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Preface

We are living in an age of great opportunity. There is an ever-rising flood of digital data from many sources,
from tweets, photographs and social network communications to high-resolution sensor data across nearly
all sciences. The great opportunity, and also the challenge, lies in making order out of chaos and deliver
more usable information.

Not that there is a shortage of great data analysis tools. The fields of Knowledge Discovery in Databases
(KDD) and Machine Learning (ML) have reached a mature stage, offering plenty of techniques to solve
complex data analysis tasks on all types of data. The problem is that, with the increased sophistication of
data analysis techniques, there is a greater than ever need for clear guidance on how to use these techniques.

Indeed, data needs to be analysed in often non-trivial refinement processes, which require technical ex-
pertise about methods and algorithms, skill in successful workflow design, experience with how a precise
analysis should proceed, and knowledge about an exploding number of analytic approaches.

The underlying idea of this workshop is that constructing such workflows could be greatly facilitated by
leveraging machine learning techniques. In other words, can’t we learn, based on examples, how to select
algorithms and build workflows? Research over the last decades has shown that this is in fact an inherently
multidisciplinary problem, requiring an multidisciplinary solution. We can distinguish the following themes
that have emerged in the literature:

Planning, from the field of Artificial Intelligence, provides a principled approach to generate and build
workflows. Indeed, building a knowledge discovery workflow can be cast as a planning problem in which
(sub)tasks such as data preprocessing and modelling must be achieved by devising an optimal sequence of
operators.

Ontologies, from the field of Information Science, allow us to express knowledge about data, algo-
rithms and model in such a way that systems can interpret and reason about these concepts. It yields precise
descriptions of data format requirements so that workflows don’t break, and express the inner working of
algorithms so we can reason about how to tune them.

Meta-learning, from the field of Machine Learning, allows us to build models about algorithm be-
havior under various conditions, and thus to predict which (combinations of) techniques are most useful.
Meta-learning approaches have grown ever more sophisticated, building on ontological information about
algorithms, large databases of machine learning experiments, and domain-specific data features.

It is interesting to see how these fields interact: ontologies lead to better meta-learning techniques,
which in turn allow for more accurate workflow planning, in turn providing more examples from which
to learn. This workshop, therefore, is particularly aimed at exploring the possibilities of integrating these
fields. It offers a forum for exchanging ideas and experience concerning the state-of-the-art from these
different areas and outline new directions for research.

These proceedings include 7 contributions on the latest advances in this area, many of them integrating
planning, ontologies and meta-learning as discussed above. Moreover, they include several demonstrations
of working systems in this area, which will be of great use to end users. We thank everybody for their
sincere interest and their contributions, and especially thank our invited speakers:

Ross King (Manchester University): The potential of automated workflow planning in the Robot Scientist.
Filip Zelezny (Czech Technical University): Planning to learn: Recent developments & future directions.

We hope you will find it an interesting and inspiring workshop, leading to great new collaborations.

Leiden, August 2012
Joaquin Vanschoren

Pavel Brazdil
Jörg-Uwe Kietz



Main areas covered by the workshop

Of particular interest are methods and proposals that address the following issues:

– Planning to construct workflows
– Exploitation of ontologies of tasks and methods
– Representation of learning goals and states in learning
– Control and coordination of learning processes
– Experimentation and evaluation of learning processes
– Recovering / adapting sequences of DM operations
– Meta-learning and exploitation of meta-knowledge
– Layered learning
– Multi-task learning
– Transfer learning
– Active learning
– Multi-predicate learning (and other relevant ILP methods)
– Learning to learn
– Learning to plan
– Intelligent design and learning

A Brief History

PlanLearn-2012 is the 5th workshop in the series, which has been collocated with a range of conferences:

– PlanLearn-2007 was associated with ECML/PKDD-07 in Warsaw, Poland. The invited speaker was
Larry Hunter (Univ. of Colorado at Denver and Health Sciences Center) who presented a talk entitled
Historical Overview of the area Planning to Learn.

– PlanLearn-2008 was associated with ICML/COLT/UAI in Helsinki, Finland. The invited speaker was
Raymond J. Mooney (University of Texas at Austin) who presented a talk on Transfer Learning by
Mapping and Revising Relational Knowledge.

– PlanLearn-2010 was associated with ECAI in Helsinki, Finland. Invited speakers were Michele Sebag
(LRI, U. Paris-Sud) on Monte-Carlo Tree Search: From Playing Go to Feature Selection, and Luc de
Raedt (Katholieke Universiteit Leuven) on Constraint Programming for Data Mining.

– PlanSoKD-2011 was held in conjunction with the Service-Oriented Knowledge Discovery workshop
at ECML/PKDD in Athens, Greece.

More information on the workshop and previous editions can be found at:
http://datamining.liacs.nl/planlearn.html
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Combining Meta-Learning and Optimization Algorithms
for Parameter Selection

T. Gomes and P. Miranda and R. Prudêncio1 and C. Soares2 and A. Carvalho3

Abstract. In this article we investigate the combination of meta-
learning and optimization algorithms for parameter selection. We
discuss our general proposal as well as present the recent develop-
ments and experiments performed using Support Vector Machines
(SVMs). Meta-learning was combined to single and multi-objective
optimization techniques to select SVM parameters. The hybrid meth-
ods derived from the proposal presented better results on predictive
accuracy than the use of traditional optimization techniques.

1 Introduction

The induction of a machine learning model with a good predictive
accuracy to solve a learning problem is influenced by a variety of
aspects, such as data pre-preprocessing, algorithm selection, param-
eter optimization and training procedure. The study presented in this
paper focuses on a specific and relevant step of modeling: parameter
selection. Once a learning algorithm is chosen, the user has to de-
fine its parameter values. Learning performance is usually affected
by a poor selection of these values. For instance, the performance of
SVMs depends on the adequate choice of its kernel function, kernel
parameters, regularization constant, among other aspects [2].

Parameter selection is treated by many authors as an optimization
problem in which a search technique is employed to find the configu-
ration of parameters which maximizes the learning performance esti-
mated on the problem at hand. There is an extensive literature apply-
ing optimization algorithms for parameter selection, especially for
Artificial Neural Networks. Although it represents a systematic ap-
proach to parameter selection, this approach can be very expensive,
since a large number of candidate parameter configurations must be
evaluated to ensure that an optimal, or at least reasonably good, set
of parameters is found [6].

Meta-learning, originally proposed for algorithm selection, has
also been adapted to parameter selection (e.g., for SVM [6, 1]). In
this approach, the choice of parameter values for a given task is
based on parameter values sucessfully adopted in similar problems.
Each meta-example in this solution includes: (1) a set of characteris-
tics (called meta-features) describing a learning problem; and (2) the
best configuration of parameters (among a set of candidates) tested
on that problem. A meta-learner is used to acquire knowledge from a
set of such meta-examples in order to recommend (predict) adequate
parameters for new problems based on their meta-features.

Compared to the optimization approach, meta-learning tends to
be computationally more efficient, at least at the moment when the

1 Universidade Federal de Pernambuco, Brazil, email:
{tafg,pbcm,rbcp}@cin.ufpe.br

2 Universidade do Porto, Portugal, email: csoares@fep.up.pt
3 Universidade de São Paulo, São Carlos, Brazil, email: andre@icmc.usp.br

recommendation of parameters is made. It must be observed that
meta-learning however is very dependent on the quality of its meta-
examples. It is usually difficult obtaining good results since meta-
features are in general very noisy and the number of problems avail-
able for meta-example generation is commonly limited.

As discussed in [4], good solutions to a particular search problem
can be used to indicate promising regions of the search space for
similar problems. Related ideas have been applied to improve opti-
mization tasks but in very different contexts (e.g. job shop scheduling
[4]). The positive results in these contexts motivated us to apply sim-
ilar ideas for optimizing learning parameters. Here, we present the
combination of optimization techniques and meta-learning for the
problem of parameter selection. Meta-learning is used to suggest an
initial set of solutions, which are then refined by a search technique.
In previous work, the search process starts by evaluating random so-
lutions from the parameter space. In the proposed hybrid approach,
the search process starts with successful solutions from previous sim-
ilar problems. Hence, we expect that meta-learning guides the search
directly to promising regions of the search space, thus speeding up
the convergence to good solutions.

Input
Problem

- ML -

Initial
Candidates

Search

SVM

6

?

Candidate
Parameters

Estimated
Performance

6
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Meta-
Examples

- Best
Parameters

Figure 1. General Architecture

2 Developed Research
Figure 1 shows the general architecture of the proposed solution. Ini-
tially, the Meta-Learner (ML) module retrieves a predefined number
of past meta-examples stored in a Meta-Database (MDB), selected
on the basis of their similarity to the input problem. Next, the Search
module adopts as initial search points the configurations of success-
ful parameter values on the retrieved meta-examples. In the Search
module, a search process iteratively generates new candidate values
for the SVM parameters. The final solution which is recommended
by the system is the best one generated by the Search module up to
its convergence or other stopping criteria.
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In [3], we performed experiments that evaluated the proposed hy-
brid method using Particle Swarm Optimization (PSO) in the Search
module. The system was empirically tested on the selection of two
parameters for SVMs on regression problems: the γ parameter of
the RBF kernel and the regularization constant C, which may have
a strong influence in SVM performance. A database of 40 meta-
examples was produced from the evaluation of a set of 399 config-
urations of (γ, C) on 40 different regression problems. Each meta-
example refers to a single regression problem, which was described
in our work by 17 meta-features (see [3] for details).
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Figure 2. NMSE result obtained at each recommended configuration

Figure 2 compares the minimum NMSE (averaged over the 40
problems) obtained by SVM using the parameters suggested by com-
bining meta-learning and PSO, referred to as Hybrid-PSO (using 5
initial solutions recommended by meta-learning), and the two meth-
ods individually, PSO (with random initialization, population size =
5) and meta-learning (which recommends the best configuration of
each retrieved meta-example). We also present in Figure 2 the aver-
age NMSE achieved by the default heuristic adopted by the LibSVM
tool (γ = inverse of the number of attributes and C=1). Finally, Fig-
ure 2 shows the average NMSE that would be achieved if the best
parameter configuration had been chosen on each problem.

By comparing PSO and meta-learning, we identified a trade-off in
their relative performances. Meta-learning is better than PSO for a
small number of recommended parameter configurations. It is also
better than the default LibSVM parameters. Hence, meta-learning
alone would be indicated in situations in which the SVM user had
strong resources constraints. In these situations, meta-learning could
recommend a lower number of configurations with intermediate per-
formance levels. PSO in turn is able to find better configurations
along its search and then it is more adequate if a higher number of
configurations can be tested.

The Hybrid-PSO was able to combine the advantages of its com-
ponents. The performance of the Hybrid-PSO in the initial five rec-
ommended configurations is of course the same as the performance
of meta-learning (since the initial configurations are recommended
by meta-learning). From that point of the curve, the Hybrid-PSO con-
sistently achieves better results compared to both the PSO and the

meta-learning. It converges earlier to solutions with similar NMSE
values compared to the best configurations observed in the 40 prob-
lems. There is an additional cost in recommending the configurations
by the hybrid approach which is the cost of the meta-learning initial-
ization (specially the cost of computing the meta-features). However,
we deployed meta-features with a low computational cost.

In [5], we extended the previous work to perform Multi-Objective
Optimization (MOO) of SVM parameters. The Multi-Objective PSO
(MOPSO) algorithm was used to optimize the parameters (γ, C) re-
garding two conflicting objectives: complexity (number of support
vectors) and success rate. We evaluated the MOPSO in two differ-
ent versions: (1) MOPSO with initial population suggested by ML
(Hybrid MOPSO) and (2) MOPSO with random initial population.
In the meta-learning module, for each similar problem retrieved, we
generated a Pareto Front (a set of non-dominated solutions) by ap-
plying the dominance evaluation to the 399 configurations of SVM
parameters considered. In order to suggest an initial population, we
select one random solution of each produced Pareto Front.

In our experiments, the final Pareto Fronts optimized by the
MOPSO and the Hybrid MOPSO were evaluated using three metrics
for MOO problems: Spacing, Hypervolume and Spread. The pro-
posed hybrid approach was able to generate better comparative re-
sults, considering the Spacing and Hypervolume metrics. Regarding
the maximum Spread, our approach lost in first generations, but was
similar to MOPSO in the last generations.

3 Conclusion
The combination of meta-learning and optimization techniques
showed promising results for SVM parameter values selection. The
proposed approach can be easily adapted to other learning algorithms
(e.g., Artificial Neural Networks). A number of aspects need to be in-
vestigated in our proposed solution such as alternative strategies to
integrate meta-learning in the optimization process. For instance, not
only the best solutions to similar problems can be considered, but
also diverse solutions in the search space. Additionally, the limita-
tions of the individual components (as usual in hybrid systems) need
to be dealt with. For instance, new strategies to augment the number
of datasets for meta-learning can improve the learning performance
in our context.

Acknowledgments: The authors would like to thank CNPq, CAPES,
FAPESP and FACEPE (Brazilian Agencies) and FCT (Portuguese
Agency) for their financial support.
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Formal Frame for Data Mining with Association Rules
– a Tool for Workflow Planning

Jan Rauch and Milan Šimůnek 1

1 INTRODUCTION
The goal of this extended abstract is to contribute to the forum for
research on construction of data mining workflows. We briefly intro-
duce a formal framework called FOFRADAR (FOrmal FRAmework
for Data mining with Association Rules) and then we outline how
it can be used to control a workflow of data mining with associa-
tion rules. We consider this relevant to associative classifiers that use
association rule mining in the training phase [3].

We deal with association rules ϕ ≈ ψ where ϕ and ψ are general
Boolean attributes derived from columns of analyzed data matrices.
Symbol ≈ is called 4ft-quantifier and it stands for a condition con-
cerning a contingency table of ϕ and ψ [6]. Such rules are more gen-
eral than rules introduced in [1]. We consider data mining process as
described by the well known CRISP-DM methodology.

The FOFRADAR is introduced in [5]. Its goal is to formally de-
scribe a data mining process such that domain knowledge can be used
both in formulation of reasonable analytical questions and in inter-
pretation of resulting set of association rules. No similar approach to
dealing with domain knowledge in data mining is known to the au-
thors. An application of the FOFRADAR in data mining workflows
is outlined here for the first time.

2 FOFRADAR
FOFRADAR is based on a logical calculus LC of association rules.
Formulas of LC correspond to the association rules ϕ ≈ φ [4]. Such
rules are evaluated in data matrices rows of which correspond to ob-
served objects o1, . . . , on and columns correspond to observed at-
tributes A1, . . . , AK . We assume that Ai has a finite number ti ≥ 2
of possible values 1, . . . , ti (i.e. categories) and Ai(oj) is a value of
Ai in row oj for i = 1, . . . ,K and j = 1, . . . , n.

Boolean attributes ϕ, φ are derived from basic Boolean attributes
i.e expressions Ai(α) where α ⊂ {1, . . . , ti}. A basic Boolean
attribute Ai(α) is true in a row oj of a given data matrix M if
Ai(oj) ∈ α, otherwise it is false. Thus, we do not deal only
with Boolean attributes - conjunctions of attribute-value pairs Ai(a)
where a ∈ {1, . . . , ti} but we use general Boolean attributes derived
by connectives ∧,∨,¬ from columns of a given data matrix.

The 4ft-table 4ft(ϕ,ψ,M) of ϕ and ψ in a data matrix M is a
quadruple 〈a, b, c, d〉 where a is the number of rows ofM satisfying
both ϕ and ψ, b is the number of rows satisfying ϕ and not satisfying
ψ, c is the number of rows not satisfying ϕ and satisfying ψ and d
is the number of rows satisfying neither ϕ nor ψ. A {0, 1}-valued
associated function F≈(a, b, c, d) is defined for each 4ft-quantifier

1 University of Economics, Prague, Czech Republic, email: rauch@vse.cz
and simunek@vse.cz

≈. The rule ϕ ≈ ψ is true in a data matrixM if F≈(a, b, c, d) = 1
where 〈a, b, c, d〉 = 4ft(ϕ,ψ,M), otherwise it is false inM.

