2}) states that we prefer that the robot

tries to satisfy g1 before trying to satisfy g2.

6 Related Work and Discussion

In this section, we relate goal default theories with priorities to exist-

ing goal specification languages. We then discuss possible applica-

tions of the new language.

• TEP formulae: TEP formulae have been implemented in a plan-

ner in [1]. Given a set of TEP formulae ∆ = {Φ1, . . . ,Φn}, a

planning problem is an optimization problem that maximizes the

rewards obtained by satisfying the formulae in ∆. Formally, the

reward over a plan δ is

ΣΦi∈∆,δ|=Φi
reward(Φi)− ΣΦi∈∆,δ 6|=Φi

penalty(Φi)

where reward(Φ) and penalty(Φ) denote the reward and penalty

for satisfying and not satisfying Φ, respectively.

The planning problem can be expressed by a goal default theory

with priorities as follows. Let S be a set of formulae, S ⊆ ∆, and

dS be the default

⊤ :
∧

Φ∈S Φ ∧
∧

Φ∈∆\S ¬Φ
∧

Φ∈S Φ ∧
∧

Φ∈∆\S ¬Φ

Let D∆ = {dS | S ⊆ ∆} and ≺∆ be the partial order over D∆

where dS ≺∆ dS′ if

ΣΦi∈Sreward(Φi)− ΣΦi 6∈Spenalty(Φi) ≥
ΣΦi∈S′reward(Φi)− ΣΦi 6∈S′penalty(Φi).

We can show that (D∆, ∅,≺∆) is a goal default theory with prior-

ities representing the given planning problem, i.e., any preferred

solution of (D∆, ∅,≺∆) is a solution of the original planning

problem and vice versa.

• PP : The language PP allows the specification of three types of

preferences. A basic desire ϕ is a preference over a trajectory and

therefore is a part of the basic goal language. An atomic preference

is an ordering among basic desires Φ = Φ1 � Φ2 . . . � Φk and

expresses that the preference Φi is more important than Φi+1 for

1 ≤ i < k− 1. An atomic preference Φ can be represented by the

following goal default theory with priorities

({
⊤ : Φi

Φi
i = 1, . . . , k

}

, ∅,≺Φ

)

where ≺Φ is defined by
⊤ : Φi

Φi
≺Φ

⊤ : Φj

Φj
for 1≤i<j≤k.

A general preference is either an atomic preference or a combi-

nation of general preferences, such as Φ&Ψ, Φ|Ψ, and !Φ, where

Φ and Ψ are general preferences. Intuitively, general preferences

add finitely many levels to the specification of preferences and



thus cannot be easily represented by goal default theories which

assume ceteris paribus over the preferences. Adding priorities al-

lows only an extra layer of comparison between preferences. We

view this as a weakness of goal default theories and plan to further

investigate this issue.

• N-LTL and ER-LTL: These two languages allow the specification

of weak and strong exceptions within goal formulae represented

as LTL-formulae by introducing labels to LTL-formulae. By com-

piling away the labels as in [4], we can show that Gb subsumes

N-LTL and ER-LTL.

Observe that the constructs used in N-LTL and ER-LTL are fairly

close to default logic. This leads us to believe that interesting col-

lections of N-LTL (ER-LTL) theories can be translated into goal

default theories—which would provide a reasonable semantics for

N-LTL (ER-LTL) theories with loops that have not been consid-

ered so far.

Finally, we would like to note that Gb can be easily extended to

consider N-LTL (ER-LTL) formulae by

– extending Fb with N-LTL (ER-LTL) formulae; and

– extending |=Gb
to define that δ |=Gb

S iff δ |=Gb
c(S) where

c(S), a LTL formula, denotes the result of compiling S to an

LTL formula as described in [4, 5].

• π-CTL∗ and P-CTL∗: These two languages consider non-

deterministic domains and define goals over policies but do not

consider preferences among goals. In addition, these languages

introduce the operators A, E, Aπ , and Eπ over paths and the two

quantifiers EP and AP over state formulae. Nevertheless, we can

show that the CTL∗ part of π-CTL∗ can be expressed in Gb. Fur-

thermore, Gb can be extended to allow formulae of π-CTL∗. How-

ever, the two new state quantifiers are not expressible in our goal

language. We observe that as the goal language is parameterized

with the satisfaction relation, Gb can be easily extended with these

operators. We strongly believe that these extensions will be suffi-

cient for goal default theories with priorities to capture P-CTL∗.

The above discussion highlights features from existing goal lan-

guages that can (or cannot) be expressed by our goal language. This

also shows that the proposed language can serve as a unified lan-

guage for evaluating goal languages. The use of default theories as

the basic language also provides us with an advantage in the study

of computational complexity of goal languages. In this effort, we

expect that well-known complexity results on prioritized default the-

ories [13] will be extremely useful. This will provide us with insights

for the use of existing goal languages as well as the development of

new goal languages.

7 Conclusions and Future Work

In this paper, we describe a default logic based approach to defining

non-monotonic goal specification languages. We start with a basic

goal specification language and use default logic (or prioritizing de-

fault logic) to provide a natural way for dealing with inconsistency

and priorities over goals. We show that the new language subsumes

some goal languages in the literature and can describe several fea-

tures from other goal languages. We identify desirable features that

cannot be easily expressed by our goal language, among them is the

multi-level of preferences between goals, which we intend to inves-

tigate in the near future. We also discuss possible applications of the

proposed goal language.
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Optimization and Elicitation with the Maximin Utility
Criterion

Paolo Viappiani1 and Christian Kroer2

Abstract. We investigate robust decision-making under utility un-

certainty, using the maximin criterion, which optimizes utility for the

worst case setting. We show how it is possible to efficiently compute

the maximin optimal recommendation in face of utility uncertainty,

even in large configuration spaces. We then introduce a new decision

criterion, setwise maximin utility (SMMU), for constructing optimal

recommendation sets: we develop algorithms for computing SMMU,

and prove (analogously to previous results related to regret-based and

Bayesian elicitation) that SMMU determines choice sets for queries

that are myopically optimal. We also present experimental results

showing performance of SMMU on randomly generated elicitation

problems.

1 Introduction

Learning the preferences of the user [10] is an important problem

in many domains, including decision support and recommender sys-

tems, personal agents and cognitive assistants. Because acquiring

user preferences is expensive (with respect to time and cognitive

cost), it is essential to provide techniques that can reason with par-

tial preference (utility) information, and that can effectively elicit the

most relevant preference information.

Following recent works in AI, we cast decision-making and elici-

tation as a problem of optimization under uncertainty. Adaptive util-

ity elicitation [5] tackles the challenges posed by preference elicita-

tion by representing the system knowledge about the user in form of

beliefs, that are updated following user responses. Elicitation queries

can be chosen adaptively given the current belief. In this way, one

can often make good (or even optimal) recommendations with sparse

knowledge of the user’s utility function.

In this paper, we investigate the problem of producing robust rec-

ommendations using the maximin criterion. Maximin is the most pes-

simistic decision criterion; the recommended decision or option is the

one associated with the highest utility in the worst case.

We examine the strict uncertainty setting: all we are given is a

set of constraints that encode the possible utility functions (usually

obtained through some form of user feedback, such as responses to

elicitation queries of the type: “Which of these products do you pre-

fer ?”). We argue that maximin can be adopted as a suitable robust

decision criterion for decision making in the presence of such utility

function uncertainty. Furthermore, we extend this idea to sets, defin-

ing the setwise maximin utility criterion, and we discuss the problem

of interactive elicitation (which can be viewed as active preference

learning). Finally, we show how linear and mixed integer program-

ming techniques can be used to efficiently optimize both singleton

1 Aalborg University, Denmark, email: paolo@cs.aau.dk
2 Carnegie Mellon University, USA, email: ckroer@cs.cmu.edu

recommendations and sets in large configuration spaces.

1.1 Assumptions

We assume a recommendation system is charged with the task of

recommending an option to a user in some multiattribute space, for

instance, the space of possible product configurations from some do-

main (e.g., computers, cars, apartment rental, etc.). Products are char-

acterized by a finite set of attributes X = {X1, ...Xn}, each with

finite domains Dom(Xi). Let X ⊆ Dom(X ) denote the set of fea-

sible configurations. For instance, attributes may correspond to the

features of various apartments, such as size, neighborhood, distance

from public transportation, etc., with X defined either by constraints

on attribute combinations (e.g., constraints on computer components

that can be put together), or by an explicit database of feasible con-

figurations (e.g., a rental database).

The user has a utility function u : Dom(X ) → R. In what follows

we will assume either a linear or additive utility function depending

on the nature of the attributes [8]. In both additive and linear models,

u can be decomposed as follows3:

u(x) =
∑

i

fi(xi) =
∑

i

λivi(xi)

where each local utility function fi assigns a value to each ele-

ment of Dom(Xi). In classical utility elicitation, these values can

be determined by assessing local value functions vi over Dom(Xi)
that are normalized on the interval [0, 1], and importance weights λi

(
∑

i
λi = 1) for each attribute [7, 8]. This sets fi(xi) = λivi(xi)

and ensures that global utility is normalized on the interval [0, 1]. A

simple additive model in the rental domain might be:

u(Apt) = f1(Size) + f2(Distance) + f3(Nbrhd)

When Dom(Xi) is drawn from some real-valued set, we often as-

sume that vi (hence fi) is linear in Xi.
4

We note that our framework subsumes the case of “unfactored”

utilities (the utility of an option is an unknown latent value that does

not factor into attributes or features); this case can be modeled by

considering a parameter to represent the utility of the option.

u(xi;w) = wi (1)

Vector w = (w1, ..., wn) is then composed of the utilities for each

option. Prior knowledge can provide lower bounds and upper bounds

3 In our notation, we use bold lowercase for vectors
4 Our presentation relies heavily on the additive assumption, though our ap-

proach is easily generalized to more general models such as GAI [7, 4]. The
assumption of linearity is simply a convenience; nothing critical depends on
it.



for w1, ..., wn. W is then a “hyper rectangular” region of possible

utility values. Unfactored models are of limited applicability. One

main drawback is that we need one utility parameter for each avail-

able option. The advantages of a factored (multi-attribute) utility rep-

resentation is that preference statements, such as responses to com-

parison queries between two options x and y, can “generalize” to

other options, that have some features in common.

Since a user’s utility function is not generally known, we write

u(x;w) to emphasize the dependence of u on user-specific parame-

ters. In the additive case, the values fi(xi) over ∪i{Dom(Xi)} serve

as a sufficient parameterization of u (for linear attributes, a more suc-

cinct representation is possible). The optimal product for the user

with utility parameters w is argmaxx∈Xu(x;w). Our goal is to rec-

ommend, or help the user find, an optimal, or near optimal, product.

