
20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE
ECAI 2012

Proceedings

WORKSHOP ON COMBINING

CONSTRAINT SOLVING WITH

MINING AND LEARNING

CoCoMile 2012

August 27, 2012
Montpellier, France

Workshop Organization

Workshop Co-Chairs

Remi Coletta (LIRMM, University of Montpellier, France)
Tias Guns (K.U. Leuven, Belgium)
Barry O’Sullivan (University College Cork, Ireland)
Andrea Passerini (University of Trento, Italy)
Guido Tack (Monash University, Australia)

Program Committee

Rolf Backofen (Albert-Ludwigs-Universität)
Roberto Battiti (Universitŕ degli Studi di Trento)
Hadrien Cambazard (University College Cork)
Fabrizio Costa (Albert-Ludwigs-Universität)
Bruno Cremilleux (Université de Caen)
James Cussens (University of York)
Ian Davidson (University of California)
Michelangelo Diligenti (Universitŕ degli Studi di Siena)
Paolo Frasconi (Universitŕ degli Studi di Firenze)
Alan Frisch (University of York)
Fosca Giannotti (ISTI - CNR)
Emmanuel Hebrard (LAAS-CNRS)
Frank Hutter (University of British Columbia)
Matti Järvisalo (University of Helsinki)
Raoul Medina (Université Blaise Pascal)
Mirco Nanni (ISTI - CNR)
Peter Nightingale (University of St Andrews)
Siegfried Nijssen (KULeuven)
Jean-Marc Petit (Université de Lyon)
Thierry Petit (Ecole des Mines de Nantes)
Cédric Piette (Université d’Artois)
Salvatore Ruggieri (Universitŕ degli Studi di Pisa)
Christian Schulte (KTH - Royal Institute of Technology)
Meinolf Sellman (Brown University)
Helmut Simonis (University College Cork)
Peter J. Stuckey (University of Melbourne)
Pascal Van Hentenryck (Brown University)
Paolo Viappiani (Aalborg University)
Toby Walsh (University of New South Wales)
Nic Wilson (University College Cork)

Preface

The field of constraint solving has traditionally evolved quite independently from those
of machine learning and data mining. In recent years, interest has been growing on
the connections between these fields, and the potential advantages of their integration.
Integration can work in two ways, on the one hand, various types of constraint solvers
can be included in machine learning and data mining algorithms, for example to provide
a uniform and effective way to characterize the desired solutions; on the other hand,
machine learning can help in addressing constraint satisfaction problems, both at the
level of search, by improving search or integrating intelligent meta-heuristics, as well as
at the level of modelling, for example by learning constraints or interactively supporting
a decision maker.

While promising initial results have been achieved in such directions, many options
are unexplored and further research is needed in order to establish a systematic approach
to this integration. The best way to reach the full potential of such integrations is in a
multi-disciplinary way.

Goals The main purpose of this workshop is to provide an open environment where
researchers in machine learning, data mining and constraint solving can exchange ideas
and discuss promising approaches, crucial issues, open problems and interesting for-
malizations of new tasks. To encourage this, we will allow three different types of
submissions: original contributes (unpublished work) relevant contributions recently
submitted or published elsewhere (only oral) vision statements, works in progress and
short overviews

Program The program includes three invited talks:

– Siegfried Nijssen (K.U. Leuven, Belgium):
Constraint programming and data mining

– Holger Hoos (University of British Columbia, Canada):
SATzilla: Portfolio-based Algorithm Selection for SAT

– Francesca Rossi (University of Padova, Italy):
Constraint-based preference modelling and elicitation

We received 14 submissions, of which 3 were rejected. The final program contains
7 papers that were accepted for oral presentation and 4 papers that were accepted as a
poster.

Table of Contents

A MIP Formulation for Setwise Max-Margin Learning . 5
Paolo Viappiani

Algorithm Configuration for Portfolio-based Parallel SAT-Solving 7
Holger Hoos, Kevin Leyton-Brown, Torsten Schaub and Marius Schneider

An Efficiently Learnable Constructive Method for Graphs 13
Fabrizio Costa

Analyzing manuscript traditions using constraint-based data mining 15
Tara Andrews, Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Marc
Denecker, Stef De Pooter, Caroline Macé and Jan Ramon

Column generation for exact BN learning: Work in progress 21
James Cussens

Constrained-based Learning for Text Categorization . 23
Claudio Sacca, Salvatore Frandina, Michelangelo Diligenti and Marco Gori

Instance-specific Parameter Tuning via Constraint-based Clustering 29
Lindawati, Hoong Chuin Lau and Feida Zhu

Learning-to-rank with Prior Knowledge as Global Constraints 35
Tizano Papini and Michelangelo Diligenti

Using SAT and SQL for Pattern Mining in Relational Databases 41
Emmanuel Coquery, Jean-Marc Petit and Lakhdar Sais

XQuake as a Constraint-Based Mining Language . 47
Valerio Grossi and Andrea Romei

A MILP Formulation for Setwise Max-Margin
Learning

Paolo Viappiani1

Abstract. In max-margin learning, the system aims at es-
tablishing a solution as robust as possible. In this paper we
extend the idea of max-margin learning to cases where the
goal is to produce a set of solutions, instead of a single one. In
particular, we focus on the problem of preference elicitation,
but we believe our idea could be adapted to other situations.
We present a MILP formulation for our “setwise” max margin
learner and discuss current ongoing works.

1 Max-margin Learning for Preference
Optimization

The notion of margin is important in several machine learn-
ing algorithms. By maximizing the margin, the learner en-
sures robustness in the solution. In particular, a max-margin
approach has been proposed for optimization with a partially
specified preference profile and elicitation of further prefer-
ences [2]. Automatic assessment of preferences is an impor-
tant component of many artificial intelligence systems [3].

In this paper, we show how to extend the idea of max-
margin for optimizing a set and we provide a MILP formula-
tion. The result of the computation can be used to generate
a set of recommendations and to generate a “diverse” set of
feasible utility functions. This can be useful for further elic-
itation as we may ask the user a choice query based on this
set (“Among these items, which one do you prefer ?”).

First of all, we review the standard (singleton) max-margin
learning problem. We assume a multi attribute feature space
X (we assume possible options are specified by configuration
constraints) and that the user preferences are encoded by a
vector of weights w = (w1, ..., wm); the utility of an option y
is then w · y.

The weight vector w is unknown but we are given con-
straints (that encode a “feasible region”). A pairwise compar-
ison between a more preferred product y+ and a less preferred
product y− is encoded by a constraint w · (y+ − y−) ≥ 0.
Given a number of such pairwise comparisons, represented by
a set D (the “learning set”), and, possibly, other additional
constraints (representing some kind of “prior” knowledge, as
for example w2 > 0.3) we want to find a vector w of param-
eters such that all constraints are satisfied and does that by
the largest margin.

As shown by [2] the problem can be easily formulated as
a linear program. The shared margin is represented by the
decision variable M , that we want to maximize. We require,

1 Aalborg University, Denmark, email: paolo@cs.aau.dk

for each pairwise statement in D, to have w · (yh+−yh−) ≥M .

max
M,w

M

s.t. w · (yh+ − yh−) ≥M ∀(yh+,yh−) ∈ D

The optimization can be made tolerant to contradictory or
hard-to-satisfy constraints; this can be done by adding explicit
slack variables εh.

max
M,w

M − α
∑

h

εh (1)

s.t. w · (yh+ − yh−) ≥M − εh ∀(yh+,yh−) ∈ D (2)

Where α is a parameter that controls the tolerance to a small
number of violated constraints or constraints satisfied by a
margin smaller than M . If α=0, then all original constraints
must be strictly satisfied.

Once the optimization has been solved, the learned w can
be used to choose a recommendation x∗ by maximizing w ·x.
If the space of feasible options (or products) is a configura-
tion space encoded by linear constraints, the recommendation
can be computed by solving a linear program. We refer to
x ∈ Feasible(X) to specify that an option must satisfy the
configuration constraints.

In interactive settings, one should decide the query to ask
next. [2] suggests asking queries whose associated hyperplane
divide the feasible region in roughly equal part, but to do
so they require considering all possible pairs of options; this
approach can only be feasible in small datasets and do not
apply in configuration deomains. Instead, a viable method
for large configuration spaces should be able to retrieve a set
of options in a single optimization.

2 Setwise Max-Margin

We extend maxmargin optimization of preference weights to
sets. Given, as before, a number of pairwise statements D
and possibly additional constraints (the “learning set”) our
goal is to find a number of utility weight vectors w1, ...,wk

(with k given), consistent with out knowledge about the user,
but that are representative of different parts of the weights’
feasible region.

In order to do that, we require, as before, a shared margin
M to hold for all constraints associated with prior knowledge
and responses. We also use the same margin to enforce each
vector wi to be as “farther away” from each other as possi-
ble. This insight is realized by introducing a set of options
{x1, ...,xk} as decision variables (of the same cardinality k).
For each i, we impose xi to be the best option among them

Figure 1. Pairwise max-margin (k = 2). The feasible region in
the vector space (black constraints) is divided in two parts by the
red hyperplane. The two weight vectors w1 and w2 (red circles),
together with the hyperplane, are chosen maximize the minimum

of the margins (gray arrows).

(offering higher utility) when evaluated according to wi - and
we require these constraints to hold by at least a margin M .
The optimization is the following:

max
M,wi,xi

M−α1

∑

h

εh−α2

∑

i,j

ε′i,j (3)

s.t. wi · (yh+ − yh−) ≥M−εh ∀(yh+,yh−)∈D, ∀i∈ [1, k] (4)

wi · (xi − xj) ≥M−ε′i,j ∀j 6= i; i, j∈ [1, k] (5)

xi ∈ Feasible(X) ∀i∈ [1, k]

Note that, we are choosing the options x1, ...,xk and the
weights w1, ...,wk simultaneously: since we want to maximize
M , the optimizer will be better off by choosing a set of out-
comes xi that divide the weight space roughly equally, and
the utility functions such each wi should lie (intuitively) near
the centre of each subregion.

This initial formulation is problematic, as we have
quadratic terms. However, there is a solution: in fact, by using
integer programming tricks, the problem can be formulated
as a mixed integer linear program (MILP).

max M−α1

∑

h

εh−α2

∑

i,j

ε′i,j (6)

s.t. wi · (yh+−yh−) ≥M−εh ∀(yh+,yh−) ∈ D, ∀i ∈ [1, k] (7)
∑

z

Aiz−Bi,jz ≥M−ε′i,j ∀j 6= i; i, j ∈ [1, k] (8)

Aiz ≤ w↑ xiz ∀i ∈ [1, k], z ∈ [1,m] (9)

Aiz ≤ wiz ∀i ∈ [1, k], z ∈ [1,m] (10)

Bi,jz ≥ wiz − C ·(1−xjz) ∀j 6= i ∈ [1, k], z ∈ [1,m] (11)

Bi,jz ≥ 0 ∀j 6= i∈ [1, k], z∈ [1,m] (12)

x ∈ Feasible(X) ∀i∈ [1, k]

In the optimization, the decision variables are the following:

• M is the size of the shared margin
• w1, ...,wk is a set of utility vectors; each vector defined over
m attributes (features): wi = (wi1, ..., w

i
m)

• x1, ...,xk is a set of configurations (options) with each con-
figuration xi = (xi1, ..., x

i
m); each element xiz is binary

• ε slack variables to represent cost of unsatisfied constraints
in D; ε′ slack variables to represent cost of not respecting
the margin M when choosing the hyperplanes

• Ai encodes the vector (wi1x
i
1, ..., w

i
mx

i
m), the element-by-

element product of wi and xi: Aiz = wizx
i
z

• Bi,j encodes (wi1x
j
1, ..., w

i
mx

j
m), the element-by-element

product of wi and xj

In addition to the decision variables, we make use of the fol-
lowing parameters:

• k is the size of the set
• α1, α2 control the tolerance with respect to violated con-

straints (we can differentiate the tolerance for the two dif-
ferent types of constraints).

• D is the learning set: a set of pairwise comparisons known
to the system

• w↑ is any upper bound of the value of the utility weights
• C is an arbitrary large number
• yh+,y

h
− are pairs of configurations (options) in the learning

set D, with yh+ preferred to yh−

The solver aims at setting M , that is a decision variable,
as large as possible. Constraint 5 of the original program
is replaced by constraint 8, enforcing M to be smaller than∑
z A

i
z−Bi,jz for any i, j. In order to maximize M , the solver

will try to keep the Aiz as large as possible and the Bi,jz as
small as possible. The fact that

∑
z A

i
z −Bi,jz evaluates to

wi · (xi − xj) is achieved by setting additional constraints.
Constraints 9 and 10 together force each Ai to be the element-
by-element product of wi and xi (Aiz = wizx

i
z): if xiz = 0

then (constraint 9) also Aiz must be 0; otherwise (if xiz = 1)
Aiz ≤ wiz (constraint 10) but because of the objective function
maximizing M , and each A constrain M , the solver will set
Aiz to wiz. Similarly constraints 11 and 12 together make it so
that Bi,j encodes (wi1x

j
1, ..., w

i
mx

j
m), the element-by-element

product of wi and xj (as C is an arbritary large constant,
constraint 11 is binding only when xjz is 1, otherwise it is
always satisfied).

3 Discussion
This paper describes an extension of maximum margin learner
to sets. We are currently planning to perform experiments to
evaluate the efficiency of this approach. We will compare to
baseline methods, maximizing product diversity for a single
learned weight vector. We are interested in computation time,
but also in the quality of the elicitation using our method in
an interactive setting. In particular, we are interested in com-
paring this approach for generating recommendation sets with
others based on Bayesian inference [5] and minimax regret [4].
We are also interested in learning approaches ensuring spar-
sity in the parameter space [1].

REFERENCES

[1] Paolo Campigotto, Andrea Passerini, and Roberto Battiti. Ac-
tive learning of combinatorial features for interactive optimiza-
tion. In Carlos A. Coello Coello, editor, LION, volume 6683 of
Lecture Notes in Computer Science, pages 336–350. Springer,
2011.

[2] Krzysztof Gajos and Daniel S. Weld. Preference elicitation for
interface optimization. In Patrick Baudisch, Mary Czerwinski,
and Dan R. Olsen, editors, UIST, pages 173–182. ACM, 2005.

[3] Bart Peintner, Paolo Viappiani, and Neil Yorke-Smith. Pref-
erences in interactive systems: technical challenges and case
studies. AI Magazine, 29(4):13–24, 2008.

[4] Paolo Viappiani and Craig Boutilier. Regret-based optimal
recommendation sets in conversational recommender systems.
In Proceedings of the 3rd ACM Conference on Recommender
Systems (RecSys09), pages 101–108, New York, 2009.

[5] Paolo Viappiani and Craig Boutilier. Optimal bayesian rec-
ommendation sets and myopically optimal choice query sets.
In Advances in Neural Information Processing Systems 23
(NIPS), Vancouver, 2010.

Algorithm Configuration
for Portfolio-based Parallel SAT-Solving

Holger Hoos 1 and Kevin Leyton-Brown 1 and Torsten Schaub 2 and Marius Schneider 2

Abstract. Since 2004, the increases in processing power enabled by
Moore’s law have been primarily achieved by means of multi-core
processor architectures. To make effective use of modern hardware
when solving hard computational problems, it is therefore necessary
to employ parallel solution strategies. In this work, we demonstrate
how effective parallel solvers for SAT, one of the most widely studied
NP-complete problems, can be produced automatically from any
existing sequential, highly parametric SAT solver. Our approach uses
an automatic algorithm configurator to produce a set of configurations
to be executed in parallel. Applied to the state-of-the-art SAT solver
Lingeling, our fully automated procedure produced 4-core solvers
with speedups of up to 2.79-fold on a diverse set of instances from the
application category of the 2003–2011 SAT Competitions. Our best
automatically generated parallel portfolio of Lingeling configurations
outperforms Plingeling, the gold medal winner of the application
track (wallclock time) of the 2011 SAT Competition, and ManySAT,
the winner of the special prize for parallel solvers for application
instances of the 2009 SAT Competition. We furthermore demonstrate
that, when applied to the state-of-the-art multi-threaded SAT and ASP
solver clasp, our automated approach yields parallelization speedups
matching those achieved through the considerable efforts of a human
expert with extensive knowledge of the solver.

