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The topic of preferences has recently attracted considerable attention in Artifi-
cial Intelligence (AI) research, notably in fields such as agents, non-monotonic
reasoning, constraint satisfaction, planning, and qualitative decision theory. Pref-
erences provide a means for specifying desires in a declarative way, which is a
point of critical importance for AI. Drawing on past research on knowledge repre-
sentation and reasoning, AI offers qualitative and symbolic methods for treating
preferences that can reasonably complement hitherto existing approaches from
other fields, such as decision theory and economic utility theory. Needless to say,
however, the acquisition of preferences is not always an easy task. Therefore,
not only are modeling languages and representation formalisms needed, but also
methods for the automatic learning, discovery, and adaptation of preferences. It
is hence hardly surprising that methods for learning and predicting preference
models from explicit or implicit preference information and feedback are among
the very recent research trends in machine learning and related areas.

The goal of this workshop is on the one hand to continue a series of successful
workshops at the ECML/PKDD conference series (PL-08, PL-09, PL-10), but,
more importantly, also to expand the scope by drawing the attention to a broader
AI audience. In particular, we seek to figure out new problems and applications of
preference learningnatural language processing, game playing, decision making
and planning. Indeed, we believe that there is a strong potential for preference
learning techniques in these areas, which has not yet been fully explored.

The papers presented in this workshop provide a spotlight on ongoing re-
search in this area. They make technical contributions to the field, but also
show work in progress in this area. We hope that these proceedings help to
spark further interest in this emerging research area and contribute to establish-
ing preference learning as an important in AI research.

Johannes Fürnkranz
Eyke Hüllermeier
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A Preliminary Study on a Recommender System for the
Million Songs Dataset Challenge

Fabio Aiolli1

Abstract. In this paper the preliminary study we are conducting on
the Million Songs Dataset (MSD) challenge is described. The task
of the competition is to suggest a set of songs to a user given half
of its listening history and complete listening history of other 1 mil-
lion people. We focus on memory-based collaborative filtering ap-
proaches since they are able to deal with large datasets in an efficient
and effective way. In particular, we investigated on i) defining suit-
able similarity functions, ii) studying the effect of the locality of the
collaborative scoring function, and iii) aggregating multiple ranking
strategies to define the overall recommendation. Using these tech-
niques we are in the top positions according to the current standing
of the competition leaderboard (at the moment of this writing the
challenge has about 150 registered teams).

1 Introduction
The Million Song Dataset Challenge [5] is a large scale, music rec-
ommendation challenge, where the task is to predict which songs
a user will listen to, provided the listening history of the user. The
challenge is based on the Million Song Dataset (MSD), a freely-
available collection of meta data for one million of contemporary
songs (e.g. song titles, artists, year of publication, audio features,
and much more) [2]. About one hundred and fifty teams are cur-
rently participating to the challenge. The subset of data actually used
in the challenge is the so called Taste Profile Subset that consists of
more than 48 million triplets (user,song,count) gathered from user
listening histories. Data consists of about 1.2 million users and cov-
ers more than 380,000 songs in MSD. The user-item matrix is very
sparse as the fraction of non-zero entries (the density) is only 0.01%.

Collaborative Filtering (CF) is a technology which uses the items
by user matrix to discover other users with similar tastes as the active
user for which we want to make the prediction. The intuition is that
if other users, similar to the active user, already purchased a certain
item, then it is likely that the active user will like that item as well.
A similar (dual) consideration can be made by changing the point of
view. If we know that a set of items are often purchased together (they
are similar in some sense), then, if the active user has bought one of
them, probably he/she will be interested to the other as well. The first
view is the one that is prevalent in recent CF literature. In this paper,
we show that the second view turned out more useful when used for
the MSD competition.

In Section 2 collaborative filtering is described and proposed as a
first approach to solve the problem of MSD. In the same section three
different views of the memory-based CF task are proposed that mo-
tivated the different algorithms of the section. In Section 3 empirical
results of the proposed techniques are presented and discussed.

1 University of Padova, Italy, email: aiolli@math.unipd.it

2 A CF approach to the MSD task
Collaborative filtering techniques use a database in the form of a
user-item matrix R of preferences. In a typical CF scenario a set
U of n users and a set I of m items exist and the entries of
R = {rui} ∈ Rn×m represent how much user u likes item i. In
this paper, we assume rui ∈ {0, 1} as this is the setting of the MSD
challenge. Entries rui represent the fact that user u have listened to
(or would like to listen to) the song i. In the following we refer to
items or songs interchangeably. The MSD challenge task is more
properly described as a top-τ recommendation task. Specifically, we
want to identify a list of τ (τ = 500 in the challenge) items Iu ⊆ I
that active user u will like the most. Clearly, this set must be disjoint
with the set of items already rated (purchased, or listened to) by the
active user.

2.1 Memory-based CF
In memory-based CF algorithms the entire user-item matrix is used
to generate a prediction. Generally, given a new user for which we
want to obtain the prediction, the set of items to suggest are com-
puted looking at similar users. This strategy is typically referred to
as user-based recommendation. Alternatively, in the item-based rec-
ommendation strategy, one computes the most similar items for the
items that have been already purchased by the active user, and then
aggregates those items to form the final recommendation. There are
many different proposal on how to aggregate the information pro-
vided by similar users/items (see [7] for a good survey). We focus
on the simple weighted sum strategy. A deeper analysis of this sim-
ple strategy allows us to highlight an interesting duality that exists
between user-based and item-based recommendation algorithms.

In the user-based type of recommendation, the scoring function,
on the basis of which the recommendation is made, is computed by

hUui =
∑
v∈U

f(wuv)rvi =
∑
v∈U(i)

f(wuv),

that is, the score obtained on an item for a target user is proportional
to the similarities between the target user u and other users v that
have purchased the item i (v ∈ U(i)). This score will be higher for
items which are often rated by similar users.

On the other hand, within a item-based type of recommendation
[3, 6], the target item i is associated with a score

hSui =
∑
j∈I

f(wij)ruj =
∑

j∈I(u)

f(wij),

and hence, the score is proportional to the similarities between item
i and other items already purchased by the user u (j ∈ I(u)).

ECAI-12 Workshop on Preference Learning: Problems and Applications in AI 1



The function f(w) can be assumed monotonic not decreasing and
its role is to emphasize/deemphasize similarity contributions in such
a way to adjust the locality of the scoring function, that is how many
of the nearest users/items really matter in the computation. As we
will see, a correct setting of this function turned out to be very useful
with the challenge data.

Interestingly, in both cases, we can decompose the user and item
contributions in a linear way, that is, we can write hUui = w>u ri,
wu ∈ Rn, and hSui = w>i ru, wi ∈ Rm. In other words, we are
defining an embedding for users (in user based recommendation sys-
tems) and for items (in item based recommendation systems). In the
specific case above, this corresponds to choose the particular vector
ri as the vector with n entries in {0, 1}, where r(i)u = rui. Similarly,
for the representation of users in item-based scoring, we choose ru
as the vector with m entries in {0, 1}, such that r(u)i = rui. The
main contribution of this paper is to explore how we can set the vec-
tors wi and wu in a principled way by using the entire user-item
preference matrix on-the-fly when a new recommendation has to be
done. Alternatively, we can also try to learn the weight vectors from
data by noticing that a recommendation task can be seen as a mul-
tilabel classification problem where songs represent the labels and
users represent the examples. We have performed preliminary exper-
iments in this sense using the preference learning approach described
in [1]. The results are promising but the problem in this case is the
computational requirements of a model-based paradigm like this. For
this reason we decided to postpone a further analysis of this setting
to future works.

Finally, an alternative and useful way to see at the duality be-
tween user-based and item-based recommendation is the following
that highlight a clear connection between this task and link predic-
tion. Specifically, we can think of the user-item matrixR = {rui} as
a bipartite graph where the set of nodes isN = U∪I, and there exist
only edges from u ∈ U to i ∈ I whenever rui = 1. Now, the user
based recommendation strategy corresponds to the intuition that if a
user tends to link to the same set of items as the active users, then,
this gives us some evidence that can exist a link between the active
user and the item i. Dually, in item-based recommendation, the in-
tuition is that, if the active user links to one out of two items which
tend to be linked by the same users, then, we can infer that the active
user will probably link the other item as well.

2.2 User-based and Song-based similarity

A large part of CF literature in the last decade deals with the problem
of defining a good similarity measure. A common opinion is that it
cannot exist a single similarity measure that can fit all possible do-
mains where collaborative filtering is used. In this section, we try to
define a parametric family of user-based and item-based similarities
that can fit different problems.

In the challenge, we have not relevance grades since the ratings
are binary values. This is a first simplification we can exploit in the
definition of similarity functions. The similarity function that is com-
monly used in this case, both for the user-based case and the item-
based case, is the cosine similarity. In the case of binary grades the
cosine similarity can be simplified as in the following. Let I(u) be
the set of items rated by a generic user u, then the cosine similarity
between two users u, v is defined by

wuv =
|I(u) ∩ I(v)|
|I(u)| 12 |I(v)| 12

and, similarly for items, by setting U(i) the set of users which have
rated item i, we have:

wij =
|U(i) ∩ U(j)|
|U(i)| 12 |U(j)| 12

.

The cosine similarity has the nice property to be symmetric but,
as we show in the experimental section, it might not be the better
choice. In fact, especially for the item case, we are more interested in
computing how likely it is that an item will be appreciated by a user
when we already know that the same user likes another item. It is
clear that this definition is not symmetric. As an alternative to the co-
sine similarity and, we think, a more well founded way of computing
weights wij in this case, is by resorting to the conditional probability
measure which can be estimated with the following formulas:

wuv = P (u|v) = |I(u) ∩ I(v)||I(v)|

and

wij = P (i|j) = |U(i) ∩ U(j)||U(j)|
Previous works (see [4] for example) pointed out that the condi-

tional probability measure of similarity, P (i|j), has the limitation
that items which are purchased frequently tend to have higher values
not because of their co-occurrence frequency but instead because of
their popularity. In our opinion, this might not be a limitation in a
recommendation setting. Perhaps, this could be an undesired feature
when we want to cluster items. In fact, this correlation measure has
not to be thought of as a real similarity measure. As we will see,
experimental results seem to confirm this hypothesis, at least in the
item-based similarity case.

Now, we are able to propose a parametric generalization of the
above similarity measures. This parametrization permits us ad-hoc
optimizations of the similarity function for the domain of interest.
For example, this can be done by validating on available data.

Specifically, we propose to use the following combination of con-
ditional probabilities:

wuv = P (v|u)αP (u|v)1−α wij = P (j|i)αP (i|j)1−α (1)

where α ∈ [0, 1] is a parameter to tune. As above, we estimate the
probabilities by resorting to the frequencies in the data and derive the
following:

wuv =
|I(u) ∩ I(v)|
|I(u)|α|I(v)|1−α wij =

|U(i) ∩ U(j)|
|U(i)|α|U(j)|1−α . (2)

It is easy to note that the standard similarity based on the condi-
tional probability P (u|v) (resp. P (i|j)) is obtained setting α = 0,
the other inverted conditional P (v|u) (resp. P (j|i)) is obtained set-
ting α = 1, and, finally, the cosine similarity case is obtained when
α = 1

2
. This analysis also suggests an interesting interpretation of

the cosine similarity on the basis of conditionals.

2.3 Locality of the Scoring Function
In Section 2 we have seen that, in memory based CF, the final recom-
mendation is computed by a scoring function which aggregates the
scores obtained using individual users or items. So, it is important to
determine how much each individual scoring component influences
the overall scoring. This is the role of the function f(w). In the fol-
lowing experiments we use the exponential family of functions, that

2
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is f(w) = wq where q ∈ N. The effect of this exponentiation is the
following. When q is high, smaller weights drop to zero while higher
ones are (relatively) emphasized. At the other extreme, when q = 0,
the aggregation is performed by simply adding up the ratings. We can
note that, in the user-based type of scoring function, this corresponds
to take the popularity of an item as its score, while, in the case of
item-based type of scoring function, this would turn out in a constant
for all items (the number of ratings made by the active user).

2.4 Ranking Aggregation

There are many sources of information available regarding songs.
For example, it could be useful to consider the additional meta-data
which are also available and to construct alternative rankings based
on that. It is always difficult to determine a single strategy which
is able to correctly rank the songs. An alternative is to use multi-
ple strategies, generate multiple rankings, and finally combine those
rankings. Typically, these different strategies are individually preci-
sion oriented, meaning that each strategy is able to correctly recom-
mend a few of the correct songs with high confidence but, it may
be that, other songs which the user likes, cannot be suggested by
that particular ranker. Hopefully, if the rankers are different, then the
rankers can recommend different songs. If this is the case, a possi-
ble solution is to predict a final recommendation that contains all the
songs for which the single strategies are more confident. A stochastic
version of this aggregation strategy can be described in the follow-
ing way. We assume we are provided with the list of songs not yet
rated by the active user in order of confidence for all the available
strategies. On each step, the recommender randomly choose one of
the lists according to a probability distribution pi over the predictors
and recommends the best scored item of the list which has not yet
been inserted in the current recommendation.

3 Experiments and Results

In the MSD challenge we have: i) the full listening history for about
1M users, ii) half of the listening history for 110K users (10K val-
idation set, 100K test set), and we have to predict the missing half.
Further, we also prepared a ”home-made” validation subset (HV) of
the original training data of about 900K users of training (HVtr, with
full listening history). The remaining 100K user’s histories has been
split in two halves (HVvi the visible one, HVhi the hidden one).

The experiments presented in this section are based on this HV
data and compare different similarities and different approaches. The
baseline is represented by the simple popularity based method which
recommends the most popular songs not yet listened to by the user.
Besides the baseline, we report experiments on both the user-based
and song-based scoring functions, and an example of the application
of ranking aggregation.

3.1 Taste Profile Subset Stats

For completeness, in this section, we report some statistics about the
original training data. In particular, the following table shows the
minimum, maximum, and average, number of users per song and
songs per user. The median value is also reported.

. min max ave median
users per song 1 110479 125.794 13
songs per user 10 4400 47.45681 27

We can see that the large majority of songs have only few users
which listened to it (less than 13 users for half of the songs) and the
large majority of users have listened to few songs (less than 27 for
half of the users). These characteristics of the dataset make the top-τ
recommendation task quite challenging.

3.2 Truncated Mean Average Precision
Conformingly to the challenge, we used the truncated mAP (mean
average precision) as the evaluation metric. Let y denote a ranking
over items, where y(p) = i means that item i is ranked at position
p. The mAP metric emphasizes the top recommendations. For any
k ≤ τ , the precision at k (πk) is defined as the proportion of correct
recommendations within the top-k of the predicted ranking (assum-
ing the ranking y does not contain the visible songs),

πk(u, y) =
1

k

k∑
p=1

ruy(p)

For each user the (truncated) average precision is the average pre-
cision at each recall point:

AP (u, y) =
1

τu

τ∑
p=1

πk(u, y)ruy(p)

where τu is the smaller between τ and the number of user u’s posi-
tively associated songs.

The average of AP (u, yu)’s over all users gives the mean average
precision (mAP).

3.3 Results
The result obtained on the HV data with the baseline (recommenda-
tion by popularity) is presented in Table 1. With this strategy, each
song i simply gets a score proportional to the number of users |U(i)|
which listened to the song.

Baseline (Recommendation by Popularity) 0.02262

Table 1: mAP@500 obtained by the baseline method (song popular-
ity) on HV data.

In Table 2, we report on experiments that show the effect of the lo-
cality parameter q for different strategies: item based and user based
(both conditional probability and cosine versions). As we can see,
beside the case IS with cosine similarity (Table 2b), a correct setting
of the parameter q drammatically improves the effectiveness on HV
data. We can clearly see that the best performance is reached with the
conditional probability on an item based strategy (Table 2a).

In Figure 1, we present results obtained fixing the parameter q and
varying the parameter α for both user-based and item-based recom-
mendation strategies. We see that, in the item-based case, the results
improve when setting a non-trivial α. In fact, the best result has been
obtained for α = 0.15.

Finally, in Table 3, two of the best performing rankers are com-
bined, and their recommendation aggregated, by using the stochastic
algorithm described in Section 2.4. In particular, in order to maxi-
mize the diversity of the two rankers, we aggregated an item-based
ranker with a user-based ranker. We can see that the combined perfor-
mance improves further on validation data. Building alternative and
effective rankers based on available meta-data is not a trivial task
and it was not the focus of our current study. For this we decided to
postpone this additional analysis to a near future.

3
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IS (α = 0) mAP@500
q=1 0.12224
q=2 0.16581
q=3 0.17144
q=4 0.17004
q=5 0.16830

(a)

IS (α = 1
2

) mAP@500
q=1 0.16439
q=2 0.16214
q=3 0.15587
q=4 0.15021
q=5 0.14621

(b)

US (α = 0) mAP@500
q=1 0.08030
q=2 0.10747
q=3 0.12479
q=4 0.13298
q=5 0.13400
q=6 0.13187
q=7 0.12878

(c)

US (α = 1
2

) mAP@500
q=1 0.07679
q=2 0.10436
q=3 0.12532
q=4 0.13779
q=5 0.14355
q=6 0.14487
q=7 0.14352

(d)

Table 2: Results obtained by item-based (IS) and user-based (US) CF
methods varying the locality parameter (exponent q) of the similarity
function.
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Figure 1: Results obtained by item-based (IS) and user-based (US)
CF methods varying the α parameter.

(IS, α = 0.15, q = 3) (US, α = 0.3, q = 5) mAP@500
0.0 1.0 0.14098
0.1 0.9 0.14813
0.2 0.8 0.15559
0.3 0.7 0.16248
0.4 0.6 0.16859
0.5 0.5 0.17362
0.6 0.4 0.17684
0.7 0.3 0.17870
0.8 0.2 0.17896
0.9 0.1 0.17813
1.0 0.0 0.17732

(a)

Table 3: Results obtained aggregating the rankings of two different
strategies, item-based (IS, α = 0.15, q = 3) and user-based (US,
α = 0.3, q = 5), with different combinations.
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Using and Learning GAI-Decompositions for
Representing Ordinal Rankings

Damien Bigot1, Hélène Fargier1, Jérôme Mengin1, Bruno Zanuttini 23

Abstract. We study the use of GAI-decomposable utility functions
for representing ordinal rankings on combinatorial sets of objects.
Considering only the relative order of objects leaves a lot of freedom
for choosing a particular utility function, which allows one to get
more compact representations. We focus on the problem of learn-
ing such representations, and give a polynomial PAC-learner for the
case when a constant bound is known on the degree of the target
representation. We also propose linear programming approaches for
minimizing such representations.

1 INTRODUCTION

The development of interactive systems for supporting decision-
making and of recommender systems highlighted the need for mod-
els capable of using a user’s preferences to guide her choices. For
over fifteen years, the modelling and compact representation of pref-
erences have been active topics in Artificial Intelligence [15, 16, 5,
6, 11].

Existing formalisms are rich and flexible enough to describe the
behaviour of complex decision rules. However, for being interest-
ing in practice, these formalisms must also permit fast elicitation
of a user’s preferences, involving a reasonable amount of interac-
tion only. Configuration of combinatorial products in business-to-
customer problems [14] and preference-based search [18] are good
examples of decision problems in which the user’s preferences are
not known a priori. In such applications, a single interaction with
the user must typically last at most 0.25 s, and the whole session
must typically last at most 20 minutes, even if the object to be rec-
ommended to the user is searched for in a combinatorial set.

When the user’s preferences are qualitative and have a “simple”
structure (for instance, when they are separable), conditional prefer-
ence networks (CP-nets) and their variants [5, 4, 6] are popular rep-
resentation frameworks. In particular, CP-nets come with efficient
algorithms for finding most preferred extensions of objects (outcome
optimisation problem), and with efficient elicitation procedures [13].
Unfortunately, CP-nets suffer a lack of expressivity, since most com-
plete pre-orders cannot be represented by simple (acyclic) CP-nets.

Contrastingly, generalised additively independent decompositions
(GAI-decompositions) of utility functions [9, 1, 11] can represent
complete pre-orders in a compact way, by exploiting the independen-
cies between sets of variables. In a word, these are representations of
utility functions by sums of the form

∑n
i=1 ui(Zi), where the ui’s

are sub-utility functions with (hopefully) small scopes Zi.

1 IRIT, Univ. Toulouse, France; email: prenom.nom@irit.fr
2 GREYC, Univ. Caen, France; email: prenom.nom@unicaen.fr
3 Partially funded by the ANR (projet LARDONS, ANR-2010,BLAN-0215)

Typically, a GAI-decomposition is used to represent a utility func-
tion, which assigns a value to each possible object and hence, implic-
itly defines a complete pre-order on them (the greater the value, the
more preferred the object). Such values may in some cases represent
an amount of money which the user is ready to spend for the object,
or may be defined implicitly by preferences on lotteries. However,
in many applications, the actual values of the utility function are not
important: it is the ranking of the objects that is induced by the utility
function, and the properties of this ranking, that are interesting. Fur-
thermore, the representation of the utility function is important too:
it should enable fast answers for a variety of queries, not only domi-
nance queries like “Is object o preferred to object o′ ?”, but also more
complex queries like “What are the top-k objects that fulfil some
given constraints?”, useful for typical recommendation systems.

In this paper, we investigate the use of GAI-decompositions
for representing such ordinal rankings. Precisely, we take a GAI-
decomposition to represent the ranking defined by the associated
utility function. Since in general many different utility functions rep-
resent the same ranking, this leaves a lot more freedom for finding
compact decompositions than if the utility function is fixed.

In this context, we focus on the problem of learning a com-
pact GAI-decomposition from (ordinal) examples, that is, essentially
from statements of the form “I prefer object o to object o′”. While
some works on this topic have focused on a fixed target utility func-
tion (rather than a ranking) and assumed the structure (the scopes
Xi) to be known in advance, we consider the issue of learning any
utility function which induces the target ranking, and assume noth-
ing about the target structure except for a constant, known bound on
its degree. We aim at finding a simple structure, in order to ease op-
timization queries (among others). This issue has not been addressed
in the “learning to rank” literature, where the aim is usually to find a
ranking function that can be used to answer dominance queries, as in
e.g. [12, 10, 8].

After a review of GAI-decompositions (Section 2), we show in
Section 3 that the GAI-decompositions consistent with a set of ex-
amples can be defined as the feasible solutions of a linear program.
We give an efficient PAC-learner for our problem in Section 4, and
extend our approach to the problem of learning minimal decomposi-
tions in Section 5. Some perspectives and are discusset in Section 6.

2 GAI-DECOMPOSITIONS

In our context, the preference relation (or preferences) of a user on
a set of objects χ is a complete pre-order �, that is, a complete and
transitive binary relation. Given two objects o, o′ ∈ χ, we take o �
o′ to mean that o is at least as interesting to the user as o′. We write
� for the asymmetric part of the relation �, and ∼ for its symmetric
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part. Hence � is a linear order with possible ties on χ, � is the strict
part of it, and ∼ contains the ties.

Generalized additive independence provides a representation for
preferences on combinatorial domains. Hence we assume that the ob-
jects inχ are described over a set of n variablesX = {X1, . . . , Xn}.
We write Di for the (finite) domain of Xi, hence the set of all ob-
jects is χ = D1 × · · · × Dn. Though our results can be extended
to arbitrary finite domains, for simplicity of exposition we consider
Boolean domains, and we write Di = {xi, x̄i}. Slightly abusing no-
tation, we also write objects of χ as sequences of values instead of
as vectors. For instance, with X = {X1, X2, X3, X4}, the object
(x1, x̄2, x3, x4) ∈ χ will be denoted by x1x̄2x3x4. Finally, for any
subset of variables Z ⊆ X and object o, o[Z] denotes the projec-
tion of o onto the variables in Z, and given a set of objects O ⊆ χ,
O[Z] = {o[Z] | o ∈ D1 × · · · ×Dn} denotes the set of projections
of elements of O onto Z.

It is easy to see that any complete and transitive preference relation
� can be represented by a utility function u : χ 7→ R satisfying
o � o′ ⇔ u(o) ≥ u(o′) for all o, o′ ∈ χ. Clearly, since the set χ
is combinatorial (it contains 2n objects), it is impractical to directly
elicit or explicitly store the relation� or a representation u. However,
in some cases, the utility function u satisfies strong independency
properties between attributes [7], so that it can be represented by a
set of local utility functions {ui : Di 7→ R | i = 1, . . . ,m} each of
arity 1, satisfying u(o) =

∑m
i=1 ui(o[{Xi}]) for all objects o. Such

representations are clearly very compact, easy to elicit, and allow
for efficiently computing optimal objects. Unfortunately, preference
relations seldom satisfy this property of additive independence.

Example 1. Consider the set of variables X = {X1, X2, X3} with
D1 = {beef(b),fish(f)}, D2 = {redWine(r),whiteWine(w)},
D3 = {lemon(l),mustard(m)}: χ contains 8 possible combina-
tions. Consider the following ordering over χ:

brm � brl � frm � frl ∼ bwm � bwl � fwm � fwl

It can be represented with the additive utility function u defined by
the following tables:

u1 :
b 5
f 2

u2 :
r 5
w 1

u3 :
l 2
m 3

Consider now the following ordering:

brm � bwm ∼ fwl � brl � fwm ∼ frl � bwl � frm

To represent this ordering with an additive utility, we should have
u1(b) > u1(f) since brm is preferred to frm, and u1(b) < u1(f)
since fwl is preferred to bwl. However, this ordering can be repre-
sented using local utilities over several variables: define for any ob-
ject o, u(o) = u{X1,X2}(o[{X1, X2}]) + u{X1,X3}(o[{X1, X3}])
where u{X1,X2} and u{X1,X3} are defined by:

u{X1,X2} :

b, r 5
f, r 1
b, w 2
f, w 4

u{X1,X3} :

b, l 3
b,m 7
f, l 5
f,m 2

Example 1 shows that some variables may depend on one another,
and that in this case the utility function must be decomposed onto
sets of variables rather than onto singletons.

Definition 1 (GAI-decomposition). Let X = {X1, ..., Xn} be a set
of variables, χ = D1×· · ·×Dn be a set of objects, and u : χ 7→ R

be a utility function on χ. A GAI-decomposition of u is a finite set
G = {uZ1 , . . . , uZm} of utility functions on subsets Zi of X (i.e.,
uZi : χ[Zi] 7→ R) such that u(o) = Σmi=1uZi(o[Zi]) holds for all
o ∈ χ. The degree ofG is defined to be deg(G) = maxi=1,...,m |Zi|,
where |Zi| denotes the cardinality of Zi.

Definition 2. Let u be a utility function, and let G be a GAI-
decomposition of u. Then u (resp.G) is said to represent a preference
relation � iff o � o′ ⇔ u(o) ≥ u(o′) for all o, o′ ∈ χ.
Considering u (resp. G) as given, we also say that it induces this
relation and denote it by �u (resp. �G).

The local utility functions uZ1 , . . . , uZm are also called GAI-
tables, because they are typically implemented in tabular form.

Clearly, for any utility function u, {u} is a GAI-decomposition
of u of degree |X|. Also, writing uc for the constant function with
value c, for any GAI-decomposition G of u and any set of variables
Z ⊆ X , G ∪ {u0(Z)} is also a GAI-decomposition of u. Similarly,
G ∪ {uc(Z)} is a GAI-decomposition of u + c, and hence induces
the same preferences as G. However, the most interesting decompo-
sitions are those which properly refine u.

Definition 3 (utility-preserving refinement). Let G,G′ be two
GAI-decompositions of the same utility function u. Then G =
(uZ1 , . . . , uZm) is said to u-refine G′ = (u′Z′1

, . . . , u′Z′
m′

) if for

i = 1, . . . ,m′, there is j ∈ {1, . . . ,m} with Z′i ⊆ Zj .

Definition 4 (preference-preserving refinement). Let G,G′ be two
GAI-decompositions of utility functions u, u′, respectively. Then
G = (uZ1 , . . . , uZm) is said to refine G′ = (u′Z′1

, . . . , u′Z′
m′

) if

�G and �G′ are the same relation and for i = 1, . . . ,m′, there is
j ∈ {1, . . . ,m} with Z′i ⊆ Zj .

For both definitions, the refinement is said to be proper if more-
over, for one relation Z′i ⊆ Zj as in the definition it holds Z′i 6= Zj ,
or for one Zj there is no Z′i ⊆ Zj .

Refinement differs from u-refinement because the same pref-
erence relation can be represented by several utility functions.
We will pay a particular attention to the maximally refined GAI-
decompositions which represent a given preference relation.

Example 2. Consider the set of boolean variables X =
{X1, X2, X3, X4}. Let u be the GAI utility defined as the sum of
uX1X2 , uX1X3 and uX1X4 , where these sub-utilities are defined by
the following tables:

x1x2 9
x1x̄2 5
x̄1x2 5
x̄1x̄2 2

x1x3 8
x1x̄3 9
x̄1x3 6
x̄1x̄3 9

x1x4 5
x1x̄4 2
x̄1x4 4
x̄1x̄4 1

It can easily be checked that the order over χ induced by u is also
induced by the utility u′ defined as the sum of u′X1X2

and u′X2X3X4

with the following tables:

x1x2 6
x1x̄2 2
x̄1x2 1
x̄1x̄2 0

x2x3x4 3 x̄2x3x4 2
x2x3x̄4 0 x̄2x3x̄4 0
x2x̄3x4 7 x̄2x̄3x4 4
x2x̄3x̄4 1 x̄2x̄3x̄4 1

Using a small program based on the ideas developed in the next sec-
tion, we have checked that none of these two GAI-decompositions of
the same pre-order can be refined.