2 Decision-making with Maximin Utility

Much work in AI, decision analysis and operations research has been

devoted to effective elicitation of preferences [13, 2, 6, 1, 14]. Adap-

tive preference elicitation generally differs from classical utility as-

sessment in that it recognizes that good, even optimal, decisions can

often be recommended with very sparse knowledge of a user’s utility

function [2]; and that the value of information associated with spe-

cific elicitation actions (e.g., queries)—in terms of its impact on de-

cision quality—is often not worth the cost of obtaining it [6, 1]. This

means we must often take decisions in the face of an incompletely

specified utility function.

In this work, we adopt the notion of maximin utility as our deci-

sion criterion for robust decision making under utility function un-

certainty.

Assume that through some interaction with a user, and possibly

using some prior knowledge, we determine that her utility function

w lies in some set W . (The form of W will become clearer when we

discuss elicitation below). We define:

Definition 1 Given a set of feasible utility functions W , the min util-
ity (MU) MU (x;W ) of x ∈ X is defined as:

MU (x;W ) = min
w∈W

u(x;w)

Definition 2 The maximin utility MMU (W ) of W and the corre-
sponding minimax optimal configuration x∗

W are defined as follows:

MMU (W ) = max
x∈X

MU (x;W ) = max
x∈X

min
w∈W

u(x;w)

x
∗
W = argmax

x∈X

MU (x;W ) = argmax
x∈X

min
w∈W

u(x;w)

Intuitively, MU (x;W ) is the worst-case utility associated with

recommending configuration x; i.e., by assuming an adversary will

choose the user’s utility function w from W to minimize the util-

ity. The maximin optimal configuration x∗
W is the configuration that

maximizes this minimum utility. Any choice that is not maximin op-

timal has strictly lower utility than x∗
W for some w ∈ W .

Maximin utility (as does minimax regret [15]) relies on relatively

simple prior information in the form of bounds or constraints on user

preferences (rather than probabilistic priors); and exact computation

is much more tractable (in contrast with probabilistic models of util-

ity that generally require reasoning with densities that have no closed

form [1, 6]). In configuration problems, optimization over product

space X is often formulated as a CSP or mixed integer program

(MIP). In such domains, maximin utility computation can be for-

mulated as a MIP, and solved practically for large problems using

techniques such as Bender’s decomposition and constraint genera-

tion [2, 4].

3 Optimal Recommendation Sets

In general, there is a tension between recommending the best op-

tions to the user, and acquiring informative feedback from the user.

Since utility is uncertain, there is often value in recommending a set

of options from which the user can choose her most preferred. Pick-

ing a “diverse” set of recommended options increases the odds of

recommending at least one item with high utility. Intuitively, such

a set of “shortlisted” recommendations should include options that

are diverse in the following sense: recommended options should be

highly preferred relative to a wide range of “likely” user utility func-

tions (relative to the current belief) [11, 3]. This stands in contrast to

some recommender systems that define diversity relative to product

attributes [12], with no direct reference to beliefs about user utility.

It is not hard to see that “top k” systems, those that present the k

options with highest expected utility, do not generally result in good

recommendation sets [11].

Among the many possible types of queries, we focus on choice

queries. Such queries are commonly used in conjoint analysis and

product design [9], requiring a user to indicate which choice/product

is most preferred from a set of k options. Hence, we can view any

set of products as either a recommendation set or query (or choice)

set. Given a set, one can ask: what is the value of the set viewed as

recommendation set; or what is its value as a query?

Recently, Viappiani and Boutilier [16, 15] showed how these two

problems are connected to each other, under both a Bayesian frame-

work or when one assumes minimax regret as a criterion. In the fol-

lowing we show the same connection when minimax utility is used

as the decision criterion.

3.1 Setwise Maximin Utility

Suppose we have a slate of k options to present to the user and want

to quantify the minimum utility obtained by restricting the user’s de-

cision to options in that slate. Intuitively, the user may select any of

the k options as being “optimal.” An adversary wanting to minimize

utility should do so assuming that any such choice is possible, as we

allow the user to pick any of the k options. Formally, we choose the

set of k options first, but delay the specific choice from the slate un-

til after the adversary has chosen a utility function w. The maximin

utility is the utility of the best option w.r.t. w in the slate. (To keep

notation to a minimum, we assume Z is restricted to suitable subsets

of X (e.g., of cardinality k) without making this explicit.)

Definition 3 Let W be a feasible utility set, Z ⊆ X. Define:

SMU (Z,W ) = min
w∈W

max
x∈Z

u(x;w)

SMMU (W ) = max
Z⊆X

min
w∈W

max
x∈Z

u(x;w)

Z
∗
W = argmax

Z⊆X

min
w∈W

max
x∈Z

u(x;w)

The setwise minimum utility(SMU) of a set Z of k options reflects

the intuitions above. Setwise maximin utility (SMMU) is SMU of the

minimax optimal set Z∗
W , i.e., the set that maximizes SMU (Z,W ).

Setwise maximin utility has some intuitive properties. First,

adding new items to a recommendation set cannot decrease SMU:

Observation 1 SMU (A ∪B,W ) ≥ SMU (A,W ).



Incorporating options that are known to be dominated given W

does not change setwise maximin utility:

Observation 2 If u(a, w) > u(b, w) for some a ∈ Z and all w ∈
W , then SMU (Z ∪ {b},W ) = SMU (Z,W ).

Observation 3 MU and SMU can be explicitly expressed as the

minimization over different utility spaces

MU (A;W1∪W2)=min{MU (A;W1),MU (A;W2)}

SMU (A;W1∪W2)=min{SMU (A;W1),SMU (A;W2)}

The choice of x ∈ Z for SMU is dictated by which x has the

highest utility with respect to the chosen w ∈ W . Due to this, the

different choices of x ∈ Z define a partition of the utility space,

where a partition with respect to a given x is the region of W where

the utility of x is higher than any other option in Z. We make this

partition explicit:

W [Z → xi] = {w ∈ W : u(xi;w) > u(xj ;w) ∀j 6= i, 1 ≤ j ≤ k}

(i.e., the region of w where xi has greater utility than any other

option in Z). The regions W [Z → xi], xi ∈ Z, partition W (we

ignore ties over full-dimensional subsets of W , which are easily dealt

with, but complicate the presentation). We call this the Z-partition of

W . Using the Z-partition, we can rewrite SMU:

Observation 4 Let Z = {x1, . . . ,xk}. Then

SMU (Z,W ) =min
x∈Z

min
w∈W [Z→x]

u(x, w)

= min
i=1≤...≤k

MU (xi,W [Z → xi])

We use a similar notation to express the combination of two par-

titions: W [Z1 → xi,Z2 → xj ] = W [Z1 → xi] ∩ W [Z2 → xj ].
Using this notation, we observe the following inequality for all i, j:

(the proof is straightforward from the definition)

Observation 5 For all i, j ∈ {1 . . . k}:

MU (xi,W [Z → xi,Z → xj ] ≥ MU (xi,W [Z → xi])

3.2 Optimal Myopic Elicitation

Usually, utility information is not readily available, but must be ac-

quired through an elicitation process. Since elicitation can be costly,

it is important to ask queries that elicit the most information. Our set-

wise maximin utility criterion can be used directly for this purpose,

implementing a form of preference-based diversity. This stands in

contrast to “product diversity” typically considered in recommender

systems based on critiquing. And unlike recent work in polyhedral

conjoint analysis [14], which emphasizes volume reduction of the

utility polytope W , our maximin utility-based criterion is sensitive

to the range of feasible products and does not reduce utility uncer-

tainty for its own sake.

Any set Z can be interpreted as a query (or system-generated dy-

namic compound critique): We simply allow the user to state which

of the k elements xi ∈ Z she prefers. We refer to Z interchange-

ably as a query or a choice set. The choice of some xi ∈ Z refines

the set of feasible utility functions W by imposing the k − 1 linear

constraints u(xi;w) > u(xj ;w), j 6= i.

When treating Z as a choice set (as opposed to a recommen-

dation set), we are not interested in its maximin utility, but rather

in how much a query response will reduce maximin utility. In our

distribution-free setting, the most appropriate measure is posterior

maximin utility, a measure of the value of information of a query.

Generalizing the pairwise measure of [2], we define:

Definition 4 The worst case posterior maximin utility (WP) of Z =
{x1, . . . ,xk} is

WP(Z,W ) = min[MMU (W [Z → x1]), . . . ,MMU (W [Z → xk])]

which can be rewritten as:

WP(Z,W ) = min
x∈Z

max
x′∈X

min
w∈W [Z→x]

u(x′
,w)

An optimal choice set OptQuery(W ) is any Z that maximizes
worst case posterior maximin utility MaxWP(W ):

MaxWP(W ) = max
Z⊆X

WP(Z,W )

Intuitively, each possible response xi to the query Z gives rise to up-

dated beliefs about the user’s utility function. We use the worst-case

response to measure the quality of the query (i.e., the response that

leads to the updated W with lowest maximin utility). The optimal

query is that which maximizes this value. We observe:

Observation 6 WP(Z,W ) ≥ SMU (Z,W ).

Proof If we consider the definition of WP(Z,W ) and the

equation for SMU (Z,W ) in observation 4, we see that they are

the same except that WP(Z,W ) picks a maximizing x′ ∈ X after

x ∈ Z has been picked. Since X includes all options, x′ can at worst

be equal to x.

Using this fact, we introduce a transformation that modifies a

given recommendation set Z in such a way that SMU cannot de-

crease and usually increases. This will be used both for proving the

optimality of SMU as a choice set, and as a heuristic for efficiently

generating choice sets. Define the transformation T to be a mapping

that updates a given recommendation set Z in the following way: (a)

First we construct the Z partition of W ; (b) we then compute the

single recommendation that has maximin utility in each region of the

partition of W ; (c) finally, we let T (Z) be the new recommendation

set consisting of these new recommendations.

Definition 5 Let Z = {x1, . . . ,xk}. We define

T (Z) = {x∗
W [Z→x1], . . .x

∗
W [Z→xk]

}

Using Observation 3 and Observation 4, we prove the following.

Observation 7 Let Z = {x1, . . . ,xk}. Let be W 1, ...,W l be any

partition of W .

WP(Z,W ) =min
i

MMU (W [Z → xi])

=min
i

MU (x∗
W [Z→xi],W [Z → xi])

=min
i,j

{MU (x∗
W [Z→xi],W [Z → xi] ∩W

j)}



In particular, if we consider T (Z) = {x′
1, . . . ,x

′
k} where x′

i =
x∗
W [Z→xi]

and its induced partition on W , the exapression above

become the following.