Expression A1(1, 2, 3) ∨ A2(4, 6) ⇒p,B A3(8, 9) ∧ A4(1) is an
example of association rule,⇒p,B is a 4ft-quantifier of founded im-
plication. It is F⇒p,B (a, b, c, d) = 1 if and only if a

a+b
≥ p∧a ≥ B

[2]. There are various additional 4ft-quantifiers defined in [2, 4].
A deduction rule ϕ≈ψ

ϕ′≈ψ′ is correct if the following is true for each
data matrixM: if ϕ ≈ ψ is true inM then also ϕ′ ≈ ψ′ is true in
M. There are reasonable criteria making possible to decide if ϕ≈ψ

ϕ′≈ψ′
is a correct deduction rule [4].

FOFRADAR consists of a logical calculus LC of association rules
and of several mutually related languages and procedures used to
formalize both items of domain knowledge and important steps in
the data mining process. They are shortly introduced below, relations
of some of them to the CRISP-DM are sketched in Fig. 1.

Figure 1. FOFRADAR framework and CRISP-DM methodology

Language LDK of domain knowledge – formulas of LDK corre-
spond to items of domain knowledge. A formula A1 ↑↑ A11 mean-
ing that if A1 increases then A11 increases too is an example. We
consider formulas of LDK as results of business understanding.

Language LDt of data knowledge – its formulas can be consid-
ered as results of data understanding. An example is information that
90 per cent of observed patients are men.

Language LAQ of analytical questions – the expression
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[M : A1, . . . , A10 ≈? A11, . . . , A20; 6→ A1 ↑↑ A11] is an example
of a formula of LAQ. It corresponds to a question Q1: In data
matrix M, are there any relations between combinations of values
of attributes A1, . . . , A10 and combinations of values of attributes
A11, . . . , A20 which are not consequences of A1 ↑↑ A11?

Language LRAR of sets of relevant association rules – each for-
mula Φ of LRAR defines a set S(Φ) of rules relevant to a given
analytical question. The set S(Φ) relevant toQ1 can consist of rules
ϕ ⇒0.9,100 ψ where ϕ is a conjunction of some of basic Boolean
attributesA1(α1), . . . , A10(α10), similarly for ψ andA11, . . . , A20.
Here α1 can be e.g. any interval of maximal 3 consecutive categories,
similarly for additional basic Boolean attributes.

Procedure ASSOC – its input consists of a formula Φ of LRAR
and of an analyzed data matrixM. Output of the ASSOC procedure
is a set True(S(Φ),M) of all rulesϕ ≈ ψ belonging to S(Φ) which
are true inM. The procedure 4ft-Miner [6] is an implementation of
ASSOC. It deals with a very sophisticated language LRAR.

Procedure Cons – this procedure maps a formula Ω of LDK to a
setCons(Ω,≈) of association rules ϕ ≈ ψ which can be considered
as consequences of Ω. The set Cons(A1 ↑↑ A11,⇒p,B) is a set of
all rules ϕ⇒p,B φ for which ω⇒p,Bτ

ϕ⇒p,Bφ
is a correct deduction rule and

ω ⇒p,B τ is an atomic consequence of Cons(A1 ↑↑ A11). Rules
A1(low) ⇒p,B A11(low)) and A1(high) ⇒p,B A11(high) are ex-
amples of atomic consequences of A1 ↑↑ A11, low and high are
suitable subsets of categories of A1 and A11. Some additional rules
can also be considered as belonging to Cons(A1 ↑↑ A11,⇒p,B),
see [5] for details.

Language LConcl – formulas of this language correspond to con-
clusions which can be made on the basis of the set True(S(Φ),M)
produced by the ASSOC procedure. Two examples of such conclu-
sions follow. (1): All rules in True(S(Φ),M) can be considered
as consequences of known items of domain knowledge A1 ↑↑ A11

or A2 ↑↑ A19. (2): Lot of rules from True(S(Φ),M) can be con-
sidered as consequences of yet unknown item of domain knowledge
A9 ↑↑ A17.

There are additional procedures belonging to FOFRADAR, they
transform formulas of a particular language to formulas of another
language of FOFRADAR [5].

3 FOFRADAR and Workflow of Data Mining
To keep things simple and the explanation concise we assume that
the analyzed data matrixM is given as a result of necessary trans-
formations. In addition, we assume that a set DK of formulas of the
language LDK and a set DtK of formulas of the language LDt are
given. A workflow of data mining with association rules can be then
described according to Fig. 2.

The first row in Fig. 2 means that an analytical question Q which
can be solved by the procedure ASSOC is formulated using set DK
of formulas of the language LDK . The set DtK of formulas of the
language LDK can also be used to formulate reasonable analytical
questions.

A solution of Q starts with a definition of a set S(Φ) of relevant
association rules which have to be verified inM, see row 2 in Fig.
2. The set S(Φ) is given by a formula Φ of language LRAR. The
formula Φ is a result of application of a procedure transforming for-
mulas of LAQ to formulas of LRAR.

Then, the procedure ASSOC is applied, see row 3 in Fig. 2. Ex-
perience with the procedure 4ft-Miner, which is an enhanced imple-
mentation of the ASSOC procedure, are given in [6, 7]. The applica-
tion of ASSOC results into a set True(S(Φ),M) of all association

1 1 Formulate_Analytical_Question
2 Define_Set_of_Relevant_Rules
3 2 Apply ASSOC
4 Apply CONCL
5 IF Continue_ASSOC THEN
6 BEGIN
7 Modify Set_of_Relevant_Rules
8 GOTO 2
9 END

10 IF Continue_Analysis THEN GOTO 1
11 STOP

Figure 2. Association rule data mining workflow based on FOFRADAR

rules ϕ ≈ ψ which belong to S(Φ) and which are true inM.
A next step is interpretation of the set True(S(Φ),M). This is re-

alized by the procedureCONCL, see row 4 in Fig. 2. Consequences
of particular items of domain knowledge are used which means that
the procedure Cons is applied and several formulas of the language
LConcl are produced by the procedure CONCL.

One of formulas produced by CONCL is a simple Boolean vari-
able Continue ASSOC. If its value is setup as true, then the set
S(Φ) of relevant association rules which have to be verified is mod-
ified and the process of solution of the analytical question Q con-
tinues, ses rows 5 – 9 in Fig. 2. The modification of the set S(Φ)
is done by the procedure ModifySet of Relevant Rules which
uses experience from applications of the 4ft-Miner procedure.

If the value of Continue ASSOC is setup to false, then the
process of solution of the particular analytical question is terminated.
Then a procedure Continue Analysis is used to decide if an addi-
tional analytical question will be generated and solved.

There are first experiences with ”manually driven” processes cor-
responding to procedures used in Fig. 2. The most important is ex-
perience with process corresponding to the CONCL procedure, see
[7]. We believe to get enough experience to run the whole data work-
flow process automatically as outlined in Fig. 2.
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Designing KDD-Workflows via HTN-Planning for
Intelligent Discovery Assistance

Jörg-Uwe Kietz1 and Floarea Serban1 and Abraham Bernstein1 and Simon Fischer2

Abstract. Knowledge Discovery in Databases (KDD) has evolved
a lot during the last years and reached a mature stage offering plenty
of operators to solve complex data analysis tasks. However, the user
support for building workflows has not progressed accordingly. The
large number of operators currently available in KDD systems makes
it difficult for users to successfully analyze data. In addition, the cor-
rectness of workflows is not checked before execution. Hence, the
execution of a workflow frequently stops with an error after several
hours of runtime.

This paper presents our tools, eProPlan and eIDA, which solve the
above problems by supporting the whole life-cycle of (semi-) auto-
matic workflow generation. Our modeling tool eProPlan allows to
describe operators and build a task/method decomposition grammar
to specify the desired workflows. Additionally, our Intelligent Dis-
covery Assistant, eIDA, allows to place workflows into data mining
(DM) tools or workflow engines for execution.

1 Introduction

One of the challenges of Knowledge Discovery in Databases (KDD)
is assisting users in creating and executing KDD workflows. Existing
KDD systems such as the commercial IBM SPSS Modeler3 or the
open-source KNIME4 and RapidMiner5 support the user with nice
graphical user interfaces. Operators can be dropped as nodes onto
the working pane and the data-flow is specified by connecting the
operator-nodes. This works very well as long as neither the workflow
becomes too complicated nor the number of operators becomes too
large.

However, in the past decade, the number of operators in such sys-
tems has been growing fast. All of them contain over 100 operators
and RapidMiner, which includes Weka, R, and several pluggable op-
erator sets (such as anomaly detection, recommendation, text and im-
age mining) now has around 1000. It can be expected that the transi-
tion from closed systems (with a fixed set of operators) to open sys-
tems that can also use Web services as operators (which is especially
interesting for domain specific data access and transformations) will
further accelerate the rate of growth resulting in total confusion about
what operators to use for most users.

In addition to the number of operators also the size of the KDD
workflows is growing. Today’s workflows easily contain hundreds

1 University of Zurich, Department of Informatics, Dynamic and Dis-
tributed Information Systems Group, Binzmühlestrasse 14, CH-8050
Zurich, Switzerland {kietz|serban|bernstein}@ifi.uzh.ch

2 Rapid-I GmbH, Stockumer Str. 475, 44227 Dortmund, Germany
fischer@rapid-i.com

3 http://www.ibm.com/software/analytics/spss/
4 http://www.knime.org/
5 http://rapid-i.com/content/view/181/190/

of operators. Parts of the workflows are applied several times (e.g.
the preprocessing sub-workflow has to be applied on training, test-
ing, and application data) implying that the users either need to
copy/paste or even repeatedly design the same sub-workflow6 sev-
eral times. As none of the systems maintain this “copy”-relationship,
it is left to the user to maintain the relationship in the light of changes.

Another weak point is that workflows are not checked for correct-
ness before execution. As a consequence, the execution of the work-
flow oftentimes stops with an error after several hours runtime due to
small syntactic incompatibilities between an operator and the data it
should be applied on.

To address these problems several authors [1, 3, 18] propose the
use of planning techniques to automatically build such workflows.
However, all these approaches are limited. First, they only model
a very small number of operations and were only demonstrated to
work on very short workflows (less than 10 operators). Second, none
of them models operations that work on individual columns of a data
set: they only model operations that process all columns of a data
set in the same way. Lastly, the approaches cannot scale to large
amounts of operators and large workflows: their planning approaches
fail in the large design space of “correct” (but nevertheless most often
unwanted) solutions. A full literature review about IDAs (including
these approaches) can be found in our survey [13].

In this paper we describe the first approach for designing KDD
workflows based on ontologies and Hierarchical Task Network
(HTN) planning [5]. Hierarchical task decomposition knowledge
available in DM (e.g. CRISP-DM [2] and CITRUS [15]) can be used
to significantly reduce the number of generated unwanted correct
workflows. The main scientific contributions of this paper, hence,
are: First, we show how KDD workflows can be designed using on-
tologies and HTN-planning in eProPlan. Second, we exhibit the pos-
sibility to plug in our approach in existing DM-tools (as illustrated
by RapidMiner and Taverna). Third, we present an evaluation of our
approach that shows significant improvement and simplification of
the KDD-workflow design process. Thus, the KDD researchers can
easily model not only their DM and preprocessing operators but also
their DM tasks that is exploited to guide the workflow generation.
Moreover less experienced users can use our RM-IDA plugin to au-
tomatically generate workflows in only 7-clicks. Last but not least,
the planning community may find it interesting to see this real world
problem powered by planning techniques and may also find some of
the problems we faced and solved rather pragmatically inspiring for

6 Several operators must be exchanged and cannot be reapplied. Consider for
example training data (with labels) and application data (without labels).
Label-directed operations like feature-selection cannot be reapplied. But
even if there is a label on separate test data, redoing feature selection may
result in selecting different features. To apply and test the model, however,
exactly the same features have to be selected.
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further research.
The rest of this paper is structured as follows: Section 2 describes

the knowledge used for planning, then Section 3 details the compo-
nents of our system. Section 4 describes several evaluation methods
and, finally, we conclude with Section 5.

2 The Planning Knowledge
We modeled our Data Mining Workflow planning problem as a Data
Mining Worlkflow ontology (DMWF),7 which we succinctly illus-
trate here (a more detailed description of it can be found in [8, 9]).

The DMWF contains input/output objects and their meta-data
(Sec.2.1), which are sufficiently detailed to enable column-wise op-
erations – a feature that is not available in any of the previous ap-
proaches. In addition, tasks and methods are used to guide and sim-
plify the planning process. Each method consists of a sequence of
steps, where each step is a (sub-) task or an operator (Sec. 2.2 shows
some of the methods). In total, the DMWF contains more than 100
operators from RapidMiner (Sec. 2.3 illustrates one). The amount of
operators and their partial redundancy made it favorable to structure
them in an inheritance hierarchy starting with abstract operators un-
til the basic operators which can be applied on the data. The number
of operators is not a limitation of the HTN-planning approach, but a
limitation set by the effort to model them and to keep them consis-
tent with changes introduced by new releases of RapidMiner. To get
a significantly higher number of modeled operators, semi-automatic
modeling or at least verification methods need to be developed.

Besides the main contribution of supporting users in designing
KDD workflows, this paper may also be interesting to the planning
community because it shows the successful usage of planning tech-
niques to solve the problem of workflow design and more generally
problem-specific software-configuration. It may stipulate further re-
search on planning as we solved some problems that did not get much
attention in planning so far. First, in our domain it is usually easy to
find a correct plan. The simplest correct plan for prediction uses the
default model (mean-value for regression, modal-value for classifi-
cation). This is a correct solution for all predictive modeling prob-
lems, but it is only the baseline that DM wants to improve and not
the wanted solution. We tackle that problem by excluding such un-
wanted workflows from our HTN. The real problem is not finding a
solution, but handling the large amount of solutions8. We handle this
by grouping of plans based on meta-level equivalent output (similar
characteristics of the output) 9 and by using the probabilistic pattern
generated by meta-learning (see Sec. 2.4) not only to rank the enu-
merated workflows, but also for a heuristic beam search in the space
of possible solutions. Another interesting problem is the large num-
ber of relevant operators that we handled by embedding conditions
and effects into an ontological operator hierarchy with inheritance.
This is supported by our eProPlan plugin into the popular ontology
editor Protégé. Furthermore, RapidMiner (and in DM in general) has
several special purpose control/loop operators like cross-validation.
They are parametrized operators (the number of folds and the sam-
pling strategy for cross validation). In contrast to other operators, it is

7 It is public available from http://www.e-LICO.eu/ontologies/dmo/
e-Lico-eProPlan-DMWF-HTN.owl. The best way to open this ontology is:
download Protégé 4.0 or 4.1 from http://protege.stanford.edu/ and
eProPlan from http://elico.rapid-i.com/eproplan.html (2.0.1 for
Protégé4.0 and 2.1.0 for 4.1).

8 With column-wise operations this may be very large, just consider having
5 alternative methods to discretize 100 attributes. This results in 5100 ≈
1070 possible correct plans.

9 ’Meta-level equivalent output’ can be defined as the IOOs-descriptions pro-
duced by the planner are equivalent up to the names of individuals.

not sufficient to choose the dominating operators since they contain
one or more subtasks that have to be planned as well. This is similar
to planning general control structures like if-then-else or loops, but
the problem is also easier to solve as these dominating operators and
their subtasks have a special purpose and, therefore, task/method de-
compositions as all other tasks. Figure 1a shows a cross-validation
workflow which uses first a preprocessing task and then it applies
cross-validation to produce and test the model as seen in Figure 1b.
During the training step it selects the important features and then it
trains the model. The produced model is then applied on the testing
data. The output is an average of the n runs (where n is the number
of folds, usually set to 10).

(a)

(b)

Figure 1: (a) Cross Validation as Operator (labeled as “Validation” in
the Figure) in a workflow; (b) Subtasks of Cross Valdation

2.1 Meta-Data to describe Input/Output Objects
The planner recognizes the IO-Objects (e.g. DataTable, Document-
Collection and ImageCollection), Background Knowledge, Model
(e.g. PreprocessingModel and PredictionModel, recording required,
modified, added and deleted attributes such that the conditions and
effects of applying these models on the data can be computed by
the planner), and Report (e.g. PerformanceVector and LiftChart). As
an example Table 1 shows the meta-data of a DataTable. The meta-
data for the user-data is generated by RapidMiner’s/RapidAnalytic’s
meta-data analyzer and passed to the planner. During the planning
process the planner generates the meta-data of an operator’s output
objects from the operator’s effect-specification (see Sec. 2.3).