1 Introduction

Over most of the last decade, additional computational power has
come primarily in the form of increased parallelism. As a consequence,
effective parallel solvers are increasingly key to solving computation-
ally challenging problems. Unfortunately, the manual construction
of parallel solvers is nontrivial, often requiring fundamental redesign
of existing, sequential approaches. It is thus very appealing to iden-
tify generic methods for the construction of parallel solvers from
inherently sequential sources. Indeed, the prospect of a substantial
reduction in human development cost means that such approaches
can be impactful, even if their results are performance does not reach
that of special-purpose parallel designs—just as high-level program-
ming languages are useful, even though compiled software tends to
fall short of the performance that can be obtained from expert-level
programming in assembly language. One promising approach for
parallelizing sequential algorithms is the design of parallel algorithm
portfolios [15, 8].

In this work, we study generic methods for generating parallel port-
folios from a single, highly parametric sequential solver design for

1 Department of Computer Science, University of British Columbia, Vancou-
ver, BC (Canada), {hoos,kevinlb}@cs.ubc.ca

2 Institute of Computer Science, University of Potsdam, Germany,
{torsten,manju}@cs.uni-potsdam.de

a given problem. As such, it can be understood as an instance of the
programming by optimization paradigm [13], providing concrete soft-
ware tools that leverage algorithm configurators and a user-specified
design space to substitute for human development effort. In particular,
unlike other approaches (further discussed in Section 2), our methods
do not depend on the availability of multiple complementary solver
designs. We evaluate our methods in the SAT domain, which we
chose because it is widely studied and very relevant to academia and
industry. We thus have access to well-known state-of-the-art highly
parametric solvers, and are assured that the bar for demonstrating
efficacy of parallelization strategies is appropriately high.

We consider two scenarios. In the first, there is no communica-
tion between component solvers, and the parallel portfolio can be
generated fully automatically from a single, sequential parametric
solver. In this case, the design space for a parallel portfolio of size
k corresponds to the kth Cartesian power of the design space of the
given sequential solver. To evaluate our methods in this setting, we
chose Lingeling, a prominent, highly parametric state-of-the-art SAT
solver underlying the parallel solver that won a gold medal in the
application (wall-clock) track of the 2011 SAT Competition.

Our second scenario allows for communication between compo-
nent solvers in a parallel portfolio. Here, component solvers are copies
of a single, parametric sequential solver that communicate through
a simple mechanism; for example, in SAT, they might share learned
clauses (see, e.g., [10].) The communication mechanism is problem-
specific and designed by a human expert, resulting in the same design
space as in our first scenario, augmented to further include design
choices that span the component solvers (the communication mecha-
nism itself, preprocessing strategies, etc). To evaluate our methods in
this setting, we chose to study the state-of-the-art, highly parametric,
multi-threaded SAT and ASP solver clasp.

The key idea underlying our approach for handling both scenarios
lies in the use of automated algorithm configurators, which are now
quite mature and have been demonstrated to achieve impressive per-
formance improvements for different solvers on many problems (see,
e.g., [18, 1, 28, 21, 16, 17]). The configuration spaces arising in the
context considered here are very large and therefore present a consid-
erable challenge even to the best configurators. Therefore, in addition
to a rather straightforward approach in which all components of a
given parallel portfolio are configured simultaneously, we introduce a
greedy approach that adds one component solver at a time. Our results
demonstrate that this second approach works particularly well and
produces parallel portfolios whose performance on standard 4-core
CPUs compares favourably with that of well-known, hand-crafted
parallel SAT solvers.

2 Related Work

Well before the advent of the current trend towards multi-core com-
puting, the potential benefits of parallel algorithm portfolios were
identified in seminal work by Huberman et al. [15]. Gomes & Sel-
man [8] further investigated conditions under which such portfolios
outperform their constituent solvers. Both lines of work considered
prominent constraint programming problems (graph colouring and
quasigroup completion), but neither presented methods for automat-
ically constructing portfolio solvers. More recently, such methods
have been introduced for parallel portfolios in which the allocation
of computational resources to algorithms in the portfolio is static
[23, 29], as well as in cases where it can change over time [6]. All
of these methods build a portfolio from a relatively small candidate
set of distinct algorithms. While in principle, these methods could
also be applied given a set of algorithms expressed implicitly as the
configurations of one parametric solver, in practice, they are useful
only when the set of candidates is relatively small. The same limita-
tion applies to existing approaches that combine algorithm selection
and scheduling, notably CPHydra [22], which also relies on cheaply
computable features of the problem instances to be solved and selects
multiple solvers to be run in parallel.

In contrast, our work is concerned with building parallel portfolios
from very large sets of candidate algorithms which are expressed as
parameter settings of high-performance solvers such as Lingeling and
clasp. Our approach critically relies on the availability of an effec-
tive algorithm configurator, such as ParamILS [19, 18], GGA [1], or
SMAC [17, 20]. It is conceptually related to the Hydra and ISAC pro-
cedures for constructing portfolio-based algorithm selectors [28, 21].
Like these methods, our approach uses an algorithm configurator to
determine a set of configurations that complement each other well.
Furthermore, like Hydra, our GREEDY portfolio construction proce-
dure relies on the idea of determining such configurations one at a
time, to achieve a maximum incremental performance improvement in
each iteration. However, both Hydra and ISAC construct per-instance
algorithm selectors: they do not run multiple solvers in parallel, but
instead select a single solver based on instance features. To our knowl-
edge, our work is the first to show how to automatically construct
effective parallel portfolios from single, highly parametric solvers.

Another conceptually related approach is aspeed [14], which com-
putes (parallel) algorithm schedules by taking advantage of the mod-
eling and solving capacities of Answer Set Programming. Unlike our
approach, aspeed is based on a diverse set of solvers and does not use
an algorithm configurator to optimize its configurations.

Parallel SAT solvers have received increasing attention in recent
years. ManySAT [10, 11, 9] was one of the first parallel SAT solvers.
It is a static portfolio solver that uses clause sharing between its com-
ponents, each of which is a manually configured, DPLL-type SAT
solver based on MiniSat [5]. Plingeling [3, 4] is based on a similar
design; its recent version 587, which won a gold medal in the appli-
cation track of the 2011 SAT Competition (wrt. wall clock time on
SAT+UNSAT instances), shares unit clauses as well as equivalences
between its component solvers. Similarly, CryptoMiniSat [26], which
won silver in the application track of the 2011 SAT Competition,
shares unit and binary clauses. clasp [7] is a state-of-the-art solver for
SAT and ASP [2] that supports parallel multithreading (since version
2.0.0) for search space splitting and/or competing strategies, both
combinable with a portfolio approach. clasp shares unary, binary and
ternary clauses, and (optionally) offers a parameterized mechanism
for distributing and integrating (longer) clauses. Finally, ppfolio [24]
is a simple, static parallel portfolio solver for SAT without clause

Algorithm 1: Portfolio Configuration Procedure GLOBAL

Input :parametric solver A with configuration space C;
configuration space Cg for communication mechanism
between component solvers; desired number k of
component solvers; instance set I; performance metric
m; configurator AC; number n of independent
configurator runs; total configuration time t

Output :parallel portfolio solver Ak

1 for j := 1..n do
2 obtain configuration cj by running AC on Ak with

configuration space Ck × Cg on I using m for time t/n

3 choose ĉ ∈ {c1, . . . , cn} for which Ak gives optimal
performance on I according to m return ĉ

sharing that uses CryptoMiniSat, Lingeling, clasp, TNM [27] and
march hi [12] in their default configurations as component solvers
and won numerous medals in the 2011 SAT Competition. Like the pre-
viously mentioned portfolio solvers for SAT, ppfolio was constructed
manually, but uses a very diverse set of high-performance solvers as
its components. Overall, our approach can be understood as an auto-
matic method for replicating the (hand-tuned) success of solvers like
ManySAT , Plingeling, CryptoMiniSat or clasp, which are inherently
based on different configurations of a single parametric solver.

3 Parallel Portfolio Configuration

We now describe two new methods for generating a parallel solver
portfolio from a single parametric solver, A, with configuration space
C. We call the given set of problem instances I; our goal is to obtain
optimized performance according to a given metric m. (In our exper-
iments, we minimize PAR10 [18].) We use Ak = [A1, . . . , Ak] to
denote a parallel portfolio with k component solvers, each of which is
a configuration ofA. The configuration space ofAk isCk =

∏k
i=1 C

in the case where there is no communication between the component
solvers (apart from coordinated launch and termination), andCk×Cg
in the case where A1, . . . , Ak share information throughout a run,
where Cg is the set of all possible settings of the parameters of the
communication mechanism and any other global logic. Let AC de-
note a generic algorithm configuration procedure (in our experiments,
we used ParamILS [19, 18]). Following our standard practice (see
e.g., [20]) we perform multiple independent runs of AC, keeping the
configuration with the best performance on I . We model the case of
non-communicating component solvers as Cg := {∅}.

Simultaneous configuration of all component solvers (GLOBAL).
Our first portfolio configuration method is the straightforward ex-
tension of standard algorithm configuration to the construction of a
parallel portfolio (see Algorithm 1). Specifically, if A has ` parame-
ters, we treat the portfolioAk as a single algorithm with `k parameters
and configure it directly. As noted above, we perform n parallel runs
of AC. These runs can be performed in parallel, meaning that this
procedure requires wall clock time of t/n if n cores are available.
Nevertheless, the practicality of this approach is limited by the fact
that the global configuration space Ck × Cg to which AC is applied
grows exponentially with k. However, given a powerful configurator,
a moderate value of k and a reasonably sized C (and Cg), this simple
approach could be quite effective, especially when compared to the
manual construction of a parallel portfolio.

Algorithm 2: Portfolio Configuration Procedure GREEDY

Input :parametric solver A with configuration space C;
configuration space Cg for communication mechanism
between component solvers; desired number k of
component solvers; instance set I; performance metric
m; configurator AC; number n of independent
configurator runs; total configuration time t

Output :parallel portfolio solver Ak

1 A0 := [empty portfolio]
2 for i := 1..k do
3 for j := 1..n do
4 obtain configuration cij by running AC on

Ai := Ai−1||A with configuration space∏i−1
l=1{ĉl} × C × Cg on I using m for time t/(k · n),

where Ai−1||A denotes the portfolio obtained by
extending Ai−1 with algorithm A

5 let ĉi ∈ {ci1, . . . , cin} be the configuration for which Ai

achieved best performance on I according to m, and let ĉi be
the configuration of the component solver most recently
added to Ai

6 return ĉk

Iterative configuration of component solvers (GREEDY). For use
in what we expect to be the typical case where Ck × Cg is too
large to be effectively searched by AC, we introduce an iterative
procedure that adds and configures component solvers one at a time
(see Algorithm 2). The key idea is to use AC only to configure the
component solver added in the given iteration (and the communication
mechanism, as applicable, once there are two or more components),
leaving all other components clamped to the configurations that were
determined for them in previous iterations. The procedure is greedy in
the sense that in each iteration i, it attempts to add a component solver
to the given portfolio Ai−1 in a way that myopically maximizes
the performance of the new portfolio Ai (Line 4). Obviously, for
k > 1, even if we assume that AC finds optimal configurations
in each iteration, this greedy procedure is not guaranteed to find
a globally optimal configuration of the entire portfolio. However,
the configuration tasks in each iteration are much easier than those
performed by GLOBAL for even moderately sized portfolio, giving us
reason to hope that under realistic conditions, GREEDY might perform
better than GLOBAL, especially for large configuration spaces C and
Cg , and for comparatively modest time budgets t. Finally, notice
that this procedure only runs portfolios of size i in each iteration i;
therefore, if there is a cost to computing cycles for each parallel CPU
or CPU core, there are savings in earlier iterations i < k. (However,
note that unlike Hydra, which GREEDY resembles, we do run entire
portfolios in each iteration rather than individual solvers.) Observe
that while the sets of n independent configurator runs in Line 4 can
be performed in parallel (as in GLOBAL), the choice of the best-
performing configuration ĉi has to be made after each iteration i,
introducing a modest overhead compared to the cost of the actual
configuration runs.

4 Experiments

To empirically evaluate our approach for creating and optimizing
parallel algorithm portfolios, we applied our GLOBAL and GREEDY

methods to two state-of-the-art SAT solvers: Lingeling and clasp.
Specifically, we compared performance-optimized sequential and

parallel versions of both solvers to our GREEDY method, running
on four cores. Finally, we assessed the performance of the parallel
solvers obtained using our approach relative to other parallel SAT
solvers. A more detailed description of our experimental findings is
available at http://www.cs.uni-potsdam.de/parfolio.

Scenarios. We compared six experimental scenarios for each solver.
We use the terminology Default-SP to denote a single-processor
solver’s default configuration, and analogously Default-MP4 for an
out-of-the-box four-processor version. We contrasted these solver
versions with three versions obtained using automated configuration:
Configured-SPdenotes the best (single-processor) configuration ob-
tained from 40 independent configurator runs on a training set, while
Global-MP4 and Greedy-MP4 represent the portfolios obtained using
our methods from Section 3 for n = 10 and k = 4.

Solvers. We applied our approach to the two highly parameter-
ized, state-of-the-art SAT solvers Lingeling version 276 [3] and clasp
version 2.0.2 [7]. Lingeling has 58 parameters, which (after discretiza-
tion) gave rise to a configuration space of size about 1045. Our parallel
portfolio version of Lingeling was implemented based on a simple
script that runs a given number of Lingeling instances independently
in parallel and without communication (Cg := {∅}). We did not
apply our methods to Plingeling, the ‘official’ parallel version of Plin-
geling, because it lacks configurable parameters. However, we did
compare our methods to Plingeling. (Single-processor) clasp has 25
parameters, which—discretized by the developer—induce a space of
about 1013 configurations. clasp comes with a native multi-threaded
architecture, in which each parallel thread can be configured nearly as
flexibly as the sequential solver. Preprocessing is controlled and con-
figured (Cg) globally for all threads. We did not consider active clause
sharing in our experiments, but multi-threaded clasp passively shares
unary, binary, and ternary clauses. Overall, four-threaded clasp can be
configured in about 1053 distinct ways. clasp’s default configurations
were determined by its main developer with considerable manual
effort; the default parallel portfolio version of clasp, Default-MP4,
was entered in the 2011 SAT Competition.

Instance Sets. We conducted our experiments on instances from
the application (industrial) categories of the 2003–2011 SAT Com-
petitions. Our configuration experiments distinguish a training and a
test set. We used the same training set as Schneider and Hoos [25],
consisting of 276 instances from the 2003–2009 SAT Competitions.
Our test set was comprised of all application (industrial) instances
used in the 2003 and 2011 SAT Competitions, with the exception of in-
stances already included in our training set: 679 instances overall. We
chose a captime of 600 seconds for solver runs on training instances
performed during configuration, and a captime of 5000 seconds (as
in the 2011 SAT Competition) when evaluating solvers on the test set.

Evaluation Criteria. All solvers were configured and evaluated
based on PAR10 scores [18], which treat timed-out runs as having
taken 10 times the captime. We compared solvers using three mea-
sures. First, overall speedup measures the speedup in terms of total
PAR10 scores, disregarding instances from each table in what fol-
lows that were not solved by any solver. Second, (arithmetic) aver-
age speedup takes the average over the set of the compared solvers’
speedups, considering only instances that could be solved by both
compared solvers. (We note that this measure was previously used
both in the 2008 SAT Race and by Hamadi et al. [11]; however, if there

PAR10 Overall Speedup Overall Speedup Avg. Speedup Geo. Avg. Speedup
vs Default-SP vs Configured-SP vs Configured-SP vs Configured-SP

Default-SP 3747 1.00 0.93 1.44 0.98
Configured-SP 3499 1.07 1.00 1.00 1.00
Plingeling 3066 1.22 1.14 7.39 1.46
Global-MP4 2734 1.37 1.27 10.47 1.36
Greedy-MP4 1341 2.79 2.61 3.52 1.60

Table 1: PAR10 scores and speedups on application/industrial SAT instances achieved by single-processor (SP) and 4-processor (MP4) versions
of Lingeling.

PAR10 Overall Speedup Overall Speedup Avg. Speedup Geo. Avg. Speedup
vs Default-SP vs Configured-SP vs Configured-SP vs Configured-SP

Default-SP 7560 1.00 0.82 4.46 1.04
Configured-SP 6170 1.23 1.00 1.00 1.00
Default-MP4 2324 3.25 2.65 7.58 2.15
Global-MP4 3604 2.10 1.71 6.36 1.44
Greedy-MP4 2277 3.32 2.71 9.47 2.14

Table 2: PAR10 scores and speedups on application/industrial SAT instances achieved by single-processor (SP) and 4-processor (MP4) versions
of clasp.

are instances solved by only one solver, disregarding these when mea-
suring speedup can bias results against that solver.) Finally, geometric
average speedup takes the nth root of the product of the elements
of the set of the compared solvers’ speedups over the default, again
considering only instances that could be solved by both compared
solvers.