This example shows that there is not always a unique maximally
refined GAI-decomposition inducing a given pre-order.
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3 REPRESENTATION OF EXAMPLES
Our aim in this paper is to learn GAI-decompositions which induce a
hidden target preference relation. Hence in the following we assume
that there is a set of Boolean variables X = {X1, . . . , Xn}, which
defines a set of objects χ, and a target preference relation � on χ,
hidden to the learner. The learner has access to information on �
through examples.

Definition 5 (example). An example e of � is a triple of the form
(o,R, o′), where o, o′ ∈ χ and R is one of �,�,∼,�,≺.
For a set of examples E, we write OE for the set of all objects in-
volved in at least one example of E.

Examples formalize the information received by the learner, es-
pecially by observing the user. For instance, if the learner observes
that the user always chooses o over o′, it may represent this as the
example (o,�, o′). Similarly, if the user sometimes chooses o over
o′, and sometimes o′ over o, this may be represented as the example
(o,∼, o′), etc.

Definition 6 (consistency). A GAI-decompositionG of a utility func-
tion u is said to be consistent with a set of examples E if for ev-
ery example (o,R, o′) ∈ E, u(o) > u(o′) (respectively u(o) ≥
u(o′), u(o) = u(o′), . . . ) holds if R is the relation � (respectively
�,∼, . . . ).

Clearly, given a constant k, there is not always a GAI-
decomposition of degree k (or less) which is consistent with a given
set of examples E. To formalize this, we define a set of examples E
to be k-sound if there is at least one utility function u and a decom-
position G of u, of degree at most k, that is consistent with E.

We now define a system of linear inequalities, whose solutions
essentially correspond to the GAI-decompositions of degree k con-
sistent with E.

Definition 7 (linear representation of an example). Let e =
(o,R, o′) be an example of the target preference relation �, and let
k ∈ N. Moreover, let σ > 0 be a real constant, positive but arbitrary.
Finally, for all subsets of variables Z ⊆ X with 0 < |Z| ≤ k and
assignments z to Z, let UZ,z be a formal variable.

The linear inequality for e = (o,R, o′), k, σ, written ineqσk (E)
(or simply ineqk(E)) is defined to be∑

Z⊆X,0<|Z|≤k

UZ,o[Z] ≥ σ +
∑

Z⊆X,0<|Z|≤k

UZ,o′[Z]

if R is the relation �, to be∑
Z⊆X,0<|Z|≤k

UZ,o[Z] ≥
∑

Z⊆X,0<|Z|≤k

UZ,o′[Z]

if R is the relation �, and similarly for the relations ∼ (using = in
ineqk(E)), � (using ≤), and ≺ (using ≤ and σ).

Definition 8 (linear system). Let E be a set of examples of the tar-
get preference relation �, and let k ∈ N, σ > 0. The linear sys-
tem for E, k, σ is defined to be the conjunction of linear inequalities
Σσk(E) =

∧
e∈E ineqσk (e) (also written simply Σk(E)).

Intuitively, variables UZ,z encode the components of the GAI-
tables in a decomposition G of the target relation. We use a constant
σ for strict preference with the aim of using linear programming,
for which we need a closed topological space. Proposition 1 below
shows that this is without loss of generality.

Importantly, note that the system Σk(E) has at most
∑k
i=0 2i

(
n
i

)
variables (as many as possible assignments to subsets of at most k
variables). However, another bound is obtained by observing that the
variable UZ,z appears only if there is an object o ∈ OE with o[Z] =
z. Hence the number of variables occurring in Σk(E) is at most∑k
i=0

(
n
i

)
.|OE |. Whatever formula we use, provided k is bounded

by a constant, the size of Σk(E) is polynomial in the number of
variables n and the number of examples E (using |OE | ≤ 2|E|).

Example 3. Let o = x1x2x̄3 and o′ = x̄1x2x3. The linear inequal-
ity associated with the exemple e = (o,�, o′) for k = 2 and σ = 0.1
is (writing, for exemple, Ux1x̄2 for U{X1,X2},x1x̄2 ) :

Ux1 + Ux2 + Ux̄3 + Ux1x2 + Ux1x̄3 + Ux2x̄3

≥ Ux̄1 + Ux2 + Ux3 + Ux̄1x2 + Ux̄1x3 + Ux2x3 + 0.1

We now show that the linear system Σk(E) characterizes the GAI-
decompositions of degree at most k and consistent with E. For tech-
nical reasons, we restricted ourselves to utility functions u with span
at least σ, that is, satisfying |u(o) − u(o′)| ≥ σ for all o, o′ with
u(o) 6= u(o′). This is without loss of generality however, since if u
has span σu < σ, then u′, defined by u′(o) = σ

σu
u(o) for all o ∈ χ,

is consistent with E as well and has span σ.

Proposition 1. Let� be a preference relation on χ, let E be a set of
examples for�, and let k ∈ N, σ > 0. Then the GAI-decompositions
of degree at most k, span of at least σ, and consistent with E are
exactly the solutions of Σk(E).

4 LEARNING

In this section we give an algorithm which, given a constant k ∈
N and a k-sound, hidden target preference relation �, learns a
GAI-decomposition G of � from examples only, in the Proba-
bly Approximately Correct (PAC) framework [17] (see Section 4.2).
Our algorithm essentially maintains the version space of all GAI-
decompositions of degree k (and span at least σ) consistent with the
examples received so far, using a compact representation by Σk(E).

4.1 VC-Dimension

So as to study the number of examples needed to learn �, we first
study the Vapnik-Chervonenkis dimension (VC-dimension for short)
of the classGk of all relations�which can be represented by a GAI-
decomposition of degree at most k.

The VC-dimension concerns classes of binary concepts, that is,
concepts c which assign one of two values to any object x (values
c(x) and ¬c(x)). Hence we view � as the two binary concepts �
and ≺ over objects (o, o′) ∈ χ × χ (and G�k , G

≺
k denote the corre-

sponding classes of concepts). This gives an equivalent view since,
for instance, o � o′ is equivalent to o 6≺ o′, o ∼ o′ is equivalent
to o 6≺ o′ ∧ o 6� o′, etc. Intuitively, the VC-dimension of � is the
largest number of “independent” couples (o,R, o′), in the sense that
the relation R of none depends on the relation of the others.

Definition 9 (VC-dimension). LetC be a set of binary concepts over
χ×χ. A set of couples O ⊆ χ×χ is said to be shattered by C if for
any partition {O+, O−} of O, there is a concept c ∈ C satisfying
∀(o, o′) ∈ O+, c(o, o′) and ∀(o, o′) ∈ O−,¬c(o, o′). The VC-dim-
ension of C is the size of the largest set O that is shattered by C.
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We now give the VC-dimension of classes G�k , G
≺
k . The fact that

it is polynomial could not be taken for granted even for constant k,
since a priori arbitrary values can occur in each entry of the GAI-
tables.

Proposition 2. The VC-dimension of G�k (resp. G≺k ) is in
O(2knk+1), where n denotes the number of variables over which
the objects are defined.

Proof Let K =
∑k
i=0 2i

(
n
i

)
(hence K ∈ O(2knk+1)). We show

that no set O ⊆ χ × χ containing more than K couples (o, o′) is
shattered, from what the claim will follow. By duality, we give the
proof for G�k .

So let O ⊆ χ × χ with |O| ≥ K + 1. For all couples (o, o′) ∈
O we define the following formal sum, with variables UZ,z as in
Definition 7:

V ko,o′ =
∑

Z⊆X,0<|Z|≤k

UZ,o[Z] − UZ,o′[Z]

which corresponds to combining the rhs and lhs of any linear inequal-
ity associated to o and o′.

All sums V ko,o′ (for (o, o′) ∈ O) use variables among the same K
variables UZ,z (0 < |Z| ≤ k). Hence if O contains at least K + 1
couples, there is at least one of them, which we write (ω, ω′), such
that the sum V kω,ω′ is a linear combination of the others, that is, there
are values λo,o′ (for (o, o′) ∈ O \ {(ω, ω′)}) which satisfy

V kω,ω′ =
∑

(o,o′)∈O\{(ω,ω′)}

λo,o′V
k
o,o′

We write O≤ (resp. O>) for the set of all couples (o, o′) ∈ O \
{(ω, ω′)} with λo,o′ ≤ 0 (resp. λo,o′ > 0).

First assume O> 6= ∅. We show that no concept � in G�k is
consistent with the partition defined by O+ = O> and O− =
O≤ ∪ {(ω, ω′)}, that is, no concept � satisfies o � o′ for all
(o, o′) ∈ O>, o 6� o′ (i.e., o � o′) for all (o, o′) ∈ O≤, and ω 6� ω′.
Indeed, given those labels and using Proposition 1, we get that the
following linear system must be satisfied (for an arbitrary constant
σ > 0):

V ko,o′ ≥ σ (∀(o, o′) ∈ O>)

V ko,o′ ≤ 0 (∀(o, o′) ∈ O≤)

Because of the signs of λo,o′ ’s, it follows that the following inequal-
ities must be satisfied:

λo,o′V
k
o,o′ ≥ λo,o′σ (∀(o, o′) ∈ O>)

λo,o′V
k
o,o′ ≥ 0 (∀(o, o′) ∈ O≤)

Hence all solutions of this system must satisfy∑
(o,o′)∈O>∪O≤

λo,o′V
k
o,o′ ≥ σ

∑
(o,o′)∈O>

λo,o′

that is (using O> ∪O≤ = O \ {(ω, ω′)}),

Vω,ω′ ≥ σ
∑

(o,o′)∈O>

λo,o′

Because of σ > 0, O> 6= ∅ and λo,o′ > 0 for (o, o′) ∈ O>, it
follows that ω 6� ω′ is impossible, so O is not shattered by G�k .

Now assume O> = ∅. We show that no concept � in G�k is con-
sistent with the partition defined by O+ = O≤ ∪ {(ω, ω′)} and
O− = ∅. Indeed, reasoning as above we get:

V ko,o′ ≥ 0 (∀(o, o′) ∈ O≤)

λo,o′V
k
o,o′ ≤ 0 (∀(o, o′) ∈ O≤)∑

(o,o′)∈O≤
λo,o′V

k
o,o′ ≤ 0

Vω,ω′ ≤ 0

and hence, ω � ω′ is impossible, showing again that O is not shat-
tered by G�k . Since O was arbitrary of size at least K, we conclude
that the VC-dimension of G�k is at most K. 2

4.2 Algorithm
We now give an algorithm for learning a GAI decomposition of a
hidden preference relation �∗ accessed through examples. We use
the probably approximately correct learning (PAC learning) frame-
work proposed by Valiant [17]: the learner asks for a number m of
examples (o,R, o′) of the target relation �∗, and computes a prefer-
ence relation �. The number m of examples in the sample is chosen
by the learner as a function of the number of variables n and two real
parameters ε, δ ∈]0, 1[. Each example is drawn at random according
to a probability distribution D on χ× χ; D is fixed but unknown to
the learner. For any couple (o, o′) drawn from χ× χ, the learner re-
ceives the example (o,R, o′), whereR is determined by�∗ (without
noise). In this context, an algorithm is a PAC-learner if

• it outputs a concept � which with probability at least 1 − δ has
error less than ε on couples drawn from χ × χ according to D.
Formally,

∑
{D(o, o′) | oRo′ but ¬(oR∗o′)} < ε holds with

probability at least 1− δ, where R is any relation in {�,∼,≺},
• the number m of examples asked by the learner is polynomial in
n, 1/ε, 1/δ,

• the algorithm runs in time polynomial in n, 1/ε, 1/δ (counting
unit time for asking and receiving an example).

A concept class is said to be efficiently PAC-learnable if such a
PAC-learner exists for the class.

The framework of PAC-learning captures situations where the
learner observes some objects in its environment (those that come
to it — it cannot choose which), and is given by a “teacher” the cor-
rect labels for these objects. Some objects occurring possibly more
seldom than others (as formalized by the distribution D), the learner
has less chances to learn with them, but it is less penalized by errors
on them.

In order to show that for fixed, constant k, the class Gk of GAI-
decompositions having degree at most k are PAC-learnable, we fol-
low the classical consistent learning approach. The learner maintains
a concept (in fact, the version space of all concepts) consistent with
each of the examples received so far, namely, it maintains the linear
system Σk(E) (for a fixed but arbitrary span σ > 0).

Figure 1 depicts the algorithm. Since�∗ is assumed to be k-sound
and our setting is noise-free, the algorithm always returns a solution,
i.e., Σk(E) is necessarily a consistent system. The number m of ex-
amples which the learner needs is given by the following proposition.

Proposition 3. For any constant k > 0, the class Gk of GAI-
decompositions of degree at most k is efficiently PAC-learnable. The
number m of examples required by Algorithm GAI-Learning is in
O(max( 1

ε
log 1

δ
, 2knk+1

ε
log 1

ε
).
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Algorithm 1: The GAI-Learning Algorithm

begin
Σk(E)← ∅;
for i = 1, . . . ,m do

ask for an example e of the form (o,R, o′);
add ineqk(e) to Σk(E);

compute a solution Sol of Σk(E);
return the GAI-decomposition encoded by Sol;

end

Proof. Proposition 1 shows that Σk(E) is solvable, and that the con-
cept returned by the algorithm is consistent with all the examples
received.

We determine m using the VC-dimension of G�k and G≺k . Fol-
lowing [2], because the binary relations� and≺ uniquely determine
the concept � (see the discussion before Definition 9), we define the
“dimension” d of the class of non-binary conceptsGk to be the max-
imum of the VC-dimension of G�k and G≺k , hence d ∈ O(2knk+1);
intuitively, a learner learns� and≺ in parallel using the same exam-
ples for learning both, and deduces � (for more details we refer the
reader to [2]).

Then we can apply the well-known generic result of Blumer et
al. [3, Theorem 2.1 (ii)] to get that a number of examples m ∈
O(max( 1

ε
log 1

δ
, d
ε

log 1
ε
) is enough for any concept � consistent

with the examples received to be probably approximately correct.
Finally, since m is polynomial in n, 1/ε, 1/δ (k is bounded), the

size of Σk(E) is polynomial. Since linear programming is polyno-
mial, the proof is complete.

5 MINIMIZING GAI-DECOMPOSITIONS
So far we have shown that for any constant k (small in practice),
the class Gk of GAI-decompositions with degree at most k is PAC-
learnable. However, our solution does not distinguish between a de-
composition with degree k and one with degree k′ � k, nor does it
distinguish between one with t clusters of variables Zi and one with
t′ � t clusters, etc.

We now briefly discuss how such parameters can be optimized.
The first natural objective is to learn a GAI-decomposition which is
maximally u-refined, that is, which cannot be decomposed further
while preserving the function.

Lemma 1. Let uZ be a utility function with a nontrivial
GAI-decomposition (uZ1 , . . . , uZm). Then

∑
z∈D(Z) uZ(z) >∑

i

(∑
zi∈D(Zi)

uZi(zi)
)

holds.

Proof. We have by definition of a decomposition∑
z∈D(Z)

uZ(z) =
∑

z∈D(Z)

∑
i

uZi(z[Zi]) =
∑
i

∑
z∈D(Z)

uZi(z[Zi])

Now because there are 2|Z|−|Zi| assignments to Z which match z on
Zi, it follows:∑

z∈D(Z)

uZ(z) =
∑
i

∑
zi∈D(Zi)

2|Z|−|Zi|uZi(zi)

Finally, because of Zi ⊆ Z we have 2|Z|−|Zi| ≥ 1 for all i, and
because the GAI-decomposition is not trivial, we have 2|Z|−|Zi| > 1
for at least one i, and hence∑

z∈D(Z)

uZ(z) >
∑
i

∑
zi∈D(Zi)

uZi(zi)

as desired.

Corollary 1. Let E be a k-sound set of examples. Then minimiz-
ing the objective function

∑
0<|Z|≤k

(∑
z∈D(Z) uZ(z)

)
, under the

constraints in Σk(E) plus the constraint UZ,z ≥ 0 (for all Z, z),
yields a GAI-decomposition (uZ1 , . . . , uZm) which is consistent
with E and in which no uZi can be u-refined.

Proof. Observe that due to the nonnegativity constraint on UZ,z’s,
the minimum is well-defined. Now towards a contradiction, let
G∗ = (u∗Z1

, . . . , u∗Zm
) be an optimal solution, and let (wlog)

G1 = (uZ11 , . . . , uZ1p) (Z1i ⊆ Z1) be a nontrivial u-refinement
of uZ1 . Define G to be obtained from G∗ by replacing u∗Z1

with G1.
Then clearly G is a utility-preserving refinement of G∗, hence both
represent the same utility function. It follows that G is also consis-
tent with E and also a feasible solution of the program (in particular,
it has the same span ≥ σ). Now by Lemma 1, G has a better value
than G∗, which contradicts the optimality of G∗.

Let D(Z,E) denotes the set of the z ∈ D(Z) such that there si
some o ∈ OE with z = o[Z]: obviously, for every z ∈ D(Z), if
z /∈ D(Z,E) then the minimization will yield UZ,z = 0. Therefore,
the linear program of Corollary 1 can be expressed as follows:

(P1)


minimize

∑
Z⊆X,0<|Z|≤k,z∈D(Z,E)

UZ,z

under constraints
• ineqk(e) for every e ∈ E
• UZ,o[Z] ≥ 0 for every Z, o

However, though (P1) achieves some kind of minimality, it does
not tend to minimize the number of nonempty entries (nonnull val-
ues) in the tables, as the following example shows.

Example 4. Consider two boolean variables X1, X2, and let E =
{x1x2 � x1x̄2 , x1x̄2 � x̄1x̄2 , x̄1x̄2 � x̄1x2}. Fix k = 2, σ =
1, and consider the following decompositions (u1, u12) and (u′12),
which are both consistent with E:

u1 :
x1 1
x̄1 0

u12 :

x1x2 2
x1x̄2 1
x̄1x̄2 1
x̄1x2 0

u′12 :

x1x2 3
x1x̄2 2
x̄1x̄2 1
x̄1x2 0

The decomposition (u′12) has fewer non-zero entries than (u1, u12),
however it can be seen that the latter has a better value for (P1) than
the former.

Despite this, we can apply some efficient post-processing to the
solution computed for (P1), by reporting the values in the table of Zi
to the table of Zj ⊃ Zi, if any.

Clearly, minimizing the number of nonempty entries allows
for more efficient storage of the decomposition learnt. In order
to minimize this number over all possible GAI-decompositions
consistent with the example, one has to resort to mixed-integer
programming, using an additional set of 0/1 variables of the
form VZ,z (recording whether the entry uZ(z) is nonempty).
This yields the following program (using standard constructs):
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(P2)



minimize
∑

Z⊆X,0<|Z|≤k,z∈D(Z,E)

VZ,z

under constraints
• ineqk(e) for every e ∈ E
• UZ,o[Z] ≥ 0 for every Z, o
• VZ,o[Z] ≥ UZ,o[Z] for every Z ⊆ X, 0 < |Z| ≤ k, o ∈ OE
• VZ,o[Z] ∈ {0, 1} for every Z ⊆ X, 0 < |Z| ≤ k, o ∈ OE

Note that the constant σ must be small enough so that constraining
the UZ,o[Z]s to be in the [0, 1] interval does not artificially eliminate
some solutions.

Finally, a natural objective is to minimize the degree of the GAI-
decomposition learnt (given that it will be at most k anyway).

Example 5. Consider three boolean variables X1, X2, X3, let k =
3, σ = 1, and E = {x1x2x3 � x̄1x2x3 , x̄1x2x̄3 � x̄1x̄2x̄3}.
Consider the decompositions (u123) and (u′1, u

′
2) defined as follows:

u123 :
x1x2x3 1
x̄1x2x̄3 1

else 0
u′1 :

x1 1
x̄1 0

u′2 :
x2 1
x̄2 0

Both decompositions are consistent with E. Moreover, (u123) is
clearly an optimum of (P1) and of (P2), but it does not have mini-
mal degree, since (u′1, u

′
2) has degree 1.

Again, one could resort to mixed-integer programming to mini-
mize the degree over all decompositions consistent with the exam-
ples. Nevertheless, it is clearly a more efficient approach to proceed
by exhaustive search (or by dichotomy): if there is a decomposition
of degree k, then look for one with degree k − 1, etc.

6 CONCLUSION
In this paper, we have shown that any complete preorder on a combi-
natorial domain, which can be represented by a GAI-decomposition
of degree k, can also be seen as the solution of a system of linear
equations. For a given k, a set of examples of such a hidden preorder
(encoding a preference relation) leads to a linear system whose vari-
ables encode the components of the GAI-tables. A judicious choice
of an objective function allows to get a minimal decomposition (with
various notions of minimality).

With this in hand, we designed an algorithm which learns a GAI-
decomposition of a hidden preference relation, provided a constant
bound on the degree of such a decomposition is known a priori, in
the framework of PAC-learning. To our knowledge, this is the first
algorithm able to learn GAI-decompositions without being given the
structure of the tables (the sets of variables Zi). Even if we require
a constant bound on the degree to be given, the result could not be
taken for granted, since the presence of arbitrary values in the GAI-
tables makes a priori GAI-decompositions of degree k a very expres-
sive class (hence difficult to learn). On the practical side, requiring a
small, constant bound typically fits in the applicative context, where
(human) users usually have very local preferences.

When the training set is noisy or the chosen bound k is too low,
the linear system has no solution. It is simple to relax the system
by introducing a slack variable δe in the left part of each inequality
ineqk(e). Then the sum of the δi’s is obviously to be minimized (the
variant of the algorithm given in the paper corresponds to null δi’s).

The next development of this work is the design of a good strat-
egy for the choice of the degree of the GAI to be learnt. A simple

approach is to follow an increasing strategy, first assuming that vari-
ables are independent, then setting k = 2 and so on, until a good
coverage of the examples is reached. A finer strategy would be to use
a tolerance parameter and to analyze the (imperfect) graph learnt for
k = 2 in order to have a better idea of the dependencies: the knowl-
edge of a clique on a set Y of variables leading to the necessity of
the local utility function uY . More generally, such further develop-
ment would imply interleaving two procedures, one being devoted to
learning k (or the structure of the GAI), and the other to learning the
entries in the tables using linear programming.

Last, but not least, we shall go back to the development of (active)
elicitation methods close to the ones used in CP-net learning. The
idea is to ask the user a series of question, whose answer allows the
learner to infer (in)dependencies between variables [13]. In this con-
text, the equations and variables of the linear system would show up
only when necessary, leading to a much more efficient procedure in
terms of memory.

Acknowledgments We thank all anonymous reviewers of ECAI
2012 for helpful comments.
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Learning Conditional Lexicographic Preference Trees
Michael Bräuning and Eyke Hüllermeier1

Abstract. We introduce a generalization of lexicographic orders
and argue that this generalization constitutes an interesting model
class for preference learning in general and ranking in particular. We
propose a learning algorithm for inducing a so-called conditional lex-
icographic preference tree from a given set of training data in the
form of pairwise comparisons between objects. Experimentally, we
validate our algorithm in the setting of multipartite ranking.

1 INTRODUCTION

Preference learning is an emerging subfield of machine learning that
has received increasing attention in recent years [13]. A specific
though important special case of preference learning is “learning to
rank”, that is, the learning of models that can be used to predict pref-
erences in the form of rankings of a set of alternatives [7, 8]. Ranking
problems are often reduced to problems of a simpler type, such as
learning a value function that assigns scores to alternatives (with bet-
ter alternatives having higher scores) or learning a binary predicate
that compares pairs of alternatives [15]; while the former approach is
close to regression, the latter is in the realm of classification learning.

Another approach to learning ranking functions is to proceed from
specific model assumptions, that is, assumptions about the structure
of the sought preference relations. This approach is less generic than
the previous ones, as it strongly depends on the concrete assump-
tions made. On the other hand, it typically offers the advantage of
being more easily understandable and interpretable. An example is
the representation of preferences in the form of a CP-net [5]. An-
other example is lexicographic orders that are widely accepted as a
plausible representation of (human) preferences [16], especially in
complex decision making domains [1]. Here, the assumption is that
the target ranking of a set of alternatives, each one described in terms
of multiple attributes, can be represented as a lexicographic order.

From a machine learning point of view, assumptions of the above
type can be seen as an inductive bias restricting the hypothesis space.
Provided the bias is correct, this is clearly an advantage, as it may
simplify the learning problem. On the other hand, an overly strong
bias may prevent the learner from approximating the target ranking
sufficiently well. For example, while being plausible in some situa-
tions, the assumption of a lexicographic order will be too restrictive
for many applications.

In this paper, we therefore present a method for learning genera-
lized lexicographic orders. While still being simple and easy to un-
derstand, the model class we consider relaxes some of the assump-
tions of a proper lexicographic order. More specifically, we increase
flexibility thanks to two extensions of conventional lexicographic or-
ders.

1 Department of Mathematics and Computer Science, University of Marburg,
Germany, email: {braeunim,eyke}@mathematik.uni-marburg.de

• First, we allow for conditioning [3, 4]: The importance of at-
tributes as well as the preferences for the values of an attribute
may depend on the values of other variables preceding that one in
the underlying variable order.

• Second, we allow for grouping [17]: Several (one-dimensional)
variables can be grouped into a single high-dimensional variable,
and preferences can be specified on the cartesian product of the
corresponding domains.

The remainder of this paper is organized as follows. In the next
section, we give a brief overview of related work. In Section 3, we
introduce generalized lexicographic orders and the notion of con-
ditional lexicographic preference trees. In Section 4, we present an
algorithm for learning such preference models from data. An experi-
mental study is presented in Section 5, prior to concluding the paper
in Section 6.

2 RELATED WORK
The use of lexicographic orders in preference modeling has already
been considered in the seventies of the last century [10], whereas
in machine learning, this type of structure has attracted attention
only recently. Flach and Matsubara developed a lexicographic ranker
called LexRank, using a linear preference ordering on attributes de-
rived by the odds ratio [12, 11]. Experimentally, they show that
LexRank is competitive to decision trees and naive Bayes in terms
of ranking performance (AUC).

Further work on learning lexicographic orders was done by
Schmitt and Martignon [16], Dombi et al. [9], and Yaman et al.
[18]. However, these works are based on rather simplistic assump-
tions. More general models were studied by Booth et al. [3, 4], and
in fact, important parts of our approach (such as conditional impor-
tance of attributes and conditional preferences on attribute values)
is inspired by these models. Their work remains rather theoretical,
however, without a practical realization in terms of an implementa-
tion of algorithms or an experimental study with real data.

3 GENERALIZED LEXICOGRAPHIC ORDERS
Formally, we proceed from an attribute-value representation of deci-
sion alternatives or objects, i.e., an object is represented as a vector

o ∈ O = D(V ) = D(A1)× ...×D(An),

where V = {A1, ..., An} is the set of attributes (variables)
and D(Ai) is the domain of attribute Ai. For a subset A =
{Ai1 , . . . , Aik} ⊂ V of attributes we define D(A) = D(Ai1) ×
...×D(Aik ).

An assignment or instantiation of a subset A ⊆ V of attributes
is an element a ∈ D(A); an assignment is called complete if A =
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V , otherwise it is called partial. For an object o ∈ O and a subset
A ⊂ V , we denote by o[A] the projection of o fromD(V ) toD(A);
if A = {Ak} is a single attribute, we also write o[k] instead of
o[{Ak}].

A lexicographic order on O is a total order � defined in terms of

• a total order A on V , i.e., a ranking of the attributes,
• a total order Ai on each attribute domain D(Ai).

More specifically, o∗ � o (suggesting that o∗ is preferred to o) if
and only if there exists a k ∈ {1, . . . , n} such that(

o∗[k] Ak o[k]
)
∧
(
(Ai A Ak)⇒

(
o∗[i] = o[i]

))
for all i ∈ {1, . . . , n}. The relations Ai indicate preference on indi-
vidual attributes: a Ai b means that, for a, b ∈ D(Ak), a is preferred
to b as a value for attribute Ai. Moreover, the relation A reflects the
importance of attributes: Ai A Aj means that attribute Ai is more
important than Aj , whence the former is considered prior to the lat-
ter. Without loss of generality, we shall subsequently assume that
A1 A A2 A · · · A An (unless otherwise stated).

3.1 Conditional preferences on attribute values
Conventional lexicographic orders assume that preferences Ak on
attribute domains are independent of each other. Needless to say, this
assumption is often violated in practice. For example, although it is
possible that a person prefers red wine to white wine in general, it is
also plausible that her preference for wine may depend on the main
dish: red is preferred to white in the case of meat, whereas white is
preferred to red in the case of fish.

In order to capture attribute dependencies of that type, the prefer-
ences relations Ak can be conditioned on the values of the attributes
Aj preceding Ak in the order A [3, 4]. That is, Ak is now replaced
by a set of strict orders{

A
(a1,...,ak−1)

k | (a1, . . . , ak−1) ∈ D({A1, . . . , Ak−1})
}

Moreover, the order relation� onO is then defined as follows: o∗ �
o for o∗ = (a∗1, . . . , a

∗
n) and o = (a1, . . . , an) if and only if there

exists a k ∈ {1, . . . , n} such that(
∀ i ∈ {1, . . . , k − 1} : a∗i = ai

)
∧
(
a∗k A

(a1,...,ak−1)

k ak

)
.