WP(Z,W ) = min
i,j

{MU (x∗
W [Z→xi],W [Z → xi;T (Z) → x

′
i]}

Using this, we can now prove the following lemma:

Lemma 1 SMU (T (Z),W ) ≥ WP(Z,W )

Proof Let T (Z) = {x′
1, . . . ,x

′
k} where x′

i = x∗
W [Z→xi]

. The pre-
vious observations allow to write WP and SMU compactly

WP(Z,W ) = min
i,j

[MU (x′
i,W [Z → xi, T (Z) → x

′
j ])] (2)

SMU (T (Z),W ) = min
i,j

[MU (x′
j ,W [Z → xi, T (Z) → x

′
j ])] (3)

We now compare the two expressions componentwise. Con-

sider the utility space W [Z → xi, T (Z) → x′
j ]: if i = j then

the two MU components are the same. If i 6= j, consider any

w ∈ W [Z → xi, T (Z) → x′
j ]. Since w ∈ W [T (Z) → x′

j ],
we must have u(x′

j ;w) > u(x′
i;w). Therefore MU (x′

j ,W [Z →
xi, T (Z) → x′

j ]) ≥ MU (x′
i,W [Z → xi, T (Z) → x′

j ]). In

the expression of SMU (T (Z)) (Eq. 3), each element is no less

than its correspondent in the WP(Z) expression (Eq. 2). Thus

SMU (T (Z),W ) ≥ WP(Z,W ).

From observation 6 and lemma 1 it follows that

SMU (T (Z),W ) ≥ SMU (Z,W ).

Theorem 1 Let Z∗
W be a maximin optimal recommendation set.

Then Z∗
W is an optimal choice set: WP(Z∗

W ,W ) = MaxWP(W ).

Proof Suppose Z∗
W is not an optimal choice set, i.e., there is some

Z′ such that WP(Z′,W ) > WP (Z∗
W ,W ). If we apply transfor-

mation T to Z′ we obtain a set T (Z′), and by the results above

we have: SMU (T (Z′,W )) ≥ WP(Z′,W ) > WP(Z∗,W ) ≥
SMR(Z∗

W ,W ). This contradicts the (setwise) maximin optimality

of Z∗
W .

4 Maximin Utility Optimization

In this section we formalize the problem of generating recommenda-

tions (both single recommendations and setwise recommendations)

using mathematical programming techniques (linear programming

models and mixed integer programming models).

In the following we assume the utility to be linear in w: u(x;w) =
w · x. In this case W is convex polytope effectively represented by a

set of constraints. Whenever the user answer a query, new constraints

are added. We denote with Constraints(W) the set of constraints that

represent the space of feasible utility functions (consistent with the

user’s answers).

MU(x, W) Given a configuration x and a space of possible util-
ity functions W (encoded by linear constraints), the minimum utility

of x can be found by solving the following linear problem (w⊥
i and

w⊤
i are a lower and upper bound on the values of the utility parame-

ters wi; this can be used to encode a non-probabilistic “prior” on the
utility parameters).

min w · x =
∑

1≤i≤n

xi · wi

s.t. Constraints(W ) (4)

w⊥
i ≤ wi ≤ w⊤

i ∀i ∈ {1 . . . n} (5)

Decision variables: w (vector of size n)

MMU(W) Given a space of possible utility functions W (encoded
by linear constraints), the problem is to find the configuration x∗

W
that is associated with maximin utility. In order to “break” the max-
imin optimization, we make use of Benders decomposition:

max δ

s.t. δ ≤ w · x ∀w ∈ GEN (6)

Decision variables: x, δ

In this model, δ corresponds to the maximin utility of the opti-

mal recommendation x∗
W . Constraint 6 ensures that δ is less than

the utility of choice x for each w. The optimization is exact when

GEN = W in constraint 6. However, all the constraints over W

need not be expressed for each of the (continuously many) w ∈ W .

Since maximin utility is optimal at some vertex of W , we only

need to apply constraints for all vertices of W , which we denote

Vert(W ). However, the number of vertices in W can still be poten-

tially exponential. We apply constraint generation in order to make

solving the MIP much more efficient, as very few of the vertices are

usually needed. This procedure works by solving a relaxed version

of the problem above—the master problem— using only the con-

straints corresponding to a small subset GEN ⊂ Vert(W ). We then

test whether any constraints are violated in the current solution. This

is accomplished by computing the minimum utility of the returned so-

lution. If MU is lower than what was found in the master problem, a

constraint was violated. The vertex for this constraint (corresponding

to the choice wa of the adversary) is added to the master problem,

tightening the MIP relaxation. The new relaxation is computed, and

this process is repeated until no violated constraints exist.

Now we provide LP and MIP formulations that extend these opti-

mization to sets.

SMU(Z, W) Given a set Z and a space of possible utility func-

tions W the setwise minimum utility of Z can be found by solv-

ing k (k being the cardinality of Z) optimization problems, in

virtue of Observation 4. Considering the Z-partition of W, we com-

pute MU (x,W [Z → x]) for each x ∈ Z, using the LP model

shown above. We then take the (arithmetic) minimum of the results:

minx∈Z MU (x,W [Z → x]).

SMMU(W) Given utility space W , we can compute the maximin
optimal set (of cardinality k) using the following MIP.

max δ

s.t. δ ≤
∑

1≤j≤k

vjw ∀w ∈ GEN (7)

vjw≤w · xj ∀j ≤ k,w ∈ GEN (8)

vjw≤w⊤Ijw ∀j ≤ k,w ∈ GEN (9)
∑

1≤j≤k

Ijw = 1 ∀w ∈ GEN (10)

Ijw ∈ {0, 1} ∀j ≤ k,w ∈ GEN

Decision variables: xj , δ, Iw , vw

In this model, δ corresponds to the setwise maximin utility of the

optimal set Z∗
W . M is an arbitrary large number; w⊤ is some upper

bound on the values taken by the weight parameters. Constraints 7,

8 and 9 ensures that δ is less than the utility of the best option in

{x1, ...,xk} for each w, by introducing a variable v (for each w and

each element of the set) to represent the value of minimum utility for

the item selected, and indicators Iw to represent the selection. Only

one vw will be different from zero for each w, and since the objective

function is maximized, the optimization will set vjw = w · xj for

the j such that Ijw = 1; constraint 9 enforces 0 in the other cases.



Constraint 10 ensures that only one of the k items is selected for

each utility function w.

We employ constraint generation in a way analogous to the single

item case. At each step of the optimization, we compute the setwise

minimum utility, solved using a series of LPs (as discussed above).

Alternative Heuristics Setwise optimization requires solving a

large number of MIPs using constraint generation strategies. We also

present a number of heuristic strategies that are computationally less

demanding.

• The current solution strategy (CSS) proceeds as follows.

Consider wa, the adversary’s utility minimizing the util-

ity of x∗
W , the current maximin optimal recommenda-

tion; u(x∗
W ;wa) = MU (x∗

W ;W ). Let’s further con-

sider xa = argmaxx∈X u(x;wa). CSS will return the

set ZCSS = {x∗
W ,xa}. We extend this to sets with

cardinality greater than two. Considering a set Z, de-

fine wa(Z) = argminw∈W maxx∈Z u(x;w) and be

xa(Z) = argmaxx∈X u(x;wa(Z)). The chain of adver-

saries strategy constructs a set of size k starting by initializing Z

to be ZCSS , the set of size two returned by the current solution

strategy, and then iteratively add one element (k − 2 times) by

setting Z := Z ∪ xa(Z).
• The query iteration strategy (QIS) directly applies the T oper-

ator until a fixed point is reached. A fixed point is such that

SMU (T (Z);W ) = SMU (Z;W ).

5 Experiments

Using randomly generated elicitation data we ran a number of ex-

periments using the algorithms described above. For all experiments,

we generated constraints on the possible options using random bi-

nary constraints of the form ¬f1∨¬f2 where f1 and f2 are features.

We also assume some prior knowledge of user preferences, repre-

sented by random utility constraints of the form w · xk ≥ w · xl,

where xk and xl are random assignments ∈ [0, 1]m (not necessarily

feasible options) sampled with uniform probability over all possible

assignments. The user’s preference values w1 . . . wn are random and

normalized such that
∑

w∈W
w = 1. Finally, for all experiments we

use recommendation/query sets of size (k) 3.

First, we ran experiments to determine how the runtime of the al-

gorithms are affected by increasing instance sizes. This was done by

running the algorithms on instances ranging from 10 to 15 features,

with 30 experiments performed on each size. The average runtimes

for these experiments can be seen in figure 1. As seen in the figure,

runtime of exact SMMU computation becomes rapidly higher, and

we were unable to perform experiments with more than 15 features,

as several of the 30 experiments per size would time out with 16

features. In contrast to this we see that the runtime of the CSS and

QIS algorithms do not rise significantly as the number of features

increase. Due to this, we focus on the performance of CSS and QIS

in the following experiments, as SMMU computation is too slow for

practical use.

Using the CSS and QIS algorithms, we ran experiments to de-

termine how the MMU optimal recommendation improves as more

queries are asked. These were performed using larger instances, with

30 features per instance, 40 binary feature constraints and 40 utility

constraints. In figure 2 we present the utility loss from recommend-

ing the MMU optimal recommendation as opposed to the optimal

recommendation according to the user’s preferences, as a function of
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Figure 1. Average runtime of query computation for an increasing number
of features. Averaged over 30 instances per size, with k = 3
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Figure 2. Average utility loss of the optimal recommendation as a function
of the number of queries, using the CSS and QIS algorithms. Averaged over

30 instances, with k = 3.

the number of queries. The CSS and QIS algorithms have compara-

ble performance, both improving utility loss by a small margin.

In figure 3 we show the minimum utility guarantee from the MMU

recommendation as it increases with more queries asked. It quickly

increases with the first 4-5 queries, but after that there is little im-

provement. While our theoretical results show that there is a con-

nection between the problem of generating recommendations and

queries, our results show that the pessimistic maximin decision crite-

rion is generally not able to effetively elicit user preferences beyond

the first few queries. In this case, it might be useful to adopt a non-

myopic approach, or an alternative decision criterion.

Further investigation is required to determine in which settings our

framework can be used effectively in interactive elicitation, and how

to avoid stalling.

We also note that it is of course possible to use maximin as a de-

cision criterion, while resorting to other strategies (perhaps based on

regret or on probabilistic methods) to decide the next query.
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Figure 3. Average minimum utility as a function of the number of queries
using the CSS and QIS algorithms. Averaged over 30 instances, with k = 3.

6 Discussion

In this paper we have developed a novel formalization for decision-

making under utility uncertainty (making recommendations) using

the maximin utility criterion. This approach allows for the highest

degree of robustness, as the option recommended is guaranteed to

ensure highest utility in the worst case. We formulated the problem

of generating recommendation sets and introduced a new decision

criteria. We developed computational MIP methods for optimal rec-

ommendation sets, as well as tractable approximations.

Moreover, following analogous models available for the minimax

regret and Bayesian frameworks, we showed the connection between

the problem of generating optimal recommendation sets and myopi-

cally optimal elicitation queries. This shows that our setwise max-

imin criterion, a natural extension of maximin to sets, in addition to

providing robust recommendation sets, also serves as a means of gen-

erating myopically optimal choice queries (asking the user to pick his

most preferred option in a slate).