We now compare the three measures. The overall speedup assesses
the speedup obtained in a situation where a stream of problem in-
stances has to be solved, and our test set is representative of that
stream. This is the measure we favour, because performance on hard
instances is often the most important, because this measure is much
less sensitive to outliers, and because it does not require dropping
instances that are solved only by the single, best-performing solver.
Thus, while we include the other measures in our tables, we do not
discuss them in the text in what follows. Average and geometric aver-
age speedups are nevertheless also useful for considering situations
where there is substantial uncertainty over the difficulty of instances
that will ultimately be faced, and therefore consistent speedups across
the entire training set (rather than just hard instances in that set) is
important. We note that, unlike geometric average speedup, average
speedup can give rise to situations where algorithms A and B have
speedups > 1 of A against B and B against A simultaneously. (To
see this, consider running times 1, 2 forA and 2, 1 forB on two given
instances.)

We performed all solver and configurator runs on Dell PowerEdge
R610 systems with an Intel Xeon E5520 CPU with four cores
(2.26GHz), 48GB RAM running 64-bit Scientific Linux.

Configuration Experiments. We used the FocusedILS variant of
ParamILS (version 2.3.5) [18], one of the best algorithm configurators
currently available. To enable fair performance comparisons, in the
case of Configured-SP and Global-MP4 we allowed 8 CPU days of
configuration time and 1 CPU day for validation runs per configurator
run, which amounted to a total of 360 CPU days. (Validation runs
were used to choose the best among a set of configurations; they relied
on the same training set as the configuration runs. The test set was
used only for evaluating the different methods.) For Greedy-MP4, we

allowed for 2 CPU days of configuration time and 1 CPU days of
validation time per configurator run, which amounted to a total of
about 300 CPU days for k = 4. When using a cluster of dedicated
machines with 4-core CPUs, each of those solver versions could be
produced within 9 days of wall-clock time.

PAR1 PAR10 Timeouts
Virtual Best Solver 1334 10480 138
ppfolio 1646 13310 176
Greedy-MP4 (Lingeling) 1717 13712 181
Plingeling (587) 1684 13812 183
Greedy-MP4 (clasp) 1856 15310 203
clasp (MT) 1837 15357 204
Plingeling (276) 1850 15437 205
ManySAT(1.1) 1887 16003 213
ManySAT(2.0) 1998 17373 232

Table 3: Comparison of our best parallelization approach, GREEDY,
with other parallel SAT solvers from the 2011 SAT Competition in the
four-processor setting. (The performance of the Virtual Best Solver is
the minimal runtime of each instance given a portfolio of solvers.)

Parallelization speedups. Table 1 presents the results of our ex-
periments with Lingeling in the communication-free scenario. We
observe that single-processor configuration offered very little benefit
here, with only small improvements in PAR10 score. Somewhat better
results were obtained for Plingeling, but despite access to four cores
only achieved an overall speedup of 1.22 as compared to the Lin-
geling default. Our Global-MP4 method outperformed Plingeling, but
only slightly, achieving an overall speedup of 1.37 times the default.
Our Greedy-MP4 method made the best use of its four cores, achiev-
ing a 2.79-fold speedup (see also Figure 1a). Using a permutation
test (10 000 iterations, p = 0.05), we confirmed that Greedy-MP4’s
performance significantly exceeded that of the other methods.

Table 2 summarizes the results of our experiments with clasp. Here
again we observe small gains from configuring the single-processor
solver, and Greedy-MP4 outperforming Global-MP4. Overall, Greedy-

 1

 10

 100

 1000

 1 10 100 1000

t i
n

se
c

(G
re

ed
y-

M
P

4)

t in sec (Configured-SP)

 1

 10

 100

 1000

 1 10 100 1000

t i
n

se
c

(G
re

ed
y-

M
P

4)

t in sec (Configured-SP)

Figure 1: Performance of Greedy-MP4 vs Configured-SP for Lingeling (left) and clasp (right); each cross represents one SAT instance from our
evaluation set.

MP4 performed even better in this domain, achieving a total speedup
of 3.32 over the single-processor default (see also Figure 1b). Greedy-
MP4 achieved slightly (but not significantly) better performance as
compared to clasp’s multi-processor default. However, this default
was developed through extensive human effort and (as a SAT Com-
petition entrant) had previously targeted the same data we used to
evaluate it. Thus, we see our automated methods’ ability to match
Default-MP4’s performance as an encouraging finding.

Comparison to other parallel solvers. Finally, Table 3 presents a
comparison of our methods’ performance relative to other 4-processor
parallel solvers. We note a few interesting points here. First, Plin-
geling, the 2011 SAT Competition gold medal winner in the applica-
tion multi-core track, appears only in 3rd place; however, we also note
that the competition used 8 processor cores. Second, our Greedy-MP4
(Lingeling), which is based on version 276 of Lingeling from 2010,
performed as well as the new Plingeling, version 587. Third, although
the ASP-solver clasp was designed for SAT instances more similar to
those from the competition’s crafted (rather than application) track,
clasp (in both its default and our Greedy-MP4 variants) solved more
instances than both ManySAT versions and slightly more than Plin-
geling, version 276. Fourth, we note that ManySAT’s performance
was weaker than one might expect given the speedups described
in [11]; however, these results were based on (arithmetic average)
speedups over the single-processor variant of ManySAT rather than
MiniSat 2.1 (confirmed through personal communication with the
authors). Finally, ppfolio’s strong performance indicates that portfo-
lios of complementary solvers can yield even stronger performance
than parallel portfolios constructed from single parameterized solvers.
This is further confirmed by the excellent performance of the perfect
per-instance solver selector over the solvers we considered (”virtual
best solver”). We aim to consider automatically constructed parallel
portfolios that span multiple parametric solvers in future work.

Acknowledgments

T. Schaub and M. Schneider were supported by the DFG projects
under SCHA 550/8-1/2 and SCHA 550/9-1.

REFERENCES

[1] C. Ansótegui, M. Sellmann, and K. Tierney, ‘A gender-based genetic
algorithm for the automatic configuration of algorithms’, in Proceedings
of the Fifteenth International Conference on Principles and Practice
of Constraint Programming (CP’09), volume 5732 of Lecture Notes in
Computer Science, pp. 142–157. Springer-Verlag, (2009).

[2] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[3] A. Biere, ‘Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010’, FMV Reports Series 10/1, Institute for Formal Models and Veri-
fication. Johannes Kepler University, (2010).

[4] A. Biere, ‘Lingeling and friends at the SAT competition 2011’, Tech-
nical Report FMV 11/1, Institute for Formal Models and Verification,
Johannes Kepler University, (2011).

[5] N. Eén and N. Sörensson, ‘An extensible SAT-solver’, in Proceedings of
the Sixth International Conference on Theory and Applications of Satis-
fiability Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pp. 502–518. Springer-Verlag, (2004).

[6] M. Gagliolo and J. Schmidhuber, ‘Learning dynamic algorithm port-
folios’, Annals of Mathematics and Artificial Intelligence, 47(3-4), pp.
295–328, (2006).

[7] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, ‘Conflict-driven
answer set solving’, in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), pp. 386–392. AAAI
Press/The MIT Press, (2007).

[8] C. Gomes and B. Selman, ‘Algorithm portfolios’, Artificial Intelligence,
126(1-2), pp. 43–62, (2001).

[9] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais, ‘Diversification and in-
tensification in parallel SAT solving’, in Proceedings of the Sixteenth
International Conference on Principles and Practice of Constraint Pro-
gramming (CP’10), volume 6308 of Lecture Notes in Computer Science,
pp. 252–265. Springer-Verlag, (2010).

[10] Y. Hamadi, S. Jabbour, and L. Sais, ‘Control-based clause sharing in
parallel SAT solving’, in Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI’09), pp. 499–504.
AAAI Press/The MIT Press, (2009).

[11] Y. Hamadi, S. Jabbour, and L. Sais, ‘ManySAT: a parallel SAT solver’,
Journal on Satisfiability, Boolean Modeling and Computation, 6, pp.
245–262, (2009).

[12] M. Heule, M. Dufour, J. van Zwieten, and H. van Maaren, ‘March eq:
Implementing additional reasoning into an efficient look-ahead SAT
solver’, in Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), volume 3542
of Lecture Notes in Computer Science, pp. 345–359. Springer-Verlag,
(2004).

[13] H. Hoos, ‘Programming by optimisation’, Communications of the ACM,
55, pp. 70–80, (2012).

[14] H. Hoos, R. Kaminski, T. Schaub, and M. Schneider, ‘aspeed: ASP-based
solver scheduling’, in Technical Communications of the Twenty-eight

International Conference on Logic Programming (ICLP’12). Leibniz
International Proceedings in Informatics (LIPIcs), (2012). To appear.

[15] B. Huberman, R. Lukose, and T. Hogg, ‘An economic approach to hard
computational problems’, Science, 275, pp. 51–54, (1997).

[16] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Automated configuration
of mixed integer programming solvers’, in Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’10), volume 6140 of Lecture Notes in Computer
Science, pp. 186–202. Springer, (2010).

[17] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proceedings of the
Fifth International Conference on Learning and Intelligent Optimization
(LION’11), volume 6683 of Lecture Notes in Computer Science, pp.
507–523. Springer-Verlag, (2011).

[18] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, ‘ParamILS: An
automatic algorithm configuration framework’, Journal of Artificial
Intelligence Research, 36, pp. 267–306, (2009).

[19] F. Hutter, H. Hoos, and T. Stützle, ‘Automatic algorithm configuration
based on local search’, in Proceedings of the Twenty-second National
Conference on Artificial Intelligence (AAAI’07), pp. 1152–1157, AAAI
Press, (2007).

[20] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Parallel algorithm configura-
tion’, in Proceedings of the Sixth International Conference on Learning
and Intelligent Optimization (LION’12), Lecture Notes in Computer
Science. Springer-Verlag, (2012). To appear.

[21] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘ISAC – instance-
specific algorithm configuration’, in Proceedings of the Nineteenth Eu-
ropean Conference on Artificial Intelligence (ECAI’10), pp. 751–756.
IOS Press, (2010).

[22] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
‘Using case-based reasoning in an algorithm portfolio for constraint
solving’, in Proceedings of the Nineteenth Irish Conference on Artificial
Intelligence and Cognitive Science (AICS’08), (2008).

[23] M. Petrik and S. Zilberstein, ‘Learning static parallel portfolios of al-
gorithms’, in Proceedings of the International Symposium on Artificial
Intelligence and Mathematics (ISAIM 2006), (2006).

[24] O. Roussel. Description of ppfolio, 2011. Available at http://www.
cril.univ-artois.fr/˜roussel/ppfolio/solver1.pdf, Last vis-
ited on 07-19-2012.

[25] M. Schneider and H. Hoos, ‘Quantifying homogeneity of instance sets
for algorithm configuration’, in Proceedings of the Sixth International
Conference Learning and Intelligent Optimization (LION’12), Lecture
Notes in Computer Science. Springer-Verlag, (2012). To appear.

[26] M. Soos, K. Nohl, and C. Castelluccia, ‘Extending SAT solvers to cryp-
tographic problems’, in Proceedings of the Twelfth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT’09), vol-
ume 5584 of Lecture Notes in Computer Science, pp. 244–257. Springer-
Verlag, (2009).

[27] W. Wei and C. Li. Switching between two adaptive noise mech-
anism in local search for SAT, 2009. Available at http://home.

mis.u-picardie.fr/˜cli/EnglishPage.html, Last visited on 07-
19-2012.

[28] L. Xu, H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically config-
uring algorithms for portfolio-based selection’, in Proceedings of the
Twenty-fourth National Conference on Artificial Intelligence (AAAI’10),
pp. 210–216. AAAI Press, (2010).

[29] X. Yun and S. Epstein, ‘Learning algorithm portfolios for parallel execu-
tion’, in Proceedings of the Sixth International Conference Learning and
Intelligent Optimization (LION’12), Lecture Notes in Computer Science.
Springer-Verlag, (2012). To appear.

An Efficiently Learnable Constructive Method for
Graphs
Fabrizio Costa1

Introduction

Graph data structures allow us to model complex entities in a natural
and expressive way. In the literature, several types of discriminative
systems that can deal with graphs in input are known (e.g. recursive
neural networks, graph kernels, etc), however, there are few genera-
tive or constructive approaches that can output graphs belonging with
high probability to a desired distribution or class.

We argue that such systems are of great interest, and that novel
and key problems in the field of Machine Learning (ML), and more
generally in Artificial Intelligence (AI), can be addressed once such
methods become viable. Let us digress a while and put things in
perspective. Currently, the vast majority of models developed in
the ML/AI research field are classifiers2 (or regressors). These are
used by practitioners of various disciplines (chemists, biologists, etc)
mainly as proxies to replace expensive experimental measurements.
In other words, ML tools are used to approximate hard to measure
features (i.e. the biological activity of a molecule) on the basis of
easy to measure features (i.e. the atomic composition and structure of
a molecule). In the early days of AI and ML, the focus was on how to
maximally exploit the information present in the handful of available
data-points (mainly using domain knowledge to inject a strong bias
both in the search strategy and in the hypothesis space). Nowadays
however, the data bottleneck is disappearing in several domains (e.g.
chemistry, biology, medicine). The dreaded consequence, as noted
by [3], is that when sufficient data is available to cover the manifold,
simple interpolation methods, such as the k-nearest neighbor tech-
nique, exhibit more than adequate predictive performance, rendering
all other more sophisticated methods irrelevant. Further progress and
increased ingenuity in experimental approaches are likely to exac-
erbate the issue. Nowadays, large scale and high-throughput experi-
mental techniques can address directly many questions whose answer
could previously only be approximated by computational methods
(e.g. large screening to assess the biological activity of thousands
of molecules, the assessment of large protein-protein interaction net-
works). In fact, it seems inevitable that in many fields the experimen-
tal approach will supersede the computational modeling strategy, and
that it will do so at an accelerating rate3.

1 Bioinformatics Group, Department of Computer Science, University of
Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany. Email:
costa@informatik.uni-freiburg.de

2 There are naturally many other types of contributions which do not fall
under the classification type: feature selection, clustering and data mining,
structured output prediction, to name a relevant few.

3 To understand why, consider that the cost of several high-throughput tech-
niques is decreasing at a faster rate than the cost for electronics predicted
by Moore’s laws.

The Challenge

One way for ML and AI to contribute to the advancement of other
scientific disciplines, is to seek a type of task that cannot be easily
solved by enhanced experimental techniques alone: one such task
is the learnable design problem (LDP)4. A design (or generative)
problem is formulated as the task to output instances belonging (with
high probability) to a desired class. A learnable design or generative
problem requires in addition that the class be (efficiently) modeled
or learned starting from a finite sample of representatives instances.

Disregarding, initially, any limits derived from encoding and rep-
resentational issues, we can list a range of interesting LDP applica-
tion cases.

Given a set of game types ranked by a single player preference,
one could automatically design a series of ever novel personalized
games.

Given a set of molecules that have a desired biological activity one
can design novel molecules that exhibit the same activity.

Given a set of bacteria whose metabolism byproduct is of util-
ity (e.g. fermentation, carbon dioxide fixation, etc) one could design
novel metabolic networks that have improved or multiple properties
of interest.

In order to formulate these types of learnable design problems we
need to address three main issues: 1) define a rich and expressive
enough formalism to encode complex entities; 2) gain access to a
sufficiently large representative set of design cases (and possibly also
to a set of counter-examples); and finally 3) develop techniques that
can efficiently learn the design principles and subsequently generate
candidate design solutions.

We contend that we now have all the ingredients to start tackling
the LDP. An adequate candidate for point 1) is the hyper-graph rep-
resentation formalism, with which to encode arbitrary discrete en-
tities and their relations. Point 2) is increasingly less critical given
the current explosion of data (even of structured and relational type)
available in machine readable formats. Point 3) is the subject of this
work and is detailed in the following.

Related Work

The design problem is present, under different names and with im-
portant differences, in several research areas.

Operations research is often concerned with the identification of
problem solutions (which can be at times regarded as design solu-

4 We note that there exist however exceptions, i.e. a design problems that can
be tackled in a pure experimental way; one such case is the design of small
molecules when addressed by a combinatorial chemistry approach. In this
case, the experimental approach materializes in hardware a typical software
optimization algorithm.

tions) that satisfy some optimality condition (i.e. the cheapest circuit
layout, the minimal length travel path). Traditionally however it as-
sumes both the the objective function as well as the constraints to be
given in an explicit form rather. (i.e. it does not include a learning
stage)

Genetic algorithms and other derivative-free optimization tech-
niques are also used to solve certain design problems (e.g. in mechan-
ical and civil engineering fields), but they usually encode instances
with fixed length vector representations and are thus not immediately
suited for dealing with complex data.