3.2 Conditional attribute importance
Going one step further, one may assume that the values of the first at-
tributes in the attribute order A do not only influence the preferences
on the values of the attributes that follow, but also the importance of
the attributes themselves [3, 4]. Thus, we are no longer dealing with
a lexicographic order in the sense that A defines a sequence of the
attributes V according to their importance. Instead, we are dealing
with a tree-like structure. This structure is defined by the following
(choice) function:

A = C
(
(Ai1 , Ai2 , . . . , Aik ), (ai1 , ai2 , . . . , aik )

)
,

where (Ai1 , Ai2 , . . . , Aik ) ∈ V k is a sequence of attributes (such
that Aij 6= Aik for j 6= k) and aij ∈ D(Aij ) for all j ∈ {1, . . . , k}.
Moreover, A ∈ V \ {Ai1 , . . . , Aik} is the most important attribute
given that Aij = aij for all j ∈ {1, . . . , k}.

3.3 Variable grouping
Another extension consists of grouping several variables, that is, to
allow the expression of preferences on attribute tuples instead of sin-
gle attributes only [17]. Formally, this means selecting an index set
I ⊆ {1, . . . , n} and defining a total order relation AI on the carte-
sian product D(VI) of the domains D(Ai), i ∈ I.

Note that the possibility of variable grouping significantly in-
creases the expressivity of the model class. In particular, taking
I = {1, . . . , n}, it is possible to define every order on D(V ), that
is, to sort the set of alternatives in any way. Since this level of ex-
pressivity is normally not desirable, it is reasonable to restrict to
variable grouping of order gmax, meaning to impose the constraint
|I| ≤ gmax for a fixed gmax ≤ n.

3.4 Conditional lexicographic preference trees
Combining the generalizations discussed above, we end up with what
we call a Conditional Lexicographic Preference Tree (CLPT). Graph-
ically, this is a tree structure in which

• every node is labeled with a subset of attributes VI and a total or-
der on the cartesian product D(VI) of the corresponding attribute
domains D(Ai), i ∈ I;

• there is one outgoing edge (descendant node) for each value
o[VI ] ∈ D(VI);

• every attribute Ai ∈ V occurs at most once on each branch from
the root of the tree to a leaf node (i.e., the index sets I along a
branch are disjoint).

We call a CLPT complete if every attribute Ai ∈ V occurs exactly
once on each branch from the root of the tree to a leaf node (i.e., the
index sets I along a branch form a partition of {1, . . . , n}).

A (complete) CLPT can be thought of a defining an order rela-
tion on O through recursive refinement of a weak order �, that is,
by refining an order relation with tie groups in a recursive manner
(in the following, ∼ and � denote, respectively, the symmetric and
asymmetric part of �):

• One starts with a single equivalence class (tie group), i.e., o∗ ∼ o
for all o∗,o ∈ O.

• Let the root of the CLPT be labeled with the attribute set VI , and
let AI denote the corresponding order on D(VI). The current or-
der � is then refined by letting o∗ � o whenever o∗[VI ] AI
o[VI ]; otherwise, if o∗[VI ] = o[VI ], then o∗ and o remain tied.

• Thus, a linear order of tie groups (equivalence classes) is pro-
duced.

• Each equivalence class (represented by a value a ∈ D(VI)) is
then recursively refined by the subtree the objects of this equiva-
lence class are passed to.

Note that, if the CLPT is complete, the order relation � eventually
produced is a total order �.

4 LEARNING CLPTs
In this section, we outline a method for inducing a CLPT from train-
ing data

T =
{
(o∗i ,oi)

}N
i=1

(1)

that consists of a set of object pairs (o∗i ,oi) ∈ O2, suggesting that
o∗i is preferred to oi. Roughly speaking, this means finding a CLPT
whose induced order relation � on O is as much as possible in
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agreement with the pairwise preferences in T (without overfitting
the training data). The induced order relation � is a total order � if
the CLPT is complete.

4.1 Performance and evaluation measures
In order to evaluate the predictive performance of a CLPT, there is
a need to compare the order relation � (with asymmetric part �)
induced by this model with a ground truth order� ∗. As will be seen
below, the same measures can be used to fit a CLPT to a given set of
training data (1) during the training phase. In this case, the “ground
truth” is not a total order but a set of pairwise comparisons between
objects. Since a total order �∗ can be decomposed into (a quadratic
number of) such comparisons, too, we can assume (without loss of
generality) that we compare � with a set T of pairs (o∗,o) ∈ O2,
suggesting that o∗ should be ranked higher than o.

Inspired by the corresponding notions introduced in [6], we define
two performance measures of correctness and completeness, respec-
tively, as follows:

CR(�, T ) =
|C| − |D|
|C|+ |D| , (2)

CP(�, T ) =
|C|+ |D|
|T | , (3)

where

C =
{
(o∗,o) ∈ T |o∗ � o

}
,

D =
{
(o∗,o) ∈ T |o � o∗

}
.

Note that CR(�, T ) assumes values between −1 (complete dis-
agreement) and +1 (complete agreement), while CP(�, T ) ranges
between 0 (no comparisons) and 1 (full comparison).

4.2 A greedy learning procedure
We implement an algorithm for learning a CLPT as a (greedy) search
in the space of tree structures based on the greedy algorithms pre-
sented by Schmitt and Martignon [16] as well as Booth et al. [3, 4].
This is done by constructing the tree from the root to the leaves in a
recursive manner. In each step of the recursion, a new node is created
with an associated subset VI of attributes, where |VI | ≤ gmax, and
a total order AI on D(VI).

4.2.1 Creating a node

The problem to be solved in each recursion is the following: Given
a set of pairwise comparisons T and a set V ′ ⊆ V of attributes still
available, select a most suitable subset VI ⊆ V ′ and an order AI .
Following a greedy strategy, we choose (VI ,AI) so as to maximize
correctness (2), using completeness (3) as a second criterion to break
ties.

The selection of an attribute subset VI can be done through ex-
haustive search if its size is sufficiently limited, i.e., if the upper
bound gmax is small. Otherwise, a complete enumeration of all pos-
sibilities may become too expensive. Moreover, for each candidate
subset VI , a total order AI needs to be determined. Again, all such
orders can be tried if D(VI) is not too large. Otherwise, heuristic
ranking procedures such as Borda count can be used (counting the
number of “wins” and “losses” of each value a ∈ D(VI) in the
training data T and sorting according to the difference).

4.2.2 Limiting the number of candidate subsets

In order to avoid a complete enumeration of all candidate subsets VI
of size ≤ gmax, we combine a greedy search with a kind of looka-
head procedure: We provisionally create a node by selecting a single
attribute instead of a subset, i.e., we tentatively set gmax to 1; apart
from that, exactly the same selection procedure (as outlined above)
is applied. This step is repeated gmax times, thereby producing a
subtree of depth gmax. Let V ∗ ⊆ V denote the subset of attributes
that occur in this subtree, i.e., that are chosen in at least one of the
nodes. Then, as candidate subsets VI , we only try subsets V ∗, i.e.,
subsets VI ⊆ V ∗ such that |VI | ≤ gmax. Obviously, the underlying
assumption is that an attribute that has not been chosen in any of the
gmax steps is not important at this point.

4.2.3 Recursion

Once an optimal subset VI has been chosen, the training examples
(o∗,o) with o∗[VI ] 6= o[VI ] are removed from T (since they are
sorted at this node). Moreover, for each value a ∈ D(VI), a data set

Ta =
{
(o∗,o) ∈ T |o∗[VI ] = o[VI ] = a

}
is created and passed to the corresponding successor node (together
with V ′ \ VI as the attributes that have not been used so far). The
same recursive procedure is then applied to each of these successor
nodes.

4.2.4 Initialization and termination

The learning procedure is called with the original training set T and
the full set V of attributes as candidates. The recursion terminates
if no attribute is left (V ′ = ∅) or if the set of training examples is
empty (T = ∅).

4.2.5 CLeRa

We call the algorithm outlined above CLeRa, which is short for Con-
ditional Lexicographic Ranker. The CLPT induced by CLeRa can be
used to compare new object pairs {o∗,o} ⊂ O. To this end, the tuple
is submitted to the root and propagated through the tree until either a
leaf node is reached or a node at which o∗[VI ] 6= o[VI ]; in this case,
o∗ � o is decided if o∗ AI o and o � o∗ if o AI o∗. Otherwise,
if o∗[VI ] = o[VI ] in all nodes traversed by the two objects, then
o∗ ∼ o.

Given not only a pair but a complete set of objects to be ranked,
the pairwise comparison realized by the CLPT can be embedded in
any standard sorting algorithm, such as insertion sort. Note that, since
o∗ ∼ o is possible in a pairwise comparison, the result of the sorting
procedure will in general only be a weak order �.

5 EXPERIMENTAL RESULTS
We evaluate our approach on 15 benchmark data sets from the Statlog
and the UCI repository [2]. These data sets, which define binary or
ordinal classification problems, were pre-processed as follows: nu-
merical attributes and attributes with more than five values were dis-
cretized into four values using equal frequency binning. Moreover,
instances with missing values were neglected.

The learning problem we consider is multipartite ranking [14]:
Given a set of test instances X ⊂ O, the goal is to predict a ranking
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� that agrees with the (ordered) class labels of these instances. For-
mally, this agreement is measured in terms of the so-called C-index,
which can be seen as an extension of the AUC:

C =
1∑

i<j ninj

∑
1≤i<j≤m

∑
(o,o∗)∈Xi×Xj

I(o∗ � o)+
1

2
I(o∗ ∼ o),

where Xi ⊆ X denotes the set of instances with class labels yi, and
these class labels are assumed to have the order y1 < y2 < · · · <
ym. The training data consists of a set of labeled instances, just like
in classification. Since CLeRa is learning from pairwise comparisons
of the form (o∗,o), it first extracts such comparisons from the origi-
nal data by looking at the class information: A preference (o∗,o) is
generated for each pair (o∗, yj) and (o, yi) of labeled instances in
the (original) training data such that yi < yj .

The ranking performance of CLeRa (with maximum grouping size
of gmax = 2) is compared with LexRank, which was implemented
as proposed by Flach and Matsubara [12, 11]; therefore, this method
was only applied to binary (two-class) problems but not to problems
with more than two classes.2 We applied naive Bayes (NB) and de-
cision tree (J48) learning as additional baselines, using the standard
implementations in Weka (trees are not pruned) and sorting instances
according to the estimated probability of the positive class; note that
these methods are not applicable to the multi-class case either.

Table 1. Average performance in terms of C-index based on a 10-fold
cross-validation.

Dataset CLeRa LexRank J48 NB
Red Wine 0.7827 0.8011 0.7378 0.8110
Census Income 0.7952 0.5776 0.7401 0.8607
Credit Approval 0.9201 0.9229 0.8517 0.9061
Mammographic Mass 0.8831 0.8960 0.8524 0.8999
Mushroom 1.000 0.9865 1.0000 0.9484
SPECT Heart 0.674 0.6590 0.5106 0.7409
Ionosphere 0.9198 0.5748 0.8059 0.9061
MAGIC Gamma Telescope 0.8218 0.7263 0.7841 0.8241
Breast Cancer Wisconsin 0.9837 0.9901 0.9793 0.9909
German Credit 0.6285 0.4523 0.6251 0.7835
Car Evaluation 0.9198 n/a n/a n/a
Nursery 0.9052 n/a n/a n/a
Tic-Tac-Toe Endgame 0.7728 n/a n/a n/a
Vehicle 0.7554 n/a n/a n/a
Cardiocraphic 0.9551 n/a n/a n/a

The results of a 10-fold cross-validation are given in Table 1.
Since CLeRa produced a completeness of 1 or extremely close to
1 throughout, these values are not reported here. Overall, the perfor-
mance of the methods is quite comparable. In particular, CLeRa and
LexRank produce quite similar results on many data sets. In some
cases, however, the results are strongly in favor of CLeRa (Census
Income, Ionosphere, MAGIC Gamma Telescope, German Credit).
Probably, this is because the bias imposed by the assumption of a
standard lexicographic order is inadequate for these data sets, and
hence our extensions (conditional attribute importance, conditional
value preferences, variable grouping) clearly pay off.

6 CONCLUSIONS AND FUTURE WORK
Lexicographic orders constitute an interesting model class for pref-
erence learning, which allows for representing rankings of a set of
objects in a very compact and comprehensible way. Yet, as we have

2 The red wine data actually has a target attribute with values between 1 and
10; it was binarized by thresholding at the median.

argued in this paper, this model class may not be flexible enough
for many real-world applications. Therefore, we have proposed to
weaken the assumptions underlying a lexicographic order in vari-
ous directions, allowing for conditional attribute importance, condi-
tional preferences on attribute values, and variable grouping. More-
over, we have proposed an algorithm called CLeRa, which learns
preference models in the form of conditional lexicographic prefer-
ence trees from training data in the form of pairwise comparisons
between objects.

First experimental results in the setting of multipartite ranking are
quite promising and show CLeRa to be competitive with other meth-
ods. In a direct comparison with an existing lexicographic ranker, the
benefit of our extensions are becoming quite obvious.

Important topics of future work can be found both on the the-
oretical and practical side. In particular, we are currently studying
formal properties of our generalized model class, such as its expres-
siveness and means for regularization and complexity control. Prac-
tically, there is certainly scope for improving our current algorithm,
for example by devising a suitable procedure for estimating an opti-
mal value gmax for the oder of variable grouping. Moreover, improv-
ing the computational efficiency of CLeRa would be desirable, too.
Last but not least, we are of course interested in real applications for
which (generalized) lexicographic models appear to be an adequate
representation.
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An apple-to-apple comparison of Learning-to-rank
algorithms in terms of Normalized Discounted

Cumulative Gain
Róbert Busa-Fekete12 and György Szarvas3 and Tamás Éltető 4 and Balázs Kégl 5

Abstract. The Normalized Discounted Cumulative Gain (NDCG)
is a widely used evaluation metric for learning-to-rank (LTR) sys-
tems. NDCG is designed for ranking tasks with more than one rele-
vance levels. There are many freely available, open source tools for
computing the NDCG score for a ranked result list. Even though the
definition of NDCG is unambiguous, the various tools can produce
different scores for ranked lists with certain properties, deteriorating
the empirical tests in many published papers and thereby making the
comparison of empirical results published in different studies diffi-
cult to compare. In this study, first, we identify the major differences
between the various publicly available NDCG evaluation tools. Sec-
ond, based on a set of comparative experiments using a common
benchmark dataset in LTR research and 6 different LTR algorithms,
we demonstrate how these differences affect the overall performance
of different algorithms and the final scores that are used to compare
different systems.

1 Introduction

In subset ranking [3] (or web page ranking), the goal is to learn a
ranking function that approximates the ideal partial ordering of a set
of objects (or documents retrieved for the same query). The partial
ordering is provided by relevance labels representing the relevance
of documents with respect to the query on an absolute scale.

In the past, manually designed ranking functions, such as
BM25 [7], were used to rank the retrieved documents in web page
ranking. More recently, this problem is tackled as a machine learning
task, where the training data is given in the form of (query, document,
relevance label) triplets. These machine learning based ranking ap-
proaches are referred to as learning-to-rank (LTR) systems.

The Normalized Discounted Cumulative Gain (NDCG) is a
widely used evaluation metric for learning-to-rank systems. NDCG
is designed for ranking tasks with more than one relevance levels.
There are many freely available, open source tools for computing
the NDCG score for a ranked result list (for full list of these tools
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see Section 3). Even though the definition of NDCG is unambigu-
ous6, the various tools can produce different scores for ranked lists
with certain properties, deteriorating the empirical tests in many pub-
lished papers and thereby making the comparison of empirical results
published in different studies difficult to compare.

We found that for certain benchmark datasets, the relative order of
the performance of different LTR methods can change depending on
which evaluation tool was used. The reason for this can be two-fold.
First, the implemented NDCG calculation can itself result in differ-
ent scores, and in some cases, a different order for the same ranked
result lists. Second and more importantly, we found some of the LTR
algorithms that compute the NDCG scores during the training phase
to be sensitive to the different ways of computing the NDCG score,
i.e. depending on which NDCG implementation is used, some LTR
methods can produce different models that provide significantly dif-
ferent overall performance. In previous work[2], we recognized this,
here we investigate the effect of using different evaluation tools more
detailed.

The contribution of this study is two-fold. First, we identify the
major differences between the various publicly available NDCG
evaluation tools. Second, based on a set of comparative experiments
using a common benchmark dataset in LTR research and 6 differ-
ent LTR algorithms, we demonstrate how these differences affect
the overall performance of different learning methods and the final
scores that are used to compare different systems. We analyze these
differences and also draw conclusions on which metric should be
used and why.

This is not only an important step towards making the empirical
research results reported in the literature uniformly comparable, but it
also has implications on how benchmark datasets should be designed
in order to be equally suited to train and evaluate any particular learn-
ing to rank algorithm.

The rest of this paper is organized as follows. In the next section
we will describe the formal setup, and then, in Section 3 we list all the
evaluation tools that are available freely to compute NDCG and, in
addition, we identify precisely the differences in the way they com-
pute the NDCG score. Next, in Section 4 we briefly overview the
LTR algorithms we are used for comparison in the experiments in
Section 5. Finally, based on the observed differences in experimental
results, we draw our conclusions in Section 6.

6 See, for example http://nlp.stanford.
edu/IR-book/html/htmledition/
evaluation-of-ranked-retrieval-results-1.html

ECAI-12 Workshop on Preference Learning: Problems and Applications in AI 16

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html


2 Formal LTR task
In this section we formally define the learning-to-rank problem
and introduce the notation that will be used in the rest of the pa-
per. Let us assume that we are given a set of query objects D =
{D(1), . . . ,D(M)}. Each query object D(k) consists of a set of n(k)

pairs

D(k) =
n`

x
(k)
1 , `

(k)
1

´
, . . . ,

`
x

(k)

n(k) , `
(k)

n(k)

´o
.

The real-valued feature vectors x
(k)
i represent the kth query and the

ith document received as a potential hit for the query.7 The label
index `

(k)
i of the query-document pair x

(k)
i is an integer between 1

and K. We assume that we are given a set of numerical relevance
grades

Z = {z1, . . . , zK}.

The relevance grade z
(k)
i = z

`
(k)
i

expresses the relevance of the ith

document to the kth query on a numerical scale. A popular choice
for the numerical relevance grades is

z` = 2`−1 − 1 (1)

for all ` = 1, . . . , K.
The goal of the ranker is to output a permutation j(k) =

(j1, . . . , jn(k)) over the integers (1, . . . , n(k)) for each query object
D(k). A widely used empirical measure of the quality of the permu-
tation j(k) is the Discounted Cumulative Gain (DCG)

DCG
`
j(k),D(k)´ =

n(k)X
i=1

ciz
(k)
ji

, (2)

where ci is the discount factor of the ith document in the permutation.
The most common discount factor is

ci =
1

log(1 + i)
. (3)

The rationale of this formula is that a user will be particularly sat-
isfied if he/she finds relevant documents early in the permutation.
To normalize DCG between 0 and 1, (2) is usually divided with the
DCG score of the best permutation (NDCG) which can be computed
as

IDCG
`
D(k)´ = max

j
DCG

`
j,D(k)´

This score referred to as the ideal DCG score. It is also a common
practice to truncate the sum (2) at nmax, defining the DCGnmax and
NDCGnmax scores. The reason for this is that a user would rarely
browse beyond the first page of search results containing the first
nmax hits.

3 Evaluation tools
In this subsection we briefly describe and compare the various tools
available to compute NDCG scores. The definition (2) is unambigu-
ous, nevertheless, the tools can differ in the definition of the discount
factor ci (3). More importantly, there can be an important difference
in the way the DCG score is normalized when i) there is no rele-
vant document for a query (zi = 0 for all i), or ii) when the number
of documents is less then the truncation level nmax. Although this

7 When it is not confusing, we will omit the query index and simply write xi
for the ith document of a given query.

seems to be a technical subtlety, it turns out that the confusion be-
tween the different tools can significantly alter the numerical scores
and in some case can even change the relative ordering of the algo-
rithms on benchmark datasets.

We compared six evaluation tools computing the NDCG scores:

1. The LETOR 3.0 script implemented in Perl8

2. The LETOR 4.0 script implemented in Perl9

3. The MS script implemented in Perl10

4. The YAHOO script implemented in Python11

5. The RANKLIB package implemented in Java12

6. The TREC evaluation tool v8.1 implemented in C13

The evaluation tools can be divided into three groups. The tools of
the first group compute DCGnmax according to the definition (2) de-
scribed in Section 2. The LETOR 3.0, YAHOO, and TREC tools
belong to this group. All of these tools assign zero score to a query
if it is empty, that is, zi = 0 for all i which means that there are
no relevant documents. The TREC tool uses the labels of documents
given in the input file as relevance grades by default. From this point
of view, this is the most flexible implementation, since arbitrary rel-
evance grades can be defined. For example, in the case of MQ2008
dataset, the labels 0, 1 and 2 should be simply replaced by 0, 1 and 3
respectively, to have the commonly used exponential grades (1).

The second group is composed of the YAHOO tool alone. It also
computes the DCGnmax according to the definition (2), but it assigns
1.0 to the empty queries. This is a minor difference that generates an
additive bias between the NDCGnmax computed by YAHOO tool and
the three tools of the first group.

The third group consists of the LETOR 4.0 and MS tools. Ex-
cept for a small technical difference (the LETOR 4.0 tool can be
used for up to three relevance labels, whereas the MS tool can han-
dle up to five relevance labels), they compute the same score. As
the RANKLIB and LETOR 3.0 tools, they assign zero to a query
where the ideal DCGnmax is zero. Their rather strange feature is that
they also assign zero DCGnmax score to a query with less then nmax

documents in it, even if these documents are highly relevant. So, for-
mally, they compute the DCGnmax score as

DCGnmax

`
j(k),D(k)´ =

(Pnmax
i=1 ciz

(k)
ji

if nmax ≤ n(k)

0 otherwise.
(4)

This truncation does not only distort the test score, but it can also al-
ter the training of such algorithms that depend directly on the NDCG
score. Indeed, for example, in ADARANK [9] which optimizes the
NDCG10 evaluation metric, a query containing less than 10 docu-
ments does not influence the computation of the coefficient of the
weak ranker at all, and the the weight of such queries converge to
zero over the boosting iterations.

The only source of difference between the tools that have not been
identified yet, is the way they sort the objects of interest based on the
scores. All tools except TREC tool, make use of the default built-
in, programing language dependent sorting function which mainly

8 http://research.microsoft.com/en-us/um/beijing/
projects/letor/LETOR3.0/EvaluationTool.zip

9 http://research.microsoft.com/en-us/um/beijing/
projects/letor/LETOR4.0/Evaluation/Eval-Score-4.
0.pl.txt

10 http://research.microsoft.com/en-us/projects/
mslr/eval-score-mslr.pl.txt

11 http://learningtorankchallenge.yahoo.com/
evaluate.py.txt

12 http://www.cs.umass.edu/∼vdang/ranklib.html
13 http://trec.nist.gov/trec eval/
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implement the quick sort algorithm. Therefore, the order of two ele-
ments with the same score depends on the implementation of the sort-
ing algorithm used. Whereas the TREC tool uses the lexicographic
ordering based on document ID given in the input file if the system-
predicted scores are equal for two documents.

We believe that none of these two ways of handling equal scores
are desirable. On the one hand, the sorting algorithm should not have
an effect on the evaluation itself. On the other hand, the document ID
normally does not bear any useful information regarding the content
of a document, so in this sense, the use of the ordering based on
document ID corresponds to a particular random ordering which is
also not a desired feature in an evaluation tool.

4 Learning-to-rank algorithms

In our comparison study, we used six state-of-the-art ranking meth-
ods. Here we briefly summarize them.

1. ADARANK [9] is a listwise boosting approach aiming to opti-
mize an arbitrary listwise IR metrics, such as the Mean Aver-
age Precision (MAP), ERR, or NDCG. Inspired by ADABOOST,
it uses a stepwise greedy optimization technique for maximizing
the chosen IR metrics. In every boosting iteration, ADARANK re-
weights the queries based on their scores obtained by the eval-
uation metrics: it up-weights the query having lower score and
down-weights high-scoring queries. The weak learner is chosen
by optimizing the listwise evaluation metrics of interest which is
usually hard to optimize except for very simple weak classifiers.
This can be viewed as a handicap of this method. According to the
original implementation of ADARANK, we used the best feature
ranker (BF) described above as base ranker taking into account
the weighting of queries. The only hyperparameter of ADARANK

is the number of boosting iterations which we optimized by using
early-stopping on the validation set. We refer to this method as
ADARANK.{NDCG}.

2. RANKNET [1] is a neural-net-based method which employs a loss
based on pairwise cross entropy as its objective function. The neu-
ral net with one output node is trained to optimize directly the
differentiable probabilistic pairwise loss instead of the common
squared loss. We validated the number of hidden layers ranging
from 1 to 3 and the number of neurons in the hidden layers rang-
ing from 10 to 500. For the number of training epochs we applied
early stopping.

3. RANKBOOST [4] is a pairwise boosting approach. The objective
function is the rank loss (as opposed to ADABOOST which opti-
mizes the exponential loss). In each boosting iteration the weak
classifier is chosen by maximizing the weighted rank loss. For the
weak learner we used decision stumps and a variant of the single
decision stump described in [4] which is able to optimize the rank
loss in an efficient way.

4. RANKSVM [5] is a pairwise method based on SVM, formulating
the ranking task as a binary classification. We used linear kernel
because the optimization using non-linear kernels cannot be car-
ried out in reasonable time. The tolerance level of the optimization
was set to 0.001 and the regularization parameter was validated in
the interval [10−6, 104] with a logarithmically increasing step

5. COORDINATEASCENT (CA) [6] is a linear listwise model where
the scores of the query-document pairs are calculated as weighted
combinations of the feature values. The weights are tuned by us-
ing a coordinate ascent optimization method where the objective
function is an arbitrary evaluation metrics given by the user. The

coordinate ascent optimization method itself has two hyperparam-
eters to be tuned: the number of restarts R from random initial
weights, and the number of iterations T taken after each restart.
We used R = 30 and T = 100. We did not validate these hyper-
parameters, but using the validation set we evaluated every model
obtained due to restarting the optimization process, and we kept
the one having highest performance.

6. LAMBDAMART [8] is a boosted regression tree model. Since it
handles the LTR problem as a regression task, it could be classified
as pointwise method, but during the training phase, it adjust the
parameters of the regression trees based on the derivative estimate
of NDCG, therefore it is considered as a listwise approach. We
validated the number of boosting iterations. The number of leaves
were set to 10 and the learning rate to 0.1.

5 Experiments
We identified two major differences in the way the DCG score is
normalized in publicly available NDCG evaluation scripts:

1. When there is no relevant document for a query (zi = 0 for all i),
evaluation scripts conforming to the definition assign a 0.0 NDCG
value to the query. Optionally, some scripts may assign a different
value as default for such queries (namely, 1.0 for the Yahoo met-
ric).

2. When the number of documents is less then the truncation level
nmax, evaluation scripts conforming to the definition assign an
NDCGn(k) value equal to the number of documents n(k) avail-
able for that query (thereby assuming that it is always possible
to fill in a result list with irrelevant documents, and at the same
time assuming that the provided relevance labeling is exhaustive
(i.e. there are no further, unseen relevant documents and thus the
use of IDCGn(k) score in the normalization step is a realistic es-
timate.14) Optionally, some scripts may assign a different value as
default for such queries (namely, 0.0 for the LETOR metric).

We consider the difference stemming from the different strategy to
order results with equal predicted scores less crucial (in practice two
different documents seldom get the same predicted score, i.e. ties are
rare) and we do not assess its impact, and we use all metrics with
exponential relevance grades (the TREC tool can be parameterized
to use exponential gain, while the other tools are implemented to use
this). That is, in our experiments we consider the Ranklib and TREC
evaluation tools to be equivalent and compare their scores to those
provided by the YAHOO and LETOR metrics, which are represen-
tative examples for the two major differences we found between the
various tools.

In Figure 1, we plot the NDCG1−10 scores for 4 character-
istic learning to rank algorithms (ADARANK, LAMBDAMART,
RANKNET and CA ) using the three different evaluation formulas
to evaluate the models: in each row, the left, middle and right plots
show the values provided by the RANKLIB/TREC, the YAHOO and
the LETOR tools, respectively. All models were trained to optimize
the NDCG10 scores, and the plots show the NDCG scores of these
models for cut-off values from 1 to 10. Each plot shows 3 differ-
ent curves that correspond to models trained using a specific metric
during the training of the model: the blue, black and red lines indi-
cate models learned using the YAHOO, RANKLIB/TREC and LETOR

metrics, respectively. This way we can visually compare the effects

14 Note that relevance labels are many times pooled in IR datasets and there
is no guarantee that no relevant, but unlabeled documents exist.
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Figure 1. The dependence of NDCG10 scores on NDCG method used on MQ2008 dataset.
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Figure 2. The dependence of NDCG10 scores on NDCG method used on MQ2008 dataset.

of the different evaluation tools both on on the numeric outcomes
(comparing the curves with same color, denoting the same models,
across the 3 plots horizontally) and on the learnt model (contrasting
the 3 curves on the same plots, denoting models learnt using different
measures).

We can make several observations based on figure1. First, for all
the algorithms in figure 1, the NDCG scores provided by the YAHOO

tool are on average around 0.25 higher than the scores provided by
the RANKLIB/TREC tool which conforms the definition of NDCG.
This difference comes solely from the presence of queries with 0
relevant documents in the dataset: for those queries, the YAHOO tool
assign 1.0 as NDCG which results in an additive bias compared to
the official NDCG scores. On the other hand, the scores provided by
the LETOR tool degrade rapidly for cutoff values of 8 − −10 for all
algorithms, with a difference around or above 0.25 compared to the
official NDCG scores. As opposed to the former additive difference
this behavior might result in a different ordering of the algorithms:
a method that is on average superior to others on larger sets but is
weaker than the competitors on small sets is preferred by the Letor
metric, as this tool assigns zero to small sets (smaller than the NDCG
cut-off).