Attribute #Attr Type Role #Diff #Miss Values Min Max Mean Modal Std.

age 1 Scalar input 0 [] 20.0 79.0 50.95 16.74
genLoad 1 Nominal input 2 36 [0,1] 1
label 1 Nominal target 2 0 [+,-] +
meas1 1 Scalar input 0 [] 0.10 3.93 1.845 0.861
meas2 1 Scalar input 30 [] 0.12 4.35 1.979 0.902
meas3 1 Scalar input 0 [] 0.33 5.35 2.319 1.056
sex 1 Nominal input 2 0 [f,m] m

Table 1: Meta-Data for a Data Table

One of the strengths of the IDA is the ability to plan workflows
with attribute-wise operations – a feature no other previous approach
had so far. Especially biological micro-array data can easily contain
several thousand columns, turning this possibility into a major per-
formance bottleneck. Looking at a number of such analyses we ob-
served that these columns often have very similar (if not identical)
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(a)

(b)

Figure 2: Methods for (a) Modeling with Test-Set Evaluation and (b) Preprocessing

meta-data and data characteristics, effectively eliminating the need
to differentiate between them during planning. To keep the strength
and avoid the performance bottleneck of several thousand attributes
that are identical on the meta-data level, we introduced attribute
groups that collect all attributes together where the operator con-
ditions would not discriminate between them anyway. This worked
well as all column-wise operators were able to handle not only single
columns but also specified sets of columns. Therefore, we are able to
generate workflows with attribute-group-wise operations for micro-
array and collaborative filtering data with even 50.000 attributes.

There are various approaches which have used meta-data to sug-
gest the best algorithm for a given problem [12, 4, 7] in the context
of meta-learning.

2.2 The Task/Method decomposition

The top-level task of the HTN is the DM task. It has six methods:
Clustering, Association Rule Mining, Predictive Modeling with Test
Set Evaluation (external given separation), Predictive Modeling with
Cross Validation, Predictive Modeling with Test Set Split Evaluation
(random 70:30 split), and Simple Modeling with Training Set Perfor-
mance.

The selection is directed by the (required) main-goal, i.e. Pattern
Discovery enforces Association Rule Mining, Descriptive Modeling
enforces Clustering, and Predictive Modeling forces the choice of
one of the others. If test data are provided Modeling with Test Set
Evaluation has to be chosen, otherwise the choice can be influenced
by an (optional) evaluation-subgoal (not possible with the current
GUI). If there are still several methods possible, they are enumer-
ated in the rank-order provided by the probabilistic planner (see Sec.
2.4). Each method consists of a sequence of steps, where each step
is a (sub-)task or an operator (it can also be an abstract operator sub-
suming several basic or dominating operators). Planning occurs in
the order of steps, however the resulting data flow is not necessarily
linear, as the grammar allows the specification of port mapping. Fig-
ure 2a shows the method Modeling with Test Set Evaluation and its

flow of IO-Objects in RapidMiner.10 The white nodes are tasks to be
planned and the other nodes are operators. Operators in RapidMiner
are grouped in a way similar to the DMWF. Some of the top nodes
have colors. The greenish ones are operators that deal with Model
as well as objects that inherit from Model. This includes all learn-
ers and the Apply Model operator. The more purple ones are data
transformation operators. The RapidMiner’s plan-interpreter adds a
Multiply node whenever an IO-Object is used by several operators.

The Preprocessing task has only one method (Fig. 2b). First an
empty preprocessing model is created using the operator “Group
Models”. It is then extended by the next steps. All its sub-tasks
have optional “Nothing to Do” methods (as shown for CleanMiss-
ingValues in Fig. 3c). Most of the preprocessing methods are recur-
sive, handling one attribute at a time until nothing is left to be done.
CleanMissingValues has two different recursive methods, the choice
is made by the planner depending on the amount of missing values. If
there are more than 30% values missing, the attribute can be dropped
(Figure 3b). When there are less than 50% missing, it can be filled
with mean or modal value (Figure 3a). If 30− 50% of the values are
missing, both methods can be used and plans for both are enumer-
ated in the order provided by the probabilistic planner. The usage of
column-wise operations is illustrated in Figure. 3, which shows how
depending on the amount of missing values per column the planner
chooses to fill or drop the column.

Figure 4 shows a generated workflow for the UCI data set labor-
negotiations, which has 16 attributes with various amounts of miss-
ing values. Note that in its output the planner compresses recursive
tasks into a single task to simplify the browsing of the workflow by
the user. Such column-wise handling can greatly improve the results
of workflows. For users, however, it is usually too much manual ef-
fort (placing and connecting the 22 operations and setting their pa-
rameters in the workflow below).

In total the HTN of the DMWF now contains 16 tasks with 33

10 Note that the figures illustrate the methods with structurally equivalent
workflows in RapidMiner and do not show the more complicated method
definitions in the ontology.
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(a) (b) (c)

Figure 3: The (a) “Fill Missing Values”, (b) “Drop Missing Values”,
and (c) “Empty”/“Nothing to Do” Method that can be used in Fig. 2b

Figure 4: Resulting Example Workflow for Missing Value Cleaning

methods, such that it handles general DM from single table data sets
with adequate preprocessing. However, we believe that this will show
its real power in customer/application area specific grammars de-
signed and/or extended in eProPlan, resulting in adaptive customer
templates for workflows. The complexity of the produced workflows
depends on the characteristics of the dataset (if it has missing val-
ues, if it needs to be normalized, etc.) and on the number of modeled
operators for each steps of the KDD process (FeatureSelection and
DataMining have more operators). Due to space limitations, we only
illustrate some parts of the grammar here. The full grammar can be
inspected in the public available DMWF-Ontology11.

2.3 The Operator Models
To be able to express the operators’ conditions and effects for plan-
ning we stored them as annotations in the ontology. Conditions and
effects can contain concept expressions, SWRL-rules,12 and some
extended-SWRL-like built-ins. We have introduced a set of special
built-ins needed for planning (e.g., new, copy, copyComplex, etc.).
These built-ins allow to create, copy, and destroy objects during plan-
ning (e.g., models, produced IO-objects, weights, etc.). eProPlan al-
lows to define new built-ins which are stored as subclasses of the
Built-in concept. Each built-in can have types/parameters and the
corresponding implementation in Flora2 [16]. But users who want to
add new built-ins need to have some Flora-2 knowledge. They have
the possibility to define new functions/operations on the data and in-
troduce them in the conditions and effects. The built-ins’ definition
with parameters and implementation are stored as class annotations.

11 Use an OWL2 Ontology Editor like Protege to ”Open OWL on-
tology from URI” with http://www.e-lico.eu/ontologies/
dmo/e-Lico-eProPlan-DMWF-HTN.owl

12 http://www.w3.org/Submission/SWRL/

Inputs and outputs of an operator are defined as concept expres-
sions and are either stored as superclasses or as equivalent classes.
The parameters and the corresponding RapidMiner operator name
are stored in equivalent classes. Fig. 5 exemplifies the abstract op-
erator for a classification learner operator with its corresponding in-
puts/outputs, condition and effect.

”ClassificationLearner”:

Equiv. class: PredictiveSupervisedLearners and
(uses exactly 1 DataTable) and
(produces exactly 1 PredictionModel) and
(operatorName max 1 Literal)

Condition: [DataTable and (targetAttribute exactly 1 Attribute) and
(inputAttribute min 1 Attribute) and
(targetColumn only (DataColumn and
columnsHasType only (Categorial))) and
(inputColumn only (DataColumn and
columnsHasType only (Scalar or Categorial)))

](?D)

→ new(?this), ClassificationLearner(?this), uses(?this,?D)

Effect: uses(?this,?D), ClassificationLearner(?this),

inputColumn(?D,?IC),targetColumn(?D,?TC),

→ copy(?M,?D, {DataTable(?D), containsColumn(?D,? ),

amountOfRows(?D,? )}),produces(?this,?M), PredictionModel(?M),

needsColumn(?M,?IC), predictsColumn(?M,?TC)

Figure 5: An abstract operator: ClassificationLearner

A basic classification learner operator inherits all the characteris-
tics of the classification learner. In addition, it can define more refined
conditions or effects and more parameters. Fig. 6 shows the refine-
ment of the general class of all classification learners to a specific
Support Vector Machine implementation in RapidMiner. It has an
additional condition (binary target and scalar input attribute and no
attribute is allowed to have missing values), but it does not contain a
refined effect. Its effect is the one used for all classification learners
(it builds a predictive model that requires all input attributes to be
present to be applicable and predicts the target attribute).

”RM Support Vector Machine LibSVM C SVC linear”:

Equiv. class: RM Operator and
(usesData exactly 1 DataTable) and
(producesPredictionModel exactly 1 PredictionModel) and
(simpleParameter kernel type value ”linear”) and
(simpleParameter svm type value ”minimal leaf size”) and
(operatorName exactly 1 {”support vector machine libsvm”})

Condition: [MissingValueFreeDataTable and
(targetColumn exactly 1 CategorialColumn) and
(inputColumn min 1 Thing) and
(inputColumn only (ScalarColumn))

](?D)

→ RM Support Vector Machine LibSVM C SVC linear(?this),

simpleParameter svm type(?this,”C-SVC”),

simpleParameter kernel type(?this,”linear”)

Figure 6: A basic classification learner operator

Each input/output class expression (e.g., usesData exactly 1
DataTable) has an annotation which defines its port mapping to its
corresponding RapidMiner operator port (e.g., ”training set”). Both
conditions and effects are rules. Conditions check the applicability
(lhs) and infer the parameter settings (rhs); different solutions can
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infer that the operator can be applied with different parameter set-
tings. Effects compute the variable-bindings (lhs) for the assertion to
be made (rhs); all different solutions are asserted as the effect of one
operator application.

2.4 Probabilistic Ranking of Workflows

The HTN-planning method described in this paper enumerates all
possible workflows for a given problem. The operator models en-
sure that they are executable without error. Furthermore, the HTN-
Grammar prevents senseless operator combinations. For example,
first normalizing the data and then discretizing it does not make sense
since the normalization effect is absorbed by the discretization one.
Also, converting the scalar data to nominal and then converting it
back is a useless operation. Another example is dropping attributes
without a reason. Nonetheless, the planner can still generate a very
large number of correct candidate workflows and we are unaware
of any analytical knowledge available to decide which of them will
perform well on the current data. Meta-learning tries to learn rela-
tions between data characteristics and method performance. Hence,
the IDA uses such meta-learned [11] patterns to order the enumera-
tion of M candidate workflows (heuristic search) and to finally se-
lect the N best plans and present them to the user. The ranking ap-
proach works as follows: whenever several operators ( ’meta-level
NON equivalent output’ ) or methods are applicable, the PP is asked
for a (local, up-to now) ranking and delivers the plans in this order.
This determines which space is enumerated if the planner is asked
for a limited number of solutions. In the end, all generated alterna-
tives are ranked (with left and right context available) for the final
presentation to the user.

The planning knowledge described above also does not know
about the execution time of operators. This is caused by the fact that
the actual runtime of a DM method cannot be predicted easily be-
cause of the complexity of the generated models. It can be worst-case
bounded in the number of examples and attributes, but its actual size
is strongly affected by statistical properties (e.g. noise-level) of the
data. The runtime prediction of a DM method was first introduced in
[6]. The ranking in our planner, therefore, relies on a meta-learning
based method to predict the runtime of modeling and feature selec-
tion operators [19].

3 The Overall System

Our system has two main components as illustrated in Fig. 7: ePro-
Plan, our modeling support tool for new operators and new tasks to
be solved by the planner, and eIDA, which generates and deploys
workflows into DM-suites. eProPlan is the modeling environment
for the DM Workflow Ontology (DMWF). It allows to model new
operators and uses a task-method decomposition grammar to solve
DM problems. Designed as a plugin for the open-source ontology-
editor Protégé 4,13 eProPlan exploits the advantages of the ontology
as a formal model for the domain knowledge. Instead of employ-
ing the ontological inferences for planning (as done in [3, 17]) we
extend the ontological formalism with the main components of a
plan, namely operator conditions and effects for classical planning
and tasks-methods decomposition grammar for HTN-planning. This
allowed us to cleanly separate the inheritance from the planing mech-
anisms in our systems.

13 http://protege.stanford.edu/
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Figure 7: The eProPlan architecture

The planner is implemented in Flora2/XSB [16] and uses different
parts from the workflow ontology for different purposes (see Fig-
ure 8). Specifically, it employs both a specialized ABox (assertional
box—individual assertions) reasoner that relies on an external TBox
(terminological box: classes and properties) reasoner (e.g. Pellet14

or FaCT++ [14]) as a subroutine. Since the TBox reasoner can only
partially handle OWL2 (Web Ontology Language15), we filter all ex-
pressions that are not supported from the ontology. The resulting in-
ferred/completed TBox and its possibly inconsistent class definitions
are passed to our ABox reasoner. The ABox reasoner, implemented
in Flora2/XSB, first compiles the classified TBox obtained from Pel-
let on the initial ontology. Then, we process the operators together
with their inputs, outputs, preconditions, and effects that are stored
as OWL annotations. Tasks and methods are handled analogously.
Finally, we finish with the compilation of the problem definition,
which is represented by a set of individuals. The problem descrip-
tion has two elements: the input description in terms of meta-data
(characteristics of the data like attributes, types, median, etc.) and
the goals/hints entered by the user. Both are stored as a set of ABox
assertions. Having specified the planning domain and the problem
description, one can start planning DM workflows.

TBox classification
(Pellet)

Problem
definition

- Goals/Hints     
- Input Objects

Op Defs

HTN

TBox

ABox

Applicable operators

Apply Op

Expandable Task

Expand Task

Generate N Plans

ABox Reasoning

Planner (Flora2/XSB Prolog)

DM
Workflow
Ontology

Patterns Best Ranked N Plans
Meta-learning
Probabilistic 

ranking

Figure 8: Workflow Ontology and AI Planner capabilities.

eIDA is a programming interface to the reasoner & planner used

14 http://clarkparsia.com/pellet/
15 http://www.w3.org/TR/owl2-profiles/
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to plugin such an Intelligent Discovery Assistant (IDA), based on
the services of the planner, into existing systems (so far into Rapid-
Miner and Taverna).16 It provides methods for retrieving the plans
starting from the data set meta-data and the selection of a main goal.
To improve the user experience with the RM-IDA plugin we have
developed a simple installer based on precompiled binaries. It works
on Linux, Mac OS X 10.5/6, Windows 7 and Windows XP systems.

The RapidMiner IDA Extension can be downloaded (or even auto-
installed) from the Rapid-I Marketplace. 17 So far it was downloaded
over 150 times during the first two months.

Both presented tools (eProPlan, eIDA) are open source and avail-
able on request.

An alternative implementation of RapidMiner IDA Extension ex-
ists for Taverna18. Taverna can execute all workflows composed of
web-services. It can execute the workflows generated by the IDA19

using any RapidAnalytics 20 server that provides all RapidMiner op-
erators as web-services. Extensions for other KDD tools (e.g., KN-
IME, Enterprise Miner, etc.) would require two steps: first modeling
their corresponding operators in the DMWF, second an implementa-
tion of the GUI and the plan-converter using the IDA-API.

4 Evaluation of the IDA

We tested the IDA on 108 datasets from the UCI repository of Ma-
chine Learning datasets. 21 It produced executable plans for all 78
classification and 30 regression problems. These datasets have be-
tween three and 1558 attributes, being all nominal (from binary too
many different values like ZIP), all scalar (normalized or not), or
mixed types. They have varying degrees of missing values. We are
not aware of any other Machine Learning or DM approach that is
able to adapt itself to so many different and divergent datasets. The
IDA also works for less well prepared datasets like the KDD Cup
1998 challenge data (370 attributes, with up to 50% missing values
and nominal data, where it generates plans of around 40 operators.
Generating and ranking 20 of these workflows took 400 sec. on a 3.2
GHz Quad-Core Intel Xeon.

4.1 Ease of Use

Without an IDA data mining is typically achievable by specialized
highly-trained professionals such as DM consultants. They have to
know a lot about DM methods and how they are implemented in
tools. They have to inspect the data and combine the operators into
an adequate workflow.