The approaches that most explicitly address the LDP are gram-
mar induction techniques. However, methods for learning expressive
grammars are still not well developed, even in the case of simple
string languages, let alone more complex domains like graphs or
hyper-graphs. Graph grammars have been actively studied since the
late 1960’s, but few papers have dealt with their stochastic versions
(needed to guarantee robustness in the presence of noise and outliers)
and even fewer have dealt with the task of learning the grammar from
a finite sample5.

A few graph grammar induction methods, though, have been im-
plemented. Usually they are not robust w.r.t. outliers or other form
of structural noise [6], they tend to have high computational costs
(i.e. they do not scale well to tens of thousands of graphs), they as-
sume the structure of the grammar is given [9], or they are limited
to context-free type of grammars, which possess nice properties of
decidability, but suffer from limited expressive power [8].

The Quality Assessment Issue

A crucial issue, in the learnable design problem, is the model quality
assessment. While in classification problems it is easy to devise met-
rics to compare the predicted class to the available true class, in the
case of newly designed instances the issue becomes more complex.
First of all, we have to deal with the lack of true class assignments.
Resorting to an oracle can be difficult or at times impossible6.

To tackle this issue we propose a simple yet effective strategy:
given a set of examples and counter-examples, we induce the gen-
erative model, we train a binary classifier only on newly designed
candidates, and we compute the predictive performance on a test set
of known instances; the result is compared to the performance ob-
tained by the same type of discriminative learner when trained on the
original set. If the newly constructed instances belong to the same
concept class, then both models should7 perform equally well on the
same test set. The size of the deviation can then be used as a measure
of similarity between the true concept and the learned one.

Method

Here we propose a supervised constructive approach that, differ-
ently from current graph grammar induction techniques, is context-
sensitive, is robust to outliers and is computationally efficient, with
linear time complexity in both the model induction and the candidate
generation phase.

The key notion is derived from that of substitutability [4]. Recently
Clark and Eyraud [1] showed that certain types of grammars can be

5 The main area of research has been rather the study of the generated lan-
guage properties or the graph recognition problem given a specific type of
grammar.

6 E.g. assessing the activity of a newly proposed molecular graph requires the
extremely complex and expensive step of molecular synthesis.

7 Note that this is a sufficient albeit not necessary condition.

identified in the limit from positive data alone using the congruence
classes of the language. The idea is to assume that all substrings that
always occur in the same context (i.e. that are congruent) belong to
the same implicit category and can therefore be substituted in the
generative phase. We extend this notion in two ways: 1) we upgrade
it from strings to graphs; and 2) we allow a local notion of context.
More specifically we restrict the substitutable graphs to neighbor-
hood subgraphs of given radius R, i.e. graphs induced by a root ver-
tex v and all vertices that are within distance R from v. We then de-
fine the notion of interface as the difference between two co-rooted
neighborhood subgraphs of different radii. The interface constitutes
the local context for the inner co-rooted neighborhood graph that we
call core. We call interface thickness T half of the difference of the
two radii.

The model induction phase consists in the enumeration of all pos-
sible cores and their correspondent interfaces, rooted in all vertices
of all positive instances. We then train a robust and fast graph kernel
SVM discriminative model (introduced by Costa et al. in [2]) on a
dataset containing both positive and negative examples. Finally, the
construction of candidate graphs is achieved as an iterated substi-
tution of congruent cores (i.e. cores with matching interface). The
resulting graphs are evaluated in their entirety by the SVM; a simple
beam search strategy is applied to control the size of the generated
set. Initial findings support the idea that no sophisticated technique
is required in order to escape local minima, as, given the size of the
substituted subgraphs, a very large search space is in fact explored at
each step. Finally, we show how the quantity (R− T)/(R+ T) can
be regarded as the generative procedure’s creative tendency, since a
small radius and a large thickness result in very conservative sub-
stitutions supported by large contexts, while large radius and small
thickness result in non-constrained substitutions.

We present encouraging experimental results in the chemoinfor-
matics domain. Here the design task is the de novo construction of
molecular graphs [5] that exhibit toxic properties [7]. The initial find-
ings show a significant increase in predictive performance when we
add 4K generated molecules to the initial dataset of comparable size,
corresponding to a 14% relative error reduction for the area under the
precision recall curve. Finally, we report how the generative proce-
dure re-creates up to 5% of the original test set molecules.

REFERENCES
[1] A Clark and R Eyraud, ‘Polynomial identification in the limit of substi-

tutable context-free languages’, Journal of Machine Learning Research,
(2007).

[2] F Costa and K De Grave, ‘Fast neighborhood subgraph pairwise distance
kernel’, Proceedings of the 26th International Conference on Machine
Learning, 255–262, (2010).

[3] Alon Halevy, Peter Norvig, and Fernando Pereira, ‘The Unreasonable
Effectiveness of Data’, IEEE Intelligent Systems, 24(2), 8–12, (2009).

[4] Zellig S. Harris, ‘Distributional structure.’, Word, (1954).
[5] M Hartenfeller and et al, ‘De novo drug design’, Methods Mol Biol,

(2011).
[6] E Jeltsch and HJ Kreowski, ‘Grammatical inference based on hyperedge

replacement: a summary’, IEE Colloquium on Grammatical Inference:
Theory, Applications and Alternatives, 7, (1993).

[7] Jeroen Kazius, Ross McGuire, and Roberta Bursi, ‘Derivation and vali-
dation of toxicophores for mutagenicity prediction’, Journal of Medici-
nal Chemistry, 48(1), 312–320, (2005).

[8] Jacek P. Kukluk, Lawrence B. Holder, and Diane J. Cook, ‘Inference of
edge replacement graph grammars’, International Journal on Artificial
Intelligence Tools, 17(3), 539–554, (2008).

[9] T Oates, S Doshi, and F Huang, ‘Estimating maximum likelihood pa-
rameters for stochastic context-free graph grammars’, Inductive Logic
Programming, 281–298, (2003).

Analyzing manuscript traditions using
constraint-based data mining

Tara Andrews1 and Hendrik Blockeel2 and Bart Bogaerts2 and Maurice Bruynooghe2

and Marc Denecker2 and Stef De Pooter2 and Caroline Macé1 and Jan Ramon2

Abstract. Data mining tasks and algorithms are often cat-
egorized as belonging to one of a few specific types: cluster-
ing, association rule discovery, probabilistic modeling, etc. For
some time now, it has been recognized that concrete tasks
do not always fit nicely in this categorization. The concepts
of constraint-based data mining and inductive querying have
been proposed to alleviate this problem; they offer more flex-
ibility with respect to specifying the task. In this paper, we
illustrate an approach that goes one step further: we show
how a general-purpose declarative modeling language can be
used to specify and solve data mining tasks in the area of
philology. These tasks have the following properties: they are
easily described in words; they are of real interest to philol-
ogists; they cannot be performed using standard querying
or data mining systems; manually programming a solution
for them is challenging, time-consuming and error-prone. We
show that a prototype declarative programming framework,
IDP, allows for easy modeling and efficient solving of these
tasks. We conclude from this case study that the declarative
modeling approach to data mining has a large potential and
deserves further investigation.

1 Introduction

In data mining, many standard types of techniques exist, such
as association rule discovery, decision tree induction, proba-
bilistic modeling, clustering, etc. Once the data have been
preprocessed into a format ready for analysis, these standard
techniques can be run by simply “pushing the button”, possi-
bly after setting a few parameters. However, these techniques
do not always produce exactly the type of results that the
user wants. The term “constraint-based data mining” is often
used to refer to data mining approaches where the user can
impose constraints on the patterns he is looking for. For in-
stance, association rule discovery algorithms may return only
rules that fulfill certain syntactical constraints; clustering al-
gorithms may accept must-link and cannot-link constraints
that impose certain conditions on the returned clustering, etc.
By allowing the user to specify such constraints, the data min-
ing techniques become much more flexible: the user can tune
them towards his own interests.

Instead of simply restricting the patterns returned by a
standard data mining system, constraints may more generally
be used to express background knowledge about the domain,

1 KU Leuven, Faculty of Arts
2 KU Leuven, Department of Computer Science

or define the task one wants to solve. Nijssen and Guns [9],
for instance, have shown that the classical task of frequent
pattern discovery, possibly with constraints imposed on these
patterns, can be defined completely as a constraint solving
problem, and solved efficiently using a general-purpose solver.
This shows that redefining classical data mining tasks in terms
of constraints, and using a standard solver, can add a lot of
versatility to the data mining process (users can define more
precisely what they want), at a low efficiency cost.

Taking this one step further, one may try to find a single
declarative language in which practically any data mining task
could be defined, and solved efficiently, removing the need for
many specialized systems. Even data mining tasks that do
not belong to one of the predefined categories can then be
solved quite easily. This approach is very similar to what is
sometimes called “inductive querying” or “query-based data
mining”, but is more flexible in the sense that some data
mining task descriptions may be too complicated to easily fit
into a query, and more suitable for the more modular type of
description that programming languages offer.

In this paper, we describe an approach where a declarative
modeling language, FO(·)IDP, is used to describe the data, the
background knowledge, and the data mining task. The appli-
cation of interest is situated in the area of stemmatology, a
sub-field of philology in which the history of manuscript tradi-
tions is studied. The mining tasks are motivated by real ques-
tions from philologists. The framework we use is called IDP.
It provides seamless integration of FO(·)IDP with a procedu-
ral language that can be used for reading files, preprocessing
data, formatting the output, and calling the solver.

The remainder of this paper is structured as follows. Section
2 describes the application domain, stemmatology, in some
more detail. Section 3 describes the IDP framework. In Sec-
tion 4 we discuss several data mining tasks that are relevant
for stemmatologists, and show how they can be solved using
IDP. Section 5 presents conclusions.

2 Stemmatology

Before the invention of the printing press, texts were copied
manually by scribes. This copying process was not perfect:
scribes often modified texts, accidentally or intentionally. As
a result, for many old texts the surviving copies vary signif-
icantly. No text written before the invention of the printing
press, and even up to the end of the 18th century, when the
habit of circulating texts in manuscript form practically dis-

appeared, can be read without a preliminary critical analysis
of its material witnesses. This is the purpose of stemmatol-
ogy. The Oxford English Dictionary defines the field as “the
branch of study concerned with analysing the relationship of
surviving variant versions of a text to each other, especially
so as to reconstruct a lost original.”

A stemma is a kind of “family tree” of a set of manuscripts.
It indicates which manuscripts have been copied from which
other manuscripts (“parents”), and which manuscript is the
original source. It may include both extant (currently ex-
isting and available) and non-extant (“lost” or conjectured)
manuscripts. Although stemmata are often assumed to be
tree-shaped, they need not be. Sometimes, a manuscript has
been copied partially from one manuscript, and partially from
another, so it has multiple parents. In general, a stemma is a
connected directed acyclic graph (DAG) [1].

The 19th century philologist Karl Lachmann was among the
first to apply a principled method for reconstructing stem-
mata from sets of manuscripts [11]. Nowadays, a variety of
methods exist. Many are borrowed from biology, where a
similar problem, reconstruction of phylogenetic trees, is well-
studied. However, these methods do not always fit the stem-
matological context well. First, they assume that phylogenies
are tree-shaped, while stemmata are DAGs.3 Second, these
trees contain only bifurcations, while stemmata can have mul-
tifurcations. Third, in most methods the trees are such that
each extant copy is at a leaf of the tree, whereas in stemmatol-
ogy one extant copy may be an ancestor of another (and hence
should be an internal node). Fourth, stemmatologists often
have additional information, for instance about the time or
place of origin of a manuscript, which ideally should be taken
into account. Research on new algorithms, better suited for
the stemmatological context, continues [2].

Apart from reconstructing stemmata from data, stemma-
tologists are also interested in other types of analyses, which
may, for instance, use a known stemma or a manually-
constructed best-guess stemma as an input. These types of
analysis have received even less attention, and they can be
very diverse. The data mining tasks we address in this paper
belong to this category. Multiple tasks will be addressed, but
before discussing them in more detail, we first introduce the
IDP framework.

3 IDP: an FO(·)IDP knowledge-based
programming environment

IDP [5] is a logic-based programming environment that ex-
tends the Lua [7] scripting language with support for con-
structing, manipulating, and performing inference with log-
ical objects such as vocabularies, theories (in the FO(·)IDP
language), structures, and terms.

3.1 FO(·)IDP
The term FO(·) is used to denote the family of extensions
of first-order logic (FO); for instance, FO(ID) is the exten-
sion of FO with inductive definitions. In this text, the focus
lies on FO(·)IDP, the FO(·) language supported by the IDP

3 Some methods return phylogenetic networks, but these represent
uncertainty about the real tree, which is different from claiming
that the network represents the actual phylogeny.

framework. FO(·)IDP extends FO with (among others) types,
arithmetic, aggregates, partial functions and inductive defini-
tions. This section focuses on what is needed for this paper;
more information on FO(·)IDP can be found in [13] and [4].

An FO(·)IDP theory is a set of typed FO sentences and in-
ductive definitions. We explain its syntax using a theory for
solving a shortest path problem, presented in Figure 1. First,
one declares a vocabulary, sp voc in the example. It con-
tains declarations of types (e.g., node), typed constants (e.g.,
from) and predicates (e.g., edge(node,node)). Next, one de-
fines a theory over some vocabulary. It contains (well-typed)
FO sentences constructed from symbols of the vocabulary and
connectors and quantifiers, including &(∧), |(∨), ∼(¬), !(∀),
?(∃) and ∼=(6=). Finally, it also contains inductive definitions,
sets of rules of the form ! x1 ...xn : (P(t1,...,tn) <- B)

where B is an FO formula. The semantics of inductive defi-
nitions is the well-founded semantics [12], as this semantics
formalizes the intended meaning of all common forms of def-
initions [6].

The theory in Figure 1 expresses that the predicate
edgeOnPath is the set of edges of a path from the node from

to the node to. The following conditions must hold for such
paths. (1) edgeOnPath is a subset of edge. (2) from and to

are the first, respectively last node and hence, have no en-
tering, respectively exiting edge in the path. (3) Each node
on the path has at most one entering and at most one exit-
ing edge in the path. Here, ?<2 y : edgeOnPath(y,x) means
that there are strictly less than 2 y’s that have an edge to x
in the path. This can be expressed also using an aggregate #{
y : edgeOnPath(y,x)} < 2 or using a sentence ! y1 y2 :

edgeOnPath(y1,x) & edgeOnPath(y2,x) => y1=y2. (4) from
can reach to using edges of the path and (5) from can reach
each node on the path (e.g., { (from,to), (c,c)} is not a
path). The predicate reaches(x,y) is defined inductively.

The model semantics of FO and FO(·)IDP is based on the
notion of structures. A structure is an assignment of values to
symbols: sets to type symbols, domain elements to constants,
relations to predicate symbols and functions to function sym-
bols. A model of a theory is an assignment that satisfies all
expressions of the theory. In many problems, structures are
useful to represent data. The structure defined in Figure 1
interprets the symbols node, edge, from and to from vocab-
ulary sp voc. Note that no value is specified for edgeOnPath,
which means that this is a partial structure of sp voc.

3.2 The IDP programming environment

Apart from vocabularies, theories and structures, the pro-
gramming environment also contains procedures and terms.
As said above, procedures are written in the language Lua
and may call a range of predefined methods operating on the
logical objects. The most relevant are the following:

• sat(<theory>,<structure>) is a boolean function that re-
turns true iff the theory is satisfied by the structure.

• modelexpand(<theory>,<structure>) takes as input a
theory over vocabulary Σ and a partial structure assigning
values to some symbols in Σ, and returns a list of models
of the theory that expand the partial structure.

• minimize(<theory>,<structure>,<term>) returns a list
of models of the theory expanding the input structure in
which the numerical term is minimal.

vocabulary sp_voc {
type node
from, to: node
edge(node,node)
edgeOnPath(node,node)
reaches(node,node)

}
theory sp_theory: sp_voc {

! x y : edgeOnPath(x,y) => edge(x,y).
~(? x : edgeOnPath(x,from)) & ~(? x : edgeOnPath(to,x)).
!x: (?<2 y: edgeOnPath(y,x)) & (?<2 y: edgeOnPath(x,y)).
{ reaches(x,y) <- edgeOnPath(x,y).

reaches(x,y) <- reaches(x,z) & reaches(z,y). }
reaches(from,to).
! x y : edgeOnPath(x,y) => reaches(from,y).

}
structure sp_struct: sp_voc {

node = {A..D} // shorthand for A,B,C,D
edge = {A,B; B,C; C,D; A,D}
from = A
to = D

}
term lengthOfPath: sp_voc {

#{ x y : edgeOnPath(x,y) }
}
procedure main() {

sols = minimize(sp_theory,sp_struct,lengthOfPath)
if sols
then print(sols[1])
else print("No models exist.\n")
end

}

Figure 1. main() finds the shortest path for the given data.