Second, and more interestingly, we can observe that it is by no
means irrelevant which metric was used during the training of the al-
gorithms: for those algorithms that make use of the NDCG scores in
some way in the training process (namely, the ADARANK, LAMB-
DAMART and CA methods), we see differences in the performance
of the learnt models. We observe that in general, the LETOR tool is
not suited for training the algorithms – its property to assign 0.0 score
to small sets causes these small sets to be useless for training (to op-
timize NDCG10), i.e. the algorithms can exploit less data in a mean-
ingful way to learn patterns. This results in a significantly15 worse
performance for these algorithms, when trained using the LETOR

metric (instead of the official NDCG scores). On the other hand, for
some algorithms, it is worth to assign a non-zero score to sets which
contain no relevant documents at all: doing so, the algorithms do not
increase the weight of such queries similarly to other low-performing
queries where there is hope to improve performance. This can result
in better learning rates and in some cases slightly better performance
(see e.g. the blue vs. black curves for the ADARANK and LAMB-
DAMART methods).

Overall, we can observe that the best metric to train the algorithms
is the one provided by YAHOO: in general this results in equal or
better learnt models than the other evaluation tools. To shed light
on how these characteristics of the evaluation tools affect the rela-

15 The error bars on the plots correspond to the standard errors of querywise
NDCG scores averaged out in quadrature over the folds.

tive performance of benchmark LTR algorithms, in figure 2, we plot
the NDCG scores for 6 different learning algorithms (trained using
the official NDCG metric) with all the evaluation tools surveyed in
this study. As can be seen, the performance of the best algorithms
is very close to each other, with Coordinate Ascent having a slight
advantage regardless which metric is used for evaluation. Slightly
worse than CA, the three algorithms RANKBOOST, RANKSVM and
LAMBDAMART perform very close to each other. If we compare
the results obtained with different evaluation measures, the relative
order of these (otherwise very similar) models change depending on
the metric: apparently the RANKBOOST algorithm has a slight ad-
vantage over the other two for short sets, which advantage disappears
when the LETOR metric is used for evaluation. In general, we were
unable to reproduce the competitive results of ADARANK [9], using
the reimplementation of the algorithm in the Ranklib package 16,17.

6 Conclusion
In this study, we reviewed the publicly available NDCG evaluation
scripts, identified and compared the differences between them and
systematically analyzed how these differences affect the numeric
results and the training processes of various learning-to-rank algo-
rithms. It is reasonable to assume that most previous studies use one
of the assessed evaluation tools, and at the same time it seems likely
that most measures are used at least in some studies to evaluate the
performance of machine learnt ranking systems. We found that there
indeed are differences between tools despite the relative simplicity of
the popular NDCG evaluation metric, and our experiments demon-
strate that these differences can easily lead to non-trivial differences
between research results. Since most studies do not discuss such de-
tails as the evaluation script used, this fact makes previous studies
very difficult to compare and might lead to the misinterpretation of
results and false conclusions.

We identified that the two key points of difference between dif-
ferent tools are i) the way how small queries (queries with less than
nmax documents in the case of NDCGnmax ) and ii) the way how
queries with no relevant document (i.e. when all documents have the
same, zero relevance score and therefore the ideal DCG is zero) are
handled by the tools. These two factors can lead to different overall
scores (for the same model) and also to inherently different learnt
models, depending on which learning algorithm was used. Some di-
vergences from the definition of the NDCG measure might be jus-

16 http://people.cs.umass.edu/∼vdang/ranklib.html
17 We found no clear indication in the original article what stopping criterion

was used to terminate the iteration in the training process, so we tried to
use various stopping strategies and provide the best results we obtained.
These are nevertheless lower than those reported at the letor website.
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tified from an ML perspective though: for example, if the measure
assigns a perfect score to queries with zero relevant documents, these
queries are not treated like other queries that can be improved, and do
not distort the model. On the other hand, we could not identify any
benefit of other modifications, such as zeroing out the NDCGnmax

score for queries with less than nmax documents in total.
To summarize our findings, we suggest the following protocols

to make learning to rank results more comparable and benchmark
datasets more suited to training and evaluating systems:

1. The use of tools that give zero score to small queries should be
avoided, as these can negatively impact certain algorithms (while
others are unaffected) and thus the reported results can represent
a false relative order of the algorithms.

2. If possible, benchmark datasets should be free of not meaning-
ful queries. Queries that does not have any relevant documents
do not play a role in learning to rank – they cannot be used to
learn meaningful patterns and they do not have an impact on eval-
uation. At the same time, such queries can negatively impact the
performance of some algorithms, and can motivate non-standard
evaluation tools (c.f. the YAHOO metric).

3. Regardless which evaluation script is used while training the sys-
tems (c.f. the YAHOO tool which is reasonable in the presence of
queries without relevant documents in the data), the final evalua-
tion should be carried out using a tool fully conforming the official
NDCG definition. This way machine learnt performance scores
would become directly comparable to non-machine learnt ones,
such as those coming from TREC and other evaluation exercises.
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Alleviating cold-user start problem with users’ social
network data in recommendation systems

Eduardo Castillejo and Aitor Almeida and Diego López-de-Ipiña 1

Abstract. The Internet and the Web 2.0 have radically changed
the way of purchasing items, provoking the fall of geographic sell-
ing barriers all over the world. So large is the amount of data and
items we can find in the Web that it turned out to be almost unman-
ageable. Due to this situation many algorithms have emerged trying
to filter items for e-commerce users based in their tastes. In order
to do this, these systems need information about the tastes of the
users as input. This limitation is reduced as the users interaction with
these systems increases. The main problem arises when new users
enter a recommendation platform for the first time. The so called
cold-start problem causes unsatisfactory random recommendations,
which goes against these systems’ purpose. Cold-start includes users
entering new systems, items, and even new systems. This situation
challenges for new ways of obtaining user data. Social networks can
be seen as huge information databases sources, and social network
analysis would help us to do it using different techniques. In this
paper, we present a solution which uses social network user data to
generate first recommendations, alleviating the cold-user limitation.
Besides, we have demonstrate that it is possible to reduce the cold-
user problem applying our solution in a recommendation system en-
vironment.

1 INTRODUCTION

The amount of information in the world is increasing far more
quickly than our ability to process it [17]. Common users of Web
based systems usually have to deal with such amount of data that
their interaction can become slow, ending in serious loss of users’ at-
tention, which also means losses of sells and user satisfaction. For ex-
ample, buying a CD or a vinyl in a music store has been an habit from
the 70s and 80s. People used to go to the store and navigate through
tens or hundreds of albums seeking those which fit with their tastes.
But nowadays, with all possibilities Internet offers to every user this
amount of items has been increased to millions, even more.

Therefore, taking advantage of the possibilities the Web 2.0 pro-
vides to us all, researches started to design algorithms which were
able to filter the information (or items) to the user. These algorithms
started to compound what we today know as recommender systems.
These systems use the opinions of a community of users to help in-
dividuals in that community to more effectively identify content of
interest from a potentially overwhelming set of choices [16]. Within
past years there have been many progresses in this area [4]. Some
systems, such as YouTube, started to store some information about
users’ searches to infer their tastes [8, 5] managing some explicit and

1 Deusto Institute of Technology - DeustoTech, University of Deusto,
Avda. Universidades 24, 48007 - Bilbao, Spain. email: {eduardo.castillejo,
aitor.almeida, dipina}@deusto.es

implicit information about users interactions. Others, such as Ama-
zon.com2, take into account the users’ ratings and purchases [12].
Both points of view are different sides of the same coin and follow
the same purpose: to present to the user the most suitable amount of
items.

Despite the advances in this area there are some intrinsic prob-
lems that are still unsolved. Probably the most important one is the
so called cold-user problem. It emerges every time a new user inter-
acts with recommender system by the first time. Without any search,
rating or purchase a recommender system is unable to find any in-
teresting items. Sometimes it even has been necessary many ratings
before being able to provide a reasonable recommendation [2].

Given the problem we asked ourselves a simple question: Is there
any other way to infer user tastes without their active participation in
the system? We think there is, and in this work we pretend to reduce
the cited problem taking into account users’ social interactions.

Social networks strength lies in the possibility of establishing
some social relationships among people, companies and other groups
using the Internet as the bridge of communication. The range of ac-
cessible social networks is very diverse, from those which just take
into account the user location in order to rate a place, bar or store, to
those which allows users to share not only their thoughts or beliefs,
even their personal pictures, videos and music. There is such amount
of information of the users in these networks that new challenges
arise to take advantage of it.

This way, our proposal seizes the opportunity of exploiting social
network data in order to reduce the cold-start problem in any rec-
ommendation system. Applying social network analysis techniques
we are able to get some recommendations to the user (with certain
accuracy) based on the relationships with others in social networks.

The remainder of this paper is structured as follows: first, in Sec-
tion 2 we analyse the current state of the art in recommendation
systems and the most popular techniques to avoid the cold-user or
cold-start problem. Next we present our methodology for collecting
valuable data from social networks taking into account users’ rela-
tionships (Section 3). In Section 4 we analyse the results obtained
from our proposal. Finally, in Section 5, we summarize our experi-
ences and discuss the conclusions and future work.

2 RELATED WORK
Since the mid-1990s recommender systems have become an impor-
tant research area attracting the attention of e-commerce companies.
Amazon [12], Netflix3 and Yahoo! Music4 [6] are widespread exam-

2 http://www.amazon.com
3 http://www.netflixprize.com/
4 http://music.yahoo.com/
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Table 1: Some of the best known metrics in social network analysis.

Metric Description

Betweenness It takes into account the connectivity of the
node’s neighbours to reflect the number. of peo-
ple who a person is connecting indirectly through
their direct links.

Centrality It gives a rough indication of the social power of
a node based on how well they ”connect” the net-
work.

Closeness It reflects the ability to access information
through the “grapevine” of network members.

Cohesion It measures the degree to which actors are con-
nected directly to each other by cohesive bonds.

Degree The count of the number of ties to other actors in
the network.

Eigenvector centrality A measure of the importance of a node in a net-
work.

ples on making recommendations to its users based on their tastes
and previous purchases. Although these systems have evolved be-
coming more accurate, the main problem is still out there: to estimate
the rating of an item which has not been seen by users. This estima-
tion is usually based on the rest of items rated by the current user
or on the ratings given by others where the rating pattern is similar
to the user’s one. Although there are different kinds of recommenda-
tion systems (content-based, collaborative filtering and hybrid tech-
niques) [4] they all suffer from the same main limitations: sparsity
and scalability [17] and cold-start problems [15].

Some authors have tried to avoid the problem of cold-start users by
asking them a series of questions about their tastes or by proposing
some studied items in order to get any rating [13, 7]. As we presume
these solutions can usually cause displeasure on the users, becom-
ing tedious and cumbersome activities. An-Te Nguyen et al. [4] have
tried to reduce the cold-user problem by exploiting available data
(e.g. age, occupation, location, etc.). In [18] authors present a met-
ric (the CROC curve) to improve the evaluation of a recommender
system performance.

Moreover, some authors have improved their recommendation al-
gorithms combining users’ social data from social networks [10, 9].
Although they don’t tackle the cold-start problem, their idea of us-
ing the available social information of users as an input represents
a new starting point for these systems (e.g. Foursquare5 adds infor-
mation about user geolocation). There is also an open research in
the Carnegie Mellon University’s School of Computer Science about
how do people really inhabit their cities based on Foursquare data.
The project groups check-ins by physical proximity and it measures
“social proximity” by how often different people check in similar
places. This way resulting areas are dubbed [3].

But in a social network there is more beyond users, relationships
and data. Social network analysis (SNA) refers to methods used to
analyse social networks, social structures made up of individuals
called ”nodes”, which are connected by different representations of
relationships (e.g. friendship, kinship, financial exchange, etc.). Fig-
ure 1 represents an example of a social network graph in which dif-
ferent nodes are connected each other by relation lines called “links”.
Once we have empirical data on a social network new questions arise:
Which nodes are the most central members? Which are the most pe-
ripheral? Which people are influenced by others? Which connections
are most crucial? These questions and their answers represent the ba-
sic domain of SNA [14]. There are many metrics which measure dif-

5 http://www.foursquare.com

ferent aspects in a social network taking into account the nodes and
their edges. Table 1 shows some of the best known metrics in SNA.
As depicted in Section 3 we have chosen the eigenvector centrality
metric to face up to the cold-start problem. A variant of eigenvector
centrality is used by Google search engine to rank Web pages [11],
but it is based in the premise that the system already has data from
the user to work with.

Figure 1: An example of a collaborative social network. Squares rep-
resent nodes (people) and the edges represent social ties between
them. Yellow squares represent important nodes which relate differ-
ent sub-graphs [14].

3 PROPOSED SOLUTION

This section details the developed system to enable the generation of
generic recommendations to the user based in the rest of the users
who checked in the same venue with Foursquare. To get the rest of
the users (the network nodes) who checked in the same place we have
used the Foursquare API. Once we have the nodes we calculate those
which are the most important in the network at the current venue
and then we obtain the recommendations which fit better to the user
linking using probabilistic.

3.1 Foursquare API

Foursquare is a location-based social networking website which
allows users to ”check in” at venues using their smartphones.
The Foursquare API6 gives access to all of the data used by the
Foursquare mobile applications. Thanks to it developers can re-
quest some user data (e.g. location, friends, last check-ins, etc.). We
have developed an Android mobile application which allows users
to check in desired venues as they would do with Foursquare offi-
cial application or website (see Figure 3). Once the user checks in
any venue, our algorithm is launched: First, we must authenticate
the user with the Oauth protocol (required by the Foursquare API).
Then we are able to get the nodes who have checked in the current

6 https://developer.foursquare.com/
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venue. To do this it is necessary to use the “herenow”7 API end-
point aspect, which responses a count and items (where items are
Checkin8 responses) in JSON format. For example, doing a check-in
at the Colosseo, in Rome, we obtained a JSON “herenow” response
containing 4 items representing 4 different people who had previ-
ously checked in the same venue (see Figure 2). That’s the point of
the “herenow” endpoint, to get the previous check-ins done by other
users at the current checked in venue.

Therefore, we can build a 5 × 5 square adjacency matrix (3) rep-
resenting the network graph at the current venue for each user (the
first column relates the current user with the others). Each Aij ele-
ment will be tied to another with a default weight value of 1. Then we
start looking to the ”createdAt” field of every Checkin object in the
“herenow” JSON response. This field is a long number, and it’s value
is based in the the Unix epoch time (it stores the number of seconds
that have elapsed since midnight Coordinated Universal Time (UTC),
January 1, 1970). We have split the importance of every check-in in
3 time intervals, adding weights to the values in the matrix in the
corresponding Aij position. We decided this because a Foursquare
check-in has a lifetime of 3 hours approximately, and that is the rea-
son why we have chosen a 3 hours time interval to give weights to
the check-ins. We also believe that people are defined by their acts,
and this is why we defend the temporal closeness approach. Being at
same places at similar time periods can be used as a tool for relate
different people with some and probable similar tastes.

To complete the weights assignation we must take into account
that the “herenow” request returns not only the list of the people who
have checked in the same venue but also a list of our Foursquare
friends who have also done it. Accordingly to this, we believe that
our friends have an extra weight (or importance) in the network. The
following (1) and (2) equations detail the possible weights distribu-
tion when a user checks in a venue. Given priority to user’s friends we
can see how the maximum weight for an unknown user is 3, although
for a friend scales up to 6. We have implemented such algorithm be-
cause being friends in a social network does not directly imply that
users’ tastes are the same.

current user

user 1
user 2

user 3

user 4

Legend
Friend user

Unknown user

1 hour interval

2 hours interval

3 hours interval

Users' check-ins time stamp
current user

user 1

user 2

user 3

1:00 pm

2:00 pm

3:00 pm

1:00 pm

user 4 4:00 pm

Figure 2: Example of a graph built from a user check-in where there
are 4 more Foursquare users who had checked in the same venue.
Matrix A′′ (4) represents the same graph.

Unknown user =


1 default weight

+3 if check-in interval ≤ 1 hour
+2 if 1 hour < check-in interval ≤ 2 hour
+1 if 2 hour < check-in interval ≤ 3 hour

 (1)

Friend user =


3 default weight

+3 if check-in interval ≤ 1 hour
+2 if 1 hour < check-in interval ≤ 2 hour
+1 if 2 hour < check-in interval ≤ 3 hour

 (2)

7 https://developer.foursquare.com/docs/venues/herenow
8 https://developer.foursquare.com/docs/responses/checkin

The following matrices show how the first default values are added
just when the adjacency matrix A is built and then how it is com-
pleted with the weights assignations (A′′). A′ is built by adding to
A the corresponding values of the relationships between the current
user and the others (see Figure 2 and equations (1) and (2)). Regard-
ing at node A′′

01 we can see that it has a value of 6. This is because of
the combination of the relationship between the current user and the
“user 1” (they are friends) and the check-in time interval (1 hour).

A =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 (3)

A′ =


0 3 1 1 3
3 0 1 1 3
1 1 0 1 1
1 1 1 0 1
3 3 1 1 0

A′′ =


0 6 3 4 4
6 0 3 3 1
3 3 0 2 3
4 3 2 0 1
4 1 3 1 0

 (4)

(a) (b) (c)

Figure 3: A user checks in a venue with developed Android applica-
tion. First a map is shown (a). Once the user touches the screen a
near venues list is presented (b). Finally, when a venue is selected,
the check-in is performed (c).

3.2 Eigenvector centrality

As we have depicted in Section 2 a network is a graph made up of
points, nodes or vertices tied each other by edges. We can also repre-
sent these graphs by a so called adjacency symmetric (n×n) matrix,
where n is the number of nodes. This matrix has elements

Aij =

{
1 if there is an edge between vertices i and j
0 otherwise

}
(5)

Eigenvector centrality is a more sophisticated version of the de-
gree metric, which is a simple way to measure the the influence or
importance of a node [14]. The degree ki of a node i is

ki =

n∑
j=1

Aij , (6)

whereA is the adjacency matrix which represents the ties between
nodes i and j.
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Since degree centrality gives a simple count of the number of ties
a node has, eigenvector centrality acknowledges that not all con-
nections are equal. Therefore, and because some edges represent
stronger connections than others, the edges can be weighted. To sum
up, connections to nodes which are themselves influential to others
will lend a node more influence than connections to less influential
nodes. Denoting the centrality of a node i by xi, then it is possible to
make xi proportional to the average of the centralities of i’s network
neighbours:

xi =
1

λ

n∑
j=1

Aijxj , (7)

where λ is a constant. This equation can be also rewritten defining
the vector of centralities x = (x1, x2, ...):

λx = A · x, (8)

where x is an eigenvector of the adjacency matrix with eigenvalue
λ.

All these calculations are computed in the user’s device. The
JAMA [1] library has helped us to easily obtain the most important
nodes of the graph (we have also used an online tool9 to rapidly check
the JAMA obtained values). The following method uses this library
to obtain the eigenvectors to the given adjacency matrix. First the
corresponding eigenvalues are estimated. Then we extract those val-
ues of the eigenvectors which are related with the highest value of the
obtained eigenvalues, which corresponds to the most important node
of the grid. Applying this eigenvector calculation to the A′′ matrix
from Section 3.1 we obtain that the highest eigenvalue λ1 = 12.502,
and the corresponding eigenvector to this eigenvalue is

e1 =


0.569
0.491
0.401
0.392
0.349

 , (9)

where the first value corresponds to the current user (and it is also
the highest value), so we have to ignore it. The next highest value is
the one we will take into account as the most important node of the
grid.

We have encapsulated the Foursquare user object into a new
“CompactUser” which also has a set of recommendations assigned
to it, each one composed by a series of items. Taking as example the
generic categories of Amazon.com we have tested our solution using
a few controlled users who are friends in Foursquare and some ran-
dom generated users in order to have a controlled scenario. Results
are detailed in Section 4. Once the recommendations of the most
important users are obtained, we upload them to a web server by
Google AppEngine10 using a simple Python service. For each user
we store all possible recommendations (we manage nine main cate-
gories) and we update the estimate and the probability of fitting with
his tastes. To evaluate this the developed application asks first about
user’s tastes among the cited categories. This information is stored in
a SQLite database (this is just to evaluate the solution).

The service responses a JSON object with the recommendations
and their likelihood probabilities for the user. This JSON object is
parsed in the device side in order to generate the corresponding rec-
ommendations to the user.

9 http://www.bluebit.gr/matrix-calculator/
10 https://appengine.google.com/

4 RESULTS
Our solution has been evaluated by presenting to our test users the de-
fault categories that Amazon.com uses and another list with our cat-
egories recommendations. Once our users have compared both lists,
they have fulfilled a questionnaire to capture their satisfaction level
with the obtained results. Amazon.com default recommendations are
the following:

• Kindle related products
• Clothing trends
• Products being seen by other customers
• Best watches prices
• Laptops best prices
• Top seller books

These recommendations (not categories) are not based in any user
preference. On the contrary our list of recommendations establish
a new order within Amazon.com’s categories, indicating the proba-
bility of each one to be in the tastes of users. Navigating to Ama-
zon.com website with privacy mode enabled allows us to see default
recommendations, without taking into account any previous purchase
or search. Our objective is focused in recommend items from Ama-
zon.com categories (listed in Table 3).

Testing our solution with real users we obtained a certain approx-
imation to their tastes. Despite the few users, check-ins and data
we have access to, the system is capable of generating first generic
Amazon.com recommendations (as we have already detailed in this
section). Table 3 show the probabilities obtained for a user with the
following tastes (see the Amazon.com whole categories listed in Ta-
ble 2):

• Automotive & industrial
• Movies, music, games
• Electronics & computers
• Sports & outdoors

The middle column shows the system generated probability for
each category with just an input of 3 user check-in. On the contrary
the right column values corresponds to the same user doing 5 check-
ins. These values are more refined, being more in accordance with
the user known tastes.

Finally users have to fulfil a questionnaire rating the presented cat-
egories. This rating includes mandatory and controlled answers, from
1 to 4. This way we can compare the results with the obtained proba-
bilities. Table 2 shows the probabilities calculated for a user from the
resulting questionnaire answers. Then Table 4 compares both proba-
bilities and calculates the approximation of each estimation.

It is important to emphasize that a new matrix is built with ev-
ery user check-in. This means that previous matrices are overwritten.
However, the probabilities are dynamic, and they are refined every
time the user checks in a venue.

The more approximate to 0.0 ε is, the more accurate our solu-
tion becomes. There are some values of ε which shows that there are
needed more check-ins to refine the obtained probabilities. On the
one hand, in case of 3 check-in results the worst ones are for ”Au-
tomotive & industrial”, ”Grocery, health & beauty”, “Toys, kids &
baby” and ”Sports & outdoors”. This means that if the user is inter-
ested in “Sports & outdoors” the system could not recommend any
item from this category, or even worse, recommend items from ”Gro-
cery, health & beauty”. On the other hand, 5 check-in error column
is more accurate and its values are closer to 0.0. This test shows how
more check-ins come out onto more refined recommendations.
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Table 2: Results obtained from a user questionnaire answers. Left
column corresponds to the recommendations names. Right column
shows the taste probabilities obtained from the questionnaire.

Recommendation Probability

Home, garden & tools (1) 0.04761904
Clothing, shoes & jewelry (2) 0.09523809
Books (3) 0.14285714
Electronics & computers (4) 0.19047619
Automotive & industrial (5) 0.14285714
Movies, music, games (6) 0.19047619
Grocery, health & beauty (7) 0.04761904
Toys, kids & baby (8) 0.04761904
Sports & outdoors (9) 0.14285714

Table 3: Results obtained from our system for one user performing 3
and 5 check-ins.

Rec. Probability (3 check-ins) (5 check-ins)

(1) 0.04347826 0.02222222
(2) 0.04761905 0.13333334
(3) 0.1904762 0.13333334
(4) 0.1904762 0.17391305
(5) 0.0 0.16521739
(6) 0.15 0.16382979
(7) 0.13043478 0.08510638
(8) 0.17391305 0,05319149
(9) 0.0 0,05319149

Table 4: Comparison of probabilities obtained from the questionnaire
and the probabilities calculated with the proposed solution using 3
and 5 check-in results.

Rec. App. 3 check-ins 5 check-ins 3 check-in ε 5 check-in ε

(1) 0.91304360 0.466666695 0.086956393 0.533333305
(2) 0.50000005 1.400000147 0.499999947 -0.400000147
(3) 1.33333342 0.933333399 -0.333333426 0.066666601
(4) 1.00000005 0.913043515 -0.000000053 0.086956485
(5) 0.0 1.156521753 1.0 -0.156521753
(6) 0.78750000 0.8601064 0.212499998 0.1398936
(7) 2.73913081 1.787234266 -1.73913081 -0.787234266
(8) 3.65217463 1.117021469 -2.65217463 -0.117021469
(9) 0.0 0.372340437 1.0 0.627659563

Approximation (App.) = (Solution probability / Questionnaire probability)
Deviation error (ε) = 1 - approximation

5 CONCLUSIONS AND FUTURE WORK
This paper explores the possibility of using relevant data from users’
social network to alleviate the cold-user problems in a recommender
system domain. The proposed solution extracts the most valuable
node in the graph generated by check in a venue with an Android
application using the Foursquare API. By obtaining the recommen-
dations to this node we estimate the probability of some categories
to be similar to users tastes.

In the near future we will take into account data not only from
Foursquare. Other social networks with accessible APIs will be use-
ful enough to determinate more accurately the preferred items for a
user. Moreover, combining different social network analysis metrics
can come out onto more accurate results. Another important aspect
is to take into account more than the most valuable node for doing
recommendations.

It will be also interesting to store the obtained matrices for each
venue and update them with every check-in. By now matrices are not
stored, so they are not dynamic, which means that a new matrix is
built every time the user checks in a venue, overwriting any other
previous matrix.

Finally, it becomes necessary to test the solution among a higher
number of users, increasing their tastes possibilities and the offered
items. We are limited by our environment because of the small
amount of users and check-ins available. Therefore a dissemination
of this work would be very useful to get more real data.
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Preprocessing Algorithm for Handling Non-Monotone
Attributes in the UTA method

Alan Eckhardt1 and Tomáš Kliegr2

Abstract. UTA is a method for learning user preferences originally
developed for multi-criteria decision making. UTA expects that the
input attributes are monotone with respect to preferences, which lim-
its the applicability of the method and requires manual input for each
attribute. In this paper, we propose a heuristic attribute preprocess-
ing algorithm that transforms arbitrary input attributes into a space
approximately monotone with respect to user preferences, thus mak-
ing it suitable for UTA. In an experimental evaluation on several
real-world datasets, preprocessing the input data with the proposed
algorithm consistently improved the results in comparison with the
UTA-ADJ variation of the UTA STAR algorithm.

1 Introduction
The UTA (UTilités Additives) method (Jacquet-Lagreze [9]) learns
an additive piece-wise linear utility model. Although a relatively old
approach, it is used as a basis for many recent utility-based prefer-
ence learning algorithms, e.g. [8]. UTA takes a set of alternatives
ordered according to user’s preferences, and learns utility functions
for each attribute. Using these functions, the utility for individual at-
tribute values are combined into the overall utility for a given object.

UTA expects that the input attributes are monotone with respect
to preferences, which not only requires manual input for each at-
tribute, but also limits the applicability of the method. In this paper,
we propose a heuristic attribute preprocessing algorithm that trans-
forms arbitrary input attributes into a space approximately monotone
with respect to user preferences, thus making it suitable for UTA.

This paper is divided into four sections. Section 2 describes the
UTA method with focus on its monotonicity constraints. The pro-
posed algorithm for learning local preferences is introduced in Sec-
tion 3. Experimental evaluation of the algorithm is presented in Sec-
tion 4, and the concluding remarks are in Section 5.

2 Related Work
UTA method [9] draws inspiration from the way humans handle de-
cision making tasks at a level of abstraction provided by the microe-
conomic utility theory. The principal inductive bias used in the UTA
method is the monotonicity of utility functions. The UTA method
also incorporates additional assumptions, particularly piece-wise lin-
earity and additivity of utility functions.

UTA method aims at inferring one or more additive value func-
tions from a given ranking (weak ordering) on the reference set X of

1 Department of Software Engineering, Charles University in Prague, Czech
Republic, email: eckhardt@ksi.mff.cuni.cz

2 Department of Information and Knowledge Engineering, University of Eco-
nomics in Prague, Czech Republic, and Multimedia and Vision Group,
Queen Mary University, London, UK. email: tomas.kliegr@vse.cz

objects3. Each object is described by N criteria G = {g1, . . . , gN}.
The evaluation scales of each criterion is given by the real-valued
function gi : X → [gi∗, g

∗
i ]. The value gi∗ is considered the worst

level of the worth of the object from the decision maker’s point of
view with respect to criterion gi and g∗i the best level, gi(x) denotes
the evaluation of object x ∈ X in criterion gi. The method uses lin-
ear programming to find such N partial value functions ui that best
explain given preferences. The overall preference rating for an object
x is computed as a sum of utility values across all criteria:

U(x) =

N∑
i=1

ui(x)

where x is an object and ui are nondecreasing marginal value
functions, which we call partial utility functions. It should be noted
that the partial utility functions are piece-wise linear. For each
criterion, the interval [gi∗, g

∗
i ] is cut into αi − 1 equal intervals

[gi∗, g
2
i ], . . . , [gαi−1

i , g∗i ]. This discretization is not significant for
nominal criteria; for these, the number of breakpoints αi (includ-
ing the end points gi∗, g∗i ) corresponds to the number of values of
the criteria. However, for cardinal criteria, the marginal value of an
object gi(x) ∈ [gji , g

j+1
i ] is approximated using linear interpolation

between the two nearest breakpoints gji , gj+1
i .