The IDA reduces the technical burden, it now offers ”DM with 7
clicks” (see Figure 5). (1) Show the IDA-Perspective of the tool; (2)
drag the data to be analyzed from the repository to the view or import
(and annotate) your data; (3) select your main goal in DM; (4) ask the
IDA to generate workflows for data and goal; (5) evaluate all plans
by executing them in RapidMiner; (6) select the plan you like most
to see a summary of the plan (the screenshot in Figure 6 is made
after this step); and finally, (7) inspect the plan and its results. Note
that these steps do not require detailed technical knowledge anymore.
Still a user should be aware of what (s)he is doing when (s)he uses

16 http://www.taverna.org.uk/
17 http://rapidupdate.de:8180/UpdateServer/faces/
product_details.xhtml?productId=rmx_ida

18 http://e-lico.eu/taverna-ida.html
19 http://e-lico.eu/taverna-rm.html
20 http://rapid-i.com/content/view/182/196/
21 http://archive.ics.uci.edu/ml/
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Figure 9: IDA Interface in RapidMiner

DM, i.e. (s)he should know the statistical assumptions underlying
DM (e.g., a user should know what it means to have a sample that
is representative, relevant, and large enough to solve a problem with
DM/statistics). But this is knowledge required in any experimental
science.

4.2 Speedup of Workflow Design
Besides making DM easier for inexperienced users, our main goal
in building the IDA was to speed-up the design of DM workflows.
To establish a possible speed-up we compared the efficiency of com-
puter science students after attending a DM class to a person using
the IDA. The study comprises in total 24 students (9 in 2011 and 15
in 2012). They had to solve the following DM problems:

• Take the UCI ”Communities and Crime” data from
http://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime and

a) generate a fine clustering of data that allows me to look for
very similar communities

b) generate a description of the clusters (learn a model to predict
the cluster label build in task a)).

c) generate a function to predict ”ViolentCrimesPerPop” and
evaluate it with 10-fold cross-validation.

• Take the UCI ”Internet Advertisement” data from
http://archive.ics.uci.edu/ml/datasets/
Internet+Advertisements and generate an evaluated
classification for the attribute ”Ad/Non-Ad”.

All data are provided as already imported into RapidMiner (a local
RapidAnalytics server they could access). All students took/needed
the full 3 hours.

The study confirmed that the standard DM problems they had to
solve (clustering and prediction tasks on complex UCI data) can be
sped-up by the using an IDA whilst maintaing comparable quality:
it took the students 3 hours (designing and executing the workflows)
to solve the tasks, whereas a non-specialist using the IDA accom-
plished the same tasks in 30 minutes (IDA planning and minimal
manual adaptation and execution of the workflows) with a compa-
rable output. Table 10 shows how many students managed to solve
successfully the given problems and how the IDA solved it.
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Task #Students Succeeded #Students
partial
success

IDA’s solution

Crime Data
Clean Missing Values 22/24 1/24 drop & fill
Many Valued Nominals 11/24 6/24 drop
Normalization - - yes
Clustering 9/24 - 2/10-means
Cluster Description 8/24 - DT
Regression RMSE<0.2:11/24,

0.22≤RMSE≤0.244:
3/11, Best RMSE=0.136
±0.010 : 4/24

- k-NN
RMSE=0.2

Evaluation 15/24 2/24 10-fold X-Val
Advertisement Data

Clean Missing Values 17/24 1/24 fill
Feature Selection no no no
Classification acc>96%:13/24,

86%≤acc<96%:6/24,
Best Acc=97.32%:1/24

- DT,
Acc=96.34%±
0.65

Evaluation 5/24 7/24 10-fold X-Val

Figure 10: Features of the designed solutions by students and IDA

Both datasets had missing values which could be ignored (−), the
attribute could be all dropped or all filled or depending on the amount
of missing values individually dropped & filled. Here, both students
and IDA did a good job. The ”Communities and Crime” data had
key-like attributes (many valued nominals) which are likely to dis-
turb the DM results and should be dropped or marked as (to be) ig-
nore(d). Here, only around half of the students handled it correctly.
Numerical attributes with different scales cause unwanted weight-
ing of attributes in distance based similarity computation. Therefore,
they should be normalized22. There are several clustering methods
in RapidMiner. The best way to solve the clustering task is by us-
ing hierarchical top-down 2-means (k-means with k = 2) clustering
till the grouping is fine enough. Only one student used this approach.
The rest of the students and the IDA used k-means with different val-
ues for k (k<20 is successful, larger values make the prediction very
difficult).The IDA sets k = 2 and there is no way to specify the goal
of a ”fine clustering”. This can be solved by opening the returned
workflow and changing the parameter (re-running it is not much ef-
fort). We manually choose k = 10 as we had the next task in mind
and knew it is difficult to predict a nominal with too many different
values23, but many students chose a too fine k and failed the cluster
description task (using different methods like Naive Bayes (NB), De-
cision Tree (DT) or jRIP), most only build bad models using the not
dropped key-like attributes). For the ”ViolentCrimesPerPop”, most
students used linear regression (linReg). The probabilistic ranking
of the IDA preferred k-nearest neighbor. Common mistakes for this
task were: regression applied on the wrong attribute, converting nu-
meric data to nominal and applying NaiveBayes (bad accuracy), or
converting it to binary: no crime (3 examples), crime (595 exam-
ples) the resulting model of course predicted crime everywhere. The
DM step should have used a 10-fold cross validation, but some stu-
dents delivered a training/test set split (maybe to save execution time,
maybe because that was used in the group exercise). ”Internet Adver-
tisement” data has many attributes, so Feature Selection would have

22 In fact the initial data is 0-1 range normalized, so the students did not do
that step, but preprocessing operations like filling missing values change
the column statistics. The planner cannot predict the results very well for
column groups, so it ensures normalization of the data at the end of pre-
processing.

23 The meta-data analysis returns categorial for ≤ 10 different values and
nominal otherwise. Prediction requires a categorial target (or numeric) tar-
get, i.e. the IDA refuses to build a plan to predict a target with more than
10 nominal values.

been an option, but no one did it, also the IDA had none in the top
5 ranked plans. The task was a simple binary prediction, non-ads are
much more frequent (2820 non-ad, 459 ad), solved by all students
by different methods. One balanced the data, but that worsened the
results. One learned a decision tree but did not do an evaluation of
the results. Some students even failed to produce a model or plot the
data incorrectly (20:80).

This user evaluation provides a strong indication about the
strength of the IDA. Note that the students are an optimal user-group
for the IDA, as they have limited DM experience but understand the
principles of DM.

4.3 Performance of the generated workflows

The performance of the generated workflows depends strongly on
the ranking. The baseline strategy is to rank the workflows simply
based on the popularity of the operators. RapidMiner automatically
collects operator usage-frequencies from all the users who accept to
submit it. A workflow is ranked better, if it contains more frequently
used operators. This already produces workflows comparable to user-
designed workflows and was used in the speedup-experiments. Our
e-LICO project partners24 used the planner to systematically generate
workflows, executed them to get the performance data, and applied
meta-learning to these experiments [11].

In [10] they evaluated the meta-mining module and the resulting
plan ranking on 65 biological datasets. These datasets are high di-
mensional with few instances/samples. For their experiments they
cross-validated all performance by holding out a dataset. The re-
sulting meta-model was then used to rank the IDA-generated work-
flows. They found that the meta-learned rankings significantly out-
performed the default, frequency-based strategy. Hence, their ranker
was able to improve on our ranking to find DM workflows that max-
imize predictive performance.

5 Conclusion

We presented our Intelligent Discovery Assistant (eIDA and ePro-
Plan) for planning KDD workflows. eIDA can be easily integrated
into existing DM-suites or workflow engines. eProPlan is a user-
friendly environment for modeling DM operators and defining the
HTN grammar for guiding the planning process. Furthermore, it is
able to plan attribute-wise operations. The main scientific contribu-
tion of the IDA is the ability to build complex workflows out of a
much larger set of operations than all previous systems. The demo
presents how planning-based KDD workflow design can significantly
help KDD practitioners to make their daily work more efficient.
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Experimental Evaluation of the e-LICO Meta-Miner
(Extended Abstract)

Phong Nguyen and Alexandros Kalousis and Melanie Hilario 1

1 Introduction

Operator selection is the task of selecting the right operator for build-
ing not only valid but also optimal data mining (DM) workflowsin
order to solve a new learning problem. One of the main achievements
of the EU-FP7 e-LICO project2 has been to develop anIntelligent
Data-Mining Assistant (IDA) to assist the DM user in the construc-
tion of such DM workflows following a cooperative AI-planning ap-
proach [2] coupled with a new meta-learning approach for mining
past DM experiments, referred as the e-LICO meta-miner [3].The
idea of meta-mining [1] is to build meta-mined models from the full
knowledge discovery process by analysing learning problems and al-
gorithms in terms of their characteristics and core components within
a declarative representation of the DM process, the Data Mining OP-
timization ontology (DMOP)3.

In this paper, we provide experimental results to validate the e-
LICO meta-miner’s approach to the operator selection task.We ex-
perimented on a collection of real-world datasets with feature selec-
tion and classification workflows, comparing our tool with a default
strategy based on the popularity of DM workflows. The resultsshow
the validity of our approach; in particular, that our selection approach
allows to rank appropriately DM workflows with respect to theinput
learning problem. In the next section, we briefly review the meta-
miner. In section 3, we present our results. And in section 4,we con-
clude.

2 The e-LICO Meta-Miner

The role of the AI-planner is to plan valid DM workflows by reason-
ing on the applicability of DM operators at a given stepi according to
their pre/post-conditions. However, since several operators can have
equivalent conditions, the number of resulting plans can bein the or-
der of several thousands. The goal of the meta-miner is to select at
a given stepi among a set of candidate operatorsAi thek best ones
that will optimize the performance measure associated withthe user
goalg and its input meta-datam in order to gear the AI-planner to-
ward optimal plans. For this, the meta-miner makes use of a quality
function Q which will score a given planw by the qualityq of the
operators that formw as:

Q(w |g,m) = q∗(o1|g,m)

|T (w)|∏

i=2

q(oi|T (wi−1), g,m) (1)

whereT (wi−1) = [o1, .., oi−1] is the sequence of previous oper-
ators selected so far, andq∗ is an initial operator quality function.

1 University of Geneva, Switzerland, email: Phong.Nguyen@unige.ch
2 http://www.e-lico.eu
3 The DMOP is available at http://www.dmo-foundry.org

Thus the meta-miner will qualify a candidate operator by itscondi-
tional probability of being applied given all the precedingoperators,
and select those that have maximum quality to be applied at a stepi.
In order to have reliable probabilities, the meta-miner makes use of
frequent workflow patterns extracted from past DM processeswith
the help of the DMOP ontology such that the operator quality func-
tion q is approximated as:

q(o|T (wi−1), g,m) ≈ aggr
{

supp(fo
i |g,m)

supp(fi−1|g,m)

}
fo
i
∈Fo

i

(2)

whereaggr is an aggregation function,F o
i is the set of frequent

workflow patterns that match the current candidate workflowwo
i

built with a candidate operatoro, andfi−1 is the pattern prefix for
each patternfo

i ∈ F o
i . More importantly, the quality of a candidate

workflow wo
i will depend on the support functionsupp(fo

i |g,m) of
its matching patterns. As described in [3], this support function is
defined by learning a dataset similarity measure which will retrieve
a dataset’s nearest neighbors ExpN based on the input meta-datam.
We refer the reader to [3] for more details. In the next section, we will
deliver experimental results to validate our meta-mining approach.

3 Experiments

To meta-mine real experiments, we selected 65 high-dimensional bi-
ological datasets representing genomic or proteomic microarray data.
We applied on these bio-datasets 28 feature selection plus classi-
fication workflows, and 7 classification-only workflows, using ten-
fold cross-validation. We used the 4 following feature selection algo-
rithms: Information Gain,IG, Chi-square,CHI, ReliefF,RF, and re-
cursive feature elimination with SVM,SVMRFE; we fixed the num-
ber of selected features to ten. For classification we used the 7 follow-
ing algorithms: one-nearest-neighbor,1NN, theC4.5 andCART de-
cision tree algorithms, a Naive Bayes algorithm with normalproba-
bility estimation,NBN, a logistic regression algorithm,LR, and SVM
with the linear,SVM l and the rbf,SVM r, kernels. We used the im-
plementations of these algorithms provided by the RapidMiner data
mining suite with their default parameters. We ended up witha to-
tal of 65 × (28 + 7) = 2275 base-level DM experiments, on which
we gathered all experimental metadata; folds predictions and per-
formance results, dataset metadata and workflow patterns, for meta-
mining [1].

We constrain the AI-planner so that it generates feature selection
and/or classification workflows only. We did so in order for the past
experiments to be really relevant for the type of workflows wewant to
design. Note that the AI-planner can also select from operators with
which we have not experimented. These are for feature selection,
Gini Index, Gini, and Information Gain Ratio,IGR. For classifica-
tion, we used a Naive Bayes algorithm with kernel-based probability
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estimation,NBK, a Linear Discriminant Analysis algorithm,LDA, a
Rule Induction algorithm,Ripper, a Random Tree algorithm,RDT,
and a Neural Network algorithm,NNet.

3.1 Baseline Strategy

In order to assess how well our meta-miner performs, we need to
compare it with some baseline. To define this baseline, we will use as
the operators quality estimates simply their frequency of use within
the community of the RapidMiner users. We will denote this quality
estimate for an operatoro by qdef (o). Additionaly, we will denote
the quality of a DM workflow,w, computed using theqdef (o) quality
estimations byQdef (w), thus:

Qdef (w) =
∏

oi∈T (wf )

qdef (oi) (3)

The scoreqdef (o) focuses on the individual frequency of use of
the DM operators, and does not account for longer term interac-
tions and combinations such as the ones captured by our frequent
patterns. It reflects thus simply the popularity of the individual oper-
ators. In what concerns the most frequently used classification oper-
ators, these wereC4.5, followed byNBN, andSVM l. For the feature
selection algorithms, the most frequently used wereCHI andSVM-
RFE.

3.2 Evaluation and Comparison Strategy

The evaluation will be done in a leave-one-dataset-out manner, where
we will use our selection strategies on the remaining 64 datasets to
generate workflows for the dataset that was left out. On the left-out
dataset, we will then determine theK best workflows using the base-
line strategy as well as using the meta-miner selection strategy. To
compare the performance of the ordered set of workflows constructed
by each strategy, we will use the average estimated performance of
theK workflows on the given dataset, which we will denote byφa.
We will report the average ofφa over all the datasets. Additionally,
we will estimate the statistical significance of the number of times
over all the datasets that the meta-miner strategy has a higher φa

than the baseline strategy; we will denote this byφs. We estimated
the neighborhood ExpN of a dataset usingN = 5 nearest neighbors.
We will compare the performance of the baseline and of the meta-
miner forK = 1, 3, 5 generated workflows in order to have a large
picture of their overall performance.

3.3 Performance Results and Comparisons

K=1. The top-1 workflow selected by the baseline strategy isCHI-
C4.5. When we compare its performance against the performance
of the top-1 workflow selected by the meta-miner given in the first
row of table 1, we can see that the meta-mining strategy givesan
average performance improvement of around 6% over the baseline
strategy. In addition, its improvement over the baseline isstatistically
significant in 53 datasets over 65, while the baseline wins only on 11
datasets.

K=3. The two other workflows selected by the baseline strategy
additionally to the top-1 areCHI-NBN and CHI-SVM l. When we
extend the selection to the three best workflows, we obtain the re-
sults given in the second row of table 1, where we see that the aver-
age predictive performance improvement over the baseline strategy

is around 2%. As before, the meta-miner achieves significantly bet-
ter performance than the baseline in a larger number of baselines
datasets than vice-versa.

K=5. The two other workflows selected by the baseline strategy
additionally to the top-3 areSVMRFE-C4.5 and SVMRFE-SVM l.
We give the results of the five best workflows selected by the meta-
miner in the last row of table 1, where we observe similar trends as
before; 2% of average performance improvement and statistical dif-
ference in the number of improvement in favor of the meta-mining
strategy.

φa φs

K = 1
Qdef 71.92% 11/65
Q 77.68% 53/65 p=2e-7

K = 3
Qdef 75.04% 22/65
Q 77.28% 41/65 p=0.046

K = 5
Qdef 75.18% 18/65
Q 77.14% 44/65 p=0.006

Table 1. Performance results and comparisons for the top-K workflows.