These methods are implemented with state-of-the-art tech-
nologies, such as the grounder GidL [14] and solver Min-
iSat(ID) [8]. The solver is an extended SAT solver with
support for aggregate expressions, inductive definitions and
branch-and-bound optimization. MiniSat(ID) also has sup-
port for finite domain constraints, using the propagation tech-
niques described in [10] or, alternatively, interfacing with the
Gecode Constraint Programming engine.

In Figure 1, main() performs the minimization inference
on the path theory sp theory and prints out the first model
in the list if it exists. The term to be minimized here is
called lengthOfPath and is declared as the number of pairs in
edgeOnPath. A minimal model of this term is indeed a shortest
path from A to D.

An IDP-program is a collection of declarations of vocabu-
laries, theories, structures, terms and procedures. For an in-
depth treatment of the framework, see [4].

3.3 Illustration: frequent itemset mining

Figure 2 shows how the task of frequent itemset mining can be
described in IDP. We include it only as an example of how
a classical data mining task can be defined in IDP; an in-
depth study of the use of general-purpose solvers for frequent
itemset mining is given by Nijssen and Guns [9].

The vocabulary declares two types Transaction and Item,
the threshold Freq, the predicate Includes(t,i) which ex-
presses that transaction t includes item i, and finally, the
unary predicate FrequentItemset. The theory simply ex-
presses that the number of transactions that include all items

vocabulary FrequentItemsetMiningVoc {
type Transaction
type Item
Freq: int
Includes(Transaction,Item)
FrequentItemset(Item)

}
theory FrequentItemsetMiningTh: FrequentItemsetMiningVoc {

#{t: !i: FrequentItemset(i) => Includes(t,i) } >= Freq.
}
structure Input : FrequentItemsetMiningVoc {

Freq = 7 // threshold for frequent itemsets
Transaction = { t1; ... ; tn } // n transactions
Item = {i1 ; ... ; im } // m items
Includes = {t1,i2; t1,i7; ...} // items of transactions

}

Figure 2. An IDP description of frequent itemset mining.

in FrequentItemset is at least Freq. The structure describes
the data: it specifies the threshold, all transactions and items,
and the Includes relation.

In any structure of this vocabulary that extends Input and
satisfies the theory, FrequentItemset represents a frequent
itemset. As a consequence, the task of computing all frequent
itemsets is solved by letting IDP generate all such models.

4 Data mining tasks

4.1 Formalization of the context

A tradition is a set of manuscripts that are related in a par-
ticular way (specifically, they can be considered variants of
the same text, the variation having been introduced through
imperfect manual copying). A dataset represents one tradi-
tion. Each manuscript is described by a fixed set of attributes
A1, . . . , An, each of which has a nominal domain Dom(Ai).
Typically, one attribute represents a particular location in the
text, and the different elements of its domain represent the
different variant readings at that location.

A stemma is a connected DAG G(V,E), where V con-
tains one element for each manuscript, and (v, w) ∈ E if and
only if manuscript w was (wholly or partially) copied from
manuscript v.

Given an attribute Ai, we can label nodes in G with their
value for Ai (observed or predicted). The whole labeling is
then a partial or complete function λ : V → Dom(Ai). A
labeling λ extends another labeling λ′ if and only if, whenever
λ′(v) is defined, λ(v) is also defined and λ(v) = λ′(v).

4.2 The datasets

We will evaluate the feasibility of our declarative modeling ap-
proach on five datasets (http://byzantini.st/stemmaweb/).
Three are artificial traditions, constructed with the purpose
of testing stemmatological methods; for these, the correct
stemma is known. They may be found at http://www.cs.

helsinki.fi/u/ttonteri/casc/data.html. The other two
(Sermon 158 and Florilegium) are real traditions, with stem-
mata that have been constructed according to current philo-
logical best practice. Table 1 gives an overview of the number
of manuscripts and attributes for each tradition, as well as the

number of edges in the DAG. Note that a tree with n nodes
always has n− 1 edges. Thus, three of the five stemmata are
tree-shaped; two are “almost” tree-shaped, in the sense that
they have few additional edges.

Table 1. The five traditions used in this work.

Name nodes edges attributes
Notre Besoin 13 13 44
Parzival 21 20 122
Florilegium 22 21 547
Sermon 158 34 33 270
Heinrichi 48 51 1042

4.3 Task 1: Consistency checking

New variants are introduced when a scribe, intentionally or
accidentally, changes a text. Often, a variant reading at one
particular location is complicated enough to consider it un-
likely that exactly the same reading has been introduced mul-
tiple times independently. We therefore introduce the follow-
ing terminology. A manuscript is a source for an attribute if
none of its parents have the same value for that attribute. An
attribute is consistent with a stemma if the values observed
for the attribute can be explained using only one source per
value. Formally, given a stemma G(V,E), an attribute A, and
a (partial) labeling λ indicating which nodes in V have which
value for A, A is consistent with G if and only if a complete
labeling exists that extends λ and has one source for each
value. Figure 3 illustrates these concepts.

DAG coloring &
extension

Figure 3. Left: a partial labeling showing for a given attribute
which manuscripts have which value (indicated by colors). Right:
a complete extension of that labeling with one source per label.

Because such an extension exists, the attribute is consistent with
the stemma.

Now consider the task of checking whether a given attribute
is consistent with a given DAG. This requires searching for a
complete extension of the given labeling that has one source
per label. This problem is NP-hard [3] and does not reduce
to any problem solved by standard data mining techniques.

The problem is easily modeled in IDP, however. Figure 4
shows an IDP program that determines for each attribute
in each dataset whether it is consistent with the stemma.
The problem of checking consistency of a single attribute
with a stemma is defined under the header “Knowledge
base”. This definition is very simple: besides introducing the
vocabulary (there are manuscripts; there are variant read-
ings; manuscripts may be copied by other manuscripts; with

procedure main() {
process("besoin")
process("parzival")
process("florilegium")
process("sermon158")
process("heinrichi")

}

/* ---------- Knowledge base ------------------------- */
vocabulary V {

type Manuscript
type Variant
CopiedBy(Manuscript,Manuscript)
VariantIn(Manuscript): Variant

}
vocabulary Vsrc {

extern vocabulary V
SourceOf(Variant): Manuscript

}
theory Tsrc : Vsrc {

! x : (x ~= SourceOf(VariantIn(x))) =>
? y: CopiedBy(y,x) & VariantIn(y) = VariantIn(x).

}

/* --------- Check whether sample fits stemma -------- */
procedure check(sample) {

idpintern.setvocabulary(sample,Vsrc)
return sat(Tsrc,sample)

}

/* ---------- Procedures for processing -------------- */
procedure process(name) {

io.write("Processing ",name,".\n")
local path = "data/"
local stemmafilename = path..name..".dot"
local samplefilename = path..name..".json"
processFiles(stemmafilename,samplefilename)

}
procedure processFiles(stemmafilename,samplefilename) {

local stemma,nbnodes,nbedges = readStemma(stemmafilename)
io.write("Stemma has ",nbnodes," nodes and ",nbedges, " edges.\n")
local nbp,nbs,time = processSamples(stemma,samplefilename)
io.write("Found ",nbp," positive out of ",nbs," groupings ")
io.write("in ",time," sec.\n")

}
procedure readStemma(stemmafilename) {

... // 19 lines
}
procedure processSamples(stemma,samplefilename) {

... // 23 lines
}

Figure 4. The IDP code for checking the consistency of all the
attributes in a dataset with a hypothesized stemma for that
dataset. The .dot and .json files contain the stemma and

attribute-value-table, respectively.

each manuscripts is associated a variant; each variant has
one source, which is a manuscript), it only states that if a
manuscript is not the source of a variant, it must have a par-
ent with that same variant.

Besides this declarative specification, the IDP program con-
tains procedural code that loads the data files, builds for each
dataset and attribute a structure that represents a partially
labeled DAG, calls a solver to check the satisfiability of the
theory for this structure (sat(Tsrc, sample)), and produces
readable output. We include some of the procedural code to
illustrate the seamless integration of declarative and procedu-
ral knowledge in IDP.

The IDP program determines consistency for all attributes
and datasets in a matter of seconds:

> main()
Processing besoin.
Stemma has 13 nodes and 13 edges.
Found 26 positive out of 44 groupings in 0 sec.
Processing parzival.
Stemma has 21 nodes and 20 edges.
Found 45 positive out of 122 groupings in 1 sec.
Processing florilegium.
Stemma has 22 nodes and 21 edges.
Found 431 positive out of 547 groupings in 5 sec.
Processing sermon158.
Stemma has 34 nodes and 33 edges.
Found 64 positive out of 270 groupings in 4 sec.
Processing heinrichi.
Stemma has 48 nodes and 51 edges.
Found 1 positive out of 1042 groupings in 28 sec.
>

It is interesting to compare these results with earlier results
obtained using a procedural implementation of the consis-
tency check by one of the authors. This procedural implemen-
tation contained 370 lines of Perl code, using a graph library
as working horse, and could not be shown correct. This was
our main motivation for trying a declarative approach. Our
declarative specification is more easily verified, is solved faster
than with the Perl version, and eventually allowed us to show
that the original procedural implementation was not correct
[3]. This demonstrates the usefulness of the IDP framework
for non-traditional types of data analysis.

4.4 Task 2: Determining the minimal
number of independent sources

A remarkable result of the previous analysis was that for some
of the artificial traditions, very few attributes were consistent
with the stemma (for Heinrichi, 1 out of 1042). This indicates
that either the artificial traditions are not representative for
real traditions, or the assumption that each variant originates
only once is not realistic.

Given that inconsistent attributes occur so often, one may
wonder how often multiple introductions of the same vari-
ant must have occurred. In other words: what is the smallest
number of sources needed to explain the observations?

This question is again easily expressed in IDP, now as a
minimization problem. Figure 5 shows this. In the vocabu-
lary, the function SourceOf (which allows only one source
per label) is replaced by a predicate IsSource, which indi-
cates whether a node x is a source or not. The theory simply
defines IsSource as such; nothing else is needed. Further, a
term NbOfSources is introduced that counts the number of
sources, and a procedure is introduced that returns a model
in which the number of sources is minimal. The procedure
minimize performs model minimization, as explained before
(in this case, it finds a complete and consistent labeling with
a minimal number of sources). Apart from changing a call of
check(sample) into minSources(sample), and some output
formatting, no procedural code needs to be changed.

Figure 6 shows part of the output for the Notre Besoin
dataset. All datasets were processed in a few seconds, except
for Heinrichi, which took about 5 minutes. Adding more con-
straints may further reduce processing time, but this was not
investigated here.

/* ---------- Knowledge base ------------------------ */
vocabulary V {

type Manuscript
type Variant
CopiedBy(Manuscript,Manuscript)
VariantIn(Manuscript): Variant

}
vocabulary Vms {

extern vocabulary V
IsSource(Manuscript)

}
theory Tms : Vms {

{!x: IsSource(x) <- ~?y: CopiedBy(y,x) &
VariantIn(y)=VariantIn(x).}

}
term NbOfSources : Vms {

#{x:IsSource(x)}
}

/* --- Find model with minimal number of sources --- */

procedure minSources(sample) {
idpintern.setvocabulary(sample,Vms)
return minimize(Tms, sample, NbOfSources)[1]

}

Figure 5. IDP code for minimizing the number of sources
required to explain the data. Function SourceOf is replaced by
predicate IsSource; the term NbOfSources, which counts the

number of sources, is introduced; and a procedure is introduced
that returns a model with minimal NbOfSources.

Processing besoin.
Stemma has 13 nodes and 13 edges.
IsSource = { T2; U }
IsSource = { C; T2 }
IsSource = { D; J; L; M; T2; U; V }
... (40 output lines omitted)
IsSource = { B; F; J; T2 }
Minimized for 44 groupings in 0 sec.

Figure 6. IDP output indicating a minimal set of sources for
each attribute in Notre Besoin.

4.5 Task 3: Sources versus reversions

Up till now, we said a manuscript introduces a variant if none
of its parents have that variant. However, stemmatologists
distinguish the case where a manuscript reverts to an older
variant (which did not occur in the parents but occurs some-
where among the ancestors) from the case where it introduces
a completely new variant. It may be interesting to minimize a
cost function where sources have a higher cost than reversions.

This is again easily modeled in IDP. An inductive defini-
tion is provided for the predicate IndirectAncestor. Further,
there are now three types of nodes: sources, reversions, and
copies. This is modeled by introducing a function ClassOf

that classifies nodes as one of Source, Copy or Revert. The
theory and term-to-be-optimized are shown in Figure 7. In
this case, some more changes to the procedural code (not
shown) are required, for technical reasons beyond the scope
of this paper. A part of the output for Notre Besoin is shown
in Figure 8. Finding the model with minimal cost takes signif-
icantly longer than for the previous tasks: seconds to minutes
for the first four datasets, and about 18 hours for Heinrichi.
We currently do not know why it takes so much longer for

vocabulary Vcls {
extern vocabulary V
type Cost isa nat
type Class
Copy: Class
Revert: Class
Source: Class
ClassOf(Manuscript): Class
IndirectAncestor(Manuscript,Manuscript)

}
theory Tcls : Vcls {

!x: (ClassOf(x)=Copy) <=>
?y: CopiedBy(y,x) & VariantIn(y) = VariantIn(x).

!x: (ClassOf(x)=Revert) <=>
ClassOf(x) ~= Copy &
?y: IndirectAncestor(y,x) &

VariantIn(y) = VariantIn(x).
{!x y: IndirectAncestor(x,y) <-

?z: CopiedBy(x,z) & IndirectAncestor(z,y).
!x y: IndirectAncestor(x,y) <-

?z: CopiedBy(x,z) & CopiedBy(z,y).}
NbOfSources = #{x: ClassOf(x)=Source}.
NbOfReverts = #{x: ClassOf(x)=Revert}.

}
term TotalCost : Vcls {

3 * NbOfSources + NbOfReverts
}

Figure 7. IDP code for minimizing the cost of a labeling, where
each source has a cost of 3 and each reversion a cost of 1. The
function ClassOf indicates which of three classes a node belong
to: Source, Revert or Copy. The theory inductively defines the
IndirectAncestor predicate, and defines the conditions under

which a node has class Copy or Revert.

Processing besoin.
Stemma has 13 nodes and 13 edges.
ClassOf = {T2->s; U->s}
ClassOf = {C->s; T2->s}
ClassOf = {A->s; D->r; J->r; L->s; M->r; T2->s; U->r; V->r}
... (40 output lines omitted)
ClassOf = {A->s; B->s; F->r; J->r; T2->s}
Minimized for 44 groupings in 3 sec.

Figure 8. IDP output (edited for conciseness) showing sources
(s) and reversions (r) for minimal-cost models in Notre Besoin.

Heinrichi. It may be possible to reduce runtime by adding
more constraints to better guide the solver. Alternatively, ap-
proximate methods for optimization could be explored.

Tasks 2 and 3 demonstrate the ease with which new data
mining tasks can be defined and solved, once the procedural
code for preprocessing etc. is in place.

5 Conclusions

While many data mining tasks can be solved using off-the-
shelf tools, some tasks deviate significantly from the stan-
dard ones and cannot be performed using any of the standard
methods or query languages. Inductive query languages may
provide a solution when the data mining task can be formu-
lated as a relatively simple query. Here, we have explored an
alternative approach that consists of defining the task using a
declarative modeling language, then performing inference us-
ing advanced, built-in, constraint solving and optimization
techniques. More concretely, the IDP framework has been

used for addressing data mining tasks in stemmatology. As it
turns out, IDP has the power and versatility to define these
data mining tasks with relative ease, and solve them efficiently
and provably correctly. Important elements of IDP that con-
tribute to this are the ability to formulate constraints in full
first-order logic, to include inductive definitions, to define ag-
gregate functions, and to solve satisfiability and optimization
problems. One opportunity for improvement is the minimiza-
tion procedure, which might benefit from approximate meth-
ods. We conclude that declarative modeling frameworks such
as IDP have a large potential for data mining, and this type
of approaches deserves further investigation.

Acknowledgements

Research supported by Research Foundation - Flanders
(FWO-Vlaanderen), KU Leuven CREA/10/004, and ERC
Starting Researcher Grant 240186.

REFERENCES

[1] T. Andrews and C. Macé, ‘Beyond the tree of texts: Building
an empirical model of scribal variation through graph analysis
of texts and stemmata’, In preparation (2012).