The condition of the monotonicity requires that if for x, x′ ∈ X ,
object x is weakly preferred to object x′, then for another object x′′ ∈
X , such that gh(x′′) ≥ gh(x), for all h = 1, . . . , N , object x′′ should
be also weakly preferred to object x′ [2].

In the area of Multi-Criteria Decision Making (MCDM), it is the
role of the expert to derive the set of criteria from the properties of the
object. The expert not only checks that the criteria meet the mono-
tonicity requirement, but also orders the domain so that value gi∗ is
considered the worst and value g∗i the best for criterion i.

If UTA is to be applied in wider machine learning context, rather
than in the narrow area of decision support systems, a manual ap-
proach to transforming attributes to criteria is not feasible.

Kliegr in [10] proposed a non-monotonic extension of the UTA
Star algorithm, called UTA-NM, which allows ui to change direc-
tion from ascending to descending, thus allowing to use criteria4 that
do not meet the monotonicity requirement. Every change of the di-
rection within one partial utility function is penalized to ensure that
the resulting model is not overly complex and overfitted to the data.

In this paper, we investigate another option for dealing with non-
monotonicity, which is based on an automatic transformation of the
original, potentially non-monotonic attributes of the input objects

3 Usually referred to as “actions” or “alternatives” in the UTA literature.
4 Since the notion of criterion is closely tied with the monotonicity require-

ment, it would be more precise to speak of “attributes”.
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into criteria. The algorithm is heuristic, i.e. the resulting criteria are
not guaranteed to meet the condition of monotonicity. The perfor-
mance of this preprocessing step is evaluated against a baseline ob-
tained with a non-monotonic UTA implementation coming out of
UTA-NM.

3 Heuristic Algorithm for Transformation of
Attributes to Criteria

Modern preference learning research deals directly with properties
of input objects, an object x is typically described by a vector of at-
tribute values (x1, . . . , xN ), no special requirements on the attribute
values are typically made [7]. In contrast, the original UTA model,
and MCDA in general, abstracts from the original attributes of the
object. It is already assumed that the expert has used these attributes
to construct the criteria set G; each object is represented by crite-
ria values (g1(x), . . . , gN (x)). The individual criteria are assumed
to meet several properties, including the condition of monotonicity
introduced in the previous section.5

In this section, we present a heuristic algorithm that transforms the
original values of the attributes, so that the result better meets the key
requirement put on criteria addressed in this paper – the condition
of monotonicity. Since the input for the algorithm is the preference
rating of one user6, we call it local preference transformation.

Using DAi to denote the domain of the original attribute i, the
local preferences transformation can be viewed as function fi :
DAi → [gi∗, g

∗
i ], which is a “concretization” of the criterion func-

tion gi : X → [gi∗, g
∗
i ] in the formal UTA model.

Each object x originally described by attribute values x1, . . . , xN
is now described by values f1(x1), . . . , fN (xN ). The intuition is that
fi(xi) is an “average” of ratings of the particular user across objects
that have value xi in attribute i, we denote this average as r(x). Since
the preference information which is consumed by the UTA method
is in the form of weak order of alternatives rather than ratings, for the
purpose of the local transformation algorithm this weak order needs
to be transformed to ratings. A straightforward approach is to assign
values in the [0, 1] range corresponding to the position of the object
in the weak preference order, with the best ranked object retrieving
the highest rating 1 and the worst ranked object the lowest ranking 0,
with the remaining ranks equidistantly distributed in the [0, 1] range.

The definition of the transformation function fi depends on the
type of the input attribute, which can be either nominal or cardinal.
In our present work ordinal attributes are not addressed, however,
they can be cast to integer and handled as a cardinal data type. In the
remainder of this section, we discuss definition of the local transfor-
mation function fi first for nominal and then for cardinal attributes.

3.1 Nominal Attributes

“Representants” is a method for finding preferences over nominal
attributes, which we proposed in [4]. It is based on the analysis of the
distribution of ratings. The local preference function for a nominal
attribute Ai has the following form:

fi(a) =

∑
{x|xi=a} r(x)

|{x|xi = a}| ,

where a is an attribute value.

5 In this paper, we make the assumption that the original N input attributes
are converted to the same number of criteria.

6 Decision maker in the MCDA terminology.

Figure 1 illustrates the computation on the notebook choice prob-
lem. Ratings of three hypothetical users with respect to the nominal
notebook colour attribute are presented. For each user and colour, a
frequency distribution of ratings is shown. Let us focus on one value
only, e.g. black. Black-coloured notebooks are highly preferred for
users 1 and 2. The vertical line in the histogram represents the av-
erage rating of each object with colour black - for both users, the
average is close to 1. The average will be used as the representa-
tive rating of the value black for the given user, or in other words,
preference of black colour.

Formally, the set of black objects is denoted as

{x|xcolour = black}

and the sum of ratings of black objects is then∑
{x|xcolour=black}

r(x)

.
The resulting representative ratings do not necessarily maintain

the monotonicity of ratings. Consider five objects (given in the order
of increasing stated preference by the user) x1, x2, x3, x4, x5 with
two attributes colour and price. The description of these objects
with respect to these attributes is given by Table 1. Once the stated
preference, originally given in terms of stars, is converted to a nu-
merical rating, the original attributes can be transformed with the
local preferences function obtaining fcolour(black) = 0.375 and
fcolour(red) = 0.58, fcpu(intel) = 0.25 and fcpu(amd) = 0.5,
fcpu(motorola) = 1.0.

This example can be also used to illustrate the fact that the result of
the local preferences transformation is not guaranteed to not violate
the condition of monotonicity: x4 is preferred to x3, for x2 it holds
that gh(x2) ≥ gh(x4), for all h = 1, . . . , N , therefore x2 should also
be weakly preferred to x3. Since this is not satisfied, the condition of
monotonicity is violated.

Table 1. Notebook choice example – nominal attributes.

object
x1 x2 x3 x4 x5

stated order * ** *** **** *****
rating 0 0.25 0.5 0.75 1

original attribute values
colour black red red black red
cpu intel amd intel amd motorola

transformed values (criteria)
colour 0.375 0.58 0.58 0.375 0.58
cpu 0.25 0.5 0.25 0.5 1

3.2 Cardinal Attributes

This section describes the proposed approach for transformation of
cardinal (numerical) attributes.

Linear regression is a very useful method that finds a relation in
a data set in the form of a linear function. In the local preferences
transformation, univariate linear regression is used to find a rela-
tionship between each cardinal input attribute and the rating as the
dependent variable. Expanding our notebook example, consider ad-
ditional notebook price attribute. Applying the local transformation
for cardinal attributes, notebook price is used as a regressor and the
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Figure 1. Illustrative ratings of three users for the notebook colour attribute.

user rating as the dependent variable. The result of the regression is
a linear function of the form:

fprice(price) = α ∗ price+ β

.
If the underlying attribute is of so called cost type, i.e. user prefer-

ence decreases with increasing attribute value, a direct use of the at-
tribute value xi in place of the criterion value gi(x) would violate the
condition that the value gi∗ is considered the worst level of the worth
of the object from the decision maker’s point of view with respect to
criterion gi and g∗i the best level (Figure 2b). Linear regression will
generally solve this problem, rearranging the values appropriately.
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Figure 2. Four basic types of preference over cardinal domains

However, the weakness of linear regression is that it finds only
linear orderings, therefore it does not generally fix a violation of the
condition monotonicity. Figure 2 shows four typical types of pref-
erences over cardinal attributes. Only two of them are linear. Linear
regression is not able to find “hill” and “valley” types. These types
can be learned using our method “Peak” proposed in [5].

We have considered also other possibilities for finding preferences
over cardinal attributes. In our preliminary experiments on small
training sets, using quadratic regression consistently worsened the
results.

4 Experiments

4.1 Performance measures

We will use the following notation: r(o) is the user’s rating of object
o, r̂(o) is the rating predicted by the method.

Tau coefficient expresses the similarity of two ordered listsL1, L2.
In our case, the first list L1 is ordered according to the user’s rat-
ing and the second list L2 according to the rating estimated by the
method. The lists are sorted in decreasing order, so that the most pre-
ferred objects are on the top of the lists. In the simplest case, the lists
consist only of ids of objects. The tau coefficient is then computed
according to the number of concordant pairs. A pair of objects o,p
is concordant, if either o is before p in both lists, or p is before o
in both lists. A pair that is not concordant, is discordant. Then, tau
coefficient can be computed as follows:

τ(L1, L2) =
nc − nd

1/2 ∗ n ∗ (n− 1)
,

where nc is the number of concordant pairs and nd is the number
of discordant pairs. δ in following formula stands for Kronecker delta
- δ(condition) = 1 if condition is true, 0 otherwise.

nc =
∑
o,p∈X

δ(sgn(L1(o)− L1(p)) = sgn(L2(o)− L2(p)))

Another measure expressing the similarity of two lists is Pearson
correlation. This measure is often used in machine learning for study-
ing the dependency of two variables. If the correlation is high, the
two lists are similar, if the correlation is low, the lists are different.
The value of the correlation coefficient ranges from -1 to 1. Value -1
means lists with exactly inverse ordering, 1 corresponds to the same
ordering. Correlation 0 means there is no connection between the two
orderings.

corr(r, r̂) =

∑
o∈X

(r(o)− r̄)(r̂(o)− ¯̂r)

(n− 1)srs
r̂

,

where r̄ is the average rating, ¯̂r is the average predicted rating, sr is
the standard deviation of the original ratings and s

r̂
is the standard

deviation of the predicted ratings.
UTA method is focused on preserving the order of objects rather

than estimating their ratings, so it does not make sense to use the
Root Mean Square Error (RMSE) metric, which is commonly used
for other methods.

Two measures of computational performance will be studied. The
first measure is the time required to train the method on a set of
ranked objects. The second one is the time required to evaluate a
testing object.
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Table 2. Datasets with monotone class attribute from the UCI repository.

Dataset name
Car Evaluation

Contraceptive Method Choice
Nursery

Poker Hand
Post-Operative Patient

Teaching Assistant Evaluation
Wine

Wine Quality[1]

4.2 Datasets
UCI [6] contains a number of datasets with different properties. We
were most concerned in classification tasks, where there is an or-
dering of classes. For evaluation of the UTA method, only datasets
suitable for the object ranking task were relevant. E.g. the famous
Iris dataset were excluded, because we are not able to order the three
classes - Iris Setosa, Iris Versicolour and Iris Virginica - in a mean-
ingful way. Every classification dataset of UCI was studied for the
presence of monotonicity in the class attribute. The chosen datasets
from UCI repository are in Table 2.

We acknowledge that using UCI for validation of user preference
learning methods may not give representative results, since these are
not real-world preference datasets.

4.3 Experimental Implementation
For the experimental evaluation, we used our implementation of non-
monotonic UTA called UTA-ADJ. It is a based on similar ideas as the
UTA-NM algorithm, introduced in our earlier work [10]. UTA-NM
removes the monotonicity constraints imposed by the UTA Star al-
gorithm. A penalization element is added to prevent overfitting by
excessive number of changes in shape of partial utility functions,
however, the penalization entails an excessive computational cost.

To remedy the computational issue, UTA-ADJ takes a different
route to allow non-monotonicity in partial utility functions. UTA-
ADJ runs the standard UTA Star algorithm multiple times, gradually
testing the influence of placing a change of shape at individual break-
points across all partial utility functions. The breakpoint in which the
change of shape yields the largest increase in the objective function
in comparison with the baseline, is retained.

This procedure is repeated until the preset threshold of maximum
number of changes in shape is retained or the improvement in the
objective function is lower than a preset minimum increase. In the
first iteration, the baseline is the objective value attained by a fully
monotonic run of the UTA Star algorithm, in subsequent iterations it
is the best objective value from the previous iteration.

The computational costs of multiple runs of the UTA Star algo-
rithm is in our experience much lower than the cost of a single UTA-
NM run with the penalization constraints. Nevertheless, it should be
noted that the computational advantage of UTA-ADJ over UTA-NM
is inversely related to the maximum number of changes in shape
threshold.

UTA-ADJ algorithm closely resembles the method proposed by
Despotis and Zopounidis [3], with the difference that breakpoints,
where the change of shape occurs, are not externally set parameters,
but are determined automatically. Also, more changes of shape per
partial utility functions are allowed.

The UTA-ADJ implementation is available as an interactive on-
line application at http://nlp.vse.cz/uta.

4.4 Experimental Results
This section describes our experiments on the UCI datasets. The re-
sults are averaged across all the datasets listed in Table 2. For the
given training set size, 20 different (randomized) training sets were
used for each dataset. We compare UTA-ADJ with the (possibly) im-
proved UTA+Local, which is also an UTA-ADJ run, but involving the
local preferences transformation. The maximum number of changes
in shape threshold was set to 2 for all experiments.
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Figure 3. Tau rank coefficient for all datasets.
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Figure 4. Correlation for all datasets.

Figure 3 presents a comparison of performance on individual
datasets in terms of the tau coefficient. Here, the advantage of us-
ing local preferences is clear, the improvement of the value of tau
coefficient for moderate train size is around 0.05. A comparable re-
sult for Pearson correlation can be observed in Figure 4. The relative
increase in correlation and tau coefficient is about 28%.

The results are convincing - using local preferences with the UTA-
ADJ variant of the UTA method significantly improved its perfor-
mance in all performance measures compared to UTA-ADJ only
baseline. Moreover, the time to train the classifier has also decreased.
All results were significant at the level p < 0.05.

5 Conclusion
We proposed a preprocessing algorithm called local preferences
transformation, which allows to use the UTA method with non-
monotone attributes.
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The experimental results confirm the benefits of the proposed
approach as a preprocessing step for UTA-ADJ, a variant of the
UTA method, which already has some adjustments to handle non-
monotone attributes. We assume the effectiveness of our local pref-
erences preprocessing algorithm to hold also for the common UTA
Star algorithm. Nevertheless, an experimental evaluation of this hy-
pothesis is a priority for future work.

A promising direction for extending our research is using more
elaborate methods than linear regression for preprocessing cardinal
attributes. Regarding nominal attributes, further work should be di-
rected at investigation of circumstances, in which the proposed algo-
rithm is and is not effective in maintaining the condition of mono-
tonicity.

It would also be interesting to find out the relation between the
degree of monotonicity of the data and the performance of UTA
with/without applying the proposed local preferences transformation
in the preprocessing phase.

The UTA method implementation used in the experiments is avail-
able in a form of an interactive web application at http://nlp.
vse.cz/uta. We plan to make the local transformation algorithm
available to the community by integrating it with this software.
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0021620838 and grant GAČR P202/10/0761.
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Learning from Pairwise Preference Data using Gaussian
Mixture Model

Mihajlo Grbovic and Nemanja Djuric and Slobodan Vucetic1

Abstract. In this paper we propose a fast online preference learning
algorithm capable of utilizing incomplete preference information. It
is based on a Gaussian mixture model that learns soft pairwise la-
bel preferences via minimization of the proposed soft rank loss mea-
sure. Standard supervised learning techniques, such as gradient de-
scent or Expectation Maximization can be used to find the unknown
model parameters. Algorithm outputs are soft pairwise label prefer-
ence predictions that need to be further aggregated to produce a total
label ranking prediction, for which several existing algorithms can
be used. The main advantages of the proposed learning algorithm are
the ability to process a single training instance at a time, low time
and space complexity, ease of implementation, and model reuse.

1 INTRODUCTION
Label Ranking is emerging as an important and practically relevant
preference learning field. Unlike the standard problems of classifi-
cation and regression, label ranking learning is a complex learning
task, which involves the prediction of strict label order relations,
rather than single values. Specifically, in the label ranking scenario,
each instance, which is described by a set of features x, is assigned
a ranking of labels π, that is a total (e.g. π = (3, 5, 1, 4, 2)) or
partial (e.g. π = (5, 3, 2)) order over a finite set of class labels
Y (e.g. Y = {1, 2, 3, 4, 5}). The label ranking problem consists
of learning a model that maps instances x to a total label order
h : xn → πn. It is assumed that a sample from the underlying distri-
bution D = {(xn , πn),n = 1, ...,N }, where xn is a d -dimensional
feature vector and πn is a vector containing a total or partial order of
a finite set Y of L class labels, is available for training.

This problem has recently received a lot of attention in the ma-
chine learning community and has been extensively studied [6, 4, 9,
3, 16]. A survey of recent label ranking algorithms can be found in
[8].

There are many practical applications in which the objective is to
learn an exact label preference of an instance in form of a total or-
der. For example, in the case of document categorization, where it
is very likely that a document belongs to multiple topics (e.g. sports,
entertainment, baseball, etc.), one might not be interested only in pre-
dicting which topics are relevant for a specific document, but also to
rank the topics by relevance. Additional applications include: meta-
learning [18], where, given a new data set, the task is to induce a
total rank of available algorithms according to their suitability based
on the data set properties; predicting food preferences for new cos-
tumers based on the survey results, demographics, and other char-
acteristics of respondents [12]; determining an order of questions in
1 Temple University, Department of Computer and Information Sci-

ences, Philadelphia, USA, email: {mihajlo.grbovic, nemanja.djuric, slobo-
dan.vucetic }@temple.edu

a survey for a specific user based on respondent’s attributes. A re-
cent publication [14], suggests clustering of label ranking data, which
could be of great practical importance, especially in target marketing.

There are three principal approaches for label ranking. The first
decomposes label ranking problem into one or several binary classi-
fication problems. Ranking by pairwise comparison (PW) [11], for
example, creates L · (L− 1)/2 classification problems, one for each
possible pairwise ranking. Pairwise binary classifier predictions are
aggregated into a total label order by voting. The constraint classi-
fication (CC) [9], on the other hand, transforms the label ranking
problem into a single binary classification problem by augmenting
the data set, such that each example x is mapped into L · (L− 1)/2,
(d × L)-dimensional, examples. This allows for training of a single
classifier.

The second approach is to use utility functions, where the goal is
to learn mappings fk : X → R for each label k = 1, ...,L, which as-
sign a value fk(x) to each label, such that fi(x) < fj (x) if x prefers
label j over i . For example, the label ranking method proposed in [6]
represents each fk as a linear combination of base ranking functions.
The utility functions are learned to minimize the number of ranking
errors and the final rank is produced simply by ranking the utility
scores. It should be noted that the utility function-based approach is
also popular in the related object ranking problem, where techniques
based on SVM [10] and AdaBoost [7] have been proposed.

The third approach is represented by a collection of algorithms
which use probabilistic approaches for label ranking, such as the ones
that rely on the Mallows [13] and the Plackett-Luce (PL) [15] mod-
els. A typical representative is the instance-based (IB) label ranking
[4, 3]. Given a new instance x, the k-Nearest Neighbor algorithm is
used to locate its neighbors in the feature space. Then, the neighbors’
label rankings are aggregated to provide prediction. Rank aggrega-
tion for prediction is not a trivial task, particularly in presence of
partial label ranks. Mallows [4] and Plackett-Luce [3] models that de-
scribe probability distribution of rankings have been used to come up
with the optimization criterion for rank aggregation. As an alterna-
tive, CPS probabilistic model for rank aggregation has been recently
proposed [16].

Instance-based label ranking algorithms are simple and intuitive.
Furthermore, they have been shown to outperform the competitors
in various label ranking scenarios. However, their success comes at
a large cost associated with both memory and time. First, they re-
quire that the entire training data set is stored in memory, which
can be costly or even impossible in the resource-constrained appli-
cations. Storing the original data can also raise privacy issues as the
data might contain sensitive user information. Second, the prediction
involves costly nearest neighbor search and aggregation of neigh-
bors’ label rankings. The aggregation is slow as it requires using op-
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timization techniques at prediction time, such as iterative Minoriza-
tion Maximization(IB-PL) or exhaustive search (IB Mallows).

In this paper we propose an online, time- and memory-efficient al-
gorithm for learning label preferences based on the Gaussian Mixture
Model (GMM), which could be attractive because of an intuitively
clear learning process and ease of implementation. The model pre-
serves privacy as it consists of mixtures defined by prototypes which
are not the actual data points. Every prototype is associated with
preference judgments for each pair of labels. Unlike many competi-
tors, our algorithm is not limited to a specific type of label ranking
and could support various ranking structures (bipartite, multipartite,
etc). For an unlabeled instance, GMM predicts the soft label pref-
erences by averaging prototypes’ pairwise preferences according to
distances.

These soft label preferences in form of a preference matrix need to
be aggregated further, into a total order of labels. This is a well known
problem in preference learning and is an especially popular research
area in the object ranking scenario, where numerous methods have
been proposed [5, 1, 2].

2 PRELIMINARIES
In the label ranking scenario, a single instance, described by a d -
dimensional vector x, is associated with a total order of assigned
class labels, represented as a permutation π of the set {1, ...,L},
where L is the number of available class labels. We define π such
that π(i) is the class label at i-th position in the order, and π−1(j ) is
a position of the yj class label in the order. The permutation can also
describe incomplete ranking {π(1), ..., π(k)} ⊂ {1, ...,L}, k < L.

In our approach, instead of the total order, we use a zero-diagonal
preference matrix Y. When a preference between labels yi and yj
exists, we set Y(i , j ) > Y(j , i) if yi is preferred over yj and
Y(i , j ) < Y(j , i) otherwise, Y(i , j ) + Y(j , i) = 1, for i , j ∈
{1, ...,L}. A value of Y(i , j ) which is close to 1 is interpreted as a
strong preference that yi should be ranked above yj . A typical ap-
proach is to assign Y(i , j ) = 1 and Y(j , i) = 0 if yi �x yj .
Similarly, uncertain (soft) preferences can be modeled by using val-
ues lower than 1. For example, indifferences (ties) are represented by
setting Y(i , j ) = Y(j , i) = 0.5. In case of non-existing, incompa-
rable or missing preferences, both Y(i , j ) = 0 and Y(j , i) = 0.

This representation allows us to work with complete and partial
label orders, as well as with pairwise preferences with uncertainties
and indifferences. Finally, bipartite and multi-partite label rankings
could be handled as well.

Evaluation metrics. Let us assume that N historical observations
are collected in a form of a data set D = {(xn,Yn), n = 1, ..., N}.
The objective in all scenarios is to train a ranking function h : xn →
π̂n from data set D that outputs a total label order.

In the Label Ranking scenario, to measure the degree of corre-
spondence between true and predicted rankings for n-th example, πn
and π̂n respectively, it is common to use the Kendall’s tau distance
dn =| {(yi, yj) : π−1

n (yi) > π−1
n (yj)∧ π̂−1

n (yj) > π̂−1
n (yi)} |. To

evaluate a label ranking model, the label ranking loss on the data set
D is defined as the average normalized Kendall’s tau distance,

lossLR =
1

N

N∑
n=1

2 · dn
L · (L− 1)

. (1)

Note that the measure simply counts the number of discordant la-
bel pairs and reports the average over all considered pairwise rank-
ings. Given the general preference matrix representation, assuming

binary matrix predictions Ŷn, we can rewrite (1) as

lossP =
1

N

N∑
n=1

‖ Yn − Ŷn ‖2F
L · (L− 1)

, (2)

where ‖ · ‖F is Frobenius matrix norm. Indeed, for each example n,
the square of the Frobenius norm sums up to double the number of
discordant label pairs.

For models with soft label preference predictions Ŷn, e.g.,
Ŷn(i, j) = 0.7, Ŷn(j, i) = 0.3, loss (2) can be interpreted as a
soft version of (1).

We can solve the preference learning task in two stages. In the
learning stage, function f : xn → Yn is learned via minimizing
(2). In the aggregation stage, given the model predictions in a form
of Yn, the total order prediction πn is computed using a preference
aggregation mapping g : Yn → πn. In the next section we show
the details of the proposed Gaussian Mixture Model algorithm to be
used in the learning stage. Existing algorithms such as [5, 1, 2], can
be used in the aggregation stage.

3 GAUSSIAN MIXTURE MODEL FOR LABEL
RANKING

The GMM model for label ranking is completely defined by a set of
K mixtures, i.e., prototypes {(mk,Qk), k = 1, ...,K}, where mk

is a d-dimensional vector in input space and Qk is the corresponding
preference matrix.

First, we introduce the probability P(k | x) of assigning observa-
tion x to k-th prototype that is dependent on their (Euclidean) dis-
tance. Let us assume that the probability density P(x) of x can be
described by a mixture model,

P(x) =
K∑
k=1

P(x | k) · P(k), (3)

where K is the number of prototypes, P(k) is the prior probabil-
ity that a data point is generated by k-th prototype, and P(x | k)
is the conditional probability that k-th prototype generates partic-
ular data point x. Let us represent the conditional density func-
tion P(x | k) with the normalized exponential form P(x | k) =
θ(k) · exp(f(x,mk)) and consider a Gaussian mixture with θ(k) =
(2πσ2

p)
−1/2 and f(x,mk) = −‖x−mk‖2/2σ2

p. We assume that all
prototypes have the same standard deviation σp and the same prior,
P(k) = 1/K. Given this, using the Bayes’ rule we can write the
assignment probability as

P(k | x) =
exp(−‖x−mk‖2/2σ2

p)
K∑
u=1

exp(−‖x−mu‖2/2σ2
p)

. (4)

To derive a cost function, we propose the following mixture model
for the posterior probability P(Y | x),

P(Y | x) =
K∑
k=1

P(k | x) · P(Y | k). (5)

Based on this model, example x is assigned to the prototypes prob-
abilistically and its preference matrix is a weighted average of the
prototype preference matrices. The mixture model assumes the con-
ditional independence between x and Y given k, P(Y | x, k) =
P(Y | k). For P(k | x) we assume the Gaussian distribution from
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(4). For the probability of generating a preference matrix Y by pro-
totype k, P(Y | k), we also assume Gaussian error model with mean
(Y − Qk) and standard deviation σy . The resulting cost function
l(λ) can be written as the negative log-likelihood,

l(λ) = − 1

N

N∑
n=1

ln

K∑
k=1

P(k | x) · N (Y −Qk, σ
2
y), (6)

where λ = {mk,Qk, k = 1, ..., P, σp, σy} are the model parame-
ters. For the compactness of notation, let us define gnk = P(k | xn)
and enk = N (Yn −Qk, σ

2
y).

It is important to observe that, after proper normalization, (6) re-
duces to (2) if examples are assigned to prototypes deterministically.
Therefore, it can be interpreted as its soft version. If prototype matri-
ces Qk consisted of only 0 and 1 entries (hard label preferences) (6)
further reduces to (1).

The objective is to estimate the unknown model parameters,
namely prototype positions mk and their preference matrices
Qk, k = 1, ...,K. This is done by minimizing the cost function
l(λ) with respect to the parameters. This can be achieved in several
different ways. If online learning capability is a requirement, one
can use the stochastic gradient descent method and obtain the learn-
ing rules by calculating derivatives ∂l(λ)/∂mk and ∂l(λ)/∂Qk for
k = 1, ...,K. This results in following rules for n-th training exam-
ple,

mn+1
k = mn

k − α(n)
(Ln−enk)·gnk

Ln

(xn−mk)

σ2
p

Qn+1
k = Qn

k − α(n) enk·gnk
Ln

(Yn−Qk)

σ2
y

,
(7)

where Ln =
∑P
k=1(gnk · enk) and α(n) is the learning rate.

The resulting model has complexity O(NKL). Otherwise,
the problem can straightforwardly be mapped into Expectation-
Maximization (EM) framework following the procedure from [17].

Initialization is done by selecting the first P training points as the
initial prototypes. If any Qk prototype preference matrix obtained
in such manner contains empty elements, they are replaced with 0.5
entries, as the corresponding labels will initially be treated equally.

GMM model generalizes the training data to produce a represen-
tation in terms of prototype vectors and effectively utilizes distances
to prototypes as a similarity measure to calculate the predicted la-
bel rank. When compared to IB-based algorithms, GMM is a more
global model, that aggregates over more data, thus also alleviating
influence of noise. Therefore, it is expected to outperform IB-based
algorithms, whose performance is highly dependent on the quality of
the training data and the presence of outliers, since no abstraction is
made during the training phase. We could try to aggregate over more
data by considering a large number of neighbors in IB algorithms,
however, by doing so we start ignoring distances between the query
instance and its neighbors as a similarity measure. This remains to
be seen after a proper experimental evaluation.

A disadvantage of the GMM model is that it requires aggregation
of the predicted label preference matrix to produce a total order of
labels. Luckily, most of the existing algorithms have low complexity,
e.g. O(L logL) for QuickSort [1]. In our future work we plan to
evaluate the pros and cons of different aggregation methods.

4 CONCLUSION AND FUTURE WORK
We introduced an idea of a Gaussian Mixture Model algorithm for
Label Ranking. The main advantages of the new method are: (1) it is
capable of operating in an online manner, (2) it is memory-efficient
since it operates on a predefined budget, (3) it preserves privacy, (4)

it could potentially reuse the model when new labels are introduced.
There are several avenues which need to be pursued further: (1) ex-
perimental evaluation of the proposed method on benchmark data
(2) determining the optimal number of prototypes K using statisti-
cal learning theory, (3) low rank approximation of pairwise prefer-
ence matrices to reduce memory requirements, (4) evaluating differ-
ent preference matrix aggregation algorithms, (5) applying the algo-
rithm to clustering of label ranking data. In the future work we plan
to address these issues.
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Multi-valued Categorical Attributes 

Lucas Marin
1
, Antonio Moreno and David Isern 

 
Abstract.1  One of the most challenging goals of recommender 
systems is to infer the preferences of users through the observation 
of their actions. Those preferences are essential to obtain a 
satisfactory accuracy in the recommendations. Preference learning 
is especially difficult when attributes of different kinds (numeric or 
linguistic) intervene in the problem, and even more when they take 
multiple possible values. This paper presents an approach to learn 
user preferences over numeric and multi-valued linguistic attributes 
through the analysis of the user selections. The learning algorithm 
has been tested with real data on restaurants, showing a very good 
performance. 