3.4 Selected Workflows

We will briefly discuss the top-K workflows selected by the meta-
miner. ForK = 1, we have on a plurality of datasets the selection of
theLDA classifier, an algorithm we have not experimented with. This
happens because within the DMOP ontology this algorithm is related
both with the linear,SVM l, and with the NaiveBayes algorithm, both
of which perform well on our dataset collection. ForK = 3 and
K = 5, we have additionally the selection of the previously unseen
NNet andRipper classifiers. These operator selections demonstrate
the capability of the meta-miner to select new operators based on
their algorithm similarities given by the DMOP with past ones.

4 Conclusion and Future Works

This is a preliminary study, but already we see that we are able to
deliver better workflow suggestions, in terms of predictiveperfor-
mance, compared to the baseline strategy, while at the same time be-
ing able to suggest workflows consisting of operators with which we
have never experimented. Future works include more detailed experi-
mentation and evaluation, and the construction of similarity measures
combining both the dataset characteristics and the workflowpatterns.
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Selecting Classification Algorithms with Active Testing on
Similar Datasets

Rui Leite1 and Pavel Brazdil2 and Joaquin Vanschoren3

Abstract. Given the large amount of data mining algorithms, their
combinations (e.g. ensembles) and possible parameter settings, find-
ing the most adequate method to analyze a new dataset becomes an
ever more challenging task. This is because in many cases testing all
possibly useful alternatives quickly becomes prohibitively expensive.
In this paper we propose a novel technique, called active testing, that
intelligently selects the most useful cross-validation tests. It proceeds
in a tournament-style fashion, in each round selecting and testing the
algorithm that is most likely to outperform the best algorithm of the
previous round on the new dataset. This ‘most promising’ competitor
is chosen based on a history of prior duels between both algorithms
on similar datasets. Each new cross-validation test will contribute
information to a better estimate of dataset similarity, and thus better
predict which algorithms are most promising on the new dataset. We
also follow a different path to estimate dataset similarity based on
data characteristics. We have evaluated this approach using a set of
292 algorithm-parameter combinations on 76 UCI datasets for clas-
sification. The results show that active testing will quickly yield an
algorithm whose performance is very close to the optimum, after rel-
atively few tests. It also provides a better solution than previously
proposed methods. The variants of our method that rely on cross-
validation tests to estimate dataset similarity provides better solutions
than those that rely on data characteristics.

1 Background and Motivation
In many data mining applications, an important problem is select-
ing the best algorithm for a specific problem. Especially in classifi-
cation, there are hundreds of algorithms to choose from. Moreover,
these algorithms can be combined into composite learning systems
(e.g. ensembles) and often have many parameters that greatly influ-
ence their performance. This yields a whole spectrum of methods and
their variations, so that testing all possible candidates on the given
problem, e.g., using cross-validation, quickly becomes prohibitively
expensive.

The issue of selecting the right algorithm has been the subject of
many studies over the past 20 years [17, 3, 23, 20, 19]. Most ap-
proaches rely on the concept of metalearning. This approach exploits
characterizations of datasets and past performance results of algo-
rithms to recommend the best algorithm on the current dataset. The
term metalearning stems from the fact that we try to learn the func-
tion that maps dataset characterizations (meta-data) to algorithm

1 LIAAD-INESC Porto L.A./Faculty of Economics, University of Porto, Por-
tugal, rleite@fep.up.pt

2 LIAAD-INESC Porto L.A./Faculty of Economics, University of Porto, Por-
tugal, pbrazdil@inescporto.pt

3 LIACS - Leiden Institute of Advanced Computer Science, University of
Leiden, Nederlands, joaquin@liacs.nl

performance estimates (the target variable).
The earliest techniques considered only the dataset itself and cal-

culated an array of various simple, statistical or information-theoretic
properties of the data (e.g., dataset size, class skewness and signal-
noise ratio) [17, 3]. Another approach, called landmarking [2, 12],
ran simple and fast versions of algorithms (e.g. decision stumps
instead of decision trees) on the new dataset and used their per-
formance results to characterize the new dataset. Alternatively, in
sampling landmarks [21, 8, 14], the complete (non-simplified) al-
gorithms are run on small samples of the data. A series of sampling
landmarks on increasingly large samples represents a partial learn-
ing curve which characterizes datasets and which can be used to pre-
dict the performance of algorithms significantly more accurately than
with classical dataset characteristics [13, 14]. Finally, an ‘active test-
ing strategy’ for sampling landmarks [14] was proposed that actively
selects the most informative sample sizes while building these partial
learning curves, thus reducing the time needed to compute them.

Motivation. All these approaches have focused on dozens of al-
gorithms at most and usually considered only default parameter
settings. Dealing with hundreds, perhaps thousands of algorithm-
parameter combinations4, provides a new challenge that requires a
new approach. First, distinguishing between hundreds of subtly dif-
ferent algorithms is significantly harder than distinguishing between
a handful of very different ones. We would need many more data
characterizations that relate the effects of certain parameters on per-
formance. On the other hand, the latter method [14] has a scalability
issue: it requires that pairwise comparisons be conducted between
algorithms. This would be rather impractical when faced with hun-
dreds of algorithm-parameter combinations.

To address these issues, we propose a quite different way to char-
acterize datasets, namely through the effect that the dataset has on the
relative performance of algorithms run on them. As in landmarking,
we use the fact that each algorithm has its own learning bias, making
certain assumptions about the data distribution. If the learning bias
‘matches’ the underlying data distribution of a particular dataset, it
is likely to perform well (e.g., achieve high predictive accuracy). If it
does not, it will likely under- or overfit the data, resulting in a lower
performance.

As such, we characterize a dataset based on the pairwise perfor-
mance differences between algorithms run on them: if the same al-
gorithms win, tie or lose against each other on two datasets, then the
data distributions of these datasets are likely to be similar as well, at
least in terms of their effect on learning performance. It is clear that
the more algorithms are used, the more accurate the characterization

4 In the remainder of this text, when we speak of algorithms, we mean fully-
defined algorithm instances with fixed components (e.g., base-learners, ker-
nel functions) and parameter settings.
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will be. While we cannot run all algorithms on each new dataset be-
cause of the computational cost, we can run a fair amount of CV tests
to get a reasonably good idea of which prior datasets are most similar
to the new one.

Moreover, we can use these same performance results to estab-
lish which (yet untested) algorithms are likely to perform well on the
new dataset, i.e., those algorithms that outperformed or rivaled the
currently best algorithm on similar datasets in the past. As such, we
can intelligently select the most promising algorithms for the new
dataset, run them, and then use their performance results to gain in-
creasingly better estimates of the most similar datasets and the most
promising algorithms.

Key concepts. There are two key concepts used in this work. The
first one is that of the current best candidate algorithm which may
be challenged by other algorithms in the process of finding an even
better candidate.

The second is the pairwise performance difference between two
algorithms running on the same dataset, which we call relative land-
mark. A collection of such relative landmarks represents a history of
previous ‘duels’ between two algorithms on prior datasets. The term
itself originates from the study of landmarking algorithms: since ab-
solute values for the performance of landmarkers vary a lot depend-
ing on the dataset, several types of relative landmarks have been pro-
posed, which basically capture the relative performance difference
between two algorithms [12]. In this paper, we extend the notion of
relative landmarks to all (including non-simplified) classification al-
gorithms.

The history of previous algorithm duels is used to select the
most promising challenger for the current best candidate algorithm,
namely the method that most convincingly outperformed or rivaled
the current champion on prior datasets similar to the new dataset.

Approach. Given the current best algorithm and a history of rela-
tive landmarks (duels), we can start a tournament game in which,
in each round, the current best algorithm is compared to the next,
most promising contender. We select the most promising challenger
as discussed above, and run a CV test with this algorithm. The winner
becomes the new current best candidate, the loser is removed from
consideration. We will discuss the exact procedure in Section 3.

We call this approach active testing (AT)5, as it actively selects the
most interesting CV tests instead of passively performing them one
by one: in each iteration the best competitor is identified, which de-
termines a new CV test to be carried out. Moreover, the same result
will be used to further characterize the new dataset and more accu-
rately estimate the similarity between the new dataset and all prior
datasets.

Evaluation. By intelligently selecting the most promising algorithms
to test on the new dataset, we can more quickly discover an algorithm
that performs very well. Note that running a selection of algorithms is
typically done anyway to find a suitable algorithm. Here, we optimize
and automate this process using historical performance results of the
candidate algorithms on prior datasets.

While we cannot possibly guarantee to return the absolute best
algorithm without performing all possible CV tests, we can return an
algorithm whose performance is either identical or very close to the
truly best one. The difference between the two can be expressed in
terms of a loss. Our aim is thus to minimize this loss using a minimal

5 Note that while the term ‘active testing’ is also used in the context of ac-
tively selected sampling landmarks [14], there is little or no relationship to
the approach described here.

number of tests, and we will evaluate our technique as such.
In all, the research hypothesis that we intend to prove in this paper

is: Relative landmarks provide useful information on the similarity
of datasets and can be used to efficiently predict the most promising
algorithms to test on new datasets.

We will test this hypothesis by running our active testing approach
in a leave-one-out fashion on a large set of CV evaluations testing 292
algorithms on 76 datasets. The results show that our AT approach is
indeed effective in finding very accurate algorithms with a limited
number of tests.

We also present an adaptation of method AT that uses data char-
acteristics to define the similarity of the datasets. Our purpose was to
compare the relative landmark versus data measures approaches to
select classification algorithms.

Roadmap. The remainder of this paper is organized as follows. First,
we formulate the concepts of relative landmarks in Section 2 and
active testing in Section 3. Next, Section 4 presents the empirical
evaluation and Section 5 presents an overview of some work in other
related areas. The final section presents conclusions and future work.

2 Relative Landmarks

In this section we formalize our definition of relative landmarks, and
explain how are used to identify the most promising competitor for a
currently best algorithm.

Given a set of classification algorithms and some new classifica-
tion dataset dnew, the aim is to identify the potentially best algorithm
for this task with respect to some given performance measure M
(e.g., accuracy, AUC or rank). Let us represent the performance of
algorithm ai on dataset dnew as M(ai, dnew). As such, we need to
identify an algorithm a∗, for which the performance measure is max-
imal, or ∀aiM(a∗, dnew) ≥M(ai, dnew). The decision concerning
≥ (i.e. whether a∗ is at least as good as ai) may be established using
either a statistical significance test or a simple comparison.

However, instead of searching exhaustively for a∗, we aim to
find a near-optimal algorithm, â∗, which has a high probability
P (M(â∗, dnew) ≥ M(ai, dnew)) to be optimal, ideally close to
1.

As in other work that exploits metalearning, we assume that â∗ is
likely better than ai on dataset dnew if it was found to be better on a
similar dataset dj (for which we have performance estimates):

P (M(â∗, dnew) ≥M(ai, dnew)) ∼ P (M(â∗, dj) ≥M(ai, dj))
(1)

The latter estimate can be maximized by going through all algorithms
and identifying the algorithm â∗ that satisfies the ≥ constraint in
a maximum number of cases. However, this requires that we know
which datasets dj are most similar to dnew. Since our definition of
similarity requires CV tests to be run on dnew, but we cannot run all
possible CV tests, we use an iterative approach in which we repeat
this scan for â∗ in every round, using only the datasets dj that seem
most similar at that point, as dataset similarities are recalculated after
every CV test.

Initially, having no information, we deem all datasets to be similar
to dnew, so that â∗ will be the globally best algorithm over all prior
datasets. We then call this algorithm the current best algorithm abest
and run a CV test to calculate its performance on dnew. Based on
this, the dataset similarities are recalculated (see Section 3), yielding
a possibly different set of datasets dj . The best algorithm on this new
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set becomes the best competitor ak (different from abest), calculated
by counting the number of times that M(ak, dj) > M(abest, dj),
over all datasets dj .

We can further refine this method by taking into account how large
the performance differences are: the larger a difference was in the
past, the higher chances are to obtain a large gain on the new dataset.
This leads to the notion of relative landmarks RL, defined as:

(2)

RL(ak, abest, dj) = i(M(ak, dj) > M(abest, dj)) ∗
∗(M(ak, dj)−M(abest, dj))

The function i(test) returns 1 if the test is true and 0 otherwise. As
stated before, this can be a simple comparison or a statistical signifi-
cance test that only returns 1 if ak performs significantly better than
abest on dj . The termRL thus expresses how much better ak is, rela-
tive to abest, on a dataset dj . Experimental tests have shown that this
approach yields much better results than simply counting the number
of wins.

Up to now, we are assuming a dataset dj to be either similar to
dnew or not. A second refinement is to use a gradual (non-binary)
measure of similarity Sim(dnew, dj) between datasets dnew and dj .
As such, we can weigh the performance difference between ak and
abest on dj by how similar dj is to dnew. Indeed, the more similar
the datasets, the more informative the performance difference is. As
such, we aim to optimize the following criterion:

ak = argmax
ai

∑

dj∈D
RL(ai, abest, dj) ∗ Sim(dnew, dj)) (3)

in which D is the set of all prior datasets dj .
To calculate the similarity Sim(), we use the outcome of each CV

test on dnew and compare it to the outcomes on dj .
In each iteration, with each CV test, we obtain a new eval-

uation M(ai, dnew), which is used to recalculate all similarities
Sim(dnew, dj). In fact, we will compare four variants of Sim(),
which are discussed in the next section. With this, we can recalculate
equation 3 to find the next best competitor ak.

3 Active Testing
In this section we describe the active testing (AT) approach, which
proceeds according to the following steps:

1. Construct a global ranking of a given set of algorithms using per-
formance information from past experiments (metadata).

2. Initiate the iterative process by assigning the top-ranked algorithm
as abest and obtain the performance of this algorithm on dnew
using a CV test.

3. Find the most promising competitor ak for abest using relative
landmarks and all previous CV tests on dnew.

4. Obtain the performance of ak on dnew using a CV test and com-
pare with abest. Use the winner as the current best algorithm, and
eliminate the losing algorithm.

5. Repeat the whole process starting with step 3 until a stopping cri-
terium has been reached. Finally, output the current abest as the
overall winner.

Step 1 - Establish a Global Ranking of Algorithms. Before having
run any CV tests, we have no information on the new dataset dnew to

define which prior datasets are similar to it. As such, we naively as-
sume that all prior datasets are similar. As such, we generate a global
ranking of all algorithms using the performance results of all algo-
rithms on all previous datasets, and choose the top-ranked algorithm
as our initial candidate abest. To illustrate this, we use a toy example
involving 6 classification algorithms, with default parameter settings,
from Weka [10] evaluated on 40 UCI datasets [1], a portion of which
is shown in Table 1.

As said before, our approach is entirely independent from the ex-
act evaluation measure used: the most appropriate measure can be
chosen by the user in function of the specific data domain. In this
example, we use success rate (accuracy), but any other suitable mea-
sure of classifier performance, e.g. AUC (area under the ROC curve),
precision, recall or F1 can be used as well.

Each accuracy figure shown in Table 1 represents the mean of 10
values obtained in 10-fold cross-validation. The ranks of the algo-
rithms on each dataset are shown in parentheses next to the accuracy
value. For instance, if we consider dataset abalone, algorithmMLP
is attributed rank 1 as its accuracy is highest on this problem. The
second rank is occupied by LogD, etc.

The last row in the table shows the mean rank of each algo-
rithm, obtained by averaging over the ranks of each dataset: Rai =
1
n

∑n

dj=1
Rai,dj , where Rai,dj represents the rank of algorithm ai

on dataset dj and n the number of datasets. This is a quite common
procedure, often used in machine learning to assess how a particular
algorithm compares to others [5].
The mean ranks permit us to obtain a global rank-
ing of candidate algorithms, CA. In our case,
CA = 〈MLP, J48, JRip, LogD, IB1, NB〉. It must be noted
that such a ranking is not very informative in itself. For instance,
statistical significance tests are needed to obtain a truthful ranking.
Here, we only use this global ranking CA are a starting point for the
iterative procedure, as explained next.

Step 2 - Identify the Current Best Algorithm. Indeed, global rank-
ing CA permits us to identify the top-ranked algorithm as our initial
best candidate algorithm abest. In Table 1, abest = MLP . This al-
gorithm is then evaluated using a CV test to establish its performance
on the new dataset dnew.

Step 3 - Identify the Most Promising Competitor. In the next step
we identify ak, the best competitor of abest. To do this, all algorithms
are considered one by one, except for abest and the eliminated algo-
rithms (see step 4).