[2] P. Baret, C. Macé, P. Robinson, C. Peersman, R. Mazza,
J. Noret, E. Wattel, Van Mulken M., Robinson P., A. Lantin,
P. Canettieri, V. Loreto, H. Windram, M. Spencer, C. Howe,
M. Albu, and A. Dress, ‘Testing methods on an artificially cre-
ated textual tradition.’, in The evolution of texts: Confronting
stemmatological and genetical methods, 255–283, Istituti edi-
toriali e poligrafici internazionali, Pisa (2006).

[3] H. Blockeel, B. Bogaerts, M. Bruynooghe, B. De Cat,
S. De Pooter, M. Denecker, A. Labarre, J. Ramon, and S. Ver-
wer, ‘Modeling machine learning and data mining problems
with FO(.)’, in Proc. 28th ICLP, Leibniz International Pro-
ceedings in Informatics (2012). To appear.

[4] B. Bogaerts, B. De Cat, S. De Pooter, and M. Denecker. The
idp framework reference manual. http://dtai.cs.kuleuven.
be/krr/software/idp3/documentation.

[5] S. De Pooter, J. Wittocx, and M. Denecker, ‘A prototype
of a knowledge-based programming environment’, in Interna-
tional Conference on Applications of Declarative Program-
ming and Knowledge Management (2011).

[6] M. Denecker and E. Ternovska, ‘A logic of nonmonotone in-
ductive definitions’, ACM Transactions on Computational
Logic (TOCL), 9(2), Article 14 (2008).

[7] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes, ‘Lua – an
extensible extension language’, Software: Practice and Expe-
rience, 26(6), 635–652 (1996).

[8] M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe,
‘SAT(ID): Satisfiability of propositional logic extended with
inductive definitions’, in Proc. SAT 2008, volume 4996 of
LNCS, pp. 211–224. Springer (2008).

[9] S. Nijssen and T. Guns, ‘Integrating constraint programming
and itemset mining’, in ECML/PKDD (2), volume 6322 of
Lect. Notes in Comp. Sc., pp. 467–482. Springer (2010).

[10] C. Schulte and P.J. Stuckey, ‘Efficient constraint propagation
engines’, ACM Transactions on Programming Languages and
Systems, 31(1) (2008).

[11] S. Timpanaro and G.W. Most (translator), The Genesis of
Lachmann’s Method, University of Chicago Press, 2005.

[12] A. Van Gelder, K.A. Ross, and J.S. Schlipf, ‘The well-founded
semantics for general logic programs’, Journal of the ACM,
38(3), 620–650 (1991).

[13] J. Wittocx, M. Mariën, and M. Denecker, ‘The idp system: a
model expansion system for an extension of classical logic’, in
LaSh, pp. 153–165 (2008).

[14] J. Wittocx, M. Mariën, and M. Denecker, ‘Grounding FO
and FO(ID) with bounds’, Journal of Artificial Intelligence
Research, 38, 223–269 (2010).

Column generation for exact BN learning:
Work in progress

James Cussens1

1 Introduction
In existing integer linear programming (ILP) approaches to learning
the structure of a Bayesian network (BN) from data ([1, 4, 2]) a bi-
nary variable I(W → u) is created for each BN variable u ∈ V and
each candidate parent set W . I(W → u) takes the value 1 iff W is
the parent set for u in the optimal DAG. The number of candidate
parent sets for any given BN variable is artificially restricted to keep
n, the number of I(W → u) variables, reasonable and then a local
score c′(u,W) is pre-computed for each of them. With this approach
the BN learning problem can be cast as in (1).

Instantiate the I(W → u) to maximise:∑
u,W c′(u,W)I(W → u)

subject to the I(W → u) representing a DAG.
(1)

In this paper it will be more convenient to convert this into a minimi-
sation problem, so set c(u,W) = −c′(u,W) and consider

Instantiate the I(W → u) to minimise:∑
u,W c(u,W)I(W → u)

subject to the I(W → u) representing a DAG.

The goal is thus to find a BN with the lowest negative score. To en-
sure that each BN variable has exactly one parent set the following
|V | constraints are used:

∀u ∈ V :
∑

W

I(W → u) = 1 (2)

and to ensure that the resulting graphs are acyclic, cluster constraints
are added in the course of solving as cutting planes.

Where C ⊆ V :
∑

u∈C

∑

W :W∩C=∅
I(W → u) ≥ 1 (3)

Cluster constraints were introduced in [4] and were later used in [2].
It is not necessary to add all (exponentially many) cluster constraints.
A lower bound on the negative score of the optimal BN (the dual
bound) increases (or occasionally remains constant) as cluster con-
straints are added. Once a BN has been found whose score equals
this lower bound it follows that an optimal BN has been found.

2 The simplex algorithm
The inequalities (3) can be replaced by equations using ‘slack’ vari-
ables wC :

−wC +
∑

u∈C

∑

W :W∩C=∅
I(W → u) = 1 (4)

1 University of York, email:james.cussens@york.ac.uk

where each wC is constrained to be positive (wC ≥ 0). Let C be the
current set of clusters. The full set of constraints for the ILP problem
is then a collection of |V |+ |C| linear equations involving (n+ |C|)
variables. Following the notation and presentation given in [5], let x
be the vector of these ILP variables (in some arbitrary order), then
these constraints can be written in matrix from as:

Ax = b (5)

where A is a (|V |+ |C|)× (n+ |C|) matrix. Note from (2) and (4)
that b will be a column of ones.

Consider a solution to (5) corresponding to a completely un-
connected graph. The variables I(∅ → u) will have value 1, all
other I(W → u) variables will have value 0 and the slack vari-
ables will have the values determined by the equations (4). Let
ζ =

∑
u,W c(u,W)I(W → u) be a variable representing the objec-

tive value and let ζ̄ =
∑
u c(u, ∅) be the constant which is the score

for the completely unconnected graph. It is not difficult to see that
we can write the objective function and the constraints as follows:

ζ = ζ̄ +
∑

u,W :W 6=∅
[c(u,W)− c(u, ∅)]I(W → u)(6)

I(∅ → u) = 1−
∑

u,W :W 6=∅
I(W → u) (7)

wC = |C| − 1−
∑

u∈C

∑

W :W∩C 6=∅
I(W → u) (8)

where (7) represents an equation for each u ∈ V and (8) represents
an equation for each cluster C ∈ C. Essentially (7) has been used to
eliminate all I(∅ → u) variables from the RHS of each equation.

The equations (6–8) are called a dictionary [6]. The variables on
the RHS of the equations, which are all set to 0, are the non-basic
variables, those on the LHS of (7) and (8) are the basic variables.
Note that there are n − |V | non-basic variables and |V | + |C| basic
variables.

To improve the value of ζ the simplex algorithm considers the co-
efficients [c(u,W)− c(u, ∅)] of the non-basic variables on the RHS
of (6). These coefficients are called the reduced costs of the non-
basic variables. If a variable has negative reduced cost then raising
its values from zero will improve (reduce) the value of ζ. So a vari-
able with negative reduced cost is increased until one of the basic
variables becomes set to zero. These variables are called the entering
and leaving variables respectively. The entering variable moves from
non-basic to basic (‘enters the basis’) and the leaving variable moves
from basic to non-basic. A new dictionary is created (implicitly in
practice) where the entering variable is removed from all RHS, being
replaced by a linear expression involving the leaving variable. This
ensures that all basic variables and the objective value are represented

as linear functions of non-basic variables (which means that reduced
costs are available for all non-basic variables). This process contin-
ues until no non-basic variable has negative reduced cost at which
point the linear program is solved.

3 Column generation
The key idea behind column generation is that it is not necessary
to explicitly represent non-basic variables. So an as-yet-nonexistent
variable can be viewed as a non-basic variable which we have yet
to consider as a possible entrant into the basis. Note that variables
correspond to columns of the matrix A in (5) so that generating a new
variable corresponds to generating a new column in that matrix. The
goal of column generation is to create a new variable with negative
reduced cost.

We consider now how to compute reduced costs. Recall that at
each iteration of the simplex algorithm we have |V | + |C| basic and
n − |V | non-basic variables. Write x = (xB,xD) where xB are
the basic variables and xD the non-basic. Decompose the objective
coefficient vector c similarly: c = (cB, cD). Let B be the sub-
matrix of the original A matrix formed by selecting the columns
of A corresponding to xB. Let D be the corresponding submatrix
for non-basic variables. Note that B, called the basis matrix, is a
(|V | + |C|) × (|V | + |C|) square matrix. We can now compute
λT = cTBB

−1. λ is the vector of dual values for each row (=linear
constraint) in A. The vector of reduced costs for non-basic variables,
denoted rD, can then be computed using rD = cD − λTD.

Note that the dual vector λ is determined by the current basis. So to
compute the reduced cost of a potential new variable we just need its
objective coefficient value and its coefficient for each original linear
constraint (= row of A).

We now construct an ILP to identify a new variable with negative
reduced cost. A new variable I(W → u) is determined by a choice
of the child u and also the parents W . Let Ich(u) indicate that u is
chosen as the child and let Ipa(u) represent that u is chosen as a
parent. We have the obvious constraints:

∑

u∈V
Ich(u) = 1 (9)

∀u ∈ V : Ich(u) + Ipa(u) ≤ 1 (10)

A new variable I(W → u) will appear in a cluster constraint for
C ∈ C (4) with coefficient 1 iff u ∈ C and v 6∈ C for each v ∈ W .
Create a variable xC for each C ∈ C indicating whether the new
variable is involved in the constraint for C. We have:

xC ≥
∑

u∈C
Ich(u)−

∑

u∈C
Ipa(u) (11)

∑

u∈C
Ich(u) ≥ xC (12)

1−
∑

u∈C
Ipa(u) ≥ xC (13)

Let λC be the dual value corresponding to the constraint for clus-
ter C. Let λu be the dual value for the convexity constraint (2) for
variable u. The reduced cost for a new variable I(W → u) is then:

c(u,W)−
∑

u

λuIch(u)−
∑

C∈C
λCxC (14)

To find the best new variable to introduce we want to minimise (14)
subject to constraints (9-13): an ILP. However, in (14), c(u,W) the

objective coefficient for the new variable, is unknown. The sensible
option is to view c(u,W) as an additional (real-valued) ILP vari-
able. For the column generation method to produce useful new vari-
ables, it is essential that we can put a reasonably tight lower bound on
c(u,W) in terms of the variables Ich(u), Ipa(u) and xC and a small
number of constants easily computable from the data. Since we only
have a bound on c(u,W) solving the ILP will generate a new vari-
able together with an over-optimistic value for its reduced cost. If
even this over-optimistic value is positive it follows that there are no
new variables worth introducing and so the current set of c(u,W)
variables are all we need to identify the optimal BN. If the over-
optimistic value is negative there is at least the possibility that the
actual reduced cost is also negative. This makes it worth the effort
to consult the data to compute the true reduced cost. If this turns out
to be negative, the variable is created. Otherwise constraints should
be added to rule out this choice for c(u,W) and the ILP re-solved in
the hope of finding a different variable with a (true) negative reduced
cost.

The key to this approach is the tightness of the sought bound. Re-
cent work in a companion paper [3] has produced the following lower
bound on c(u,W):

−c(u,W)

≤ (α− qr/2) log r + (q(r − 1)/2) log(
α

q
)

−NHp̃(u|W) (15)

−1

2

∑

k

log

(
nk +

α

qr

)
+

1

2

∑

j

log

(
nj +

α

q

)
(16)

where: α is the effective sample size, r is the arity of u, q is the prod-
uct of the arities of the variables in W , Hp̃(u|W) is the conditional
entropy of u given W according to a certain distribution p̃, N is the
size of the data, the nj are the counts in the contingency table for the
variables W and the nk the contingency table counts for {u} ∪W .
A useful bound for the data-dependent (15) is available, but not, at
present, for (16). It is hoped that with further work this lower bound
on c(u,W) can be used to allow effective column generation.

REFERENCES
[1] James Cussens. Maximum likelihood pedigree reconstruction using inte-

ger programming. In Proceedings of the Workshop on Constraint Based
Methods for Bioinformatics (WCB-10), Edinburgh, July 2010.

[2] James Cussens. Bayesian network learning with cutting planes. In
Fabio G. Cozman and Avi Pfeffer, editors, Proceedings of the 27th Con-
ference on Uncertainty in Artificial Intelligence (UAI 2011), pages 153–
160, Barcelona, 2011. AUAI Press.

[3] James Cussens. An upper bound for BDeu local scores. Submitted, May
2012.

[4] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila.
Learning Bayesian network structure using LP relaxations. In Pro-
ceedings of 13th International Conference on Artificial Intelligence and
Statistics (AISTATS 2010), volume 9, pages 358–365, 2010. Journal of
Machine Learning Research Workshop and Conference Proceedings.

[5] David G. Luenberger and Yinyun Ye. Linear and nonlinear program-
ming. Springer, 2008.

[6] Robert J. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, third edition, 2008.

Constraint-based Learning for Text Categorization
Savatore Frandina and Claudio Saccà and Michelangelo Diligenti and Marco Gori 1

Abstract. Text categorization automatically assigns a document to
its underlying topics. Documents are typically represented as bag-of-
words, and machine learning based approaches have been shown to
provide effective and scalable solutions by learning from examples.
However, a limiting factor in the application of these approaches
relies on the large number of examples required to train a classi-
fier working on large taxonomies of classes. This paper presents a
method to integrate prior knowledge that is typically available on the
learning task into a text classifier based on kernel machines. The pre-
sented solution deals with any prior knowledge represented as first-
order logic (FOL) and, thanks to the generality of this formulation,
can be used to express relations among the input patterns, known se-
mantic relationships among the output categories and input-output
rules. The kernel machine mathematical apparatus is re-used to cast
the learning problem into a primal optimization of a function com-
posed of the loss on the supervised examples, the regularization term,
and a penalty term deriving from converting the knowledge into a set
of continuous constraints. The experimental results, performed over
the popular CORA dataset, show that the proposed approach over-
performs both SVMs and state-of-the-art semi-supervised techniques
in multi-label text classification problem.

1 Introduction
Text categorization decides the topics of a document based on its rep-
resentation. Documents are typically represented as bag-of-words,
and classical machine learning tools can be used to perform the clas-
sification after having trained a model from examples. SVMs, a spe-
cial class of kernel machines, have been proved to be one of the most
versatile machine learning approaches to text categorization, provid-
ing near state-of-the-art accuracy on many datasets while requiring
little tuning. This paper presents a novel method to perform text
categorization using any prior knowledge available. The approach
is based on a framework that integrates kernel machines and logic
to solve multi-task learning problems. The kernel machine mathe-
matical apparatus allows casting the learning problem into a primal
optimization of a function composed of the loss on the supervised
examples, the regularization term, and a penalty term deriving from
forcing the constraints converting the logoc. This naturally allows to
get advantage of unsupervised patterns in the learning task, as the
degree of satisfaction of the constraints can be measured on unsuper-
vised data. This paper assumes that prior knowledge is available both
in terms of know relations among the input patterns (as it happens for
Web documents connected via hyperlinks or scientific papers con-
nected via citations), known semantic relationships among the output
categories (for example to model an ontology) and in terms of input-
output rules. We assume that this knowledge can be represented in

1 Dipartimento di Ingegneria dell’Informazione, Università di Siena, Italy,
email: {claudio.sacca,frandina,michi,marco}@dii.unisi.it

first-order logic (FOL). The connections between logic and machine
learning have been the subject of many investigations, like [1] which
studies the relationships between symbolic and sub-symbolic models
in AI. A broader coverage of the field with emphasis on the connec-
tions with inductive logic programming is in [2]. A related approach
to combining first-order logic and probabilistic graphical models in
a single representation are Markov Logic Networks [3]. In [4], the
well-known inductive logic programming system FOIL is combined
with kernel methods by leveraging FOIL search for a set of relevant
clauses. This model, called kFOIL, can be used to solve either clas-
sification or regression tasks. However, one main limitation of the
reviewed approaches is the lack of tight integration between the ma-
chine learning which deals with the perceptual representation of the
patterns and the prior knowledge on the patterns and classes. The
only direct attempt [5] is limited to rules on the perceptual space
(input-output). The idea of centering the theory around the general
and unified notion of constraints turns out to be a very straightfor-
ward way of bridging logic and kernels, since it is possible to ex-
press most classic logic formalisms by constraints and supervised
examples as used in most learning machines are just a special in-
stance of (soft) constraints. The experimental results, performed over
the popular CORA dataset, confirm that the proposed approach per-
forms better than supervised (SVMs) and semi-supervised (Lapla-
cian SVM, Transductive SVM) approaches in a multi-label classifi-
cation problem.