Finally, we provided preliminary experimental results, showing

performance of our approach on randomly generated data. We

showed that maximin as an elicitation framework can provide good

initial queries, but in an interactive setting it often stalls before find-

ing the optimal recommendation.

We conclude with a remark about the choice of the decision cri-

terion. A common criticism about maximin is that it can be overly

pessimistic. Indeed expected utility (assuming a prior is available)

or minimax regret may yield better recommendations in many cases.

However, when a decision maker wishes guarantees on the worstcase

performance (perhaps in critical decisions with high stakes), she

must be willing to sacrifice “average” utility for such guarantee. This

is the price to pay for the (strong) worstcase guarantees of maximin!

We argue that the question of what criterion to use is almost philo-

sophical, as there is no “right” or “wrong” decision criterion (each

one might be better suited to different decision contexts).
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Explaining Qualitative Preference Models

Wietske Visser and Koen V. Hindriks and Catholijn M. Jonker1

Abstract. We propose an explanation facility for a qualitative pref-

erence representation framework. We show how an explanation can

be provided for qualitative, multi-criteria preferences based on the

criteria that are used to decide preferences between outcomes. Such

a facility provides an important tool for a user to understand how

preferences are determined. We show that this facility can also be

used by a user to inform the system about its preferences. Such a

user-provided explanation can be used for updating and improving a

preference model maintained by the system.

1 INTRODUCTION

A preference representation framework provides a tool for determin-

ing preferences between outcomes. That is, for any two outcomes it

can determine whether one is strictly preferred to the other, both are

equally preferred, or they are incomparable. In this paper, we discuss

an additional facility, namely the explanation of preferences main-

tained by such a system. Explanation of preferences is useful and

important in many cases, such as situations where a decision maker

has to explain his decision to other actors; where a decision support

system that is elicited from an expert has to explain its list of rec-

ommended options to a non-expert user; or where agents may give

each other feedback on offers in negotiation, without revealing all

their preferences [6]. Another reason to use explanation is to improve

users’ confidence in a system, since lack of confidence is an obstacle

to acceptance and practical use of the system [7]. In these cases, it is

not satisfactory to just present the preference model. Although this

model does contain all information on which the preference is based,

the format is not suitable for presentation to a user. First, the model

is too technical for the average human user to interpret. Second, even

experts may have trouble interpreting the model since it may be quite

large, and hence it would be hard to quickly find the reason behind

the preference.

Besides explaining someone’s preferences to another party, expla-

nation may also be used ‘in reverse’ during preference elicitation and

updating. Here the idea is as follows. The user is not only asked to

state his preference between two given outcomes, but also to explain

this preference. This explanation can then be used to update the pref-

erence model in such a way that the explanation for the user’s pref-

erence that would be generated by the updated model coincides with

the explanation given by the user.

In this paper we propose an approach to generate explanations

from a preference model and to use explanations to update a pref-

erence model. The preference models we consider are expressed in

a particular preference representation framework called Qualitative

Preference Systems (QPS) [8, 9]. QPS is a general framework for

1 Interactive Intelligence Group, Delft University of Technology, The Nether-
lands, email: {Wietske.Visser, K.V.Hindriks, C.M.Jonker}@tudelft.nl

the representation of qualitative, multi-criteria preferences. In Sec-

tion 2, we give a summary of the QPS framework. In Section 3 we

propose a way to explain qualitative preferences by the deciding cri-

teria, and discuss in particular how this can be implemented for QPS

models. In Section 4 we discuss how such explanations, if given by

the user of a system, can be used to update the system’s current model

of the user’s preferences. We give detailed interaction diagrams that

indicate when and how a QPS preference model should be altered.

Section 5 concludes the paper.

2 QUALITATIVE PREFERENCE SYSTEMS

The main aim of the Qualitative Preference System (QPS) frame-

work [8, 9] is to determine preferences between outcomes in a purely

qualitative way. Outcomes are defined as variable assignments that

respect the constraints in a knowledge base. The preferences between

outcomes are based on multiple criteria. Every criterion can be seen

as a reason for preference, or as a preference from one particular

perspective. We distinguish between simple and compound criteria.

Simple criteria are based on a single variable. Multiple (simple) crite-

ria can be combined in a compound criterion to determine an overall

preference. QPS distinguishes between two kinds of compound cri-

teria: cardinality criteria and lexicographic criteria. The subcriteria

of a cardinality criterion all have equal priority, and preference is de-

termined by a kind of voting mechanism that counts the number of

subcriteria that support a certain preference and those that do not. In

a lexicographic criterion, the subcriteria are ordered by priority and

preference is determined by the subcriteria with the highest priority;

lower priority subcriteria only influence the preference if the higher

priority subcriteria are indifferent.

Definition 1. (Qualitative Preference System [8]) A Qualitative

Preference System (QPS) is a tuple ⟨Var,Dom,K,C⟩. Var is a finite

set of variables. Every variable X ∈ Var has a domain Dom(X) of

possible values. K (a knowledge base) is a set of constraints on the

assignments of values to the variables in Var. An outcome α is an

assignment of a value x ∈ Dom(X) to every variable X ∈ Var, such

that no constraints in K are violated. Ω denotes the set of all out-

comes: Ω ⊆ ∏X∈Var Dom(X). αX denotes the value of variable X in

outcome α . C is a finite rooted tree of criteria, where leaf nodes are

simple criteria and other nodes are compound criteria. Child nodes

of a compound criterion are called its subcriteria. The root of the tree

is called the top criterion. Weak preference between outcomes by a

criterion c is denoted by the relation ⪰c. ≻c denotes the strict subre-

lation, ≈c the indifference subrelation. α ≻cβ denotes that α /⪰c β and

β /⪰c α .

Definition 2. (Simple criterion [8]) A simple criterion c is a tuple

⟨Xc,uc⟩, where Xc ∈Var is a variable, and uc, a preference relation on

the possible values of Xc, is a preorder on Dom(Xc). ⋗c is the strict



Table 1. Explanations

lexicographic criterion c goal-based cardinality criterion c

α ≻c β any subcriterion s ∈Cc such that α ≻s β and for all s′ ∈Cc ∶
if s′ ⊳ s then α ≈s′ β and if s′ ⊳s then α ⪰s′ β or there is a

s′′ ∈Cc(s
′′ ⊳c s′ and α /≈s′′ β)

the set of subgoals g ∈Cc such that α ≻g β

α ≈c β for all subcriteria s ∈Cc: α ≈s β the set of subgoals g ∈ Cc such that α ≻g β plus the set of

subgoals g ∈Cc such that β ≻g α

α ≻cβ 1: any subcriterion s ∈Cc such that α ≻sβ and for all s′ ∈Cc ∶
if s′ ⊳ s then α ≈s′ β

2: any pair of subcriteria (s1,s2) where s1,s2 ∈Cc such that

α ≻s1 β and β ≻s2 α and s1 ⊳cs2 and for all s′ ∈Cc ∶ if s′ ⊳c s1

or s′ ⊳c s2 then α ≈s′ β

n/a

subrelation, ≐c is the indifference subrelation. A simple criterion c =
⟨Xc,uc⟩ weakly prefers an outcome α over an outcome β , denoted

α ⪰c β , iff αXc
uc βXc

.

Definition 3. (Goal [9]) A QPS goal is a simple criterion ⟨X ,u⟩,
where X ∈ Var is a Boolean variable (Dom(X) = {⊺,�}), and ⊺ ⋗ �.

Definition 4. (Goal-based cardinality criterion [9]) A goal-based

cardinality criterion c is a tuple ⟨Cc⟩ where Cc is a nonempty set

of goals (the subcriteria or subgoals of c). A goal-based cardinality

criterion c = ⟨Cc⟩ weakly prefers an outcome α over an outcome β ,

denoted α ⪰c β , iff ∣{s ∈Cc ∣ α ≻s β}∣ ≥ ∣{s ∈Cc ∣ α /⪰s β}∣, or equiva-

lently, iff ∣{s ∈Cc ∣ αXs
= ⊺}∣ ≥ ∣{s ∈Cc ∣ βXs

= ⊺}∣.

Note that a goal-based cardinality criterion can only have goals as

subcriteria. This is to guarantee transitivity of the preference relation

induced by a cardinality criterion [8].

Definition 5. (Lexicographic criterion [8]) A lexicographic crite-

rion c is a tuple ⟨Cc,⊳c⟩, where Cc is a nonempty set of criteria (the

subcriteria of c) and ⊳c, a priority relation among subcriteria, is a

strict partial order (a transitive and asymmetric relation) on Cc. s ⊳cs′

denotes that s /⊳c s′ and s′ /⊳c s. A lexicographic criterion c = ⟨Cc,⊳c⟩
weakly prefers an outcome α over an outcome β , denoted α ⪰c β , iff

∀s ∈Cc(α ⪰s β ∨∃s′ ∈Cc(α ≻s′ β ∧ s′ ⊳c s)).

3 EXPLAINING PREFERENCES

Ideally, any explanation given to a human user should be easily un-

derstandable by that user. Therefore, both the content and the format

of the explanation matter. [6] distinguishes between two steps in ex-

planation generation. First, the content of the explanation has to be

selected. Next, a natural language explanation has to be generated.

Like [6], we focus on the first step and only look at the content of an

explanation. An example of natural language generation for evalua-

tive arguments such as explanations can be found in [2].

We are not aware of any work on the explanation of preferences

represented in a qualitative framework, but some work has been done

on the explanation of (decisions based on) quantitative preferences.

Klein and Shortliffe [5] presented strategies for automatically ex-

plaining decisions based on Multiattribute Value Theory (a quan-

titative preference representation framework). The explanations are

based on the compellingness of objectives. Labreuche [6] presents a

general framework for explaining the results of a multi-attribute pref-

erence model. He takes a quantitative approach where the utilities of

the combined criteria are weighted and summed to obtain an overall

utility. He develops a formal framework that justifies the selection of

arguments (criteria) to be presented as explanation of a preference.

One of the main differences between quantitative and qualitative

approaches to multi-criteria preference modelling is that quantitative

approaches are compensatory, whereas their qualitative counterparts

are not. In quantitative approaches, a low score on one criterion can

be compensated by high scores on other criteria, even if the other

criteria are less important, as long as the scores are high enough. In

qualitative approaches, this is not possible. For example, if one out-

come is preferred to another according to the highest priority subcri-

terion of a lexicographic criterion, it will also be preferred according

to this lexicographic criterion, no matter what the preferences of the

other subcriteria are. This allows us to precisely identify the criteria

that are ‘responsible’ or ‘deciding’ for the overall preference. It is

our intuition that these criteria also provide a natural explanation for

the overall preference.

Explanations for preferences by QPS criteria

We now turn to the question how a preference between two outcomes

by a QPS criterion can be explained. The answer to this question de-

pends on the kind of criterion that is considered. Preferences by sim-

ple criteria (including goals) are self-explanatory, since they follow

immediately from the specification of the simple criterion or goal.