1 Introduction 

Nowadays it is practically unconceivable to select our summer 

holiday destination or to choose which film to see in the cinema 

this weekend without consulting specialized sources of information 

in which, in some way or another, our preferences can be specified 

to aid the system to recommend us the best choices. That is 

because we live in an era where there are so many data easily 

available that it is impossible to manually filter every piece of 

information and evaluate it accurately. Recommender Systems (RS) 

have been designed to do this time-consuming task for us and, by 

feeding them with information about our interests, they are capable 

enough to tell us the best alternatives for us in a personalized way. 

A RS stores the preferences of the user about the values of some 

criteria and uses this information to rate and sort a corpus of 

alternatives. The management of the preferences, the accuracy of 

the recommendations, and how these interests evolve over time are 

three of the most challenging tasks of these type of systems [8]. 

Concerning the first goal, RSs may obtain feedback from a user 

implicitly, explicitly or combining both approaches. This paper 

discusses an unsupervised way to infer the user interests, which 

observes the user interaction and does not require any explicit 

information from him [4]. 

The criteria used to describe the alternatives may have different 

natures. Some works propose the use of ontologies to represent 

concepts within a hierarchy [2,9]. Other researchers use fuzzy logic 

techniques to deal with linguistic criteria [1,10], and many 

approaches only consider numerical criteria [5]. This paper 

considers the use of linguistic and numerical data, which permit a 

high degree of expressivity and can be applied in a wide range of 

domains. 
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The basic idea is to use the preferences to sort a set of 

alternatives, show this ordered list to the user, and observe his final 

selection. With this information, the preference learning algorithm 

is able to modify the user profile so that it captures better the user 

preferences and the next recommendation is more accurate.  

The rest of the paper is organized as follows. Section 2 includes 

a brief explanation of the related work the authors conducted in the 

area of preference learning over linguistic and numeric attributes, 

explaining how the interests of users over certain attributes or 

criteria are managed and learned. Section 3 explains a new 

approach to manage categorical attributes when they can take 

multiple linguistic values in a single alternative. Section 4 

describes how a more expressive function which defines the 

behaviour of the preference over numeric attributes can be 

automatically learned. In Section 5 the case study where our 

approach has been tested (restaurant recommendation) is 

explained, describing the data set used and the results obtained. 

Finally, Section 6 gives the main conclusions of the paper and 

identifies some lines of future research. 

2 Preference learning over categorical and 
numerical attributes 

When we face a decision problem in which we require the aid of a 

RS to help us make a choice, all of the possible alternatives to said 

problem are defined, in most of the cases, by the same attributes. In 

this work we focus only on categorical and numeric attributes. The 

following subsections explain how preferences over the two 

different kinds of attributes are expressed, how alternatives are 

evaluated and ranked, and how the user interests are learned and 

adapted from his selections. 

2.1 Attributes and management of preferences  

In a recent work ([7]) we proposed to represent the level of interest 

over categorical attributes by using a linguistic scale in which 

preference labels are defined as fuzzy sets representing values of 

preference such as “Very Low”, “Low”, “Medium”, “High” or 

“Very High” (see Figure 1). 
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Figure 1. Example of a linguistic preference set 

 

 

For the case of numeric attributes, we assumed that each user 

has a preference function for each attribute. This function has a 

triangular shape (see ) and is defined as 

 

(1) 

 

 

where pa(x) is the preference of the value x of the attribute a, and 

  is the width of the function, which we considered to be 10% of 

the attribute domain. 

 

Figure 2. Basic numeric preference function 

2.2 Alternatives evaluation 

When evaluating an alternative, the objective is to aggregate all 

of the values of all of the attributes into a single value. Since we 

have two kinds of attributes, a conversion to the same domain is 

made. In our approach, we chose to translate the numerical 

preferences to linguistic ones. The translation is done by, first, 

calculating the value of preference of a certain numeric attribute 

value by using Eq. (1). Then that value is mapped to the fuzzy 

linguistic labels domain and matched with the label with a higher 

value in that point. 

When all the attributes have been assigned a value of preference 

using the same fuzzy linguistic scale, all the terms are aggregated 

using the ULOWA aggregation operator [3]. The final result of this 

aggregation is the value of preference assigned to the whole 

alternative, used to rank the alternatives. 

2.3 Preference learning 

When the ranked alternatives are presented to the user, two 

things can happen: (a) the user selects the first ranked alternative or 

(b) the user selects any other alternative. The first case means that 

the recommendation process has worked accurately, since the 

system gave the first place to the selected alternative. However, in 

the second case, there were other alternatives (which we call over 

ranked) that were considered by the system as better than the one 

the user finally selected. Thus, that is probably indicating that the 

information that we have in the user profile is not accurate enough 

and should be modified. In a nut shell, the main intuition behind 

the user profile change algorithm is that we should increase the 

preference on the attribute values present in the selected alternative 

and decrease the preference on the attribute values appearing in the 

over ranked alternatives.   

The information required to infer this reasoning is extracted 

from what is called “relevance feedback”. In this case, it consists in 

the over ranked alternatives and the selected one. Numerical and 

categorical attributes are managed in different ways, as described 

in the following subsections. 

2.3.1 Linguistic preference adaptation 

The main idea is to find attribute values repeated among the over 

ranked alternatives that do not appear on the selection, which will 

be the candidates for having his preference decreased. Similarly, 

the preference of the attribute values that appear on the selection 

and do not appear often on the over ranked alternatives is likely to 

be increased. The interested reader may find a more detailed 

explanation of the process of adaptation of linguistic preferences in 

[7]. 

The profile adaptation is conducted by two processes. The first 

one—called on-line adaptation—is executed every time the user 

asks the system for a recommendation, and it evaluates the 

information that can be extracted from the current ranked set of 

alternatives. The main goals of this stage are to decrease the 

preference of the attribute values that are causing non-desired 

alternatives to be given high scores and to increase the preference 

of the attribute values that are important for the user but are not 

well judged on the basis of the current user profile. For each 

recommendation made by the system, two sources of information 

are evaluated: the selected alternative, which is the choice made by 

the user, and the alternatives that were ranked above it. Values 

extracted from the over-ranked alternatives haver their level of 

preference decreased whereas the ones extracted from the user’s 

final selection that do not appear in the set of over-ranked 

alternatives have their preference increased. 

The second one—called off-line adaptation—is triggered after 

the recommender system has been used a certain number of times. 

It considers the information given by the history of the previous 

rankings of alternatives and the selections made by the user in each 

case, but considers that information separately. When the system 

faces cases in which the number of over ranked alternatives is not 

large enough for reliable characteristics to be extracted, it stores the 

small number of over ranked alternatives in a temporary buffer. 

After several iterations in which the number of over ranked 

alternatives has been insufficient for evaluation, the system will 

have recorded enough alternatives to start evaluating them. When 

there are enough saved over-ranked alternatives, the values in their 

attributes will be analysed and their preference decreased. 

Moreover, user selections are also stored, and after a certain 

number of choices have been made, they are evaluated with the 

objective to increase the preference of the most repeated attribute 

values, since their repeated selection indicates that the user is really 

interested in them. 

( ) 1
pref

a

x v
p x
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2.3.2 Numeric preference learning 

The numeric adaptation of the user profile presented in [6] is 

inspired by Coulomb’s Law: “the magnitude of the electrostatics 

force of interaction between two point charges is directly 

proportional to the scalar multiplication of the magnitudes of 

charges and inversely proportional to the square of the distances 

between them”. The main idea is to consider the value stored in the 

profile (current preference) as a charge with the same polarity as 

the values of the same criterion on the over ranked alternatives, and 

with opposite polarity to the value of that criterion in the selected 

alternative. Thus, the value of the profile is pushed away by the 

values in the over ranked alternatives and pulled back by the value 

in the selected alternative. Two stages have been considered in the 

adaptation algorithm. The first one, called on-line adaptation 

process, is performed each time the user asks for a 

recommendation. The other stage, called off-line process, is 

performed after a certain amount of interactions with the user.  
 

 

Figure 3. Attraction and repulsion forces 

 

For the on-line stage, the information available in each iteration is 

the user selection and the set of over ranked alternatives. In order 

to calculate the change of the value of preference in the user profile 

for each criterion it is necessary to study the attraction force done 

by the selected alternative and the repulsion forces done by the 

over ranked ones in each criterion, as represented in the example in 

Figure 3, in which the j-th value of the five over ranked alternatives 

o0, o1, o2, o3, and o4 causes a repulsion force Fo
j, and the value for 

the same criterion of the selected alternative, sj, causes an attraction 

force Fs
j. Both forces are applied on the j-th value of the profile, Pj. 

The attraction force Fs done by the selected alternative for each 

attribute j is defined as 

 

 

 

(2) 

 

 

 

In this equation, ∆j is the range of the criterion j, sj is the value 

of the criterion j in the selected alternative and Pj is the value of the 

same criterion in the stored profile P. The parameter α adjusts the 

strength of the force in order to have a balanced adaptation process. 

The repulsion force exerted by the over ranked alternatives for 

each criterion j is defined as a generalization of Eq.(2) as follows:  

 

 

   (3) 

 

Finally, both forces are summed up and the resulting force is 

calculated. 

The techniques designed for the on-line stage fail at detecting 

user trends over time since they only have information of a single 

selection. The off-line adaptation process gathers information from 

several user interactions. This technique allows considering 

changes in the profile that have a higher reliability than those 

proposed by the on-line adaptation process, because they are 

supported by a larger set of data. 

The off-line adaptation process can be triggered in two ways: 

the first one evaluates the user choices, while the second one 

analyses the over ranked alternatives discarded by the user in 

several iterations. The possibility of running the off-line process (in 

any of its two possible forms) is checked after each 

recommendation. In the first case, the system has collected some 

alternatives selected by the user in several recommendation steps, 

and it calculates the attraction forces (F’s) exerted by each of the 

stored selected alternatives over the values stored in the profile, 

using an adaptation of Eq. (2), that has as inputs the profile P, the 

past selections {s1,…,srs}, the criterion to evaluate j, and the 

strength-adjusting parameter α.:  

 

 

   (4) 

 

The second kind of off-line adaptation process evaluates the set 

of over ranked alternatives that have been collected through several 

iterations and which were not used in the on-line adaptation 

process (because it did not have enough over ranked alternatives in 

a single iteration). When the stored over ranked alternatives reach a 

certain number, the off-line adaptation process calculates the 

repulsion forces over the profile values exerted by those 

alternatives (Fo), which are calculated using Eq.(3). 

3 Multi-valued linguistic attributes 

As explained in Section 2, in our previous work we considered 

categorical attributes that could take only one linguistic value (For 

example, a city could have a single value in the “Climate” 

attribute). However, there are cases in which it is interesting to 

consider multiple values. One example of that situation could be 

the attribute “Types of food” in a restaurant: a restaurant can have 

the values {“Asian”, “Seafood”, “Vegetarian”} while another can 

have only “Italian food”.  

Extending our model so that it can manage lists of categorical 

values implies addressing two issues: how to represent and 

calculate the user preferences over the attribute taking into account 

all of the values and how to adapt dynamically those preferences. 

3.1 Preference value on multi-valued attributes 

When there is an attribute with multiple values a procedure should 

be defined to decide which single linguistic preference represents 

better the whole set of linguistic values.  

Going back to the restaurant example, if a user has a “High” 

preference over “Asian food” restaurants and a “Low” preference 

over “Rice dishes”, we can argue that the preference we could 

assign to the “Type of food” attribute in a restaurant with both 

values should be “Medium” (an average of the two kinds). If 

another restaurant only offers “Asian food” then its preference 

should be “High”, so this restaurant would have a higher ranking 

than the first one. The rationale of this procedure is that it seems 

more adequate to reward the alternatives that are more focused in 

the aspects the user really likes. This example represents an 

“average” preference aggregation policy, however, other policies 

can also be considered depending on the attribute definition. 
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3.2 Preference learning on multi-valued 
categorical attributes 

The linguistic algorithm used to adapt categorical preferences 

explained in Section 2 needs some improvements to be able to 

manage lists of values. When single-valued attributes were 

considered, the user selection pointed directly towards the value 

the user liked for that attribute. Now, however, we cannot be sure 

which one/s of the values listed in the attribute is/are the one/s of 

interest for the user. That is the reason why it has been necessary to 

design a “relevance function” which indicates how relevant is a 

value found among the over ranked alternatives or in the selected 

alternative. Relevance is measured in a [0,1] scale, with 1 meaning 

maximum relevance. To calculate how relevant a term t of the 

attribute j is among the over ranked alternatives we use this 

expression (the relevance value is 0 if it does not appear in the over 

ranked alternatives): 

 

    (5) 
 

 

Here, no represents the number of over ranked alternatives, nt 

the number of over ranked alternatives where t appears, and nvi
j the 

number of values that appear for the attribute j in the alternative i. 

In this equation we consider that every linguistic term that appears 

in the over ranked alternatives has a relevance which is inversely 

proportional to the number of other values for the same attribute 

that appear among the entire set of over ranked alternatives.  

To calculate the relevance of a term in the selection we use: 

  

    (6) 

 

 

Here nvj represents the number of values that appear for the 

attribute j in the selection, nl the total number of linguistic 

attributes, and tv the total number of linguistic values that appear in 

the selection. The relevance of a term in the selection is the mean 

between the importance of the term among the values that appear 

with it in the same attribute and the importance of each linguistic 

term that appears in the selection compared with the number of 

linguistic attributes. 

Finally, after calculating both partial relevancies for all the 

terms, the overall relevance Rj(t) is calculated as:  

  (7) 

 

In conclusion, considering a threshold γ to avoid making 

changes in the profile with low relevance, it can be deduced that: 

 If Rj(t)>γ, the preference over term t for the attribute j 

needs to be increased (moved to the next term). 

 If Rj(t)<γ, the preference over term t for the attribute j 

needs to be decreased (moved to the previous term). 

4 Learning preference functions for numeric 
attributes 

Although the numeric preference learning approach described in 

Section 2 provided an adequate way of learning the ideal value of 

preference over a numeric attribute, it was unable to learn all of the 

parameters that model the preference function such as the slope or 

the width, which were fixed. The new learning method presented in 

this section relies on historic data about the user selections to 

approximate the preference function of the numeric attributes to the 

most adequate one. With this approach, we have a new definition 

of the function of preference which now has 5 parameters (left and 

right slope, left and right width, and value of preference) instead of 

just the value of preference: 

 

 

 

(8) 

 

 

 

 

 

 

In this expression pa(x) is the preference of the value x of the 

attribute a, ml and mr are the function slope values (for the left and 

right sides of the triangle, respectively) and l and r are the 

parameters which define the width of the function  (also for the left 

and right sides of the triangle, respectively). An example of 

graphical representation of a preference function can be seen in 

Figure 4, where the left slope is a value under 1, the right slope is a 

value over 1, and the left width is greater than the right one. 

 

 

 

 

 

 

 

 

 

Figure 4. Numeric preference function with 5 parameters 

 

The whole process of adapting the numeric preference function 

is depicted in Figure 5.  

 

function PREF-FUNC-ADAPTATION( 

V(v0,…,vn), //historic of values of past selections 

vpref,  //value of maximum preference 

vmin,  //minimum numeric value 

vmax,  //maximum numeric value 

ti,  //trust interval 

s //probability distribution sampling) 

begin 

B=getBestValues(V, vpref, ti); 

PD=calculateProbabilityDistribution(B, vmin, vmin, s); 

∆{left,right}=calculateDelta(PD); 

m{left,right}=calculateBestSlope(PD, vpref, ∆); 

PreferenceFunction=(∆, m, vpref); 

return PreferenceFunction; 

end;  

 

Figure 5. Preference function learning algorithm 

 

The first step consists in obtaining the more reliable values from 

the historic set of selections. This is done by extracting a 

percentage of the values closer to the value of preference (trust 

interval), normally of 90%. With that we avoid considering outlier 

values. Then a probability distribution function, represented with a 

histogram, is calculated with those best values. The sample or 
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discretization step is a parameter, normally around 1% of the 

domain range. Delta values are then calculated by observing the 

width of the probability distribution. For example, if the first value 

different to 0 in the histogram is 3 and the last is 56, and the value 

of higher preference (vpref) is 34, ∆l would be 31 and ∆r would be 

22. Afterwards, the algorithm generates preference functions with 

different combinations of values for the slope values (m) (in the 

range from 0 to 4 in steps of 0.2), and compares the distance 

between each preference function and the probability distribution. 

The function with the lower distance shows the chosen slope. 

Finally, the new preference function is built with the new delta and 

slope values.  

5 Case study: restaurant recommendation 

In order to test our new approach to multi-valued attribute 

evaluation and numeric preference function learning, we have used 

data of the restaurants in Barcelona to implement a RS with the 

ability to learn the users’ interests from their selections. In the first 

part of this section a description of the data is given. Then, a basic 

explanation of the whole recommender and learning algorithm is 

given, as well as the preferences setup. Finally, the results of the 

evaluation are provided. 

5.1 Barcelona restaurants data 

The data used in this problem has been collected from the 

BcnRestaurantes web page2. The data set contains information 

about 3000 restaurants of Barcelona evaluated by 5 attributes: 3 

categorical (“Type of food”- 15 values, “Atmosphere”- 14 values, 

“Special characteristics” – 12 values) and 2 numerical (“Average 

price”, “Distance to city center”). One example of register in the 

data file is “Fonda España; National, Season cuisine, Traditional; 

Classic, For families; Round tables, In a hotel, With video; 45; 

0.979”, being “Fonda España” the restaurant name, “National”, 

“Season cuisine” and “Traditional” the types of food served, 

“Classic” and “For families” the restaurant atmosphere, “Round 

tables” and “In a hotel” other important restaurant characteristics, 

45€ the average menu price, and 0.979 km the distance to the city 

centre.  

5.2 Recommendation and adaptation 

The set of 3000 restaurants has been divided in blocks of 15 

alternatives that are ranked independently, which gives out a total 

of 200 different recommendations. An ideal profile was manually 

defined and three initial profiles were created randomly. The goal 

is to learn the ideal profile starting from these three different 

points. In this evaluation the preferences over the categorical 

attributes are represented with a linguistic label term set of 7 

values, which are “Very Low”, “Low”, “Almost Low”, “Medium”, 

“Almost High”, “High” and “Very High”.  

The whole process (for each of the three profiles, repeated 200 

times) consists in: 

1. Ranking a set of 15 alternatives according the current 

(initially random) profile. 

2. Simulate the selection of the user by choosing the alternative 

that fits better the ideal profile. 

                                                                 
2 http://www.bcnrestaurantes.com. Last access May 30th, 2012. 

3. Extract relevance feedback from the selection (over ranked 

alternatives and the selection itself). 

4. Decide which changes need to be made to the current profile 

and apply them. 

Some information about the whole process is stored after each 

iteration, including the position of the selected alternative, the 

distance between the ideal and current profiles, and the preferences 

over linguistic and numeric values. 

5.3 Results evaluation 

In order to evaluate the results of the new learning techniques, a 

distance function has been defined to calculate how different the 

profile we are learning is to an ideal profile which represents the 

exact preferences of the user. The first step is to calculate the 

distance for each attribute, taking into account if it is numeric or 

categorical. The distance between numeric attributes is calculated 

as 

    (9) 
 

where n is the numerical attribute, c is the current profile (the one 

being learned), i is the ideal profile, and ( )c i
n pref np v  is the value 

of preference of the vpref value for the attribute n in i using the 

preference function of the same attribute in the profile c. A 

distance 0 means that the vpref values in both profiles are equal. 

The equation to calculate the distance between categorical 

attributes is 

 

(10) 

 

 

where l is the categorical attribute, card(l) is the cardinality of the 

attribute l (i.e., the number of different linguistic values it can 

take), ( ( ))c
l kCoG p v and ( ( ))i

l kCoG p v are the x-coordinate of 

the centres of gravity of the fuzzy linguistic labels associated to the 

value of preference of vk in the profiles c and i, respectively, and 

min( )CoG s and max( )CoG s  are the centres of gravity of the 

minimum and maximum labels of the domain, respectively. 

Finally, the distance between two profiles is calculated as 

 

(11) 

 

 

where na is the total number of attributes. 

During the three tests (one for each initial random profile) the 

distance between the adapting and the ideal profile has been 

calculated in each iteration. Figure 6 (continuous line) shows the 

average of the three distances. It can be seen that the initial average 

distance between the ideal and the adapting profiles is around 0.59. 

After 200 iterations it reaches a distance around 0.1. Although 200 

iterations may seem a large number, it can also be observed that 

with only 50 iterations a very acceptable result of 0.2 is obtained. 

To see to what extent the new approach to learn the numeric 

preference function explained in Section 4 has improved the result 

of our previous work (commented in Section 2), Figure 6 also 

compares the results with and without (dashed line) that 

functionality. It can be seen how the improvement has been 

noticeable (distance improvement of about 0.07). 
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Figure 6. Average distance between current and ideal profile 

 

To wrap up the results evaluation, Figure 7 shows in what 

position the user selection is being ranked by the RS on each of the 

iterations in the first test (the three give similar results). This figure 

shows the results in a more intuitive way. Notice that the system is 

accurate if the selected alternative is in the first positions of the 15-

items list in each iteration. Many factors can interfere in the 

process and make the learning of the exact ideal profile a very hard 

task, but if the user selection appears in the first positions, we can 

consider that the learning process is working properly. As it can be 

observed in Fig.7, after about 50 iterations, the selected alternative 

is among the first three ones in 95% of the cases (and the first one 

in around 70% of the cases). 

Figure 7. Position of the selected alternative in each iteration (test 1) 

6 Conclusions and future work 

Two main contributions with respect to our previous work have 

been presented in this paper. The first one consists in managing 

multi-valued categorical attributes in the alternatives of a RS, 

allowing. more expressivity in their representation. The system 

considers a single preference for each possible value and 

aggregates them to find out the preference over the whole attribute. 

The consideration of multi-valued attributes is mandatory when 

working with alternatives such as the ones presented in this paper 

(e.g. “Type(s) of Food” in a restaurant alternative). 

The second contribution, which is learning the numeric 

preference function, allows shaping a more expressive and 

personalised representation of user preferences over each numeric 

attribute, defining a preference function with 5 parameters. This 

additional expressivity helped to improve the profile learning 

process by reducing the learning error around 7%. 

As a future work, two interesting lines can be considered. As 

pointed out in Section 3, an aggregation policy can be considered 

in the aggregation of the preferences in a single attribute, other 

than the use of the common “average” policy. Research can be 

made in this area in order to learn the aggregation policy that fits 

more the user interests. Another interesting line to consider is to 

incorporate information about the numeric preference function in 

the distance measure used to evaluate the algorithm since, 

currently, just the value of preference is being considered. 
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Direct Value Learning: a Preference-based Approach to
Reinforcement Learning

David Meunier(1), Yutaka Deguchi(2), Riad Akrour(1)

Einoshin Suzuki(2), Marc Schoenauer(1), Michele Sebag(1)

Abstract. Learning by imitation, among the most promising tech-

niques for reinforcement learning in complex domains, critically de-

pends on the human designer ability to provide sufficiently many

demonstrations of satisfactory quality.

The approach presented in this paper, referred to as DIVA (Di-

rect Value Learning for Reinforcement Learning), aims at address-

ing both above limitations by exploiting simple experiments. The ap-

proach stems from a straightforward remark: while it is rather easy

to set a robot in a target situation, the quality of its situation will nat-

urally deteriorate upon the action of naive controllers. The demon-

stration of such naive controllers can thus be used to learn directly a

value function, through a preference learning approach. Under some

conditions on the transition model, this value function enables to de-

fine an optimal controller.

The DIVA approach is experimentally demonstrated by teaching

a robot to follow another robot. Importantly, the approach does not

require any robotic simulator to be available, nor does it require any

pattern-recognition primitive (e.g. seeing the other robot) to be pro-

vided.

1 Introduction

Since the early 2000s, significant advances in reinforcement learn-

ing (RL) have been made through using direct expert’s input (inverse

reinforcement learning [18], learning by imitation [10], learning by

demonstration [16]), assuming the expert’s ability to demonstrate

quasi-optimal behaviors and to provide an informed representation.

In 2011, new RL settings based on preference learning and al-

legedly less demanding for the expert have been proposed (more in

section 2).

In this paper, a new preference-based reinforcement learning

approach called DIVA (Direct Value Learning for Reinforcement

Learning) is proposed. DIVA aims at learning directly the value func-

tion from basic experiments. The approach is illustrated on the sim-

ple problem of teaching a robot to follow another robot. It is shown

that DIVA yields a competent follower controller without requiring

the primitive “I see the other robot“ to be either provided, or explic-

itly learned.

2 State of the art

Reinforcement learning is most generally formalized as a Markov

decision process. It involves a state space S, an action space A,

and an upper bounded reward function r defined on the state space

r : S 7→ R. The model of the world is given by the transition func-

tion p(s, a, s′), expressing the probability of arriving in state s′ on

making action a in state s under the Markov property; in the deter-

ministic case, the transition function tr : S × A 7→ S gives the

1 TAO, CNRS-INRIA-LRI, Université Paris-Sud
2 Dept. Informatics, ISEE, Kyushu University

state tr(s, a) of the agent upon making action a in state s. A policy

π : (S,A) 7→ R maps each state in S on some action in A with a

given probability. The return of policy π is defined as the expectation

of cumulative reward gathered along time when selecting the current

action after π, where the initial state s0 is drawn after some proba-

bility distribution q on S. Denoting ah ∼ π(sh) the random variable

action selected by π in state sh, sh+1 ∼ p(sh, ah, s) the state of the

agent at step h + 1 conditionally to being in state sh and selecting

action ah at step h, and rh+1 the reward collected in sh+1, then the

policy return is

J(π) = IEπ

[
∞∑

h=0

γhrh|s0 ∼ q

]

where γ < 1 is a discount factor enforcing the boundedness of the

return, and favoring the reaping of rewards as early as possibly in the

agent lifetime.

The so-called value function Vπ(s) estimates the expectation of

the cumulative reward gathered by policy π when starting in state s,

recursively given as:

Vπ(s) = r(s) + γ
∑

a,s′

π(s, a)p(s, a, s′)Vπ(s
′)

Interestingly, from a value function V can be derived a greedy policy

πV , provided the transition function is known: when in state s, select

the action a leading to the state with best expected value:

πV (s) = argmax a∈A

{
p(s, a, s′)V (s′) probabilistic trans.

V (tr(s, a)) deterministic trans.

}

(1)

By construction, πVπ
is bound to improve on π. By learning value

function V ∗ as the maximum over all policies π of Vπ

V ∗(s) = maxπVπ(s)

one can thus derive the optimal policy π∗ = πV ∗ .

The interested reader is referred to [19, 20] for a comprehen-

sive presentation of the main approaches to Reinforcement Learn-

ing, namely value iteration and policy iteration algorithms, building

a sequence of value functions V i and policies πi converging to V ∗

and π∗. The bottleneck of estimating the optimal value function is

that all states must be visited sufficiently often, and all actions must

be triggered in any state, in order to enforce the convergence of V i

and π(V i) toward V ∗ and π∗. For this reason, RL algorithms hardly

scale up when the size of the state and action spaces is large, all the

more so as the state description must encapsulate every information

relevant to action selection in order to enforce the Markov property.

New RL approaches devised to alleviate this bottleneck and based

on preference learning have been proposed in 2011 [11, 2]. [11] is

concerned with the design of the reward function in order to facil-

itate RL; for instance in the medical protocol application domains,
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how to associate a numerical negative reward to the patient’s death

? The authors thus extend the classification-oriented approach first

proposed by [17] as follows. In a given state s, an action a is as-

sessed by executing the current policy until reaching a terminal state

(rollout). On the basis of these assessments, pairs of actions can be

ranked with regard to state s and policy π (a <s,π a′). These rank-

ing constraints are exploited within a learning-to-rank algorithm (e.g.

RankSVM [13]), yielding a ranking hypothesis hs,π : A 7→ R. The

claim is that such action ranking hypotheses are more flexible than

classification hypotheses, aimed at discriminating “the” best actions

from the others conditioned by the current state. In summary, the

ranking hypothesis depends on the policy and the current state, and

operates on the action space.

Quite the contrary, in [2] the ranking hypothesis operates on the

policy space. The motivating application is swarm robotics, facing

two severe issues. Firstly, swarm robotics is hardly compatible with

generative model-based RL approaches; simulator-based approaches

suffer from the supra-linear computational complexity of simula-

tions w.r.t. the number of robots in the swarm (besides the simula-

tion noise). Secondly, swarm robotics hinders the inverse reinforce-

ment learning approach [1, 15], using the expert demonstrations to

learn a reward function. In most cases the swarm expert cannot de-

scribe (let alone demonstrate) the individual robot behavior leading

to the desired swarm behavior (known as the inverse macro-micro

problem [7]). The proposed approach, called PPL (Preference-based

Policy Learning) proceeds along an interactive optimization setting:

the robot(s) demonstrates a behavior, which is ranked by the expert

comparatively to the previous best demonstration. The ranking con-

straints are exploited through a learning-to-rank algorithm, yielding

a ranking hypothesis on the policy demonstrations and thus on the

policy space Π (h : Π 7→ R). This ranking hypothesis is used as

policy return estimate, casting RL as an optimization problem (find

π∗
h = argmax h(π)). Policy π∗

h is demonstrated to the expert, who

ranks it compared to the previous best demonstration, and the process

is iterated. Note that PPL thus faces the same difficulty as interactive

optimization at large [9, 22]: if the expert is presented with too con-

strained a sample of demonstrations, she does not have a chance to

teach her preferences to the system. PPL is thus extended to integrate

an active learning criterion, yielding the APRIL (Active Preference

learning-based Reinforcement Learning) algorithm [3].