The paper is organized as follows: the next section introduces
learning from constraints with kernel machines. The translation of
any FOL knowledge into real-valued constraints is described in sec-
tion 3, and some experimental results are reported in section 4. Fi-
nally some conclusions and are drawn.

2 Learning with constraints

We consider a multitask learning problem in which the input is a
tuple X = {xj |xj ∈ Dj , j = 1, . . . , n}, being Dj the domain
of the values for the j-th attribute. The learning task considers a
set of functions {τk(xj(1,k), . . . , xj(nk,k))|k = 1, . . . , T, xj(l,k) ∈
X , τk ∈ Tk} taking a subset of the data as input. Some of the func-
tions may be known a priori whereas others must be inferred from
examples. In general, we assume that the attributes in each domain
are described by a real valued vector of features that are relevant
to solve the tasks at hand. Hence, it holds that Dj = IRdj and τk :
IRdj(1,k)×. . .×IRdj(nk,k) → IR. For the sake of compactness, in the
following we will indicate by xk = [x′j(1,k) . . . x

′
j(nk,k)

]′ ∈ IRdk ,
where dk =

∑
l=1,...,nk

dj(l,k), the input vector for the k-th task.
We consider the case when the tasks functions τk have to meet a

set of constraints that can be expressed by the functionals φh : T1×
. . .× TT → [0,+∞) such that φh(τ1, . . . , τT) = 0 h = 1, . . . , H
must hold for any valid choice of τk ∈ Tk, k = 1, . . . , T .

In order to define the learning task, we suppose that each task
function τk can be approximated by a fk in an appropriate Re-
producing Kernel Hilbert Space Hk. Therefore, the learning pro-
cedure can be cast as an optimization problem that aim at com-
puting the optimal functions f1 ∈ H1, . . . , fT ∈ HT , where
fk : IRdj(1,k) × . . . × IRdj(nk,k) → IR, k = 1, . . . , T . In the fol-
lowing, we will indicate by f = [f1, . . . , fT]

′ the vector collecting
these functions.

We consider the classical learning formulation as a risk minimiza-
tion problem. Assuming that the correlation among the input fea-
tures xk and the desired task function output yk is modeled by a
joint probability distribution p(xk,yk)(xk, yk), the risk associated to
a hypothesis f is measured as,

R[f] =

T∑

k=1

λτk ·
∫

Dk

Lek (fk(xk), yk) p(xk,yk)(xk, yk) dxk dyk

where Dk is the domain of the xk, λτk > 0 is the weight of the risk
for the k-th task and Lek (fk(xk), yk) is a loss measuring the fitting
quality of fk(xk) with respect to the target yk. Common choices for
the loss function are the quadratic function especially for regression
tasks, and the hinge function for binary classification tasks.

The regularization term can be written as N [f] =
∑T
k=1 λ

r
k ·

||fk||2Hk
, where λrk > 0 can be used to weight of the regularization

contribution for the k-th task.
Clearly, if the tasks are uncorrelated, the optimization of the objec-

tive function R[f] +N [f] with respect to the T functions fk ∈ Hk
is equivalent to T stand-alone optimization problems for each func-
tion. However, if we consider a problem for which some correlations
among the tasks are known a priori and coded as rules, we can en-
force also these constraints in the learning procedure. Following the
classical penalty approach for constrained optimization, we can em-
bed the constraints by adding a term that penalizes their violation.
Since the functionals φh(f) are strictly positive when the related
constraint is violated and zero otherwise, the overall degree of con-
straint violation of the current hypothesis f can be measured as

V [f] =

H∑

h=1

λvh · φh(f) ,

where the parameters λvh > 0 allow us to weight the contribution of
each constraint. It should be noticed that, differently from the previ-
ous terms considered in the optimization objective, the penalty term
involves all the functions and, thus, explicitly introduces a correla-
tion among the tasks in the learning statement. Finally, we can add
together all the contributions yielding the objective E[f] = R[f] +
N[f] + V[f].

Since the distributions p(xk,yk)(xk, yk), k = 1, . . . , T needed to
determine R[f] are usually not known, we apply the common as-
sumption to approximate them through their empirical realizations.
This requires to have a set of examples drawn from these unknown
distributions. Basically, the learning set will contain a set of labeled
examples for each task k: Lk =

{(
xik, y

i
k

)
|i = 1, . . . , `k

}
. The

unsupervised examples are collected in Uk = {xik|i = 1, . . . , uk},
while SLk = {xk|

(
xk, yk

)
∈ Lk} collects the sample points that are

in the supervised set for the k-th task. The set of the supervised and
unsupervised points for the k-th task is Sk = SLk

⋃Uk.
Given an input object we can assume that also a partial labeling

can be provided, i.e. it is not required to specify the targets for all the
considered tasks for each sample corresponding to the i-th instance
X i of the input tuple. In the following we will refer to the unsuper-
vised set U = {X i|∃k : xik ∈ Uk}.

In general, the functionals φh(f) implementing the constraints in-
volve all the values computed by the functions in f on their whole
domains making training difficult. Hence, as in the case of the risk,
we assume that these functionals can be conveniently approximated
by considering an appropriate sampling in the function domains. In
particular, the exact constraint functional will be replaced by an ap-
proximation exploiting only the values of the unknown functions f
computed for the points in U : φh(f) ≈ φ̂h(U ,f).

Thus, the given learning problem is cast in a semi-supervised
framework where it is assumed that a set of (partially) labeled exam-
ples is exploited together with a lset of unlabeled examples. Given
the available supervised examples in Lk and an unsupervised sample
Uk, k = 1, . . . , T , the objective function considering the empirical
risk and the empirical penalty is,

Eemp[f] =

T∑

k=1

λτk
|Lk|

∑
(
xj

k
,y

j
k

)
∈Lk

Lek

(
fk(x

j
k), y

j
k

)
+

+

T∑

k=1

λrk · ||fk||2Hk
+

H∑

h=1

λvh · φ̂h(U ,f) .
(1)

3 Translation of first-order logic clauses into
real-valued constraints

We focus attention on knowledge-based descriptions given by first-
order logic (FOL–KB). In the following, we indicate by V =
{v1, . . . , vN} the set of the variables used in the KB, with
vs ∈ Ds. Given the set of predicates used in the KB: P =
{pk|pk : Ds(1,k) × . . . × Ds(nk,k) → {true, false}, k =
1, . . . , T}, the clauses will be built from the set of atoms
A =

{
pk(i)(vs(1,k(i)), . . . , vs(nk(i),k(i))

)|i = 1, . . . ,m, pk(i) ∈
P, vs(j,k(i)) ∈ V

}
, where the i-th atom is an instance of the k(i)-

th predicate for which the j-th argument is assigned to the variable
vs(j,k(i)) ∈ Ds(j,k(i)). In the following, for the sake of compactness,
we will indicate by vai = [vs(1,k(i)), . . . , vs(nk(i),k(i))

] the argu-
ment list of the atom ai ∈ A.

With no loss of generality, we restrict our attention to FOL clauses
in the PNF form, where all the quantifiers (∀, ∃) and their associ-
ated quantified variables are placed at the beginning of the clause.
The quantifier-free part of the expression is equivalent to an asser-
tion in propositional logic for any given assignment of the quantified
variables. Since any propositional expression can be written in Con-
juctive Normal Form (CNF), we can assume that all FOL expressions
are in PNF-CNF form,

Quantified Portion︷ ︸︸ ︷
[∀∃]vs(1) . . . [∀∃]vs(Q)

Quantifier-free CNF expressionE0(vE0
,P)

︷ ︸︸ ︷
∧

c=1,...,C


 ∨

d=1,...,Dc

[¬] ai(c,d)(vai(c,d))


 ,

where ai(c,d) ∈ A is an atom and the variables vs(q) ∈ V, q =
1, . . . , Q constitute the set of the quantified variables. The quantifier-
free expressionE0(vE0 ,P) depends on the list of arguments vE0 =
[vs(1,E0), . . . , vs(nE0

,E0)] corresponding to the variables used in all
the atoms ai(c,d), i.e. vs(j,E0) ∈ {vq ∈ V|∃c, d vq ∈ args(ai(c,d))}
where args(ai(c,d)) is the set of the variables vai(c,d) used as argu-
ments in the atom ai(c,d).

We assume that the task functions fk are exploited to implement
the predicates in P and each variable in V maps to the attributes
defining the tuple X on which the functions fk are defined.

The FOL–KB will contain a set of clauses corresponding to ex-
pressions with no free variables (i.e. all the variables appearing in the
expression are quantified) that are assumed to be true in the consid-
ered domain. These clauses can be converted into a set of constraints
as in that can be enforced during the kernel based learning process.
The conversion process of a clause into a constraint functional con-
sists of the following three steps:

I. PREDICATE SUBSTITUTION: substitution of the predicates with
their continuous implementation realized by the functions f com-
posed with a squash function, mapping the output values into
the interval [0, 1] such that the value 0 is associated with false
and 1 with true.. In particular, the atom ai(vai) is mapped to
σ(fk(i)(vai)), where σ : IR → [0, 1] is a monotonically increas-
ing squashing function. A natural choice for the squash function
is the piecewise linear mapping σ(y) = min(1,max(y, 0)), this is
indeed the function that was employed in the experimental results.

II. CONVERSION OF THE PROPOSITIONAL EXPRESSION: con-
version of the quantifier-free expression where all atoms are
grounded as detailed in subsection 3.1. In our context the propo-
sitional logic clause to be generalized into a continuous function
is grounded with the output values of the functions applied on a
pattern (if unary), or on a vector of patterns if n-ary.

III. QUANTIFIER CONVERSION: conversion of the universal and exis-
tential quantifiers as shown in section 3.2.

3.1 Logic expressions and their continuous
representation

As studied in the context of fuzzy logic and symbolic AI, different
methods can be used for the conversion of a propositional expression
into a continuous function with [0, 1] input variables.

T-norms. In the context of fuzzy logic, t-norms [6] are commonly
used as a generalization of logic clauses to continuous variables. A
t-norm is a function t : [0, 1] × [0, 1] → IR, that is commuta-
tive, associative, monotonic and featuring a neutral element 1 (i.e.
t(x, 1) = x). A t-norm fuzzy logic is defined by its t-norm t(x, y)
that models the logic AND and a function modeling the negation of
a formula. For example, the negation of x corresponds to 1 − x in
the Lukasiewicz norm. Many different t-norm logics have been pro-
posed in the literature like the product t-norm t(x, y) = x · y and the
minimum t-norm defined as t(x, y) = min(x, y). Once defined the
t-norm functions corresponding to the logical AND and NOT, these
functions can be composed to convert any arbitrary logic proposition.

Mixture of Gaussians. A different approach based on mixtures
of Gaussians has been proposed in [7] in the context of symbolic
learning using neural networks. Unlike t-norms, this approach gen-
eralizes the logic clause without making any independence assump-
tion among the variables. In particular, let us consider a propositional
logic clause involving n logic variables. The logic clause is equiva-
lent to its truth table containing 2n rows, each one corresponding to
a configuration of the variables. The continuous function approxi-
mating the clause is based on a set of Gaussian functions, each one
centered on a configuration corresponding to the true value in the
truth table. The mixture function sums all the Gaussians:

t(x) =
∑

[c1,...,cn]∈T
exp

(
−||[x1, . . . ,xn]

′ − [c1, . . . , cn]
′||2

2σ2

)

0

1

0

1

0

1

0.5

f
a

A=>B

f
b

a.

0

1

0

1

0

1

f
a

A=>B

f
b

b.

Figure 1: Function resulting from the conversion of a ⇒ b using PGAUSS
(a.) and NGAUSS (b.).

where x = [x1, . . . ,xn] is a vector containing the variables in the
clause and T is the set of all possible configurations of the input vari-
ables corresponding to a true truth value. We indicate as PGAUSS
this conversion procedure. The value of t(x, y) will decrease de-
pending on the distance from the closest configuration verifying the
clause. Each configuration verifying the constraint is always a global
maximum of t when using a small enough σ value. See [7] for a
complete discussion on how to select σ.

An alternative approach, that we indicate as NGAUSS, is to rep-
resent the false values of the truth table of the clause. In this case,
one negative Gaussian is centered on each configuration of variables
yielding a false value of the considered clause. A bias value equal
to 1 is introduced to obtain a default true value when distant from a
false configuration:

t(x) = 1−
∑

[c1,...,cn]∈F
exp

(
−||[x1, . . . ,xn]

′ − [c1, . . . , cn]
′||2

2σ2

)
,

where F is the set of input configurations corresponding to a false
value in the truth table.

Figure 1 shows the functions obtained by converting the clause
a⇒ b using PGAUSS and NGAUSS. Any formula can be converted
using both forms but, depending on the formula, one mixture can be
more compact.

Hypercube. This class of conversion methods considers the n-
dimensional space formed by associating each logic propositional
variable in a clause to a dimension of the space. This builds a hy-
percube associating each configuration of the variables in the truth
table to a vertex. Let tt(c) be a function mapping a configuration
c = [c1, . . . , cn] to its truth value: tt(c) = 1 if c ∈ T and tt(c) = 0
if c ∈ F . Let’s now consider a continuous generalization of the logic

variables in the [0, 1] range. The generalized truth value of a point x
can be computed as weighted average of the values in the vertices:
t(x) =

∑2n

k=1 wk(x) · tt(ck) where ck is a tuple corresponding to
k-th configuration in the truth table. Depending on the selection of
the weights wk(x) different conversion schema are obtained. For ex-
ample, the Hypercube-Closest-Vertex norm selects the truth value of
the closest vertex as:

wk(x)=

{
D(x,ck) D(x,ck)≤D(x,cj) j=1,. . .,2

N, j 6=k
0 otherwise

where D(x,ck) is the Euclidean distance between x and vertex ck.
The Hypercube-Distance norm weights vertices inversely propor-
tional to the generalized Hamming distance from the input x:

wk(x) =

n∏

i=1

|cki − ci|

where cki is the i-th element of ck. The main advantage of this latter
norm is that any point in a hyperplane merging two or more ver-
texes with the same truth value tt will also be assigned to tt. For
example, when converting the rule A ⇒ B ∧ C, any of the 4 ver-
texes corresponding to A = 0 are associated to a true value in the
truth table (e.g. tt(0, c1, c2) = 1). Therefore, t(0, x1, x2) = 1 for
any x1 = [0, 1], x2 = [0, 1] meaning that any point on the hyper-
cube face will satisfy the constraint. This property allows to build
constraints that are easier to satisfy as they do not introduce any un-
necessary requirement.

Any of the above norms allow the mapping of any arbitrary
quantifier-free expression E(vE ,P) to a functional constraint can
be written ϕE(vE ,f) = 0, depending on all the variables collected
in the argument list vE = [vs(1,E), . . . , vs(nE ,E)] and on the predi-
cates implemented by the functions f .

3.2 Quantifier conversion
The quantified portion of the expression is processed recursively by
moving backward from the inner quantifier in the PNF expansion.

Let us consider the universal quantifier first. The universal quanti-
fier expresses the fact that the expression must hold for any realiza-
tion of the quantified variable vq . When considering the real–valued
mapping of the original boolean expression, the universal quantifier
can be naturally converted measuring the degree of non-satisfaction
of the expression over the domain Dj(q) where the feature vector
xj(q), corresponding to the variable vq , ranges. This measure can
be implemented by computing the overall distance of ϕE(vE ,f),
that is the degree of violation associated to the quantified expression,
from the constant function equal to 0 (this is the only value for which
the constraint is always verified), over the domain Dj(q). Measuring
the distance using the infinity norm yields

∀vq E(vE ,P)→ ‖ϕE(vE ,f)‖∞ = sup
vq∈Dj(q)

|ϕE(vE ,f)| , (2)

where the resulting expression depends on all the variables in vE
except vq . Hence, the result of the conversion applied to the expres-
sion Eq(vEq ,P) = ∀vq E(vE ,P) is a functional ϕEq (vEq ,f),
assuming values in [0, 1] and depending on the set of variables
vEq = [vs(1,Eq), . . . , vs(nEq ,Eq)], such that nEq = nE − 1 and
vs(j,Eq) ∈ {vr ∈ V|∃i vr = vs(i,E), vr 6= vq}. The variables in
vEq need to be quantified or assigned a specific value in order to
obtain a constraint functional depending only on the functions f .

Theorem 1. Let E(v,P) be an FOL expression with no quanti-
fiers depending on the variable v. Let tE(v,f) be the continuous
representation of E, where fk corresponds to pk, k = 1, . . . , T . If
fk ∈ C0, k = 1, . . . , T , then ‖1 − tE(v,f)‖p = 0 iff ∀v E(v,P)
is true.