For example, a simple criterion c strictly prefers an outcome α to an

outcome β because α’s value of Xc is better than β ’s value of Xc.

Similarly, a goal c strictly prefers an outcome α to an outcome β be-

cause α satisfies c but β does not. Of course, these facts may in turn

require explanation. But since this would be explanation of knowl-

edge (factual information about outcomes) rather than preferences,

we do not discuss this topic here.

Preferences by compound criteria can be explained by the subcri-

teria that are deciding in the overall preference. Which subcriteria

are deciding depends both on the kind of compound criterion (lexi-

cographic or goal-based cardinality criterion) and on the kind of pref-

erence (strict, equal or incomparable). The deciding factor may be a

single subcriterion, a pair, or even a set of multiple subcriteria that to-

gether determine the overall preference. In the following, we discuss

the deciding subcriteria (and hence the explanations) for both kinds

of compound criteria and for all kinds of preferences. An overview

is given in Table 1.

Lexicographic criteria

Strict preference Suppose a lexicographic criterion c strictly

prefers an outcome α over an outcome β (α ≻c β ). The explana-

tion of this preference is given by a subcriterion s that strictly prefers

α to β (α ≻s β ). But not just any subcriterion that strictly prefers

α to β will do. First, every subcriterion s′ with a higher priority

than s (s′ ⊳c s) has to be indifferent: α ≈s′ β , otherwise s would
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c1

c2

c3

c4
⊳

⊳

⊳

α ≈c1 β ≈c1 γ ≻c1 δ

α ≻c2 β ≈c2 γ ≻c2 δ

α,δ ≻c3 β ≈c3 γ; α ≻c3 δ

γ ≈c4 β ≻c4 δ ≻c4 α

Figure 1. Example lexicographic criterion

have been overruled by s′. Second, every subcriterion s′ whose pri-

ority is incomparable to that of s (s′ ⊳cs) and which is not overruled

(∀s′′ ⊳c s′ ∶ α ≈s′′ β ) has to agree with s or be indifferent (α ⪰s′ β ),

otherwise s would not have decided the preference by c.

Example 1. Consider the lexicographic criterion c displayed in Fig-

ure 1. It has four subcriteria c1,c2,c3,c4 such that c1 ⊳c c2 ⊳c c4 and

c3 ⊳c c4. The nature of the subcriteria is unspecified, but their pref-

erences regarding four outcomes α,β ,γ,δ are given. The criterion c

strictly prefers α over β : α ≻c β . The subcriteria that can explain this

preference are c2 and c3. c3 strictly prefers α over β , and is undom-

inated. c2 also strictly prefers α over β , and is dominated only by an

indifferent criterion (c1). Neither is ‘contradicted’ by a criterion with

incomparable priority.

Equal preference A lexicographic criterion c is only indifferent

between two outcomes α and β (α ≈c β ) if all its subcriteria are

indifferent between α and β . No single subcriterion is deciding in

the overall preference, but all subcriteria contribute equally (note

that priority does not matter, since indifferent criteria do not over-

rule lower priority criteria). This means that the explanation of the

indifference is given by the fact that all subcriteria are indifferent.

Example 2. Consider again the lexicographic criterion c in Figure

1. c is indifferent between β and γ , because all subcriteria are indif-

ferent between β and γ .

Incomparability If a lexicographic criterion c cannot compare be-

tween two outcomes α and β (α ≻cβ ), this incomparability can have

two possible reasons. First, the incomparability may result from a

subcriterion s that cannot compare between α and β (α ≻sβ ). Like in

the case of strict preference, every subcriterion s′ with a higher pri-

ority than s (s′ ⊳c s) has to be indifferent: α ≈s′ β , otherwise s would

have been overruled by s′.

Example 3. Consider again the lexicographic criterion c in Figure

1. c cannot compare between α and δ . This is due to subcriterion c3,

which cannot compare between α and δ , and which is not overruled

by any other subcriterion. Therefore c3 explains c’s incomparability

between α and δ .

Second, the incomparability may result from two conflicting sub-

criteria that do not overrule each other. That is, there is one subcrite-

rion s1 that strictly prefers α to β (α ≻s1 β ), and all higher priority

subcriteria are indifferent. There is also another subcriterion s2 that

strictly prefers β to α (β ≻s2 α), and all higher priority subcriteria

are indifferent. Note that this also means that s1 and s2 have incom-

parable priorities, which means that neither overrules the other, so no

preference can be determined. In this case, the subcriteria s1 and s2

together explain the incomparability.

Example 4. Consider again the lexicographic criterion c in Figure 1.

c cannot compare between γ and δ . Subcriterion c3 strictly prefers δ

c2

g1 g2 g3 g4

α

β

γ

⊺

�

⊺⊺

⊺⊺

⊺⊺

��

�

�

Figure 2. Example goal-based cardinality criterion

over γ , the other three subcriteria stricly prefer γ over δ . Not all sub-

criteria are suitable to explain the incomparability. c4 is discarded

because c3 has higher priority. But also c2 should not be used, even

though it is incomparable in priority with c3. This is because c1 has

higher priority and is not indifferent. This makes c1 and c3 the decid-

ing criteria that are used as explanation.

Goal-based cardinality criteria

Strict preference Suppose a goal-based cardinality criterion c

strictly prefers an outcome α over an outcome β (α ≻c β ). Then this

is because the subgoals that α satisfies outnumber the subgoals that

β satisfies. There may be subgoals that are satisfied by both α and

β . They are counted on both sides, but do not influence the overall

preference between α and β . Therefore, as an explanation of c’s pref-

erence of α over β we only consider the subgoals g that α satisfies

but β does not (αXg
= ⊺ and βXg

= �, or equivalently, α ≻g β ).

Example 5. Consider the goal-based cardinality criterion c2 dis-

played in Figure 2. It has four goals g1,g2,g3,g4 as subcriteria. For

three outcomes α,β ,γ it is given whether they satisfy each of the

four goals. The criterion c2 strictly prefers α to β . The explanation

of this preference is given by the goals g1 and g2 that α satisfies but

β does not. Although α also satisfies goal g3, this goal is not used in

the explanation since it is also satisfied by β and hence is not decid-

ing in the overall preference. Similarly, c2’s preference of α over γ

can be explained by the goals g2 and g3.

Equal preference If a goal-based cardinality criterion c equally

prefers two outcomes α and β (α ≈c β ), this means that both out-

comes satisfy the same number of subgoals of c. However, it does

not necessarily mean that both outcomes satisfy the same goals. As

explanation, we take the goals that α satisfies but β does not, and

the set of goals that β satisfies but α does not. Both (disjoint) sets

contain the same number of goals, which compensate for each other.

This explains the indifference between the two outcomes.

Example 6. Consider again the goal-based cardinality criterion c2

in Figure 2. c2 is indifferent between β and γ . Both outcomes satisfy

two goals, but one goal (g4) is satisfied by both outcomes. Therefore

the explanation of the indifference is given by g3 (which is satisfied

by β but not by γ) and g1 (which is satisfied by γ but not by β ).

4 USING EXPLANATION TO UPDATE A
PREFERENCE MODEL

Before a preference model can be used in practice in a system, it has

to be constructed or instantiated. Preference elicitation is likely to be

an iterative process, and for this reason an existing preference model



should also be updateable. There are several ways of constructing

and updating a preference model. In this paper we focus on the ap-

proach of guiding preference elicitation by asking the user partic-

ular questions and updating the preference model according to the

answers. The advantages of this approach are that it provides an in-

tuitive interaction with non-expert users and that preferences can be

discovered during the process. In particular, we consider the case in

which the user is asked not only to give his preference between two

outcomes, but also to provide an explanation for this preference. This

explanation can then be used to update the current preference model.

If the user just provides his preference between outcomes, there may

be many different ways in which the model could be updated to re-

flect this preference. The added value of additionally obtaining an

explanation from the user is that it provides clues on how exactly

the model should be updated, possibly after some further interaction

involving targeted follow-up questions.

Updating a QPS model with explanations

We investigate how a system’s current model of the user’s prefer-

ences can be updated by engaging in a conversation with the user. Us-

ing explanations of preferences given by a user, the system can find

out whether its current representation is accurate, and if not, where

it has to be changed. Our approach allows for an initial model to be

present that can be adapted by the user. The user can add preference

information on his own initiative, or alternatively the system can ask

the user to provide specific preferences (for example between two

outcomes that are incomparable in its current model). In any case, if

the preference given by the user does not match the preference that

follows from the system’s current model, the user is asked to pro-

vide an explanation. We assume that the user’s explanation of his

preference coincides with one of the explanations listed in Table 1.

Depending on the user’s answer and the nature of the top criterion

(lexicographic or goal-based cardinality), the system can proceed by

asking follow-up questions or updating its preference model in a par-

ticular way.

In the following, we discuss every situation in detail and provide

interaction diagrams for each. We assume that the user has stated a

preference between two outcomes that is not supported by the sys-

tem’s current preference model. It is important to distinguish be-

tween the current preference model maintained by the system, and

the statements of the user. Since the interaction is designed to iden-

tify the elements of the model that need to be updated, the user’s

statements typically disagree with the current model. The interaction

diagrams start with the system asking for an explanation for the given

preference. The system’s possible responses depend on the explana-

tion given and the current preference model. More than one response

may be applicable. In that case, the system should keep the interac-

tion going until the preference model induces the given preference.

When the process is finished, the updated preference model should

not only model the preference given by the user, but also generate the

same explanation for it.

Lexicographic criteria

Strict preference The interaction diagram for updating a prefer-

ence model with a strict preference of an outcome α over an outcome

β by a lexicographic criterion c is given in Figure 3. The explanation

of such a preference is given by a subcriterion s of c that, according

to the user, strictly prefers α to β . There can be different reasons

why this subcriterion does not decide c’s preference in the current

preference model S.

● First, s may not strictly prefer α to β according to S. In this case,

the user is asked to explain this preference.

● Second, s may not be listed as a subcriterion of c in S. In this case,

the system adds s to the set of subcriteria Cc.

● Third, according to S there may be another subcriterion s′ that over-

rules s, i.e. that has higher priority but is not indifferent between α

and β . In this case, the user is asked to clarify this issue, and may

respond in several ways. (i) If the user states that s′ actually is in-

different, he is asked for an explanation. (ii) If the user states that s

actually has higher priority than s′, the system updates the priority

relation accordingly. (iii) If the user states that s′ is not actually a

subcriterion, the system removes s′ from Cc.

● Fourth, according to S there may be another subcriterion s′ that is

not comparable in priority to s, does not weakly prefer α to β , and is

not overruled. In this case, the user is asked to clarify this issue. The

same responses by the user as in the previous case are possible, plus

two more. (iv) If the user states that s′ actually strictly prefers α to

β , he is asked to give an explanation. (v) If the user states that there

actually is another subcriterion s′′ with higher priority that strictly

prefers α to β , there are three options. If the preference does not

follow from S, then the user is asked for an explanation. If s′′ does

not have higher priority than s′ in S, the system updates the priority

relation. And if s′′ was not listed as a subcriterion of c, the system

adds it with the right priority.