3 Overview of DIVA

This section introduces and formalizes the principle of DIVA, and

discusses its strengths and limitations w.r.t. the state of the art.

3.1 Principle

DIVA is rooted in Murphy’s law (Anything that can possibly go

wrong, does). Formally, it posits that when the agent happens to be

in some good situation, its situation tends to deteriorate under most

policies. Let us illustrate this idea on the simple problem of having a

robot following another robot in an open environment. Assume that

the follower robot is initially situated behind the leader robot (Fig. 1,

left, depicts the follower state, given as its camera image). Assume

that both follower and leader robots are equipped with the same sim-

ple Go Ahead controller (same actuator value on the left and right

wheel of both robots). Almost surely, each robot trajectory will devi-

ate from the straight line, due to e.g. the imperfect calibration of the

wheel actuators or different sliding frictions on the ground. Almost

surely, the two robot trajectories will be deviated in a different way.

Therefore, the follower will at some point lose track of the leader

(Fig. 1, right, depicts the follower state after circa 52.7 (+-20.6) time

steps, that is, XX seconds).

Figure 1: Left: The follower robot is initially aligned behind the

leader robot. Right: Both leader and follower robots are operated by

the same Go ahead controller. Due to mechanical drift, the follower

sooner or later loses track of the leader.

The intuition can be summarized as: the follower state was never

as good as in the initial time step; it becomes worse and worse along

time.

3.2 Formalization

The above remarks enable to define a ranking hypothesis on the state

space, as follows. Let us consider K trajectories of the robot follower

noted S1 . . . SK , where each trajectory Si is defined as a sequence

of states s
(i)
t , t = 0 . . . Ti. A value function is sought as a function V

mapping the set of states S onto R, satisfying constraints V (s
(i)
t ) >

V (s
(i)
t+1) for all i = 1 . . .K and t = 0 . . . Ti − 1.

Formally, it is assumed in the following that the state space S is

embedded in R
d. A linear value function V̂ ∗ : S 7→ R is defined as

V̂ ∗(s) = 〈ŵ∗, s〉

where ŵ∗ ∈ R
d is given after the standard learning-to-rank regular-

ized formulation [4]:

ŵ∗ = arg min 1
2
||w||22 + C

∑k

i=1

∑
t<t′≤Ti

ξ
(i)

t,t′

s.t. ∀ 1 ≤ i ≤ K, 0 ≤ t < t′ ≤ Ti

〈w, s
(i)
t 〉 ≥ 〈w, s

(i)

t′
〉+ 1− ξ

(i)

t,t′
; ξ

(i)

t,t′
≥ 0

(2)

This quadratic optimization under constraints problem can be solved

with affordable empirical complexity [14]. After Eq. (1) and pro-

vided that the transition model is known, value function V̂ ∗ derives

a policy π̂∗. Further, by construction any value function derived by

monotonous transformation of V̂ ∗ induces the same policy π̂∗.

3.3 Discussion

Among the main inspirations of the DIVA approach is TD-Gammon

[21]. TD-Gammon, the first backgammon program to reach a cham-

pion level in the 80s, exploits games generated from self-play to train

a value function along a temporal difference algorithm. The value

function is likewise trained from a set of games, or trajectories Si

described as a sequence of positions s
(i)
t , t = 0 . . . Ti. The dif-

ference is as follows. Firstly, TD-Gammon only imposes the value

for the initial and the final positions, with V (s
(i)
0 ) = 1/2 (the ini-

tial position is neutral), and V (s
(i)
Ti
) = 1 (respectively 0) if the first

player wins (resp., loses) the game. Secondly, the learning problem
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is regularized through a total variation minimization (minimizing∑
i

∑Ti−1
t=1 (V (s

(i)
t )− V (s

(i)
t+1))

2).

A key difference between DIVA and TD-Gammon regards the

availability of a simulator. If a generative model (a simulator) is avail-

able for the problem domain, then indeed RL can rely on cheap and

abundant training data. In robotics however, simulator-based train-

ing is prone to the so-called reality gap [8]. Generally speaking, the

robotic framework is hardly compatible with data-intensive learning

approaches, due to the poor accuracy of simulator-based data on the

one hand, and the cost (experimenter time and robot fatigue) of in-

situ experiments on the other hand.

A consequence is that TD-Gammon can exploit high quality simu-

lated data whereas DIVA relies on a limited amount of data. Further,

these data are experimentally acquired and should require little or no

expertise from the human experimenter. Along the same line, TD-

Gammon only prescribes the values attached to the initial and final

state of each trajectory; the bulk of learning relies on the regulariza-

tion term. Quite the contrary, DIVA exploits short trajectories and

sets comparison constraints on the values attached to each time step

(besides using regularization too). Finally, TD-Gammon requires all

winning/losing terminal states to be associated the same value; there

is no such constraint in DIVA, as states from different trajectories are

not comparable.

Both approaches suffer from a same limitation: policy πV is com-

puted from value function V iff the transition function is known or

well approximated (Eq. (1)). Further, finding the optimal action re-

quires one to solve an optimization problem in each time step, which

usually requires the action space to be small. It will be seen (section

4.2) that a cheap estimate of the transition function can alleviate the

above limitations in the robotic framework in some cases. An ad-

ditional limitation of DIVA is that the value function V is learned

from a set of trajectories obtained from a ”naive” controller, which

does not necessarily reflect the target (test) distribution, thus raising a

transfer learning problem [6]. This issue will be discussed in section

5.

4 Experimental validation

A proof of principle of DIVA is given in a robotic framework (sec-

tion 4.1), based on a delayed transition model estimate (section 4.2)

and a continuity assumption (section 4.3). The experimental setting

and goals of experiments are described in section 4.4 and results are

reported and discussed in section 4.5.

4.1 Framework

The robotic platform is a Pandaboard, driven by the dual-core ARM

Cortex-A9 OMAP4430, with each core running at 1 GHz, and

equipped with 1 GB DDR2 RAM. The robot is equipped with a USB

camera with resolution (320×240), and color depth of monochrome

8bit. All experiments are done in-situ, taking place in a real labora-

tory full of tables, chairs, feet and various (moving) obstacles. Al-

though no model of the world (transition function or simulator) is

available, a cheap estimate thereof can be defined (see below).

The primary description of the robot state is given by its camera

image (in R
76800). A pre-processing step aimed at dimensionality

reduction and inspired from the SIFT (scale-invariant feature trans-

form) descriptors is used and operated on the Pandaboard using the

Linux OS. More precisely, SURF (speeded up robust feature) de-

scriptors are used, claimed to be several times faster and more ro-

bust against different image transformations than SIFT [5]. Finally,

each block of d × d contiguous pixels in the initial image is repre-

sented by an integer, the number of SURFs occurring in the block

(d = 1, 2, 4, 16 in the experiments, with d = 4 the best empirical

setting, and the only considered in the remainder of the paper). The

state space S is finally included in R
4800.

4.2 Delayed transition model estimate

In the following, the action space A includes three actions: Ahead,

Right and Left. The extension to richer and more gradual action

spaces is left for further work. As already mentioned, the definition

of a controller from a value function requires a transition model to

be available (Eq. (1)). Two working assumptions are done to over-

come the lack of an accurate transition model for the considered open

world.

Firstly, a delayed transition model estimate is defined as follows.

Let st−1 and st denote the states at time t − 1 and t respectively,

and assume that the action selected at time t− 1 is Ahead. Then, the

idea is that if the robot had turned right at time t − 1, it would have

seen approximately the same image as in st, but translated on the left;

additionally, some new information would have been recorded on the

rightmost camera pixels while the information on the leftmost pixels

would have been lost. In other words, given st = tr(st−1,Ahead)
one can compute an approximation of tr(st−1,Right), by a circular

shift of st. Let state st be described as a pixel matrix st[i, j] where

i = 1 . . . nw, j = 1 . . . nh and nw (respectively nh) is the width

(resp. height) of the camera image. Then,

tr(st−1,Right) ≈ {st[i+∆ (mod nw), j]}

where ∆ is a constant translation width (64 pixels in the experiments;

this will be relaxed in further work, section 5). Note that the un-

known rightmost pixels in tr(st−1,Right) are arbitrarily replaced by

the leftmost pixels in st; the impact of this approximation will be

discussed further.

More generally, given st = tr(st−1, a), a delayed transition

model estimate is given by

t̂r(st−1, a
′|a, st = tr(st−1, a)) = {st[i+ℓ(a, a′) (mod nw), j]}

where the translation width ℓ(a, a′) is ∆ (resp. −∆) if a= Ahead,

a′ =Right (resp. Left), and completed by consistency (Table 3).

a a′ ℓ(a, a′)

Ahead Right ∆
Left Ahead ∆
Left Right 2∆

a a′ ℓ(a, a′)

Ahead Left −∆
Right Ahead −∆
Right Left −2∆

(3)

This estimate is delayed as it is only available at time t, since

t̂r(st−1, a
′|a, st = tr(st−1, a)) is computed from st. To some ex-

tent, this estimate can cope with partially observable environments

(another robot of the swarm might arrive in sight of the current robot

at t, while it was not seen at time t − 1). On the other hand, the

estimation error is known to be concentrated in the peripheral pixels.

4.3 Continuity assumption

Given a value function V̂ ∗, the action at−1 which has been selected

at t−1 and the current state st, the delayed transition model estimate

defines what would have been the best action a∗
t−1 that should have

been selected at time t− 1 instead of at−1, after Eq. (1):

a∗
t−1 = argmax a∈A

{
V̂ ∗(t̂r(st−1, a|at−1, st))

}
(4)
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Figure 2: A lesion study: recording irrelevant states at the beginning

of the follower trajectory (the white board on the left and the author

feet on the right).

The continuity assumption posits that the environment changes

gracefully, implying that the action which was the most appropriate

at time t − 1 is still appropriate at time t. Along this line, the con-

troller defined from V̂ ∗ and noted π̂∗ selects at time t action a∗
t−1 as

defined by Eq. (4). A further assumption behind the definition of π̂∗

is that the noise of the delayed transition model estimate is moderate

with respect to V̂ ∗. In other words, it is assumed that the peripheral

pixels (unknown in truth and arbitrarily filled from st) are not key

to value function V̂ ∗ (the corresponding weights have low absolute

value).

4.4 Experimental setting

The controller goal is to enable the follower robot to follow the leader

robot.

Eleven trajectories are recorded. Each trajectory is initialized with

the follower positioned behind the leader at various locations in the

lab, and both robots operated with the constant policy π0(s) =
Ahead for 128 time steps. The i-th trajectory thus records the fol-

lower state s
(i)
t , t = 1 . . . 128. A computational time step amounts

to circa .5 second of real-time (two frames per second), due to the

on-board computation of the SURF descriptors. The value function

V̂ ∗ is learned from these trajectories as in section 3.2.

The primary goal of experiments is to study the performance of

controller π̂∗, in terms of the average time the follower can actually

follow the leader. Further, in order to allow for larger time horizons,

the controller run on the leader robot is an obstacle avoidance (Brait-

enberg) controller, enabling the leader to run for a couple of hundred

time steps before being stopped. Note that modifying the leader pol-

icy amounts to considering a different environment, making the goal

more challenging as the test setting differs from the training one: the

leader can turn abruptly upon seeing an obstacle, whereas it turns

only very gradually in the training trajectories.

The second goal of experiments is to assess the robustness of the

approach with respect to noise. A lesion study is conducted by per-

turbing the initial states in the training trajectories, e.g. recording

the images seen by the follower (e.g. the walls or the experimenter)

before the follower actually starts to follow the leader (Fig 2). The

value function learned from the perturbed trajectories and the asso-

ciated controller are referred to as NOISY-DIVA.

The DIVA approach and the merits of a rank-based approach are

also assessed by comparison with a simple regression based ap-

proach, referred to as REG-DIVA, where value function V̂ ∗ is re-

gressed from the training set E = {(s
(i)
t ,−t), i = 1 . . . 11, t =

1 . . . 128}.

Finally, the assumption that peripheral pixels are not relevant to

value function V̂ ∗ (section 4.3) is also examined, depicting the av-

erage weight of the value function for each (block of) pixel(s) in the

Figure 3: Comparative results of DIVA, NOISY-DIVA and REG-

DIVA: Histogram of the number of consecutive time steps the fol-

lower keeps on following a Braitenberg-operated leader, over 5 runs.

One time step corresponds to ca half a second, due to the on-board

computation of the SURF descriptors (2 frames per second).

image.

4.5 Results

The performance of the DIVA controller is assessed by learning V̂ ∗

from all 11 training trajectoriesin DIVA NOISY-DIVA and REG-

DIVA modes and running the associated π̂∗ controllers. Every con-

troller π̂∗ is launched on the follower robot for five runs. In each run,

the follower is initially positioned behind the Braitenberg-operated

leader, at various locations in the lab (same initial locations for DIVA,

NOISY-DIVA and REG-DIVA settings). In each run, the follower is

manually repositioned behind the leader when it loses the track.

The histogram over the 5 runs of the number of consecutive time

steps while the follower does follow the leader is displayed in Fig.

3, reporting the respective performances of DIVA, NOISY-DIVA and

REG-DIVA. As was expected, the best results are obtained for the

noiseless rank-based DIVA approach, followed by the noisy rank-

based NOISY-DIVA approach. The fact that some tracking sequences

are very short is explained as the leader meets very soon an obstacle

and turns fast, making the follower lose the track. Overall, the fol-

lower stays on the leader track for over 60 time steps in about 40%

of the experiments while the track was lost after 52.7 (+-20.6) time

steps in the training experiments.

The performance of the DIVA controller is also assessed on the

training trajectories along a leave-one-out procedure, learning 11

value functions V̂ ∗(i) from all trajectories but the i-th one. V̂ ∗(i) is

computed on the remaining i-th trajectory (Fig. 4). As expected, the

value of V̂ ∗(i) decreases along time. Interestingly, DIVA and NOISY-

DIVA exhibit similar behaviors, rapidly decreasing as t increases al-

though the value remains high for some runs; after visual inspection,

the drift occurs late for these runs. The behavior of REG-DIVA is

more erratic, which is explained as the regression setting is over con-

strained regarding the quality of the experiments, requiring all states

s
(i)
t to be associated to the same value −t.
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Figure 4: Comparative behavior of the value function V̂ ∗
i along time. A leave-one-out procedure is used: the value function is learned from all

but one trajectory, and its value on the remaining trajectory is reported. The value function learned by DIVA, NOISY-DIVA and REG-DIVA

are reported respectively on the left, middle and right.

Figure 5: Comparative behavior of controller π
V̂ ∗

i

on the test trajectory along time, for DIVA (left), NOISY-DIVA (medium) and REG-DIVA

(right).

The corresponding policy π̂∗(i)is plot in Fig. 5, where π̂∗(i)(s
(i)
t )

is indicated by a cross respectively on, above or below over the cen-

tral line depending on whether the selected action is Ahead, Right or

Left. The ground truth obtained by visual inspection of the logs is

reported below. It is seen that the policy generally selects the rele-

vant action, and becomes chaotic in the end of the trajectory as the

follower does no longer see the leader.

Finally, the working assumption that peripheral pixels hardly mat-

ter for the value function (section 4.3), implying that the noise of

the delayed transition model estimate does not harm the controller,

is confirmed by inspecting the average weight of the pixels in Fig. 6.

As could have been expected, the most important region is the central

upper one, where the leader is seen at the beginning of each training

trajectory; the low region overall is considered uninformative. In the

upper regions, the weight decreases from the center to the left and

right boundaries.

5 Discussion and perspectives

This paper has presented a proof of principle of the DIVA approach,

showing that elementary experiments can be used to “prime the

pump” of reinforcement learning and train a mildly competent value

function. Indeed, a controller with comparable performance might

have been manually written (hacked) easily. Many a student expe-

rience suggests however that the manual approach is subject to the

law of diminishing returns, as more and more efforts are required to

improve the controller as its performance increases.

The next step thus is to study the scalability of DIVA, e.g. by

gradually adding new logs to the training set. On-going experiments

consider the effects of adding the test trajectories (with Braitenberg-
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Figure 6: Average relevance of the visual regions to the value function for DIVA (left), NOISY-DIVA (medium) and REG-DIVA (right).

operated leader) to the training trajectories to retrain the value func-

tion.

The main current limitation of the approach concerns the small

size of the action space. Still, it must be noted that the delayed

transition model estimate naturally extends to fine-grained actions,

by mapping the group of movement actions on the group of image

translation vectors (section 4.2), thus enabling to determine the op-

timal action in a large action space. For computational efficiency,

the underlying requirement is that the target behavior be sufficiently

smooth. Currently, this requirement is hardly compatible with the

low number of frames per second, due to the on-board computation

of the SURF descriptors. On-going study is considering more afford-

able image pre-processings.

Another applicative perspective is to learn a docking controller,

enabling robots in a swarm to dock to each other. This goal is

amenable to a DIVA approach, as training trajectories can be eas-

ily obtained by initially setting the robots in a docked position, and

having every robot to undock and start wandering along time. Like

for the follower problem, the best state is the initial one and the value

of the robot state decreases along time, in the spirit of Murphy’s law.
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Large Scale Co-Regularized Ranking

Evgeni Tsivtsivadze1 and Katja Hofmann2 and Tom Heskes3

Abstract. As unlabeled data is usually easy to collect, semi-
supervised learning algorithms that can be trained on large
amounts of unlabeled and labeled data are becoming increas-
ingly popular for ranking and preference learning problems
[6, 23, 8, 21]. However, the computational complexity of the
vast majority of these (pairwise) ranking and preference learn-
ing methods is super-linear, as optimizing an objective func-
tion over all possible pairs of data points is computationally
expensive.

This paper builds upon [16] and proposes a novel large scale
co-regularized algorithm that can take unlabeled data into
account. This algorithm is suitable for learning to rank when
large amounts of labeled and unlabeled data are available for
training. Most importantly, the complexity of our algorithm
does not depend on the size of the dataset. We evaluate the
proposed algorithm using several publicly available datasets
from the information retrieval (IR) domain, and show that
it improves performance over supervised methods. Finally,
we discuss possible implications of our algorithm for learn-
ing with implicit feedback in an online setting.

1 Introduction and background

Our paper proposes an algorithm that is applicable to large
scale learning to rank. Unlike existing approaches the pro-
posed algorithm can take into account unlabeled data, lead-
ing to improved ranking performance. Learning to rank al-
gorithms have been successfully applied to various domains
such as IR [12], bioinformatics [13], and automated reasoning
[11]. One of the bottlenecks associated with ranking tasks is
the quadratic dependence on the size of the dataset. That is,
most of the (pairwise) methods suffer from the computational
burden of optimizing an objective defined over O(m2) possi-
ble pairs for data points, where m is the size of the dataset.
Usually, the complexity of ranking algorithms has super-linear
dependency on m, except the work of [16] where the use of
stochastic gradient descent on pairs results in an extremely
efficient training procedure with strong generalization per-
formance. Pairwise learning to rank with stochastic gradient
descent results in a scalable methodology that we refer to as
stochastic pairwise descent (SPD).
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In [16] it is demonstrated that such stochastic gradient
based learning methods provide state of the art results us-
ing a fraction of a second of CPU time for training. However,
SPD is only applicable to supervised learning problems. A
natural and useful extension of SPD is an extension to semi-
supervised learning, where, in addition to labeled data, a large
amount of unlabeled data is used for training. We address this
problem and present a large scale co-regularized ranking al-
gorithm for semi-supervised tasks.

Our large scale co-regularized ranking algorithm (LCRA) is
formulated within a multi-view framework. In this framework
the dataset attributes (i.e., features) are split into indepen-
dent sets and an algorithm is trained based on these different
“views”. The goal of the learning process is to find a prediction
function for every view performing well on the labeled data in
such a way that all prediction functions agree on the unlabeled
data. Closely related to this approach is the co-regularization
framework described in [18], where the same idea of agreement
maximization between the predictors is central. Recently it
has been demonstrated that the co-regularization approach
works well for various tasks e.g. domain adaptation [7], classi-
fication, regression [2], and clustering [3]. Moreover, theoreti-
cal investigations demonstrate that co-regularization reduces
the Rademacher complexity by an amount that depends on
the “distance” between the views [15, 19].

We think that our co-regularization algorithm is partic-
ularly promising in online learning to rank for IR settings,
where a search engine learns from the limited feedback that
can be inferred from direct interactions with a search engine
users. In this paper, we first focus on co-regularization (in
Section 2) and our co-regularized pairwise learning algorithm
(3 and 4). Finally, we discuss possible extensions to the online
learning to rank for IR setting (Section 5).

2 Large Scale Pairwise Learning to Rank
and Co-regularization

Consider a training set D = (X,Y,Q), where X =
(x1, . . . ,xm)T ∈ Rm contains n−dimensional feature vec-
tors of the data points, Y = (y1, . . . , ym)T ∈ Nm are the
scores/ranks, and Q = (q1, . . . , qm)T ∈ Nm are the indices for
identification to which group/query a particular data point
belongs. Note that each entry xi ∈ X consists of features
that encode the relation between a particular item (e.g., a
document) to group or query qi. In addition to the train-
ing set D = (X,Y,Q) with labeled data we have a train-
ing set D̂ = (X̂, Q̂) with unlabeled data points. Also, let us
consider M different hypotheses spaces H1, . . . , HM or so-
called views. These views stem from different representations
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of the data points, unique subsets of features. Finally, we de-
fine a set of candidate pairs P and P̂ (implied by the datasets
D and D̂) as the set of all tuples ((a, ya, qa), (b, yb, qb)) and
((a, qa), (b, qb)), where ya 6= yb and qa = qb.

Co-regularized algorithms are usually not straightforwardly
applicable to large scale learning tasks, when large amounts
of unlabeled as well as labeled data are available for training.
Several recently proposed algorithms have complexity that
is linear in the number of unlabeled data points and super-
linear in the number of labeled examples (e.g. cubic as in case
of co-regularized least squares [2, 23]). Such methods become
infeasible to use as the dataset size increases. In particular,
this applies to the pairwise learning setting (note that in the
worst case |P | grows quadratically with the dataset size).

2.1 Constructing the pairs

In the pairwise learning setting it is important to be able to
sample from |P | and |P̂ | without explicitly constructing the
datasets of pairs. Several approaches to address this problem
are suggested in [16]. For simplicity we adopt one of the most
basic techniques: we repeatedly select two examples (a, ya, qa)
and (b, yb, qb) from the data until a pair is found such that
ya 6= yb and qa = qb. Then we construct a feature vector of
the corresponding pair as p = a−b and the label y = ya−yb.

3 The Algorithm

Stochastic gradient based algorithms are amongst the most
popular approaches for large scale learning. Methods such
as Pegasos [17], LaSVM [1], GURLS [22] and many oth-
ers have been successfully applied to large scale classification
and regression problems, leading to state-of-the-art general-
ization performance. Recently, the SPD algorithm [16] has
been successfully used to address large scale learning to rank
tasks. The main idea is to sample candidate pairs from P
for stochastic steps, without constructing P explicitly. This
avoids dependence on |P |. In essence, the approach proposed
in [16] reduces learning to rank to learning a binary classi-
fier via stochastic gradient descent. This reduction preserves
the convergence properties of stochastic gradient descent. Our
algorithm is related to the above mentioned methods but is
preferable in case unlabeled data points are available for learn-
ing.

Let us consider the large scale co-regularized ranking algo-
rithm. We write the objective function as

J(W ) =

M∑
v=1

 |P |∑
i=1

L(pvi , yi;w
v) + λLR(wv)

 (1)

+µ

M∑
v,u=1
v 6=u

|P̂ |∑
i=1

LC(pvi ,p
u
i ;wv,wu),

where the first term corresponds to the loss function on
the labeled pairs and the second term to a regularization
on the individual prediction functions. The third is the co-
regularization term that measures the disagreement between
the different prediction functions on unlabeled pairs. Note
that W ∈ RM×n is a matrix containing weight vectors for
different views. Once the model is trained the final prediction

can be obtained, for example, by averaging individual predic-
tions for different views (as in [15]). We can approximate the
optimal solution (obtained when minimizing (1)) by means of
gradient descent

wv
t+1 = wv

t − ηvt∇wvJ(W ). (2)

Let us consider the setting in which the squared loss function
is used for co-regularization, and the L2 norm is used for regu-
larization. Choosing the squared loss for the co-regularization
term is quite natural as it penalizes the differences among the
prediction functions constructed for multiple views (similar
to the standard regression setting where the differences be-
tween the predicted and true scores are penalized). For every
iteration t of the algorithm, we first construct pairs via the
procedure described in section 2.1 and denote the set of se-
lected pairs by At ⊆ P of size k. Similarly we choose Ât ⊆ P̂
of size l for each round t on the unlabeled dataset. Let us also
denote by Avt the set At as seen in the view v. Then, we re-
place the “true” objective (1) with an approximate objective
function and write the update rule as follows

wv
t+1 = (1− ηvt λ)wv

t − ηvt
∑

(p,y∈Av
t )

∇L(pv, y;wv
t ) −

4µηvt

M∑
v,u=1
v 6=u

∑
(p,y∈Âv

t∪Â
u
t )

(
wvT
t pv −wuT

t pu
)
pv. (3)

Note that if we choose At to contain a single randomly se-
lected pair, we recover a variant of the stochastic gradient
method. In general, we allow At to be a set of k and Ât to be
a set of l data points sampled i.i.d. from P and P̂ , respectively.

Recall that in the setting described above we are solving
a learning to rank problem via reduction to classification of
pairs of data points. For classification tasks, the hinge loss
is usually considered as more appropriate, although in several
studies it has been empirically demonstrated that the squared
loss often leads to similar performance (see [14, 27]). The up-
date rule using the hinge loss is derived as follows. Let us
define Av+ to be the set of examples for which wv obtains a
non-zero loss, that is Av+ = {(pv, y) ∈ Avt : y〈pv,wv〉 < 1}.
Then by substituting the second term in equation (3) with
ηvt
∑

(p,y∈Av+) yp
v we obtain the update rule for the large

scale co-regularized algorithm with hinge loss. When the
squared loss function is used for labeled and unlabeled data
we obtain the update rule by substituting the second term in
equation (3) with ηvt

∑
(p,y∈Av

t )
(y−wvTpv)pv. Our large scale

co-regularized ranking algorithm has complexity of O(Md),
where d is the number of nonzero elements in pv. The pseu-
docode is shown in Algorithm 1.

4 Experiments

The task of ranking query-document pairs is a problem central
to document retrieval - given a query some of the available
documents are more relevant in regards to it than some oth-
ers. Because the user will usually be most interested in the
top results returned, document retrieval systems are typically
evaluated using performance measures such as mean average
precision (MAP).
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Algorithm 1 Large scale co-regularized ranking algorithm (LCRA-k-l)

Require: Datasets D and D̂, regularization parameter λ, batch sizes k and l, number of iterations N , number of views M ,
co-regularization parameter µ.

Ensure: W = 0
1: for t = 1, 2, . . . , N do
2: Construct At ⊆ P (using procedure from Sec 2.1), where |At| = k and Ât ⊆ P̂ , where |Ât| = l
3: for v = 1, 2, . . . ,M do
4: Set Av+t = {(pv, y) ∈ Avt : y〈pv,wv

t 〉 < 1}
5: Set ηvt = 1

λt

6: wv
t+1 ← (1− ηvt λ)wv

t − ηvt
∑

(p,y∈Av+
t )

ypv − 4µηvt
∑M
v,u=1
v 6=u

∑
(p,y∈Âv

t∪Â
u
t )

(
wvT
t pv −wuT

t pu
)
pv

7: Output W

To benchmark the performance of our algorithm we use
Letor 3.0 (LEarning TO Rank) - a collection of several
datasets extracted from corresponding IR data collections.
The whole collection consists of a set of document-query pairs.
Each document-query pair is represented as an example with
a quite small number of highly abstract features. Our exper-
iments are performed on each of the datasets separately. We
preprocess the datasets by normalizing all feature values to
values between 0 and 1 on a per query basis. We use the
classical learning setting, where 70% of the data is used for
training and the remaining 30% as testing. To simulate a semi-
supervised learning setting, a subset of 20% of the training
data is randomly selected to be used as labeled data. From
the remaining training data, labels are removed.

We compare the performance of our large scale co-
regularized ranking algorithm with several other methods,
namely the baseline - supervised - version of the algorithm
(without co-regularization), which is in equivalent to SPD [16]
and to the pairwise Pegasos algorithm [17]. We also compare
with the multi-view version of the algorithm, also excluding
the co-regularization term, referred to as SPD MV. The com-
parison is made with several instantiations of the large scale
co-regularized ranking algorithm, termed as LCRA-k-l, using
various sizes of unlabeled batch examples. For the supervised
learning algorithms, only the labeled part of the dataset is
used for training. The same set is then used for training the
co-regularized model, together with the unlabeled data.

Parameter selection for each model is done by 5-fold cross-
validation over the training partition of the data. For the su-
pervised models, parameters to be selected are learning rate
η0 and regularization parameter λ. For the supervised and
semi-supervised multi-view models we consider two views that
are constructed via random partitioning of the data attributes
into two unique sets. Such division of the attributes for con-
structing multiple views has been previously used in [2]. For
the multi-view model we have to estimate the learning rate
η0, as well as the λ1 and λ2 parameters. The semi-supervised
model has an additional parameter µ controlling the influence
of the co-regularization on model selection.