For each algorithm we analyze the information of past experiments
(meta-data) to calculate the relative landmarks, as outlined in the pre-
vious section. As equation 3 shows, for each ak, we sum up all rela-
tive landmarks involving abest, weighted by a measure of similarity
between dataset dj and the new dataset dnew. The algorithm ak that
achieves the highest value is the most promising competitor in this
iteration. In case of a tie, the competitor that appears first in ranking
CA is chosen.

To calculate Sim(dnew, dj), the similarity between dj and dnew,
we have explored six different variants, AT0, AT1, ATWs, ATx,
ATdc, ATWs k described below.

AT0 is a base-line method which ignores dataset similarity. It always
returns a similarity value of 1 and so all datasets are considered sim-
ilar. This means that the best competitor is determined by summing
up the values of the relative landmarks.

AT1 method works as AT0 at the beginning, when no tests
have been carried out on dnew. In all subsequent iterations, this
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Table 1. Accuracies and ranks (in parentheses) of the algorithms 1-nearest neighbor (IB1), C4.5 (J48), RIPPER (JRip), LogisticDiscriminant (LogD),
MultiLayerPerceptron (MLP) and naive Bayes (NB) on different datasets and their mean rank.

Datasets IB1 J48 JRip LogD MLP NB
abalone .197 (5) .218 (4) .185 (6) .259 (2) .266 (1) .237 (3)

acetylation .844 (1) .831 (2) .829 (3) .745 (5) .609 (6) .822 (4)
adult .794 (6) .861 (1) .843 (3) .850 (2) .830 (5) .834 (4)

... ... ... ... ... ... ...
Mean rank 4.05 2.73 3.17 3.74 2.54 4.78

method estimates dataset similarity using only the most recent
CV test. Consider the algorithms listed in Table 1 and the rank-
ing CA. Suppose we started with algorithm MLP as the cur-
rent best candidate. Suppose also that in the next iteration LogD
was identified as the best competitor, and won from MLP in
the CV test: (M(LogD, dnew) > M(MLP, dnew)). Then, in the
subsequent iteration, all prior datasets dj satisfying the con-
dition M(LogD, dj) > M(MLP, dj) are considered similar to
dnew. In general terms, suppose that the last test revealed that
M(ak, dnew) > M(abest, dnew), then Sim(dnew, dj) is 1 if also
M(ak, dj) > M(abest, dj), and 0 otherwise. The similarity mea-
sure determines which RL’s are taken into account when summing
up their contributions to identify the next best competitor.

Another variant of AT1 could use the difference between
RL(ak, abest, dnew) and RL(ak, abest, dj), normalized between
0 and 1, to obtain a real-valued (non-binary) similarity estimate
Sim(dnew, dj). In other words, dj is more similar to dnew if the rel-
ative performance difference between ak and abest is about as large
on both dj and dnew. We plan to investigate this in our future work.

ATWs is similar to AT1, but instead of only using the last test,
it uses all CV tests carried out on the new dataset, and calculates
the Laplace-corrected ratio of corresponding results. For instance,
suppose we have conducted 3 tests on dnew, thus yielding 3 pair-
wise algorithm comparisons on dnew. Suppose that 2 tests had the
same result on dataset dj (i.e. M(ax, dnew) > M(ay, dnew) and
M(ax, dj) > M(ay, dj)), then the frequency of occurrence is 2/3,
which is adjusted by Laplace correction to obtain an estimate of prob-
ability (2 + 1)/(3 + 2). As such, Sim(dnew, dj) =

3
5

.

ATx is similar to ATWs, but requires that all pairwise comparisons
yield the same outcome. In the example used above, it will return
Sim(dnew, dj) = 1 only if all three comparisons lead to same result
on both datasets and 0 otherwise.

ATdc is similar to ATWs, but uses a different similarity function.
The idea of using this variant was to test if data characteristics (e.g.
number of examples) could provide better information to identify the
most similar datasets (w.r.t. dnew). We define the similarity between
two datasets dnew and dj using the following expression:

Sim(dnew, dj) = 1− 1

|Z|
∑

z∈Z

|z(dnew)− z(dj)|
max(z)−min(z) (4)

The symbol z represents a generic data measure used to character-
ize the datasets (z(d) is the value of characteristic z for dataset d). Z
is the set of measures used.

ATWs k is similar to ATWS, but only consider the k most similar
datasets (those with highest Sim values). The similarity for all the
other datasets are set to 0. The idea is to avoid the situation where
the similarity values show very small variations, making unusefull

the information in the relative landmarks.

Step 4 - Determine which of the Two Algorithms is Better. Having
found ak, we can now run a CV test and compare it with abest. The
winner (which may be either the current best algorithm or the com-
petitor) is used as the new current best algorithm in the new round.
The losing algorithm is eliminated from further consideration.

Step 5 - Repeat the Process and Check the Stopping Criteria. The
whole process of identifying the best competitor (step 3) of abest and
determining which one of the two is better (step 4) is repeated until a
stopping criterium has been reached. For instance, the process could
be constrained to a fixed number of CV tests: considering the results
presented further on in Section 4, it would be sufficient to run at
most 20% of all possible CV tests. Alternatively, one could impose
a fixed CPU time, thus returning the best algorithm in h hours, as in
budgeted learning. In any case, until aborted, the method will keep
choosing a new competitor in each round: there will always be a next
best competitor. In this respect our system differs from, for instance,
hill climbing approaches which can get stuck in a local minimum.

Discussion - Comparison with Active Learning: The term active
testing was chosen because the approach shares some similarities
with active learning [7]. The concern of both is to speed up the pro-
cess of improving a given performance measure. In active learning,
the goal is to select the most informative data point to be labeled next,
so as to improve the predictive performance of a supervised learning
algorithm with a minimum of (expensive) labelings. In active testing,
the goal is to select the most informative CV test, so as to improve the
prediction of the best algorithm on the new dataset with a minimum
of (expensive) CV tests.

4 Empirical Evaluation

4.1 Evaluation Methodology and Experimental
Set-up

The proposed method AT was evaluated using a leave-one-out
method [18]. The experiments reported here involve D datasets and
so the whole procedure was repeated D times. In each cycle, all per-
formance results on one dataset were left out for testing and the re-
sults on the remaining D − 1 datasets were used as metadata to de-
termine the best candidate algorithm.

This study involved 292 algorithms (algorithm-parameter com-
binations), which were extracted from the experiment database for
machine learning (ExpDB) [11, 22]. This set includes many dif-
ferent algorithms from the Weka platform [10], which were varied
by assigning different values to their most important parameters.
It includes SMO (a support vector machine, SVM), MLP (Multi-
layer Perceptron), J48 (C4.5), and different types of ensembles, in-
cluding RandomForest, Bagging and Boosting. Moreover, different
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Figure 1. Median loss as a function of the number of CV tests.

SVM kernels were used with their own parameter ranges and all
non-ensemble learners were used as base-learners for the ensem-
ble learners mentioned above. The 76 datasets used in this study
were all from UCI [1]. A complete overview of the data used in this
study, including links to all algorithms and datasets can be found on
http://expdb.cs.kuleuven.be/ref/blv11.

The data measures used to characterize the datasets for variant
ATdc were number of examples, proportion of nominal attributes,
proportion of missing values, class entropy and mean mutual infor-
mation.

Regarding ATWs k we set k = 20 (this value was set by exploring
only the alternatives 30, 20 and 10).

The main aim of the test was to prove the research hypothesis for-
mulated earlier: relative landmarks provide useful information for
predicting the most promising algorithms on new datasets. There-
fore, we also include two baseline methods:

TopN has been described before (e.g. [3]). It also builds a ranking of
candidate algorithms as described in step 1 (although other mea-
sures different from mean rank could be used), and only runs CV
tests on the first N algorithms. The overall winner is returned.

Rand simply selects N algorithms at random from the given set,
evaluates them using CV and returns the one with the best perfor-
mance. It is repeated 10 times with different random seeds and the
results are averaged.

Since our AT methods are iterative, we will restart TopN and Rand
N times, with N equal to the number of iterations (or CV tests).

To evaluate the performance of all approaches, we calculate the
loss of the currently best algorithm, defined as M(abest, dnew) −
M(a∗, dnew), where abest represents the currently best algorithm,
a∗ the best possible algorithm and M(.) represents the performance
measure (success rate).

4.2 Results

By aggregating the results over D datasets, we can track the median
loss of the recommended algorithm as a function of the number of
CV tests carried out. The results are shown in Figure 1. Note that the
number of CV tests is plotted on a logarithmic scale.

First, we see that ATWs and AT1 perform much better than AT0,
which indicates that it is indeed useful to include dataset similarity.
If we consider a particular level of loss (say 0.5%) we note that these
variants require much fewer CV tests than AT0. The results also indi-
cate that the information associated with relative landmarks obtained
on the new dataset is indeed valuable. The median loss curves decline
quite rapidly and are always below the AT0 curve. We also see that
after only 10 CV tests (representing about 3% of all possible tests),
the median loss is less than 0.5%. If we continue to 60 tests (about
20% of all possible tests) the median loss is near 0.

Also note that ATWs, which uses all relative landmarks involv-
ing abest and dnew, does not perform much better than AT1, which
only uses the most recent CV test. However in Figure 2 we show the
performance of variant ATWs k is much better than ATWs.

Method ATx, the most restrictive approach, only considers prior
datasets on which all relative landmarks including abest obtained
similar results. As shown in Figure 1, this approach manages to re-
duce the loss quite rapidly, and competes well with the other variants
in the initial region. However, after achieving a minimum loss in the
order of 0.5%, there are no more datasets that fulfill this restriction,
and consequently no new competitor can be chosen, causing it to
stop. The other three methods, ATWs, ATdc and AT1, do not suf-
fer from this shortcoming. We can see that the variant that uses data
characteristics (ATdc) is generally worse than the other variants. Be-
fore the 23rd CV test all variants AT1, ATx and ATWs need about
half the CV tests needed by ATdc.

AT0 was also our best baseline method. To avoid overloading Fig-
ure 1, we show this separately in Figure 2. Indeed, AT0 is clearly
better than the random choice method Rand. Comparing AT0 to
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Figure 2. Median loss of AT0, ATWs, ATWs k and the two baseline methods.

TopN, we cannot say that one is clearly better than the other over-
all, as the curves cross. However, it is clear that TopN looses out if
we allow more CV tests, and that it is not competitive with the more
advanced methods such as AT1, ATWs and ATWs k. Is clear in Fig-
ure 2 that the best method variant is ATWs k (using k = 20). We
can see clearly in the curves that ATWs k typically needs about half
the CV tests needed by ATWs. The comparison with all the other
variants is even more impressive.

The curves for mean loss (instead of median loss) follow similar
trends, but the values are 1-2% worse due to outliers (see Fig. 3 rel-
ative to method ATWs k). Besides, this figure shows also the curves
associated with quartiles of 25% and 75% for ATWs k. As the num-
ber of CV tests increases, the distance between the two curves de-
creases and approaches the median curve. Similar behavior has been
observed for ATWs and AT1 but we skip the curves in this text.

Algorithm trace. It is interesting to trace the iterations carried out
for one particular dataset. Table 2 shows the details for method AT1,
where abalone represents the new dataset. Column 1 shows the num-
ber of the iteration (thus the number of CV tests). Column 2 shows
the most promising competitor ak chosen in each step. Column 3
shows the index of ak in our initial ranking CA, and column 4 the
index of abest, the new best algorithm after the CV test has been
performed. As such, if the values in column 3 and 4 are the same,
then the most promising competitor has won the duel. For instance,
in step 2, SMO.C.1.0.Polynomial.E.3, i.e. SVM with complexity
constant set to 1.0 and a 3rd degree polynomial kernel, (index 96) has
been identified as the best competitor to be used (column 2), and af-
ter the CV test, it has won against Bagging.I.75..100.PART , i.e.
Bagging with a high number of iterations (between 75 and 100) and
PART as a base-learner. As such, it wins this round and becomes the
new abest. Columns 5 and 6 show the actual rank of the competi-
tor and the winner on the abalone dataset. Column 7 shows the loss
compared to the optimal algorithm and the final column shows the
number of datasets whose similarity measure is 1.

We observe that after only 12 CV tests, the method has

identified an algorithm with a very small loss of 0.2%:
Bagging.I.25..50.MultilayerPerceptron, i.e. Bagging with rel-
atively few iterations but with a MultiLayerPerceptron base-learner.

Incidentally, this dataset appears to represent a quite atypical prob-
lem: the truly best algorithm, SMO.C.1.0.RBF.G.20, i.e. SVM
with an RBF kernel with kernel width (gamma) set to 20, is ranked
globally as algorithm 246 (of all 292). AT1 identifies it after 177 CV
tests.

5 Related Work in Other Scientific Areas

In this section we briefly cover some work in other scientific areas
which is related to the problem tackled here and could provide further
insight into how to improve the method.

One particular area is experiment design [6] and in particular ac-
tive learning. As discussed before, the method described here follows
the main trends that have been outlined in this literature. However,
there is relatively little work on active learning for ranking tasks.
One notable exception is [15], who use the notion of Expected Loss
Optimization (ELO). Another work in this area is [4], whose aim was
to identify the most interesting substances for drug screening using a
minimum number of tests. In the experiments described, the authors
have focused on the top-10 substances. Several different strategies
were considered and evaluated. Our problem here is not ranking, but
rather simply finding the best item (algorithm), so this work is only
partially relevant.

Another relevant area is the so called multi-armed bandit prob-
lem (MAB) studied in statistics and machine learning [9, 16]. This
problem is often formulated in a setting that involves a set of tradi-
tional slot machines. When a particular lever is pulled, a reward is
provided from a distribution associated with that specific lever. The
bandit problem is formally equivalent to a one-state Markov deci-
sion process. The aim is to minimize regret after T rounds, which is
defined as a difference between the reward sum associated with an
optimal strategy and the sum of collected rewards. Indeed, pulling
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Figure 3. Loss of ATWs k (k=20) as a function of the number of CV tests.

Table 2. Trace of the steps taken by AT1 in the search for the supposedly best algorithm for the abalone dataset

CV Algorithm used CA CA abalone abalone Loss D
test (current best competitor, ak) ak new abest ak new abest (%) size
1 Bagging.I.75..100.PART 1 1 75 75 1.9 75
2 SMO.C.1.0.Polynomial.E.3 96 96 56 56 1.6 29
3 AdaBoostM1.I.10.MultilayerPerceptron 92 92 47 47 1.5 34
4 Bagging.I.50..75.RandomForest 15 92 66 47 1.5 27
· · · · · · · · · · · · · · · · · · · · · · · ·
10 LMT 6 6 32 32 1.1 45
11 LogitBoost.I.10.DecisionStump 81 6 70 32 1.1 51
12 Bagging.I.25..50.MultilayerPerceptron 12 12 2 2 0.2 37
13 LogitBoost.I.160.DecisionStump 54 12 91 2 0.2 42
· · · · · · · · · · · · · · · · · · · · · · · ·
177 SMO.C.1.0.RBF.G.20 246 246 1 1 0 9

a lever can be compared to carrying out a CV test on a given algo-
rithm. However, there is one fundamental difference between MAB
and our setting: whereas in MAB the aim is to maximize the sum of
collected rewards, our aim it to maximize one reward, i.e. the reward
associated with identifying the best algorithm. So again, this work is
only partially relevant.

To the best of our knowledge, no other work in this area has ad-
dressed the issue of how to select a suitable algorithm from a large
set of candidates.

6 Significance and Impact

In this paper we have addressed the problem of selecting the best
classification algorithm for a specific task. We have introduced a new
method, called active testing, that exploits information concerning
past evaluation results (metadata), to recommend the best algorithm
using a limited number of tests on the new dataset.

Starting from an initial ranking of algorithms on previous datasets,
the method runs additional CV evaluations to test several competing

algorithms on the new dataset. However, the aim is to reduce the
number of tests to a minimum. This is done by carefully selecting
which tests should be carried out, using the information of both past
and present algorithm evaluations represented in the form of relative
landmarks.

In our view this method incorporates several innovative features.
First, it is an iterative process that uses the information in each CV
test to find the most promising next test based on a history of prior
‘algorithm duels’. In a tournament-style fashion, it starts with a cur-
rent best (parameterized) algorithm, selects the most promising ri-
val algorithm in each round, evaluates it on the given problem, and
eliminates the algorithm that performs worse. Second, it continually
focuses on the most similar prior datasets: those where the algorithm
duels had a similar outcome to those on the new dataset.