Equal preference The interaction diagram for updating a prefer-

ence model with an equal preference between two outcomes α and β

by a lexicographic criterion c is given in Figure 4. Such a preference

is explained by the fact that, according to the user, all subcriteria are

indifferent. There can only be one reason that the indifference does

not follow from the current preference model S.

● There must be a subcriterion s in S that is not indifferent. In this

case, the user is asked to clarify this issue. He can do so in two dif-

ferent ways. (i) If the user states that s is actually indifferent, he is

asked to give an explanation. (ii) If the user states that s is not ac-

tually a subcriterion of c, then the system removes s from the set of

subcriteria Cc.

Incomparability The interaction diagram for updating a prefer-

ence model with an incomparability between two outcomes α and

β by a lexicographic criterion c is given in Figure 5. Since there are

two kinds of explanation of such an incomparability, the interaction

tree splits into two branches. If the incomparability is explained by

a subcriterion that cannot compare between α and β according to

the user, the possible responses are very similar to the case of strict

preference. Therefore we do not discuss this case here but refer to the

lefthand branch in Figure 5 for the details. If the incomparability is

explained by two contradicting subcriteria s1 and s2, where α ≻s1 β

and β ≻s2 α according to the user, there can be different reasons why

these subcriteria do not decide c’s preference in the current prefer-

ence model S.

● First, it may be that α /≻s1 β or β /≻s2 α according to the current

preference model S. In this case, the user is asked to explain that

preference.

● Second, s1 or s2 may not be listed as a subcriterion of c in S. In this

case, the system adds it to the set of subcriteria Cc.

● Third, according to S there may be another subcriterion s′1 that over-

rules s1. In this case, the user can reply in different ways. (i) If the

user states that s′1 is actually indifferent between α and β , he is asked

for an explanation. (ii) If the user states that s′1 does not actually have

higher priority than s1, the system updates the priority relation ac-
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cordingly. (iii) If the user states that s′1 is not actually a subcriterion

of c, then the system removes s′1 from the set of subcriteria Cc.

● Fourth, according to S there may be another subcriterion s′2 that

overrules s2. This case is handled analogously to the third case.

Goal-based cardinality criteria

Strict preference The interaction diagram for updating a prefer-

ence model with a strict preference of an outcome α over an outcome

β by a goal-based cardinality criterion c is given in Figure 6. The ex-

planation of such a preference is given by a set of subgoals g1, . . . ,gn

that are all satisfied by α but not by β according to the user. There

can be different reasons why this set of goals does not decide c’s

preference in the current preference model S.

● First, one of the goals may not be satisfied by α in S. In this case,

the user is asked to explain this fact.

● Second, one of the goals may be satisfied by β in S. In this case,

the user is also asked to give an explanation.

● Third, one of the goals may not be listed as a subgoal of c in S. In

this case, the system adds it to the set of subgoals Cc.

● Fourth, there may be a set of goals g′1, . . . ,g
′

m that are all satisfied

by β but not by α according to S, which contains at least as many

goals as g1, . . . ,gn. In this case, the user is asked to clarify this issue,

and may respond in several ways. (i) If the user states that one of the

goals is actually satisfied by α or (ii) not satisfied by β , he is asked

to for an explanation. (iii) If the user states that one of the goals is

actually not a subgoal of c, then the system removes this goal from

the set of subgoals Cc.

Equal preference The interaction diagram for updating a prefer-

ence model with an equal preference between two outcomes α and

β by a goal-based cardinality criterion c is given in Figure 7. The

explanation of such a preference is given by two equally sized sets

of subgoals: g1, . . . ,gn that are all satisfied by α but not by β , and

g′1, . . . ,g
′

n that are all satisfied by β but not by α according to the

user. Again, there can be different reasons why these sets of goals do

not decide c’s preference in the current preference model S.

● First, according to S, α may not satisfy some gi, β may satisfy

some gi, β may not satisfy some g′i , or α may satisfy some g′i . In this

case, the user is asked to give an explanation.
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by a goal-based cardinality criterion

● Second, any gi or g′i may not be listed as a subgoal of c in S. In this

case, the system adds it to the set of subgoals Cc.

● Third, according to S there may be a goal gm in Cc that is not in

g1, . . . ,gn and is satisfied by α but not by β . In this case, the user

is asked to clarify this issue and may respond in several ways. (i) If

the user states that β actually satisfies gm, or (ii) α actually does not

satisfy gm, he is asked to explain this fact. (iii) If the user states that

gm is actually not a subgoal of c, then the system removes gm from

the set of subgoals Cc.

● Fourth, according to S there may be a goal g′m in Cc that is not in

g′1, . . . ,g
′

n and is satisfied by β but not by α . This case is handled

analogously to the third case.

5 CONCLUSION

Qualitative Preference Systems (QPS) [8, 9] provide a general frame-

work for the representation of qualitative, multi-criteria preferences.

We have shown that the composite tree structure of multiple criteria,

combined with the non-compensatoriness of a qualitative approach

provides a basis for the generation of explanations for the prefer-

ences that follow from a preference model represented in the QPS

framework. The explanation strategy that we proposed is based on

the intuition that preferences between outcomes can be explained by

the criteria that are deciding in the overall preference. We identified

the explanations that can be given for different preferences by dif-

ferent kinds of criteria. We then showed that the same explanations

can also be useful when updating a preference model, because they

provide information on how exactly the model should be updated.

Some interesting issues remain for future work. First, in some in-

stances it may be necessary to explain facts about the outcomes in-

volved in a preferential comparison, e.g. to explain why they do or do

not satisfy a particular goal. Explanation of knowledge and reasoning

is a separate field of study that may provide solutions to this issue.

Second, when the system updates the priority relation between two

subcriteria of a lexicographic criterion, this relation has to remain a

partial order. Moreover, as the system iteratively engages in an inter-

action with the user as described here, it has to ensure that the previ-

ous preferences and explanations expressed by the user remain valid.

It is important to investigate how such consistencies can be ensured.

Third, the explanation of preferences may be part of a larger picture,

for example in recommendation, decision making or planning. We

would like to investigate how the explanation mechanism presented

here can be embedded in other explanation mechanisms, such as the

one presented in [1], where a tree structure of goals and beliefs is

used to explain actions. Besides these theoretical considerations, we

would like to take a more practical approach and implement the QPS

framework together with the proposed explanation mechanism and

update mechanism. We can then experimentally test the validity of

our intuitions. This is related to the work of [3], who tested the pre-

dictive performance of the Take the Best (TTB) heuristic [4], which

is a simplified instantiation of the lexicographic rule.
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Abstract. Maintaining comfortable thermal conditions in an office

environment is very important, as it can affect the quality of life of the

occupants, their work productivity, and improve energy efficiency.

One significant aspect of this task is how to balance the preferences

of a number of occupants sharing the same space. We analyse and

suggest some approaches to this problem, both for the case of opti-

mising for a single time period, and for the problem of optimising

over multiple different time periods.

1 INTRODUCTION

Maintaining comfortable thermal conditions in an office environment

is clearly very important; apart from the quality of life of the occu-

pants, it can also affect work productivity, and is very relevant for

energy efficiency, since it can save considerable wastage through, for

instance, overheating a room [15, 17]. One significant aspect of this

task is how to balance the preferences of a number of occupants shar-

ing the same space.

For a single occupant, one approach is, for each potential vector

of environmental conditions, to produce a prediction of how they are

likely to feel (e.g., a little warm), based on a scale for thermal sen-

sation or comfort (see Section 2). We can then use this to generate a

predicted dissatisfaction value. For example, if we are just using tem-

perature to predict occupant responses, then each potential value of

temperature is assigned a predicted dissatisfaction level, with a value

of zero meaning completely comfortable. This therefore gives an ob-

jective function which we can aim to minimise. (This minimisation

process can be complex, but is not the focus of the current paper.)

In Section 3 we consider the problem of evaluating overall occu-

pant dissatisfaction for a single occupant over a number of (poten-

tially temporally distant) time periods. Perhaps the main motivation

for considering this situation is as a special case of the multiple oc-

cupants over time case. We argue that transforming the occupant dis-

satisfaction levels to a linear scale is very desirable.

We next (Section 4.1) consider the problem of evaluating overall

occupant dissatisfaction for several occupants at a single timepoint

(or time period). For multiple occupants, the notion of fairness comes

into play. In Section 4.2 we consider the problem of evaluating over-

all occupant dissatisfaction for several occupants over a number of

time-periods. The purpose of considering multiple timepoints is that

it can be much easier to balance the occupant preferences over time,

rather than for a single timepoint: we may be able to balance the

mild discomfort felt by an occupant in one kind of scenario by what

happens at other times. Section 5 concludes.

2 THERMAL COMFORT

Scales for Thermal Comfort: We want to predict how dissatis-

fied occupants are regarding thermal comfort in different environ-

ments. The standard ASHRAE seven-point thermal sensation scale

[1] has integers −3 to +3 representing cold, cool, slightly cool, neu-

tral, slightly warm, warm and hot, respectively. However, we are in-

terested in occupant thermal comfort rather than thermal sensation,

and they are not quite the same thing [2]. Because of this it is perhaps

preferable to use labels that express thermal comfort more directly,

such as: “Too cold”, “slightly too cold”, “a little cool”, “comfort-

able”, “a little warm”, “too warm”, “too hot”. To allow expression

of more extreme situations, we can add further points to the ends of

the scale such as e.g., +4 for “much too hot”, and +5 for “almost

unbearably hot”.

Predicting Thermal Comfort: Our approach relies on us being

able to predict the thermal comfort of occupants based on different

environmental conditions. Fanger’s model [4] predicts the degree of

a thermal sensation of an individual based on four physical variables

and two personal variables: air temperature, air velocity, mean ra-

diant temperature, relative humidity, clothing insulation and activity

level. This mostly performs reasonably well [2, 7]. An alternative ap-

proach we have used is based on what the occupants have told us pre-

viously about how they felt in different situations. It appears that, at

least in some cases, this can predict thermal sensation/comfort well,

even if one only uses the air temperature data [14, 9].

3 OPTIMISING FOR A SINGLE OCCUPANT

Although our primary focus is multi-occupant rooms, it is helpful to

first analyse the case of a single occupant.

3.1 Case of a Single Occupant for a Single
Timepoint

Let us assume, at least for now, that we know, for any potential ther-

mal conditions, the degree of thermal comfort for any occupant. The

thermal conditions are measured by a collections of sensor readings,

for example, including air temperature at different locations, humid-

ity and so on.