The results of our experiments are included in Table 1. It
can be observed that in all experiments the proposed LCRA
algorithm outperforms supervised learning methods. The ob-
tained results are expected, as it has been previously demon-
strated that co-regularization leads to improved classification
performance. Note that our algorithm can be considered a
pairwise classification approach for learning to rank.

Dataset LCRA-1-5 LCRA-1-1 SPD SPD MV

TD2003 0.15 0.11 0.10 0.11

TD2004 0.14 0.12 0.10 0.10

NP2003 0.54 0.54 0.47 0.49

NP2004 0.51 0.48 0.44 0.45

HP2003 0.60 0.57 0.50 0.52

HP2004 0.52 0.50 0.45 0.45

OHSUMED 0.33 0.31 0.29 0.30

Table 1. MAP-performance comparison of the LCRA algorithm
and the baseline methods on the Letor dataset. Note that results

of supervised learning algorithms are not comparable to
previously reported benchmarks on Letor dataset due to the fact

that they are trained only on 20% of the labeled data points.

5 Co-regularization in Online Learning to
Rank for IR

In the previous sections we introduced a co-regularization al-
gorithm for semi-supervised learning to rank. We think that
this approach is particularly promising in the context of online
learning to rank for IR, and discuss its application below.

In online learning for IR a search engine learns improved
ranking functions by directly interacting with a user4 [10, 25].
It is typically modeled as a contextual bandit problem5 [20],
where the query is the context provided by the user, and feed-
back can be inferred from user clicks on result documents that
the search engine returned in response to the query.

5.1 Online learning for IR

The most important difference between the online learning
to rank setting and the traditionally considered supervised
learning to rank for IR setting is the feedback available to the
learning algorithm. Like in other reinforcement learning (RL)
settings [20], a retrieval system that learns from user interac-
tions can only infer feedback about the documents or docu-
ment rankings that it actually presents to the user (and that
are inspected by the user). This results in much more limited
information to learn from than is available in the supervised

4 Here we use online in the RL sense, meaning that learning and
application of the learned solution are performed at the same
time. Note that this differs from the term’s use in the optimization
literature, where is usually refers to the scalability of algorithms.

5 Contextual bandit problems are a type of reinforcement learning
problem actions (i.e., presented documents) depend on the con-
text (i.e., the query), but not on previous interactions between
system and environment.
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setting, where it is assumed that labels are exhaustive [24], or
sampled in some systematic way [4].

In addition to the limited amount of feedback available in
the online learning to rank for IR setting, the quality of the
feedback is constrained as follows. Users of a retrieval system
expect a ranked list of results, that is more or less ordered
by the usefulness of these results given their information need
(expressed as e.g., a text query). Consequently, they are most
likely to inspect results presented at the top of the returned
result list, and continue examining and/or interacting with
documents at subsequently lower ranks until their informa-
tion need is met, or until they run out of time, patience, or
some other restricted resource. For the most effective learning
outcomes, this means that the documents (or pairs of docu-
ments) on which feedback would be most useful for learning
should be presented first (we call this strategy of presenting
result documents exploration). However, the documents that
are most useful for learning may not be the ones that are
most likely to fulfill the users information need (exploitation).
Consequently, an effective learning algorithm should balance
exploration and exploitation to optimize online performance,
i.e., performance while learning from user interactions.

5.2 Related work

Several recent approaches address the problem of learning to
rank for IR in an online setting. Yue et al. formulate the
Dueling Bandit problem [26] and the K-armed Bandit prob-
lem [25]. In both formulations, learning is based on observ-
ing pairwise feedback on complete rankings, obtained using
so-called interleaved comparison methods, where user clicks
are observed on specially constructed result lists that allow
inferring a preference between the two rankings [5, 9]. The
algorithms proposed to address these tasks follow an exploit-
then-explore approach, where it is assumed an algorithm can
learn quickly before starting to exploit what has been learned,
and performance while learning is largely ignored.

Follow-up work suggests that online performance can be
improved by balancing exploration and exploitation [10]. In
this work, it was shown that different learning approaches
are affected by a balance of exploration and exploitation in
different ways. For the listwise Dueling Bandit approach, it
was shown that the originally proposed, purely exploratory
algorithm over-explored, and that effective learning could be
achieved by injecting only two exploratory documents into
an otherwise exploitative result list. For the alternative pair-
wise approach, that is the most similar to the SPD approach
evaluated in this paper, it was found that a purely exploita-
tive algorithm performed very well when feedback could be
reliably inferred from user clicks. However, when user feed-
back was noisy, bias introduced by the preference of users for
higher-ranked results caused learning outcomes to deteriorate
dramatically. To combat this performance loss, exploration
had to be increased (which, in its simplest form can consist
of random exploration).

5.3 Relation to online co-regularization

The co-regularization algorithm presented in this paper is di-
rectly applicable to existing pairwise learning approaches for
the online learning to rank for IR setting. Because labeled

feedback is particularly limited in the start-up phase of an on-
line learning task, high initial learning gains are expected in
this setting when easily obtainable unlabeled data can be used
to complement this data. The resulting higher-quality result
lists are expected to result in more reliable feedback [10]. As a
result, learning could be sped up while reducing the need for
exploration, leading to increased online performance. An ex-
perimental investigation of this hypothesis will be conducted
in follow-up work.

6 Conclusion

In this paper we have presented a large-scale co-regularized
algorithm for ranking and preference learning. Our algorithm
can use unlabeled data to improve learning when labeled data
is scarce. Our experiments on 7 standard learning to rank
data sets show that our co-regularization component con-
sistently improves performance over algorithms without co-
regularization. We think that this approach can be particu-
larly beneficial in an online learning to rank setting, where
algorithms learn directly from interacting with users and ef-
fective use of limited feedback is paramount. We conclude
with a brief outlook on future work in this area.
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First Steps Towards Learning from Game Annotations
Christian Wirth and Johannes Fürnkranz 1

Abstract.
Most of the research in the area of evaluation function learning is

focused on self-play. However in many domains, like chess, expert
feedback is amply available in the form of annotated games. This
feedback comes usually in the form of qualitative information due to
the inability of humans to determine precise utility values for game
states. We are presenting a first step towards integrating this qual-
itative feedback into evaluation function learning by reformulating
it in terms of preferences. We extract preferences from large-scale
database for annotated chess games and use them for calculating the
feature weights of a heuristic chess position evaluation function. This
is achieved by extracting the feature weights out of the linear ker-
nel from a learned SVMRANK model, based upon the given prefer-
ence relations. We evaluate the resulting function by creating multi-
ple heuristics based upon different sized subsets of the trainings data
and compare them in a tournament scenario. Although our results did
not yield a better chess playing program, the results confirm that pref-
erences derived from game annotations may be used to learn chess
evaluation functions.

1 Introduction

For many problems, human experts are able to demonstrate good
judgment about the quality of certain courses of actions or solution
attempts. Typically, this information is of qualitative nature (e.g., “A
treatment a is more effective than treatment b), and cannot be ex-
pressed numerically without selecting arbitrary values. This is due to
the fact that humans are not able to determine a precise utility value
of an option, but are typically able to compare the quality of two op-
tions. The emerging field of preference learning tries to make this
information usable in the field of machine learning, by introducing
concepts and methods for applying qualitative preferences to a wide
variety of learning problems [12].

In the game of chess, qualitative human feedback is amply avail-
able in the form of game notations. For example, the company
Chessbase3 specializes in the collection and distribution of chess
databases. Their largest database contains annotations for over 66000
games, according to the official page. However, this rich source of in-
formation about the game has so far been ignored in the literature on
machine learning in chess [21, 11]. Much of the work in this area has
concentrated on the application of reinforcement learning algorithms
to learn meaningful evaluation functions [3, 4, 7]. These approaches
have all been modeled after the success of TD-Gammon [24], a learn-
ing system that uses temporal-difference learning [22] for training a
game evaluation function [23]. However, all these algorithms were
trained exclusively on self-play, entirely ignoring human feedback
that is readily available in annotated game databases.

1 TU Darmstadt, Germany, [cwirth,juffi]@ke.tu-darmstadt.de

In this paper, we report the results of a first study that aims at learn-
ing a heuristic function for chess based on a large amount of quali-
tative feedback from experts available in annotated game database.
In particular, we show how preferences can be extracted from chess
databases, and show how state-of-the-art ranking algorithms can be
used to successfully learn an evaluation function. The learning setup
is based on the methodology used in [16], where it has been used for
learning evaluation functions from move preferences of chess play-
ers of different strengths. However, to our knowledge this is the first
work that reports on results from learning evaluation functions from
game annotations.

In Section 2, we are explaining which information can be con-
tained in annotations for chess games, especially concerning portable
game notation files with numeric annotation glyphes [8]. A widely
available data format. Section 3 details the object ranking by pref-
erences method in general, as well as how to extract the preference
information. In our experimental setup (Section 5), we are training
a SVM with the preference data, based upon the state feature val-
ues given by a strong chess engine. This enables the creation of a
new heuristic evaluation function by using the learned (linear) SVM
model. The quality of the resulting function is evaluated in a chess
engine tournament. Section 7 is concluding the paper and gives a
short overview over possible further work.

2 Game Annotations in Chess
Chess is a game of great interest, which has generated a large amount
of literature that analyzes the game. Particularly popular are game
annotations, which are frequently published after important or inter-
esting games have been played in tournaments. These annotations
reflect the analysis of a particular game by a (typically) strong pro-
fessional chess player., They have been produced without any time
constraints, and the annotators can resort to any means they deem
necessary for improving their judgement (such as consulting col-
leagues, books, or computers). Thus, these annotations are usually
of a high quality.

Annotated chess games are amply available, not only in chess
books or magazines. Chess databases, such as those provided by
companies like Chessbase3, are storing millions of games, many of
them annotated. Chess players of all strengths use them regularly to
study the game or to prepare against their next opponent.

Chess annotators use a standardized set of symbols for annotating
moves and positions, which have been popularized by the Chess In-
formant book series. Portable game notation (PGN) files are chess
games recorded in standard algebraic notation with optional nu-
meric annotation glyphes (NAG) [8]. Those annotation symbols can
be divided into three major categories: move, position and time eval-
uation.
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Figure 1. An annotated chess game (screen-shot taken from
http://chessbase.com/).

move evaluation: Each move can be annotated with a symbol indi-
cating its quality. Six symbols are commonly used:

• very poor move (??),

• poor move (?),

• speculative move (?!),

• interesting move (!?),

• good move (!),

• very good move (!!).

position evaluation: Each move can be annotated with a symbol in-
dicating the quality of the position it is leading to:

• white has a decisive advantage (h),

• white has a moderate advantage (c),

• white has a slight advantage (f),

• equal chances for both sides (j),

• black has a slight advantage (g),

• black has a moderate advantage (e),

• black has a decisive advantage (i),

• the evaluation is unclear (k).

time evaluation: Each move can be annotated with a symbol indi-
cating a time constraint that arose at this move. This information
is not used in our experiments.

In addition to annotating games with NAG symbols, annotators
can also add textual comments and move variations to the game, i.e.,
in addition to the moves that have actually been played in the course
of the game, an annotator provides alternative lines of play. Those
are usually suggestions in the form of short move chains that are
leading to more promising states than the move chain used in the
real game. Variations can also have NAG symbols, and may contain
subvariations.

Figure 1 shows an example for an annotated chessgame. The left-
hand side shows the game position after the 13th move of white.
Here, black is in a difficult position after the mistake he made.
(12...Qg6? ). From the suggested moves, 13...a5?! is the best, but

even here white has the upper hand at the end of the variation
(18.Rec1!c ), as well as in the end of the suggested move chain
starting with 13...QXc2 . On the other hand, 13...NXc2?? is an even
worse choice, ending in a position that is clearly lost for black (h).

It is important to note that this feedback is of qualitative nature,
i.e., it is not clear what the expected reward is in terms of, e.g., per-
centage of won games from a position with evaluation c. However,
it is clear that positions with evaluation c are preferable to positions
with evaluation f or worse (j, g, e, i).

Also note that the feedback for positions typically applies to the
entire sequence of moves that has been played up to reaching this
position (a trajectory in reinforcement learning terminology). The
qualitative position evaluations may be viewed as providing an eval-
uation of the trajectory that lead to this particular position, whereas
the qualitative move evaluations may be viewed as evaluations of the
expected value of a trajectory that starts at this point.

However, even though there is a certain correlation between these
two types of annotations (good moves tend to lead to better positions
and bad moves tend to lead to worse positions), they are not inter-
changable. A very good move may be the only move that saves the
player from imminent doom, but must not necessarily lead to a very
good position. Conversely, a bad move may be a move that misses
a chance to mate the opponent right away, but the resulting position
may still be good for the player.

3 Learning an Evaluation Function from
Preferences

For learning the mentioned SVM model, it is required to formulate
the task as a binary classification problem. We are showing how this
can be done by using preference learning.

3.1 Preference Learning
Preference learning is about inducing predictive preference mod-
els from empirical data. This establishes a connection between ma-
chine learning and research fields like preference modeling or deci-
sion making. Especially “learning to rank by preferences” is deemed
promising by the community. Preference learning can be applied to
label ranking, by defining preferences over a set of labels concern-
ing a specific set of objects [25]. But it is also possible to define
preference directly over a set of objects, for creating a ranking of
those objects [14]. Preferences themselves are constraints that can
be violated, which leads to higher flexibility concerning the solv-
ing process, opposed to hard constraints. These constraints can be
described via a utility function or preference relations. [12] We are
only considering preference relations in this work, because they can
be represented in a qualitative manner.

Object Ranking is about learning how to order a subset of objects
out of a (potentially infinite) reference set Z . Those objects z ∈ Z
are usually given as a vector of attribute/value pairs, but this is no
necessary property. The trainings data is given in the form of rank-
ings, which is decomposed into a finite set of pairwise preferences
zi � zj. The object ranker is then learning a ranking function f(·)
which returns a (ranked) permutation of a given object set. [12]

3.2 States and Actions
In chess, we are searching for the best action a ∈ A for a state s ∈
S. For game tree exploration concerns or suboptimal play, it can also
be required to determine the expected quality of an suboptimal action
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a′ ∈ A. When defining this quality in a relative way, as opposed
to an absolute value, we are searching for a rank. Because of the
high amount of legal states in chess (roughly 1050 states [2]), it is
not feasible to learn those ranking functions directly. Considering the
chess transition function f : S×As → Ss, with Ss ⊂ S as the set of
states that can be reached from s by an action a ∈ As possible in s,
we can rewrite the problem as the search for a ranking for all s ∈ Ss

. This ranking is also not dependent on the current state s, because
the state/action history is not relevant for a chess state (excluding the
fifty-moves and the threefold repetition draw rules). This reduces the
problem to a object ranking problem over all s ∈ S.

3.3 SVM-based ranking
Following [16], we can use state preferences of the form si � sj for
training the SVMRANK ranking support vector machine proposed
by [13].2 Its key idea is to reinterpret the preference statements as
constraints on the evaluation function, i.e.,

si � sj ⇔ h(si) > h(sj).

If the function h is a linear, i.e., it is a weighted sum

h(s) =
∑
f

wf · f(s)

of features f , the latter part is equivalent to

h(si − sj) =
∑
f

wf · f(si − sj)

=
∑
f

wf · (f(si)− f(sj)) > 0

Thus, essentially, the training of the ranking SVM corresponds to the
training of a classification SVM on the pairwise differences si − sj

between positions si and sj . The pairwise ranking information can
thus be converted to binary training data in the form of a feature
distance vector

−→
A with the preference relation r ∈ {<,>} as the

binary class vector.

4 Generating Preference Data from Game
Annotations

The training data that are needed for an object ranking algorithm
like SVMRANK can be generated from game annotations of the type
discussed in Section 2. For our first experiments, we only focused on
move preferences, and ignored state preferences.

Our algorithm for generating preferences from move annotations
is sketched in Algorithm 1: a given list of games G in PGN format
is parsed, and triplets (s,a,n),n ∈ Ns,a with Ns,a being the list
of NAG in (s, a) are created for each occurrences of a NAG sym-
bol. A state is represented by its Forsyth-Edwards Notation (FEN).
It is a serialized representation of the game board, capturing all data
that is required to uniquely identify a chess state [8]. Actions are
saved in the Long Algebraic Notation (LAN). After collecting this
data for every game, all triples containing the same FEN state are
compared. The NAG symbols are checked against a static relation
list and a pairwise preference relation for the attached actions is cre-
ated, if possible. The static relation table contains entries like n1:??
n2:!? → n1 < n2. In rare cases, we may get multiple conflicting
annotations for a pair (s,a), which are then ignored.

2 Available from http://svmlight.joachims.org.

Algorithm 1 Preference Generation
Require: list of games G, initial position s0

1: triples← ∅, prefs← ∅, seen← ∅
2: for all g ∈ G do
3: s← s0
4: for all (a,Ns,a) ∈ g do
5: s← MOVE(s, a)
6: for all n ∈ Ns,a do
7: triples← triples ∪ {(s, a, n)}
8: seen← seen ∪ {s}
9: end for

10: end for
11: end for
12: for all s′ ∈ seen do
13: for all Ns′,a, Ns′,a′ ∈ triples with a 6= a′ do
14: r ← RELATION(Ns′,a, Ns′,a′)
15: if r 6= ∅ then
16: s1 ← MOVE(s′, a), s2 ← MOVE(s′, a′)
17: prefs← prefs ∪ {(s1, s2, r)}
18: end if
19: end for
20: end for
21: return prefs

When applying this algorithm to the example given in
Figure 1, it would yield the following action preferences:
(s, QXc2 �NXc2 ),(s,a5 �NXc2 ),(s,a5 �QXc2 ) with s be-
ing the state shown in the example.

In a last step, action preferences (s,a1 � a2) are converted to
state preferences by applying a1 and a2 to s, resulting in state pref-
erences s1 � s2, where si = MOVE(s,ai). A practical problem
is, that annotated moves are usually not leading to a stable state to
which the qualitative evaluation can be directly applied. For exam-
ple, in the middle of an exchange sequence, the first player will be
behind by one piece after the initial move but may gain a significant
advantage after a short chain of moves. For this reason, preferences
are not applied to the positions si, but to quiet positions that result
from a fixed-depth search starting in si (we use depth 7), followed by
a quiescence search. The positions s̄i at the leaves of these searches
are then used in the state preferences.

Additionally, most variations added to the PGN data are also move
chains and not single moves, hence we are applying the suggested
move chain to the state and not only the first, single move. This is
implemented in step 16 of algorithm 1.

5 Experimental Setup

For showing the usefulness of preference data, we are training a
SVM model based on preference data generated from annotated
chess games (Section 5.1), and employ it in the strong open source
chess engine CUCKOO (Section 5.2). All states are represented by the
heuristic features created by the position evaluation function. Train-
ing a linear kernel model allows us to simply extract the feature
weights for the linear sum function. The quality of the preferences
can now be analyzed by comparing the playing strength of our re-
weighted chess engine.
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Feature Type # Features Description
material difference 1 Difference in the sum of all piece values per player.
piece square 6 Position dependent piece values by static piece/square tables. A single value for every piece type.
pawn bonus 1 Bonus for pawns that have passed the enemy pawn line , while also considering its distance to the enemy

king.
trade bonus 2 Bonus for following the “when ahead trade pieces, when behind trade pawns” rules.
castle bonus 1 Evaluates the castling possibility.
rook bonus 1 Bonus for rooks on (half-) open files.
bishops scores 2 Evaluating the bishops position by attack possibilities, if trapped and relative positioning.
threat bonus 1 Difference in the sum of all piece values under attack.
king safety 1 Evaluates the kings position relative to the rooks.

Table 1. Features used in the linear evaluation function of the CUCKOO chess engine.

5.1 ChessBase

As a data source we are using the Mega Database 2012, provided by
Chessbase.3 To the authors’ knowledge, it is the largest database of
professionally annotated chess games available. The annotations are
commonly, but not exclusively provided by chess grandmasters. In
this first study, we only considered action preferences, and ignored
state preferences, mostly because of complexity considerations.

In the more than 5 million games contained in the database,
we identified 86,767 annotated games with 1.67 million annotated
moves in total. 343,634 NAG symbols occurred pairwise concern-
ing the same state, but different moves. Out of these, the preference
generation process yielded 271,925 preferences with 190,143 being
unambiguous and not equal. The rest are incomparable symbol pairs,
and were ignored in our data generation process.

5.2 CUCKOO Chess Engine

We used the CUCKOO chess engine4 for our experiments, because
of its combination of high playing strength5 and good modifiability.
It facilitates BitBoards [19, 1] as state representation and NegaScout
[18] as search algorithm.

Most state of the art chess engines are using a heuristic position
evaluation function, while searching for the best, currently reach-
able position with enhanced Alpha-Beta search algorithms like Ne-
gaScout. For performance reasons, evaluation functions are com-
monly linear sums over abstract, manually constructed features. Usu-
ally, features like material difference or usefulness of pieces in their
current position are used. Table 1 shows the 16 features shown by
CUCKOO. We used these features for describing a state.

The CUCKOO Chess Engine was used in a single thread configu-
ration. All experiments haven been executed on systems with 2 cores
or more, ensuring independence of the available computing power
for each player.

5.3 Training Data

In our experimental setup, we are creating the object preferences as
described in Section 4. The pairwise preference data is used as train-
ing data for SVMRANK, which is an optimized implementation of
the SVM based ranker described in 2.4, which can handle pairwise

3 http://www.chessbase.com/
4 http://web.comhem.se/petero2home/javachess/
5 http://www.computerchess.org.uk/ccrl/

preference data directly [13]. The feature weights can now be ex-
tracted out of the SVMRANK model and be applied to the CUCKOO

chess engine.
The features have not been standardized or normalized, because

they are already internally normalized to a pico-pawn scale, hence
no significant improvement in classification accuracy was expected.
This was also confirmed in experiments.

Annotators can disagree concerning the exact quality of a move,
but the same relative outcome is expected when comparing two
moves. E.g. an annotator may use n1:? instead of n1:??, but not
n1:!! if the consensus is n1 < n2, n2:!?. Tests confirmed the ex-
pected low amount of directly contradicting preferences (< 0.2%),
but it is still possible for subsets to indicate a different valuation of
features.

We created 6 different engines, based upon different training set
sizes. 5%, 10%, 25%, 50%, 75% and 100% randomly sampled ele-
ments of the available preference data have been used to create the
different engines. The results have been generated by averaging over
three all-against-all tourneys, including the player with the original
feature weighting as upper bound and a random player as baseline.
The random engine is picking new random weights for each posi-
tion evaluation. The distribution for those weights is a uniform distri-
bution, bounded by the min/max values observed within all learned
SVMRANK models. Each pairing played 100 games with a 5min
timeframe and no increments.

5.4 Evaluation

All results are reported in terms of Elo ratings [9], which is the com-
monly used rating system for rating chess players. It not only consid-
ers the absolute percentage of won games, but also takes the strength
of the opponent into account. A rating difference of a 100 points ap-
proximately means that the stronger player has an expected win rate
of 5/8. It also enables the reporting of upper and lower bounds for the
playing strength of each player. For calculating the Elo values, a base
Elo of 2600 was used, because this it the rating for the Cuckoo Chess
Engine as reported by the Computer Chess Rating List6. It should
be noted that computer engine Elo ratings are not directly compa-
rable to human Elo ratings, because they are typically estimated on
independent player pools, and thus only reflect relative strengths.

6 http://www.computerchess.org.uk/ccrl/
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6 Results
6.1 Predictive Accuracy
We first compared the predictive accuracy of different classifiers on
the binary classification problem of learning a preference relation
from the collected preference set. The binary classification accuracy
a can be compared to the average amount of swapped pairs over all
pairs metric e of the original ranking problem by a = 1 − e. The
Weka7 implementation of all classifiers was used, if not stated other-
wise.

Table 2 shows that multilayer perceptrons and random forests
yielded the best results, whereas LIBLINEAR and SVMRANK per-
formed the worst. This seems to indicate that a non-linear combina-
tion of the base features is able to yield a better performance than the
linear combination that is used in the chess program.

We can also see the performance of the original position evalu-
ation function of CUCKOO, which is a linear function that assigns
a uniform weight to all features. IT is somewhat higher than the
trained linear functions, but considerably below the best non-linear
functions.

Classifier Accuracy
MULTILAYER PERCEPTRON [5] 0.6871
RANDOM FOREST [6] 0.6864
NAIVE BAYES TREE [15] 0.6799
J48 [17] 0.6719
PEGASOS [20] 0.6651
LIBLINEAR8[10] 0.6521
SVMRANK9[13] 0.6505
CUCKOO 0.6620

Table 2. Comparison of the predictive performance of different classifiers
and the CUCKOO chess engine (10-fold CV).

6.2 Playing Strength
For evaluating the playing strength we were limited to using a lin-
ear evaluation function because only those could be easily plugged
into the chess program. We chose evaluation functions learned by
SVMRANK. Figure 2 shows the development of the rating over the
percentage of used preferences in the training data. It is clearly rec-
ognizable in that an increase in the amount of used preference data
is leading to an improved chess engine, which we take as evidence
that the game annotations provide useful information for learning an
evaluation function. The playing strength is clearly above the random
baseline, which reached an average Elo rating of 2332±32, but well
below the original player and its average Elo rating of 2966± 43.

6.3 Stability
The player that was trained on 5% of the data is a clear outlier, re-
sulting from the comparably high variance in the training data at this
point. The variance of the feature weights at this setting is shown in
Figure 3.

However, most features are showing convergence and a mostly sta-
ble average value. Figure 4 shows the development of the feature

7 http://www.cs.waikato.ac.nz/ml/weka/
8 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
9 http://www.cs.cornell.edu/people/tj/svm_light/svm_
rank.html
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Figure 2. Learning curve, measured in Elo rating.

values (average, standard deviation and min/max values) for all fea-
tures. The 10 features in the left and the middle graph are quite sta-
ble, whereas the features in the right graph are rather unstable. For
the features castleBonus and bishopB, a possible explanation could
be the sparsity of these values. The feature value difference for these
values is 0 in 84.6% and 99.7%, respectively, of all training exam-
ples.

7 Conclusion

This paper presented the results of a preliminary study that uses ex-
pert feedback in the form of game annotations for the automated
construction of an evaluation function for the game of chess. It
was shown how annotated chess games can be used for the cre-
ation of preference data. This is especially interesting because of the
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Figure 3. Learned weight for the 5 most variant features, based on 10
different 5% samplings
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widespread availability of annotated chess games, which enables the
creation of large-scale datasets.

Following the approach shown by Paulsen et al [16], the prefer-
ences have been successfully used to learn the feature weights for
an position evaluation function. It can be observed, that the playing
strength of the chess engine is scaling with the amount of trainings
data. This is a first step towards using qualitative feedback in game
playing scenarios.

However, alhthough we can observe a correlation with the amount
of seen preferences and the playing strength of the learned players,
their overall strength was not able to reach the strength of the orig-
inal player. We still have to investigate the reasons for this, but it
should be noted that the original feature weighting is outperforming
the learned weights. Thus, SVMRANK was only able to find subop-
timal feature weights.

Moreover, in this work we have essentially ignored state pref-
erences and focused on action preferences. The reason for this
was pragmatic, because action preferences relate to a single state,
whereas state preferences can be widely compared, even across mul-
tiple games. For example, every position evaluated with h can be
considered to be better than every position evaluated with j, all of
which can, in turn, be considered to be preferred over positions that
are evaluated with i. This approach gives rise to a vast number of
preferences. One could consider to only apply this to positions of the
same game, because different annotators may have a different cali-
bration of the used symbols. This would also reduce the complexity.
These issues are currently under investigation.
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181–201.

[15] R. Kohavi, ‘Scaling up the accuracy of naive-bayes classifiers: a
decision-tree hybrid’, in Proceedings of the 2nd International Confer-
ence On Knowledge Discovery And Data Mining, pp. 202–207. AAAI
Press, (1996).

[16] P. Paulsen and J. Fürnkranz, ‘A moderately successful attempt to train
chess evaluation functions of different strengths’. In C. Thurau, K.
Driessens, and O. Missura (eds.) Proceedings of the ICML-10 Work-
shop on Machine Learning and Games, Haifa, Israel, (2010).

[17] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo, CA, 1993.

[18] A. Reinefeld, ‘An improvement to the scout tree-search algorithm’, In-
ternational Computer Chess Association Journal, 6(4), 4–14, (Decem-
ber 1983).

[19] A. L. Samuel, ‘Some studies in machine learning using the game of
checkers’, IBM Journal on Research and Development, 3, 210–229,
(1959).

[20] Y. Singer and N. Srebro, ‘Pegasos: Primal estimated sub-gradient solver
for SVM’, In Z. Ghahramani (ed.) Proceedings of the 24th International
Conference on Machine Learning (ICML-07), pp. 807–814, (2007).

[21] S. S. Skiena, ‘An overview of machine learning in computer chess’, In-
ternational Computer Chess Association Journal, 9(1), 20–28, (1986).

[22] R. S. Sutton, ‘Learning to predict by the methods of temporal differ-
ences’, Machine Learning, 3, 9–44, (1988).

[23] G. Tesauro, ‘Practical issues in temporal difference learning’, Machine
Learning, 8, 257–278, (1992).

[24] G. Tesauro, ‘Programming backgammon using self-teaching neural
nets’, Artificial Intelligence, 134(1-2), 181–199, (January 2002). Spe-
cial Issue on Games, Computers and Artificial Intelligence.
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