Four variants of this basic approach, differing in their definition
of dataset similarity, were investigated in a very extensive experi-
ment setup involving 292 algorithm-parameter combinations on 76
datasets. Our experimental results show that particularly versions
ATWs and AT1 provide good recommendations using a small num-
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ber of CV tests. When plotting the median loss as a function of the
number of CV tests (Fig. 1), it shows that both outperform all other
variants and baseline methods. They also outperform AT0, indicating
that dataset similarity is an important aspect.

We also see that after only 10 CV tests (representing about 3% of
all possible tests), the median loss is less than 0.5%. If we continue
to 60 tests (about 20% of all possible tests) the median loss is near 0.
Similar trends can be observed when considering mean loss.

The results support the hypothesis that we have formulated at the
outset of our work, that relative landmarks are indeed informative and
can be used to suggest the best contender. If this is procedure is used
iteratively, it can be used to accurately recommend a classification
algorithm after a very limited number of CV tests.

Still, we believe that the results could be improved further. Classi-
cal information-theoretic measures and/or sampling landmarks could
be incorporated into the process of identifying the most similar
datasets. This could lead to further improvements and forms part of
our future plans.
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Predicting the Accuracy of Regression Models in the
Retail Industry1

Fábio Pinto2 and Carlos Soares3

Abstract. Companies are moving from developing a single model
for a problem (e.g., a regression model to predict general sales) to
developing several models for sub-problems of the original problem
(e.g., regression models to predict sales of each of its product cate-
gories). Given the similarity between the sub-problems, the process
of model development should not be independent. Information
should be shared between processes. Different approaches can be
used for that purpose, including metalearning (MtL) and transfer
learning. In this work, we use MtL to predict the performance of
a model based on the performance of models that were previously
developed. Given that the sub-problems are related (e.g., the schemas
of the data are the same), domain knowledge is used to develop
the metafeatures that characterize them. The approach is applied
to the development of models to predict sales of different product
categories in a retail company from Portugal.

1 Introduction

The retail industry is a world of extreme competitiveness. Compa-
nies struggle on a daily basis for the loyalty of their clients through
diverse marketing actions, while providing better products, better
prices and better services. The growing need for analytic tools that
enhance retailers performance is unquestionable, and Data Mining
(DM) is central in this trend [2].

Sales prediction is one of the main tasks in retail. The ability to as-
sess the impact that a sudden change in a particular factor will have
on the sales of one or more products is a major tool for retailers. DM
is one of the approaches for this task.

In early approaches to predict sales, a single model could be used
for a whole business. As more detailed data becomes available, retail
companies are dividing the problem into several sub-problems (pre-
dict the sales of each of its stores or product categories). The same
trend can be observed in several industries [6].

In this approach, there are obviously many similarities between the
sub-problems. Not only is the structure of the data typically the same
across all sub-problems (e.g., the variables are the same and their
domains are similar) but also the patterns in that data may have sim-
ilarities (e.g., the most important variables across different problems

1 This work is partially funded by the ERDF – European Regional Develop-
ment Fund through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT – Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technol-
ogy) within project “FCOMP - 01-0124-FEDER-022701”

2 Faculdade de Economia, Universidade do Porto, Portugal, email:
fabiohscpinto@gmail.com

3 INESC TEC/Faculdade de Economia, Universidade do Porto, Portugal,
email: csoares@fep.up.pt

are also similar). Therefore, the process of model building should not
be independent. The knowledge obtained from generating a model
for one sub-problem can and should be applied to the process of de-
veloping the model for the other sub-problems. Different approaches
can be used for that purpose, two of them being MtL and transfer
learning [1].

Our goals with this work is to use metalearning (MtL) to predict
the performance of one model based on the performance of models
that were previously developed to predict sales of product categories
in a retail company in Portugal, and unveil the attributes that are more
important for that prediction. The paper is organised as follows. In
Section 2, we briefly survey the concept of MtL and the importance
of metafeatures. Our case study is presented in Section 3. Finally, in
Section 4 we expose some conclusions.

2 Metafeatures for Metalearning

MtL can be defined as the use of data about the performance of
machine learning algorithms on previous problems to predict their
performance on future ones [1]. For more information on MtL, we
refer the reader to [5, 1].

One of the essential issues about MtL are the metafeatures
that characterize the problem. Which metafeatures contain useful
information to predict the performance of an algorithm on a given
problem? Much work has been done on this topic (e.g., [3]). Typi-
cally the work on MtL includes problems from different domains, so
the metafeatures need to be very generic (e.g., number of attributes
and mutual information between symbolic attributes and the target).
However, in more specific settings, metafeatures should encode
more particular information about the data, which probably contain
useful information about the performance of the algorithms.

3 Case Study

The base-level data used in this study was collected to model
monthly sales by product category in a Portuguese retail company.
We also gather 9 variables that describe store layout, store profile,
client profile and seasonality. Six regression methods from R
packages were tested: Cubist, NN, SVM, Generalized Boosted
Regression, MARS and Random Forests (RF). The DM algorithm
with the most robust performance was RF.4 The models for the 89
categories were evaluated using the mean percentage error (Eq. 1)
where fi is the predicted value and ai the real value.

4 The randomForest package was used to fit RF models.
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MPE =

∑n

i=1
| fi−ai

ai
|

n
(1)

The estimates were obtained using a sliding window approach where
the base-level data spans two years. For the majority of the models,
one and a half year (approximately 75% of the data) was used as
training set and the remaining half year was used as test set. For cat-
egories containing just one year of data, the first 9 months were used
as training set and the remaining instances as test set. The results are
summarized in Table 1.

Table 1. Summary of base-level results (MPE)

Min. 1st Q. Median Mean 3rd Q. Max.
0.072 0.091 0.116 0.212 0.211 1.209

Modelling the variance in results across different product categories
is important not only to predict the performance of models but also to
understand it. A better understanding of the factors affecting the per-
formance of the algorithm may lead us to better results. For that pur-
pose, we used a MtL approach with the following problem-specific
metafeatures:

• Number of instances
• Type of sliding window
• Variables that capture the amount of variation in store layout
• Variables that capture the diversity of store profile in the data
• Variables that capture the amplitude5 of sales in the test set
• Variables that capture the amplitude of store layout attributes in

the training and test sets

The metadata contained 89 examples (corresponding to the 89 cat-
egories) described by 14 predictors. The meta-level error of RF for
regression was estimated using 10-fold cross-validation.6 The num-
ber of trees was set to 500, as improvement in performance was not
found for larger values; and 3 values where tested for the mtry pa-
rameter, which controls the number of variables randomly sampled
as candidates at each split [4]. The results are summarized in Table 2.

Table 2. Meta-level results obtained with all metafeatures in terms of
Relative Mean Squared Error and the R2 and their standard-deviations (SD).

mtry RMSE R2 RMSE SD R2 SD
2 0.148 0.66 0.0847 0.215
8 0.146 0.663 0.0877 0.234

14 0.15 0.65 0.0871 0.224

The best results were obtained with the mtry parameter set to 8. Even
with a standard deviation of 0.23, a value of 0.66 for R2 gives us con-
fidence about the capacity of the regression metamodel in predicting
the performance of future RF models.

The next step is to identify the metafeatures that contributed the
most to this result. The RF implementation that we used includes a
function to measure the importance of predictors in the classifica-
tion/regression model. We applied the algorithm on all 89 instances.

5 We calculate “amplitude” of a variable by dividing the largest value by the
smallest.

6 The package caret for R was used for 10-fold cross validation estimation.
Size of each sample: 81, 80, 80, 81, 80, 79, 80, 80, 79 and 81.

Table 3. Importance of Variables.

Rank Variable
1st Max(sales)/Min(sales) in training set
2nd Mean number of changes in shelf size of category
3rd Number of instances

The R2 obtained was 0.93. The importance of the variables for this
model is summarized in Table 3. These results show evidence that
the metafeatures that represent the amplitude of the dependent vari-
able in the training set and the amount of variance in data are very
informative for predicting the accuracy of regression models.

Finally, we used these results for meta-level variable selection. We
re-executed the meta-level experiments, again estimating the perfor-
mance of the RF for regression with 10-fold cross-validation, with
only the three most informative metafeatures. The results are sum-
marized in Table 4.

Table 4. Meta-level results obtained with three selected metafeatures in
terms of Relative Mean Squared Error and the R2 and their

standard-deviations (SD).
mtry RMSE R2 RMSE SD R2 SD

2 0.138 0.678 0.0552 0.234
3 0.14 0.687 0.0571 0.23

The results shown in Table 4 are even better than those obtained
previously. However, they must be interpreted carefully, as the same
dataset was used to do metafeature selection and test its effective-
ness, thus increasing the potential for overfitting. Nevertheless, this
evidence let us believe that some of the metafeatures used before
were carrying noise and that results can improve by metafeature se-
lection.

4 Conclusions
We successfully used MtL with domain-specific metafeatures to pre-
dict the accuracy of regression models in predicting sales by product
category in the retail industry. Our work shows evidence that, when
possible, using domain knowledge to design metafeatures is advan-
tageous.

We plan to extend this approach to predict the performance of mul-
tiple algorithms. Additionally, we will compare these results with the
results of MtL using traditional metafeatures.
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The experiment database for machine learning (Demo)
Joaquin Vanschoren1

Abstract. We demonstrate the use of the experiment database
for machine learning, a community-based platform for the sharing,
reuse, and in-depth investigation of the thousands of machine learn-
ing experiments executed every day. It is aimed at researchers and
practitioners of data mining techniques, and is publicly available at
http://expdb.cs.kuleuven.be. This demo gives a hands-
on overview of how to share novel experimental results, how to in-
tegrate the database in existing data mining toolboxes, and how to
query the database through an intuitive graphical query interface.

1 Introduction

Experimentation is the lifeblood of machine learning (ML) research.
A considerable amount of effort and resources are invested in assess-
ing the usefulness of new algorithms, finding the optimal approach
for new applications or just to gain some insight into, for instance, the
effect of a parameter. Yet in spite of all these efforts, experimental re-
sults are often discarded or forgotten shortly after they are obtained,
or at best averaged out to be published, which again limits their fu-
ture use. If we could collect all these ML experiments in a central
resource and make them publicly available in an organized (search-
able) fashion, the combined results would provide a highly detailed
picture of the performance of algorithms on a wide range of data
configurations, speeding up ML research.

In this paper, we demonstrate a community-based platform de-
signed to do just this: the experiment database for machine learn-
ing. First, experiments are automatically transcribed in a common
language that captures the exact experiment setup and all details
needed to reproduce them. Then, they are uploaded to pre-designed
databases where they are stored in an organized fashion: the results
of every experiment are linked to the exact underlying components
(such as the algorithm, parameter settings and dataset used) and thus
also integrated with all prior results. Finally, to answer any ques-
tion about algorithm behavior, we only have to write a query to the
database to sift through millions of experiments and retrieve all re-
sults of interest. As we shall demonstrate, many kinds of questions
can be answered in one or perhaps a few queries, thus enabling fast
and thorough analysis of large numbers of collected results. The re-
sults can also be interpreted unambiguously, as all conditions under
which they are valid are explicitly stored.

1.1 Meta-learning

Instead of being purely empirical, these experiment databases also
store known or measurable properties of datasets and algorithms.
For datasets, this can include the number of features, statistical and

1 LIACS, Leiden University, The Netherlands, email: joaquin@liacs.nl

information-theoretic properties [7] and landmarkers [10], while al-
gorithms can be tagged by model properties, the average ratio of bias
or variance error, or their sensitivity to noise [3].

As such, all empirical results, past and present, are immediately
linked to all known theoretical properties of algorithms and datasets,
providing new grounds for deeper analysis. For instance, algorithm
designers can include these properties in queries to gain precise in-
sights on how their algorithms are affected by certain kinds of data
or how they relate to other algorithms.

1.2 Overview of benefits
We can summarize the benefits of this platform as follows:

Reproducibility The database stores all details of the experimental
setup, resulting in truly reproducible research.

Reference All experiments, including algorithms and datasets, are
automatically organized in one resource, creating an overview of
the state-of-the-art, and a useful ‘map’ of all known approaches,
their properties, and their performance. This also includes nega-
tive results, which usually do not get published.

Querying When faced with a question on the performance of learn-
ing algorithms, e.g., ‘What is the effect of the training set size on
runtime?’, we can answer it in seconds by writing a query, instead
of spending days (or weeks) setting up new experiments. More-
over, we can draw upon many more experiments, on many more
algorithms and datasets, than we can afford to run ourselves.

Reuse It saves time and energy, as previous experiments can be
readily reused. For instance, when benchmarking a new algorithm,
there is no need to benchmark the older algorithms over and over
again as well: their evaluations are likely stored online, and can
simply be downloaded.

Larger studies Studies covering many algorithms, parameter set-
tings and datasets are very expensive to run, but could become
much more feasible if a large portion of the necessary experiments
are available online. Even when all the experiments have yet to be
run, the automatic storage and organization of experimental re-
sults markedly simplifies conducting such large scale experimen-
tation and thorough analysis thereof.

Visibility By using the database, users may learn about (new) algo-
rithms they were not previously aware of.

Standardization The formal description of experiments may cat-
alyze the standardization of experiment design, execution and ex-
change across labs and data mining tools.

The remainder of this paper is organized as follows. Sect. 2 out-
lines how we constructed our pilot experiment database and the un-
derlying models and languages that enable the free exchange of ex-
periments. In Sect. 3, we demonstrate how it can be used to quickly
discover new insights into a wide range of research questions and to
verify prior studies. Sect. 4 concludes.
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Figure 1. Components of the experiment database framework.

2 Framework description
In this section, we outline the design of this collaborative framework,
outlined in Fig. 1. We first establish a controlled vocabulary for data
mining experimentation in the form of an open ontology (Exposé),
before mapping it to an experiment description language (called
ExpML) and an experiment database (ExpDB). These three elements
(boxed in Fig. 1) will be discussed in the next three subsections. Full
versions of the ontologies, languages and database models discussed
below will be available on http://expdb.cs.kuleuven.be.

Experiments are shared (see Fig. 1) by entering all experiment
setup details and results through the framework’s interface (API),
which exports them as ExpML files or directly streams them to an
ExpDB. Any data mining platform or custom algorithm can thus use
this API to add a ‘sharing’ feature that publishes new experiments.
The ExpDB can be set up locally, e.g., for a single person or a single
lab, or globally, a central database open to submissions from all over
the world. Finally, the bottom of the figure shows different ways to
tap into the stored information:

Querying. Querying interfaces allow researchers to formulate ques-
tions about the stored experiments, and immediately get all results
of interest. We currently offer various such interfaces, including
graphical ones (see Sect. 2.3.2).

Mining. A second use is to automatically look for patterns in al-
gorithm performance by mining the stored evaluation results and
theoretical meta-data. These meta-models can then be used, for
instance, in algorithm recommendation [1].

2.1 The Exposé Ontology
The Exposé ontology describes the concepts and the structure of data
mining experiments. It establishes an unambiguous and machine-
interpretable (semantic) vocabulary, through which experiments can
be automatically shared, organized and queried. We will also use it
to define a common experiment description language and database
models, as we shall illustrate below. Ontologies can be easily ex-
tended and refined, which is a key concern since data mining and
machine learning are ever-expanding fields.

2.1.1 Collaborative Ontology Design

Several other useful ontologies are being developed in parallel: On-
toDM [8] is a top-level ontology for data mining concepts, EXPO
[11] models scientific experiments, DMOP [4] describes learning
algorithms (including their internal mechanisms and models) and
workflows, and the KD ontology [13] and eProPlan ontology [5]

describe large arrays of DM operators, including information about
their use to support automatic workflow planning.

To streamline ontology development, a ‘core’ ontology was de-
fined, and an open ontology development forum was created: the
Data Mining Ontology (DMO) Foundry2. The goal is to make the
ontologies interoperable and orthogonal, each focusing on a particu-
lar aspect of the data mining field. Moreover, following best practices
in ontology engineering, we reuse concepts and relationships from
established top-level scientific ontologies: BFO,3 OBI,4 IAO,5 and
RO.6 We often use subproperties, e.g. implements for concretizes,
and runs for realizes, to reflect common usage in the field. Exposé is
designed to integrate or be similar to the above mentioned ontologies,
but focusses on aspects related to experimental evaluation.