Let ~θ represent a vector of sensor readings. We are assuming we

have a real-valued function H on all such vectors ~θ (or at least on all

feasible ones), that correctly predicts the degree of thermal comfort

H(~θ) for the occupant in situation ~θ. Thus if, for example, H(~θ) = 1



then it is predicting that the occupant will be a little warm in the

situation represented by ~θ.

Clearly, what we’d like to do is to control the system so as to gen-

erate conditions ~θ that make H(~θ) as close to 0 (fully comfortable) as

possible.1 However, we need to decide more precisely what it means

for H(~θ) to be close to 0. We want some function L which maps

values of thermal comfort to degrees of dissatisfaction. For example,

if we’d like the function to be symmetric about 0 (the y-axis) (i.e.,

an even function), we might choose L(x) = x2 or L(x) = |x|, in

which cases we will aim to optimise H(~θ)2 or |H(~θ)|, respectively.

In contrast, some occupants may dislike more being cold than being

warm, leading to a function L that is not symmetric about the y-axis.

3.2 Case of Single Occupant over Time

It can be important to consider a longer term view than just opti-

mising for a single timepoint (or time period, where we assume that

each time period is the same length). We consider here the case of

evaluating a collection of comfort scores (or, alternatively, dissat-

isfaction scores) for a single occupant at different timepoints. For

example, suppose a particular control policy leads to thermal com-

fort/sensation levels scores 3 at 9am, 0 at 2pm and 0 at 4pm. A differ-

ent control policy leads to 1 at 9am, 1 at 2pm and 1 at 4pm. Which of

these two is better? They each have the same average comfort value,

so at first sight one might consider them to be equivalent. However,

the score of 3 may indicate the occupant being much too hot, possi-

bly being very uncomfortable. Because of this, one can argue that a

score of 3 is really much worse than three times as bad as a score of

1, with the latter indicating at most mild discomfort.

More generally, suppose that the occupant registers ASHRAE-

scale (or thermal comfort) values over a number x1, . . . , xN of time-

points; we want to evaluate these to give an overall cost value. We

want some function L that takes these sequence of thermal com-

fort values and generates a dissatisfaction score, which is on an

additive scale—i.e., the combination of a collection of dissatisfac-

tion scores is their sum. Thus the overall evaluation (dissatisfac-

tion) of a sequence of comfort values x1, . . . , xN will then be de-

fined to be
∑N

i=1 L(xi), so that for two sequences (x1, . . . , xN ) and

(y1, . . . , yN ) if x1 + · · · + xN = y1 + · · · + yN then the two se-

quences are equally adequate. We call L, a “linearising function”.

We may have L(−xi) = L(xi) but we might not. Also, the cost

(negative utility) of, for example, “almost unbearably hot” can be

very different for different occupants in different situations; in par-

ticular, it makes a major difference if the occupant can acceptably

leave the room and find somewhere more comfortable.

3.2.1 Generating Linearising Function L

Standard elicitation procedures for utility [13] can be adapted to elicit

values of the function L. For example we could ask queries such as:

For which value of x is (0, 0, x) equivalent to 1, 1, 1? This could be

used to specify L−1(3), given that we’ve defined L(0) to be 0 and

L(1) to be 1.

Note that positive linear transformations of the scores make no

essential difference, so that if L is an adequate linearising function,

then so is DL + E, given by (DL + E)(x) = DL(x) + E(x),

where D and E are strictly positive real numbers. This allows us to

normalise in some way the function L if we wish, by transforming L

1 We may well also want to involve energy efficiency or energy usage in the
objective function, which can be done by adding a separate term. We do not
focus further on this issue in this paper.

using such a linear transformation in order to ensure certain condi-

tions are respected. Firstly, we can normalise L to ensure L(0) = 0.

We could also, if we wished normalise to ensure that e.g., L(1) = 1;

or e.g., L(1.5) = 1.

Candidate Functions

If we do not the have the opportunity to elicit values for L, a stan-

dard function can be used. A simple candidate function L is given by

L(x) = x2, with e.g., L(2) = 4, so a comfort value of 2 is judged

to be four times as bad as a comfort value of 1. One possible family

of functions, which can bias much more to the more extreme points

of the scale, is that of the form: L(x) = (ax2 − 1)/(a − 1) for

some a ≥ 0 with a 6= 1, where we set L(1) = 1. L is continuous

and L(0) = 0.For example, with a = 1.2, L(2) is around 5.4 and

L(3) ≈ 20.8. For a close to 1, L(x) tends to x2. For a > 1, L(x)
grows faster than x2; for a < 1, L(x) grows slower than x2.

3.2.2 Further Interpretation of Linear Scale

In summary, we should attempt to map user discomfort values to a

linear scale. A further advantage of using a linear scale is when we

are summing up previous data (or uncertainty about discomfort val-

ues) with an expected value. The latter doesn’t make so much sense

if the scale is not a linear one.

The transformed values, on the linear discomfort scale, can be con-

sidered as negative utility (in the sense of expected utility). One in-

terpretation of such values is as the financial gain they would require

in order to suffer this degree of discomfort (this relates somewhat to

“Willingness to Pay”, Section 3.8 of [13]). This financial interpre-

tation might seem a little far fetched at first sight: there is unlikely

to be any differential compensation paid to occupants according to

their degrees of comfort. However, thinking about a home situation,

the relevant kinds of comparisons are being made implicitly. If I am

working at home on my own on a cold winter’s day I will tend to

adjust the heating so that I am slightly but not very cold. I am thus

implicitly expressing a tradeoff between my comfort level and the

cost of fuel: I am paying for a rate of fuel usage that transforms my

thermal comfort level from too cold to slightly cool; but I’m implic-

itly not being prepared to pay for the extra amount of fuel to move

my thermal comfort level to completely comfortable.

4 MULTIPLE OCCUPANTS

In this section, we are focusing on multiple occupants who share the

same space, such as in the same room, or perhaps in adjoining rooms

with thin partitions separating the rooms. This does not mean that the

different occupants are experiencing the same thermal conditions; for

example, the air temperature around one occupant may be 22oC, but

20oC for another occupant in the same large office, for example, if

the former is receiving direct sunlight.2 (Our approaches would ap-

ply also for multiple occupants in different rooms that are far apart;

however, the method is not so relevant there, since for the latter situ-

ation the control system could treat the two occupants independently,

with an action relevant for one of the occupants, such as turning on a

heater in her room, not relevant for the other.)

2 Collaborators on the ITOBO project [8] are currently performing exper-
iments within two multi-occupant rooms in the Environmental Research
Institute building at University College Cork, where various parameters in-
cluding air temperature and lux (light) level are measured at different points
in the room.



For each occupant in each situation let us again assume that we

know what their dissatisfaction level is (we consider the case of

where there is uncertainty briefly later in Section 4.4). We also as-

sume that these dissatisfaction levels are on a linear scale, as de-

scribed in Section 3.

4.1 Single Decision For Multiple Occupants

First we consider a situation where we are interested in optimising at

a single timepoint (time period), for multiple occupants sharing the

same space.

We would like to treat the occupants fairly. Firstly, we would like

to regard them each as having equal importance (although later, in

Section 4.3, we consider allowing different grades of importance).

Secondly, we would like to bias towards having a more equitable

range of degrees of discomfort. For example, in a two occupant of-

fice, we would prefer a situation where both occupants have degrees

of dissatisfaction of 1 (on a linear scale) than one having degree of

dissatisfaction of 0, and the other degree of dissatisfaction of 2.

4.1.1 Relative Scaling of Occupants for Equal Occupant
Importance

The linearising functions L described in Section 3 were, for the pur-

pose of optimising for a single occupant, non-unique, in that one can

multiply the function L by a strictly positive real scalar, and get a

function that performs equivalently. For multiple occupants, we will

have such a scaling function Li for each occupant i. We are con-

sidering a situation where the occupants are assumed to be of equal

importance. We therefore need to scale the different functions Li for

each occupant so that they reflect equal importance.

We are assuming, as described above, that for any vector ~θ,

representing the environmental conditions, a degree of discom-

fort/dissatisfaction Ji(~θ), which is a non-negative real number. In

particular, Ji is based on a function Li that maps a thermal comfort

level to a non-negative real number. In order to respect the require-

ment that the occupants have equal importance, we need a way of

calibrating the functions Li for different occupants. As mentioned

above, we can ensure that Li(0) = 0, i.e., that thermally neutral

(comfortable) corresponds with a zero degree of dissatisfaction. We

want to rescale the functions Li to reflect equal importance.

One approach is to normalise the functions Li in some way; for

instance to ensure Li(1) = 1; or alternatively, Li(2) = 1; or

Li(1.5) = 1.

Alternatively, if the functions Li can be given a financial interpre-

tation, as the monetary value needed to compensate for the thermal

discomfort, then this already gives a relative calibration/scaling of

the functions Li.

One might perhaps also try to take into account, in this relative

scaling step, the relative “choosiness” of different occupants: some

occupants will tend to give more extreme inputs, which will tend to

have more impact on the objective function. One could decide to cor-

rect for this, effectively lessening the importance of such occupants,

so that their inputs will tend to dominate less.

After the rescaling process, for each vector of environmental con-

ditions we have a vector (s1, . . . , sK) of dissatisfaction values, one

for each of the K occupants in the currently considered space.

4.1.2 Properties of Aggregation Operators

Our task is to sum the vector (s1, . . . , sK) of dissatisfaction values

(one for each occupant) into a single non-negative real number that

somehow represents the overall degree of (thermal) dissatisfaction

for the group. We thus want to define some real-valued function G
that sums up these K numbers into a real value G(s1, . . . , sK). Such

an aggregation function G can be a kind of average or a generalised

summation.

The topic of aggregation operators and their properties has been

studied for a long time, at least since Cauchy in 1821 and Kolmogo-

roff and Nagumo in 1930 [12, 10]. We give some properties that are

arguably natural for our problem.

The first property implies that the result is not affected by the iden-

tity of the occupant. It also implies that the occupants are equally

important.

Symmetric: if (t1, . . . , tK) is a permutation of (s1, . . . , sK) then

G(t1, . . . , tK) = G(s1, . . . , sK).

The next two properties are very natural: if one increases the de-

gree of dissatisfaction of any user then the overall dissatisfaction is

increased (or at least not decreased, for the former property).

Increasing: G(s1, . . . , sK) is an increasing function of its argu-

ments, i.e., if for all i = 1, . . . , K, si ≤ ti then G(s1, . . . , sK) ≤
G(t1, . . . , tK).

Strictly Increasing: G(s1, . . . , sK) is a strictly increasing function

of its arguments, i.e., if for all i = 1, . . . , K, si ≤ ti and for some

i, si < ti, then G(s1, . . . , sK) < G(t1, . . . , tK).

A small increase in input dissatisfactions should not cause a large

jump (continuity). The second property is less clearly essential, but

reflects the smoothness of the change in output as the input changes.

Continuous: G is a continuous function;

Continuously Differentiable: G is continuously differentiable

The following property from [6] represents the idea that if we

bring the values si closer together without changing their sum then

we improve the overall evaluation.