2.1.2 Top-level View

Fig. 2 shows Exposé’s high-level concepts and relationships. The full
arrows symbolize is-a relationships, meaning that the first concept
is a subclass of the second, and the dashed arrows symbolize other
common relationships. The most top-level concepts are reused from
the aforementioned top-level scientific ontologies, and help to de-
scribe the exact semantics of many data mining concepts. For in-
stance, when speaking of a ‘data mining algorithm’, we can seman-
tically distinguish an abstract algorithm (e.g., C4.5 in pseudo-code),
a concrete algorithm implementation (e.g., WEKA’s J48 implemen-
tation of C4.5), and a specific algorithm setup, including parameter
settings and subcomponent setups. The latter may include other algo-
rithm setups, e.g. for base-learners in ensemble algorithms, as well as
mathematical functions such as kernels, distance functions and eval-
uation measures. A function setup details the implementation and
parameter settings used to evaluate the function.

An algorithm setup thus defines a deterministic function which can
be directly linked to a specific result: it can be run on a machine given
specific input data (e.g., a dataset), and produce specific output data
(e.g., new datasets, models or evaluations). As such, we can trace
any output result back to the inputs and processes that generated it
(data provenance). For instance, we can query for evaluation results,
and link them to the specific algorithm, implementation or individual
parameter settings used, as well as the exact input data.

Algorithm setups can be combined in workflows, which addition-
ally describe how data is passed between multiple algorithms. Work-
flows are hierarchical: they can contain sub-workflows, and algo-
rithm setups themselves can contain internal workflows (e.g., a cross-
validation setup may define a workflow to train and evaluate learning
algorithms). The level of detail is chosen by the author of an ex-
periment: a simple experiment may require a single algorithm setup,
while others involve complex scientific workflows.

Tasks cover different data mining (sub)tasks, e.g., supervised clas-
sification. Qualities are known or measurable properties of algo-
rithms and datasets (see Sect. 1.1), which are useful to interpret
results afterwards. Finally, algorithms, functions or parameters can
play certain roles in a complex setup: an algorithm can sometimes
act as a base-learner in an ensemble algorithm, and a dataset can act
as a training set in one experiment and as a test set in the next.

2 The DMO Foundry: http://dmo-foundry.org
3 The Basic Formal Ontology (BFO): http://www.ifomis.org/bfo
4 The Ontology for Biomedical Investigations (OBI): http:
//obi-ontology.org

5 The Information Artifact Ontology (IAO): http://bioportal.
bioontology.org/ontologies/40642

6 The Relation Ontology (RO): http://www.obofoundry.org/ro
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Figure 2. An overview of the top-level concepts in the Exposé ontology.

2.1.3 Experiments

An experiment tries to answer a question (in exploratory settings) or
test a hypothesis by assigning certain values to these input variables.
It has experimental variables: independent variables with a range of
possible values, controlled variables with a single value, or depen-
dent variables, i.e., a monitored output. The experiment design (e.g.,
full factorial) defines which combinations of input values are used.

One experiment run may generate several workflow runs (with dif-
ferent input values), and a workflow run may consist of smaller al-
gorithm runs. Runs are triples consisting of input data, a setup and
output data. Any sub-runs, such as the 10 algorithm runs within a
10-fold CV run, could also be stored with the exact input data (folds)
and output data (predictions). Again, the level of detail is chosen by
the experimenter. Especially for complex workflows, it might be in-
teresting to afterwards query the results of certain sub-runs.

2.2 ExpML: A Common Language

Returning to our framework in Fig. 1, we now use this ontology to de-
fine a common language to describe experiments. The most straight-
forward way to do this would be to describe experiments in Exposé,
export them in RDF7 and store everything in RDF databases (triple-
stores). However, such databases are still under active development,
and many researchers are more familiar with XML and relational
databases, which are also widely supported by many current data
mining tools. Therefore, we will also map the ontology to a sim-
ple XML-based language, ExpML, and a relational database schema.
Technical details of this mapping are outside the scope of this paper.
Below, we show a small example of ExpML output to illustrate our
modeling of data mining workflows.

7 Resource Description Framework: http://www.w3.org/RDF

2.2.1 Workflow Runs

Fig. 3 shows a workflow run in ExpML, executed in WEKA [2] and
exported through the aforementioned API, and a schematic represen-
tation is shown in Fig. 4. The workflow has two inputs: a dataset
URL and parameter settings. It also contains two algorithm setups:
the first loads a dataset from the given URL, and then passes it to
a cross-validation setup (10 folds, random seed 1). The latter eval-
uates a Support Vector Machine (SVM) implementation, using the
given parameter settings, and outputs evaluations and predictions.
Note that the workflow is completely concretized: all parameter set-
tings and implementations are fixed. The bottom of Figure 3 shows
the workflow run and its two algorithm sub-runs, each pointing to the
setup used. Here, we chose not to output the 10 per-fold SVM runs.

The final output consists of Evaluations and Predictions. As
shown in the ExpML code, these have a predefined structure so
that they can be automatically interpreted and organized. Evaluations
contain, for each evaluation function (as defined in Exposé), the eval-
uation value and standard deviation. They can also be labeled, as for
the per-class precision results. Predictions can be probabilistic, with
a probability for each class, and a final prediction for each instance.
For storing models, we can use existing formats such as PMML.

8
6

Evaluations

7 Predictions

Weka.
ARFFLoader

p=! location=
   http://...

2:loadData

Weka.
Evaluation

p=! F=10

                                 
3:crossValidate

Weka.SMO

p=! C=0.01

                                 
4:learner

Weka.RBF

f(x)                                  
5:kernel

p=! G=0.01

p=! S=1

data

data

eval

pred

url evalu-
ations

predic-
tions

par

logRuns=true logRuns=false
logRuns=true

data data eval
pred

predictions

evaluations
1:mainFlow

Weka.Instances

Figure 4. A schematic representation of the run.
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<Run machine=" " timestamp=" " author=" ">
<Workflow id="1:mainflow" template="10:mainflow">

<AlgorithmSetup id="2:loadData" impl="Weka.ARFFLoader(1.22)" logRuns="true">
<ParameterSetting name="location" value="http://.../lymph.arff"/>
</AlgorithmSetup>
<AlgorithmSetup id="3:crossValidate" impl="Weka.Evaluator(1.25)" logRuns="true" role="CrossValidation">
<ParameterSetting name="F" value="10"/>
<ParameterSetting name="S" value="1"/>
<AlgorithmSetup id="4:learner" impl="Weka.SMO(1.68)" logRuns="false" role="Learner">
<ParameterSetting name="C" value="0.01"/>
<FunctionSetup id="5:RBFKernel" impl="Weka.RBF(1.3.1)" role="Kernel">
<ParameterSetting name="G" value="0.1"/>
</FunctionSetup>

</AlgorithmSetup>
</AlgorithmSetup>
<Input name="url" dataType="Tuples" value="http://.../lymph.arff"/>
<Input name="par" dataType="Tuples" value="[name:G,value:0.1]"/>
<Output name="evaluations" dataType="Evaluations"/>
<Output name="predictions" dataType="Predictions"/>
<Connection source="2:loadData" sourcePort="data" target="3:crossValidate" targetPort="data" dataType="Weka.Instances"/>
<Connection source="3:crossValidate" sourcePort="evaluations" target="1:mainflow" targetPort="evaluations" dataType="

Evaluations"/>
<Connection source="3:crossValidate" sourcePort="predictions" target="1:mainflow" targetPort="predictions" dataType="

Predictions"/>
</Workflow>

<OutputData name="evaluations">
<Evaluations id="6">
<Evaluation function="PredictiveAccuracy" value="0.831081" stDev="0.02"/>
<Evaluation function="Precision" label="class:normal" value="0" stDev="0"/>
. . . < / Evaluations>

</OutputData>
<Run setup="2:loadData">
<OutputData name="data">
<Dataset id="8" name="lymph" url="http://.../lymph.arff" dataType="Weka.Instances"/>
</OutputData>

</Run>
<Run setup="3:crossValidate">
<InputData name="data"><Dataset ref="8"/> </InputData>
<OutputData name="evaluations"><Evaluations ref="6"/> </OutputData>
<OutputData name="predictions"><Predict ions ref="7"/> </OutputData>
</Run>

</Run>

Figure 3. A workflow run in ExpML.
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2.3 Organizing Machine Learning Information
The final step in our framework (see Fig. 1) is organizing all this
information in searchable databases such that it can be retrieved,
rearranged, and reused in further studies. This is done by col-
lecting ExpML descriptions and storing all details in a predefined
database. To design such a database, we mapped Exposé to a rela-
tional database model. In this section, we offer a brief overview of
the model to help interpret the queries in the remainder of this paper.

2.3.1 Anatomy of an Experiment Database

Fig. 5 shows the most important tables, columns and links of
the database model. Runs are linked to their input- and out-
put data through the join tables InputData and OutputData,
and data always has a source run, i.e., the run that generated
it. Runs can have parent runs, and a specific Setup: either a
Workflow or AlgorithmSetup, which can also be hierar-
chical. AlgorithmSetups and FunctionSetups can have
ParameterSettings, a specific Implementation and a
general Algorithm or Function. Implementations and
Datasets can also have Qualities, stored in Algorithm
Quality and DataQuality, respectively. Data, runs and setups
have unique id’s, while algorithms, functions, parameters and quali-
ties have unique names defined in Exposé.

2.3.2 Accessing the Experiment Database

The experiment database is available at http://expdb.cs.
kuleuven.be. A graphical query interface is provided (see the ex-
amples below) that hides the complexity of the database, but still sup-
ports most types of queries. In addition, it is possible to run standard
SQL queries (a library of example queries is available. Several video
tutorials help the user to get started quickly. We are currently updat-
ing the database, query interface and submission system, and a public
submission interface for new experiments (described in ExpML) will
be available shortly.

3 Example Queries
In this section, we illustrate the use of the experiment database.8 In
doing this, we aim to take advantage of the theoretical information
stored with the experiments to gain deeper insights.

3.1 Comparing Algorithms
To compare the performance of all algorithms on one specific dataset,
we can plot the outcomes of cross-validation (CV) runs against the
algorithm names. In the graphical query interface, see Fig. 6, this
can be done by starting with the CrossValidation node, which will
be connected to the input Dataset, the outputted Evaluations and the
underlying Learner (algorithm setup). Green nodes represent data,
blue nodes are setups and white nodes are qualities (runs are hid-
den). By clicking a node it can be expanded to include other parts of
the workflow setup (see below). For instance, ‘Learner’ expands into
the underlying implementation, parameter settings, base-learners and
sub-functions (e.g. kernels). By clicking a node one can also add a
selection (in green, e.g. the used learning algorithm) or a constraint
(in red, e.g. a preferred evaluation function). The user is always given

8 See [12] for a much more extensive list of possible queries

a list of all available options, in this case a list of all evaluation func-
tions present in the database. Here, we choose a specific input dataset
and a specific evaluation function, and we aim to plot the evaluation
value against the used algorithm.

Running the query returns all known experiment results, which are
scatterplotted in Fig. 7, ordered by performance. This immediately
provides a complete overview of how each algorithm performed. Be-
cause the results are as general as allowed by the constraints written
in the query, the results on sub-optimal parameter settings are shown
as well (at least for those algorithms whose parameters were varied),
clearly indicating the performance variance they create. As expected,
ensemble and kernel methods are dependent on the selection of the
correct kernel, base-learner, and other parameter settings. Each of
them can be explored by adding further constraints.

Figure 7. Performance of all algorithms on dataset ‘letter’.

3.2 Investigating Parameter Effects
For instance, we can examine the effect of the used kernel, or even
the parameters of a given kernel. Building on our first query, we zoom
in on these results by adding two constraints: the algorithm should be
an SVM9 and contain an RBF kernel. Next, we select the value of the
‘gamma’ parameter (kernel width) of that kernel. We also relax the
constraint on the dataset by including three more datasets, and ask
for the number of features in each dataset.

The result is shown in Fig. 10. First, note that much of the varia-
tion seen for SVMs on the ‘letter’ dataset (see Fig. 7) is indeed ex-
plained by the effect of this parameter. We also see that its effect on
other datasets is markedly different: on some datasets, performance
increases until reaching an optimum and then slowly declines, while
on other datasets, performance decreases slowly up to a point, after
which it quickly drops to default accuracy, i.e., the SVM is simply
predicting the majority class. This behavior seems to correlate with
the number of features in each dataset (shown in brackets). Further
study shows that some SVM implementations indeed tend to overfit
on datasets with many attributes [12].

3.3 Preprocessing Effects
The database also stores workflows with preprocessing methods, and
thus we can investigate their effect on the performance of learning

9 Alternatively, we could ask for a specific implementation, i.e., ‘implemen-
tation=weka.SMO’.
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Figure 6. The graphical query interface.

Figure 8. Querying the performance of SVMs with different kernel widths on datasets of different dimensionalities.

Figure 9. Building a learning curve.
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Figure 10. The effect of parameter gamma of the RBF kernel in SVMs on
a number of different datasets (number of attributes shown in brackets).

Figure 11. Learning curves on the Letter-dataset.

algorithms. For instance, when querying for workflows that include
a downsampling method, we can draw learning curves by plotting
learning performance against sample size. Fig. 9 shows the query:
a preprocessing step is added and we query for the resulting num-
ber of instances, and the performance of a range of learning algo-
rithms (with default parameter settings). The result is shown in Fig.
11. From these results, it is clear that the ranking of algorithm per-
formances depends on the size of the sample: the curves cross. While
logistic regression is initially stronger than C4.5, the latter keeps im-
proving when given more data, confirming earlier analysis [9]. Note
that RandomForest performs consistently better for all sample sizes,
that RacedIncrementalLogitBoost crosses two other curves, and that
HyperPipes actually performs worse when given more data, which
suggests that its initially higher score was largely due to chance.

3.4 Bias-Variance Profiles

The database also stores a series of algorithm properties, many of
them calculated based on large numbers of experiments. One in-
teresting algorithm property is its bias-variance profile. Because the

Figure 12. Query for the bias-variance profile of algorithms.

database contains a large number of bias-variance decomposition ex-
periments, we can give a realistic numerical assessment of how ca-
pable each algorithm is in reducing bias and variance error. Fig. 13
shows, for each algorithm, the proportion of the total error that can
be attributed to bias error, calculated according to [6], using default
parameter settings and averaged over all datasets. The simple query
is shown in Fig. 12. The algorithms are ordered from large bias (low
variance), to low bias (high variance). NaiveBayes is, as expected,
one of the algorithms whose error consists primarily of bias error,
whereas RandomTree has relatively good bias management, but gen-
erates more variance error than NaiveBayes. When looking at the en-
semble methods, Fig. 13 shows that bagging is a variance-reduction
method, as it causes REPTree to shift significantly to the left. Con-
versely, boosting reduces bias, shifting DecisionStump to the right in
AdaBoost and LogitBoost (additive logistic regression).

3.5 Further queries

These are just a few examples the queries that can be answered using
the database. Other queries allow algorithm comparisons using mul-
tiple evaluation measures, algorithm rankings, statistical significance
tests, analysis of ensemble learners, and especially the inclusion of
many more dataset properties and algorithm properties to study how
algorithms are affected by certain types of data. Please see [12] and
the database website for more examples.

4 Conclusions

Experiment databases are databases specifically designed to collect
all the details on large numbers of experiments, performed and shared
by many different researchers, and make them immediately available
to everyone. They ensure that experiments are repeatable and auto-
matically organize them such that they can be easily reused in future
studies.

This demo paper gives an overview of the design of the frame-
work, the underlying ontologies, and the resulting data exchange for-
mats and database structures. It discusses how these can be used to
share novel experimental results, to integrate the database in exist-
ing data mining toolboxes, and how to query the database through
an intuitive graphical query interface. By design, the database also
calculates and stores a wide range of known or measurable proper-
ties of datasets and algorithms. As such, all empirical results, past
and present, are immediately linked to all known theoretical prop-
erties of algorithms and datasets, providing new grounds for deeper
analysis. This results in a great resource for meta-learning and its
applications.
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Figure 13. The average percentage of bias-related error for each algorithm averaged over all datasets.
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