Transfer Principle: If si < sj and ǫ < sj − si then

G(s1, . . . , sK) > G(t1, . . . , tK) where ti = si + ǫ, and tj =
sj − ǫ, and tk = sk for k 6= i, j.

The following properties relate to the fact that the choice of the lin-

earising functions Li (see Section 3.2.1) would often be non-unique,

in that a positive linear transformation of the same function could

also do. The second is perhaps less important, since we are arrang-

ing that Li(0) = 0. The two properties together are known as being

stable for positive linear transformations [12].

Scaling: For C > 0,

G(Cs1, . . . , CsK) = C × G(s1, . . . , sK).

Uniform translation: For D > 0,

G(s1 + D, . . . , sK + D) = G(s1, . . . , sK) + D.

The following seems natural for an averaging operator:

Idempotence: G(s, . . . , s) = s [only for an averaging operator].

The next property relates to sum-like operators, and is a convenient

associativity property:

Decomposable as binary operator: [only for sum operators] G
can be decomposed as an associative binary operation ⊕: there

exists associative binary operation ⊕ such that G(s1, . . . , sK) =
s1 ⊕ · · · ⊕ sK .



Ordinary Summation and Mean

We can define the sum operator G(s1, . . . , sK) = s1 + · · ·+ sK , or

the mean operator G(s1, . . . , sK) = 1
K

(s1+· · ·+sK). This satisfies

all the above properties except the Transfer Principle. However, for

the sake of fairness, we want to ensure that the Transfer Principle is

satisfied.

We go on the suggest three families of aggregation operators that

might be used in this context, and briefly discuss their properties.

4.1.3 Ordered Weighted Average

One idea is to use a weighted average, where more weight is at-

tributed to give extra weight to the more uncomfortable occupants.

This kind of average is known as an ordering weighted averaging op-

erator [16, 5]. If there are K occupants present then one uses positive

decreasing weights w1, . . . , wK that sum to 1. The overall cost func-

tion is then equal to w1s(1) + · · ·+wKs(K), where (s(1), . . . , s(K))
is a permutation of s1, . . . , sK such that s(1) ≥ · · · ≥ s(K).

Since there may not be constant number of occupants in the same

space, we need a sequence3 w1, . . . , wK of such weights for each K.

We can generate a corresponding Sum operator, by multiplying

through by K:

G(s1, . . . , sK) = Kw1s(1) + · · · + KwKs(K)

If we set w1 = 1 and otherwise wi = 0 we obtain the max op-

erator. Also if we set wi proportional to ǫi for some small positive

number ǫ we get an operator that orders vectors in a similar way to

the leximin ordering [3]. However, both of these give what might be

considered as excessive weight to the most uncomfortable occupant.

For any weights vector, the corresponding aggregation operators

are symmetric, increasing and continuous, and satisfy both Scaling

and Uniform Translation. Idempotence is also satisfied for the av-

eraging version. The operators are strictly increasing when all the

weights are non-zero, and satisfies the Transfer Principle whenever

all the weights are different.

It is typically not decomposable as a binary operator. The only

other one of the above properties not satisfied by ordered weighted

averages is being continuously differentiable. The derivative with re-

spect to si at points when si 6= sj for all j 6= i, is one of the weights

(specifically wj such that si = s(j)). The derivative is thus discon-

tinuous (except if all the weights are equal).

4.1.4 Skewing of Linear Scale

Let λ be a continuously differentiable (strictly) increasing bijection

on the non-negative reals.

We can define a Sum operator Gλ by

Gλ(s1, . . . , sK) = λ−1
(

K
∑

i=1

λ(si)
)

.

An averaging operator can be defined similarly:

λ−1
( 1

K

K
∑

i=1

λ(si)
)

.

This is known as a quasi-arithmetic mean [11].

3 For different K, one would expect the sequences to be related in some way,
so one might consider coherence conditions that relate to the weights as K

varies; however, we do not consider this issue further in the current paper.

We are interested especially in cases where λ has a strictly in-

creasing derivative, i.e., a positive second derivative (except possibly

at 0) since then it satisfies the Transfer Principle. The smoothness

properties are satisfied given suitably smooth λ (e.g., strictly positive

derivative, except possibly at 0). Gλ doesn’t generally satisfy Scaling

and Uniform Translation. However, if we use λ(x) = xa for some

a > 1 then Scaling is satisfied. The other properties are satisfied.

4.1.5 Mean-Plus-Spread Approaches

Another approach is to consider the value of vector (s1, . . . , sK)
as consisting of two components: the first being the mean 1

K
(s1 +

· · · + sK), and the second relating to the spread of the si’s around

the mean. For example, we can consider functions G of the form

G(s1, . . . , sK) = µ + Rσ,

where R is a non-negative real number (which may depend on the

number of occupants K), µ = 1
K

(s1+· · ·+sK) is the mean of the K

values, and σ is their standard deviation, so that σ2 = 1
K

∑K

i=1(si −
µ)2, which equals 1

K

∑K

i=1(si)
2 − µ2.

G is strictly increasing if we choose R such that R < 1/
√

K − 1.

It is not decomposable as a binary operator, but satisfies the other

properties.

4.2 Multiple Occupants With Multiple Time
Periods

We now consider a situation where we have multiple occupants in the

shared space, for multiple time periods. We would like to generate

an objective function that gives an overall cost (overall degree of

dissatisfaction/undesirability).

We assume that the thermal sensation input for each occupant has

been mapped to a linear scale of dissatisfaction, as in Section 3. We

can therefore sum these degrees of dissatisfaction to get an overall

degree of dissatisfaction for each occupant. Different occupants may

be present different numbers of time periods, and it can be natural

sometimes to explicitly take this into account. and it is important to

take this into account, For each occupant we therefore then have a

pair (si, Ni) representing the summed degree of dissatisfaction si

and the number Ni of time periods in which they were present. De-

fine s∗i to be si/Ni, the mean degree of dissatisfaction for occupant

i.
We therefore would like to generate a function F that takes as

input a sequence

(

(s1, N1), . . . , (sK , NK)
)

,

representing the summarised inputs for the K occupants.

The three families of aggregation operators of Section 4.1 can

be adapted for this task. A simple way to optimise for the over-

all function is, at each timepoint, to control for the environmental

conditions so as to minimise F
(

(s′1, N
′

1), . . . , (s
′

K , N ′

K)
)

, where
(

(s′1, N
′

1), . . . , (s
′

K , N ′

K)
)

corresponds to the inputs received so far.

On the other hand, if we were to have information about the expected

occupancy and dissatisfaction scores in future periods, then the opti-

misation technique could take these into account.



4.2.1 Ordered Weighted Sum Approach

The idea here is again to use a weighted sum/average, where higher

weights are attributed to more dissatisfied occupants. So, we choose

decreasing weights w1, . . . , wK . We define the overall cost function

F by

F
(

(s1, N1), . . . , (sK , NK)
)

= Kw1s(1) + · · · + KwKs(K),

where (s(1), . . . , s(K)) is a permutation of s1, . . . , sK such that

s∗(1) ≥ · · · ≥ s∗(K). Note that the weight assigned to the ith oc-

cupant is based on their mean degree of dissatisfaction, s∗i = si/Ni,

but the overall cost is based on their total degree of dissatisfaction si.

4.2.2 Skewing of Linear Scale

The approach from Section 4.1.4 can be applied directly. Again let λ
be a function with the properties given in Section 4.1.4 (e.g., contin-

uously differentiable strictly increasing bijection on the non-negative

reals, which has a strictly increasing derivative). We define the over-

all cost function Fλ by

Fλ

(

(s1, N1), . . . , (sK , NK)
)

= λ−1
(

K
∑

i=1

λ(si)
)

.

Here the values Ni do not come into the definition.

As before, we can use, for example, λ of the form λ(x) = xa

where a > 1.

4.2.3 Mean-Plus-Spread Approaches

The approach described in Section 4.1.5 can be adapted easily. We

can consider a random variable which, for i = 1, . . . , K, takes value

s∗i with chance
Ni

N
where N =

∑K

i=1 Ni. Let µ be the mean of this

random variable and σ2 be the variance, so that

µ =

K
∑

i=1

Ni

N
s∗i =

1

N

K
∑

i=1

si,

and

σ2 =

K
∑

i=1

Ni

N
(s∗i − µ)2.

Again we can define the overall cost function to be µ+Rσ, choosing

positive real R (which may depend on N ).

4.3 Incorporating Importance

The approaches in Section 4.2 can easily be adapted to take an im-

portance weight vi > 0 into account for each occupant i. Each time

period that occupant i spends in the space is treated as vi time periods

to give more emphasis to occupants with higher importance weight.

We replace si by visi and Ni by viNi, and apply the equations in

Sections 4.2.1 4.2.2 and 4.2.3 to obtain objective functions that bias

according to the importance weights.

4.4 Taking Uncertainty into Account

There are many potential sources of uncertainty in our application.

For instance, uncertainty about:

• what the current environmental conditions are, because of inaccu-

racy in sensing;

• the thermal sensation value the occupant will feel in any given

conditions; this is true if we use a learning algorithm based on

past inputs, or a PMV-based approach;

• each particular occupant’s mapping from the thermal sensation

scale to degrees of dissatisfaction;

• which occupants will be present.

One common and natural approach to dealing with this uncertainty

is to use some kind of expected value, specifically for dissatisfaction

given particular environmental conditions. This gives another reason

to use a linear scale for dissatisfaction; if we compute expected value

on a non-linear scale then the value will not necessarily adequately

sum up the distribution.

Alternatively, we can generate probability distributions over the

dissatisfaction levels of each occupant, giving a random variable

for each occupant’s dissatisfaction. The different methods described

above for computing the values of an objective (cost) function can

be extended for this probabilistic case, using, for example, a Monte-

Carlo algorithm to estimate expected cost, if we assume the occu-

pants’ random variables are mutually independent.

5 CONCLUSION

The paper addresses the issue of how one evaluates a collection of

thermal comfort inputs from multiple occupants and over time. This

is important for defining an objective function for control, based on

predicted responses of occupant under various environmental condi-

tions.

We argue that it is important firstly to map the degrees of thermal

comfort onto a linear scale of dissatisfaction, so that the values can be

summed for the combination of several values for a single occupant.

We have suggested three families of approaches for aggregating the

dissatisfaction scores of several occupants, with different strengths

and weaknesses. We have shown how this may be applied for the case

of multiple occupants over many time periods. Although all three

families seem quite natural, there are, of course, other approaches

that should be explored.

There are other issues that could be considered for more sophisti-

cated approaches. For instance, we assumed that the ordering of the

sequential inputs was unimportant; however, for consecutive time-

points this could make a difference to the overall dissatisfaction of an

occupant, where, for example, starting off cold and slowly increasing

heat would presumably be better than a more random ordering.
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