Proof: See [8].
Theorem 1 shows that there is a duality between an universally

quantified expression and its continuous generalization. If we con-
sider the conversion of the PNF representing a FOL constraint with-
out free variables, the variables are recursively quantified until the
set of the free variables is empty. In the case of the universal quanti-
fier we apply again the mapping described previously. The existential
quantifier can be realized by starting from eq. (2), and enforcing the
De Morgan law (∃vq E(vE ,P) ⇐⇒ ¬∀vq ¬E(vE ,P)) to hold
also in the continuous mapped domain:

∃vq E(vE ,P) → infvq∈Dj(q)
ϕE(vE ,f)

It is generally complex to compute this expression, since the con-
version of the quantifiers requires to ground the the quantified vari-
ables over the whole domain. We assume that the computation can
be approximated by exploiting the empirical realizations of the fea-
ture vectors. Hence, the quantifiers exploiting the infinity norm are
approximated using the empirical distribution Sxj for xj as:

∀vq E(vE ,P) → max
vq∈Sxj(q)

|ϕE(vE ,f)|

∃vq E(vE ,P) → min
vq∈Sxj(q)

|ϕE(vE ,f)| .

In description logics, it is common to define an ∃n operator, which
generalizes the existential operator to from one to n elements. While
FOL can also indirectly express ∃n, it may be convenient and more
compact to provide a direct translation of the ∃n operator as:

∃nvq E(vE ,P) → min(n)vq∈Sxj(q)
|ϕE(vE ,f)| ,

where min(n) is the n-th minimum value over the set. It is possible to
use a different norm to convert the universal quantifier, for example
using norm-1: ∀vq E(vE ,P) →

∑

vq∈Sxj(q)

|ϕE(vE ,f)|.

Please note that ϕE([],f) will always reduce to a form that de-
pends on the realizations of the functions over the data point samples.
The solution to the optimization task defined by equation 1 with con-
straints evaluated over a finite set of data points can be computed by
considering the following extension of the Representer Theorem [9],
see [8] for details and a proof.

Theorem 2. Given a multitask learning problem for which the task
functions f1, . . . , fT , fk : IRdk → IR, k = 1, . . . , T , are assumed
to belong to the Reproducing Kernel Hilbert Spaces H1, . . . ,HT ,
respectively, and the problem is formulated as [f∗1 , . . . , f

∗
T] =

argminf1∈H1,...,fT∈HT
Eemp[f1, . . . , fT] where Eemp[f1, . . . , fT]

is defined as in equation (1), then each function f∗k in the solution
can be expressed as

f∗k (xk) =
∑

xi
k
∈Sk

w∗k,iKk(x
i
k,xk)

where Kk(x
′
k,xk) is the reproducing kernel associated to the space

Hk, and Sk is the set of the available samples for the k-th function.

Therefore, the optimal solution can be expressed as a kernel ex-
pansion over the data points. In fact, since the constraint is repre-
sented by ϕE([],f) = 0 in the definition of the learning objective
function, it is possible to substitute φ̂(U ,f) = ϕE([],f).

3.3 Special cases
Transductive SVMs [10] correspond to a special case of the proposed
framework, where a logic clause imposes that any predicate should
be either true or false. While this rule is always verified in standard
logic, it is not verified in fuzzy logics. Therefore,

∀x P (x) ∨ ¬P (x)

forces function fP estimating predicate P to assume values that are
away from the separating surface even on unsupervised data. As typ-
ically done in Transductive SVMs, it is possible to avoid unbalanced
solutions by imposing that

∃nx P (x) ∧ ∃m x ¬P (x) : n+m = N

where N is the total number of patterns and n and m are estimated
from the supervised examples: n = N · nPpos/(nPpos + nPneg) where
nPpos and nPneg are the number of positive and negative supervised
examples for predicate P , respectively.

Manifold regularization [11] assumes that the classification func-
tions should be regular over the manifold built over the input data dis-
tribution. Laplacian SVMs are a effective semi-supervised approach
to train SVMs under the manifold regularization assumption. Let us
introduce a predicate R(x, y) which holds true if and only if x, y are
connected on the manifold. R is typically a known predicate which
is built using geometrical properties. The manifold assumption in a
logic setting, where two connected points should either both true or
false can be expressed as:

∀x R(x, y)⇒ (P (x) ∧ P (y)) ∨ (¬P (x) ∧ ¬P (y)) .

3.4 Stage-based learning
The optimization of the overall error function is performed in the
primal space using gradient descent [12]. Unlike when only con-
sidering supervised examples, the objective function is non-convex
due to the constraint term. In order to face the problems connected
with the presence of sub-optimal solutions, the optimization prob-
lem was split in two stages. In a first phase, as commonly done
by kernel machines it is performed regularized fitting of the super-
vised examples. Only in a second phase, the constraints are enforced
since requiring a higher abstraction level. This solution has intrigu-
ing connections with results of developmental psychology, since it is
well-known that many animals experiment stage-based learning [13].
From a pure optimization point of view, the first stage with the cor-
respondent guarantee of convergence to an optimal solution makes
possible to approach the global basin of attraction, while the sec-
ond stage refines learning beginning from a good initialization. The
different constraints can also be gradually introduced. As common
practice in constraint satisfaction tasks, more restrictive constraints
should be enforced earlier. As metric of how restrictive a logic con-
straint is, it is possible to use the portion of true configurations of the
corresponding clause.

4 Experimental results
The experimental results have been carried out on a subset of the
CORA dataset 2. The CORA dataset is composed by a set of entities
and their relations to allow experimenting with machine learning ap-
proaches which can cope with relations. Entities are authors and sci-
entific papers, even if only papers are considered in our experimental

2 Download at http://people.cs.umass.edu/∼mccallum/data.html

setting. CORA assigns to each paper a set of categories (multi-label
classification task), selected from a taxonomy of classes. The goal of
our experiments is to predict the categories assigned to each paper.

For our experiments, we have created a dataset of scientific pub-
lications by selecting the 3 first-level (in the taxonomy) categories
which have the highest number of papers. Then all the papers in the
child classes of the selected higher level classes have been selected as
well. All the papers not belonging to at least one of these categories
have been discarded, from the remaining papers a random sample of
1000 papers has been performed. Each paper is then associated with
a vectorial representation containing its title represented as bag-of-
words. We assume that each category is associated to a predicate,
taking a paper as input, which holds true if and only if the paper be-
longs to the category. We indicate as Ci(·) the predicate for the i-th
class of the dataset.

Five folds have been generated by selecting n% of the papers for
which supervisions are kept (n=10,20,30,40 over different experi-
ments) as training set. 15% of the papers of the initial dataset have
been been inserted into the validation set, while the remaining papers
have been removed of the supervisions and used for testing.

The knowledge base collects different collateral information
which is available on the dataset. For example, CORA makes avail-
able a list of citations for each papers, our algorithm can exploit these
relations assuming that a citation represents a common intent be-
tween the papers that are therefore suggested to belong to the same
set of categories. This can be expressed via a set of 10 clauses (one
per category) such that foreach i = 1, . . . , 10:

∀x∈P ∀y∈P Cite(x, y)⇒(Ci(x)∧Ci(y))∨(¬Ci(x)∧¬Ci(y))
where P is the domain of all papers in the dataset and Cite(x, y) is
a binary predicate which holds true iff paper x cites paper y. This set
of clauses will smooth the value of the estimated predicates over the
citation graph. This effect is very similar to what would be done by
manifold regularization or other similar techniques [14].

10% 20% 30% 40%

SVM
Recall 0.473 0.521 0.576 0.624
Precision 0.714 0.756 0.793 0.796
F1 0.569 0.617 0.667 0.700

SBR
Recall 0.672 0.692 0.741 0.770
Precision 0.673 0.741 0.773 0.804
F1 0.672 0.715 0.756 0.787

TSVM
Recall 0.617 0.672 0.696 0.725
Precision 0.602 0.677 0.695 0.711
F1 0.608 0.674 0.695 0.718

LSVM
Recall 0.615 0.660 0.702 0.738
Precision 0.669 0.744 0.770 0.814
F1 0.641 0.699 0.734 0.774

Table 1: Precision, recall and F1 metrics averaged over 5 runs using SVM,
Transductive SVM (TSVM), Laplacian SVM (LSVM) and Semantic Based
Regularization (SBR) using only citation and taxonomic constraints varying
the number of supervised patterns. Metrics in bold represent statistically sig-
nificant gains (95%) over all the other classifiers.

Other clauses can be inserted to model the relationships among
the classes. For example, the CORA taxonomy can be used to build
clauses stating that if the predicate associated to a leaf node is true,
then all the predicates associated to the nodes up to the root should
be true as well:

∀ x ∈ P Ci(x)⇒ pa [Ci] (x)

where pa [Ci] is the father category of Ci in the taxonomy. Further-
more, the following rule defines a close world assumption ∀ x ∈

P c1(x)∨ c2(x)∨ c3(x), where c1, c2, c3 are the three classes in the
first-level of the taxonomy. Overall, a total number of 8 clauses was
used to model the taxonomy. Other external semantic knowledge can
be inserted as well using common knowledge about the environment.
For example, letHasWord be a given predicate holding true iff doc-
ument x has word ”neural”, it is possible to associate the presence of
the term to either the category Artificial Intelligence or Biology as:

∀ x ∈ P HasWord(x,Neural)⇒ Cai(x) ∨ Cbio(x)

where Cai, Cbio indicate the predicate for Artificial Intelligence, and
biology, respectively. 45 clauses of this kind have been added to the
knowledge base.

The logic translation of the transductive rule as described in sec-
tion 3.3 can also be added for each category (10 total). Therefore,
the overall knowledge base is composed of 93 FOL clauses3. In
our experimental setting, the Hypercube-distance norm has been use
to convert all clauses, except the transductive rules for which the
Hypercube-Nearest-Vertex norm has been employed. The norm-1
has been used to convert all clauses, except for citations rules for
which the infinity norm was used. Stage-base learning was used to
train all the SBR classifiers.

Figure 2: F1 (average over five runs) using SVM, TSVm , LSVM and SBR
with different set of rules: taxonomic (T), citation (C), transductive (TR),
input-output rules (IO) and different combinations of these over the dataset
with 10% supervised.

For each subsample size of the training set, one classifier has been
trained. As a comparison, we also trained for each set a standard
SVM (using only the supervised labels), a Transductive SVM (im-
plemented in the svmlight software package) and Laplacian SVM
using the citations to build the manifold of data. When training
with the knowledge base the stage-based procedure described in sec-
tion 3.4 has been used. The validation set has been used to select
the best values for λr and λc (same value for each function e.g.
λr = λri i = 1, . . . , 10 and λc = λci i = 1, . . . , 10). The pre-
cision, recall and F1 results have been compute as an average over
five different samples of the dataset. Table 1 summarizes the results
for a different number of supervised data when using only citations

3 The vectorial representation of the patterns (both in SVMlight and our
format) and the list of rules in a format suitable for our software sim-
ulator can be downloaded (together with the full software bundle) from
https://sites.google.com/site/semanticbasedregularization/home

and taxonomic logic clauses. SBR provides a statistically significant
F1 gain for two datasets over four and the highest average F1 score
for the other datasets.

Figure 2 shows a detailed breakdown of the effect of the single
rules on the 10%-supervised dataset as an average over five runs. Ci-
tation, transductive, taxonomy and input-output constraints all con-
tribute to improve over standard SVMs. However, F1 is maximized
when all constraints are added at the same time. All the SBR clas-
sifiers combining multiple clauses provide gains over SVM, TSVM
and LSVM that are statistically significant (95%).

5 Conclusions and future work
This paper presents a text categorization approach, which is able
to provide a tight integration of prior knowledge and the classical
kernel machine apparatus. The approach is very general, as any
knowledge expressed in FOL can be considered, including relational
knowledge among patterns and classes, semantic knowledge like on-
tologies and input-output rules. The experimental results have been
carried out on the CORA dataset and they show the effectiveness of
the proposed approach on a multi-label classification problem.

Acknowledgments. This research was partially supported by
the research grant PRIN2009 ”Learning Techniques in Relational
Domains and Their Applications” (2009LNP494) from the Italian
MURST.

REFERENCES
[1] P. Hitzler, S. Holldobler, and A. K. Sedab, “Logic programs and con-

nectionist networks,” Journal of Applied Logic, vol. 2, no. 3, pp. 245–
272, 2004.

[2] L. D. Raedt, P. Frasconi, K. Kersting, and S. M. (Eds), Probabilistic
Inductive Logic Programming, vol. 4911. Springer, Lecture Notes in
Artificial Intelligence, 2008.

[3] M. Richardson and P. Domingos, “Markov logic networks,” Machine
Learning, vol. 62, no. 1–2, pp. 107–136, 2006.

[4] N. Landwehr, A. Passerini, L. D. Raedt, and P. Frasconi, “kfoil: Learn-
ing simple relational kernels,” in Proceeding of the AAAI-2006, 2006.

[5] G. Fung, O. Mangasarian, and J. Shavlik, “Knowledgebased support
vector machine classifiers,” in Proceedings of Sixteenth Conference on
Neural Information Processing Systems (NIPS), (Vancouver, Canada),
2002.

[6] E. Klement, R. Mesiar, and E. Pap, Triangular Norms. Kluwer Aca-
demic Publisher, 2000.

[7] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Representation of fi-
nite state automata in recurrent radial basis function networks,” Ma-
chine Learning, vol. 23, no. 1, pp. 5–32, 1996.

[8] M. Diligenti, M. Gori, M. Maggini, and L. Rigutini, “Bridging logic
and kernel machines,” Machine Learning, pp. 1–32, 2011.

[9] B. Scholkopf and A. J. Smola, Learning with Kernels. Cambridge, MA,
USA: MIT Press, 2001.

[10] V. N. Vapnik, Statistical learning theory. Wiley, NY, 1998.
[11] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A

geometric framework for learning from labeled and unlabeled exam-
ples,” The Journal of Machine Learning Research, vol. 7, p. 2434, 2006.

[12] O. Chapelle, “Training a support vector machine in the primal,” Neural
Computation, vol. 19, no. 5, pp. 1155–1178, 2007.

[13] J. Piaget, La psychologie de l’intelligence. Armand Colin, Paris, 1961.
[14] S. Peters, L. Denoyer, and P. Gallinari, “Iterative Annotation of Multi-

relational Social Networks,” in Proceedings of the International Con-
ference on Advances in Social Networks Analysis and Mining, pp. 96–
103, IEEE, 2010.

Instance-specific Parameter Tuning via Constraint-based
Clustering

Lindawati and Hoong Chuin LAU and Feida ZHU 1

Abstract. The performance of heuristic algorithm, is highly depen-
dent on its parameter configuration. To automatically obtain good
parameter configurations, we proposeSufTra, a novel approach for
instance-specific parameter tuning that utilizes theSuffix tree data
structure to representTrajectories of a Local Search algorithm.Suf-
Tra extracts compact features from search trajectories using Suffix
Tree and filters these features using user specified-constraints. Then,
it clusters the problem instances and computes the parameter con-
figurations. Given an arbitrary testing instance, we obtaina suitable
parameter configuration by mapping it to these clusters. Experimen-
tal evaluations of our approach on the Quadratic AssignmentProb-
lem (QAP) show that our approach offers significant improvement
over existing parameter tuning algorithms. We also analysethe clus-
ter quality, demonstrating an almost perfect match betweenour clus-
ter results with the existing natural classifications.

1 Introduction

Good parameter configurations are critically important to ensure
heuristic algorithms to be efficient and effective. Existing approaches
for automated parameter tuning(also calledautomated algorithm
configurationor automated parameter optimization) fall into two cat-
egories:model-freeandmodel-based. Somemodel-freeapproaches
can handle a large number of numerical and even categorical parame-
ters (for exampleGGA [2], F-Race [4] andParamILS [9]). Model-
basedapproaches, on the other hand, offers statistical insightsinto
the correlation of parameters with regard to algorithm performance.
A recent example of the model-based approach isSMAC [8].

The challenge with parameter tuning is that different problem in-
stances require different parameter configurations [10, 12, 19]. One
way to enhance model-based approaches is to incorporateinstance
featuresto produce instance-specific parameter configurations. Un-
fortunately, finding instance featuresitself is often tedious and
domain-specific, requiring a re-examination of features for each new
problem. The research problem is to discover ageneric instance-
specific automated parameter tuningscheme that can perform as
well as those exploiting problem-specific features.

In this work, we propose an approach to address this problem
based on data mining and machine learning concepts. We focusour
attention on tuning local search algorithms. In essence, weperform
clustering of training instance’s search trajectories, which is defined
as a path of solutions discovered by the target algorithm as it searches
through its neighborhood search space [7], and perform tuning on the
clusters. For this purpose, we make use of a powerful data structure,
namely suffix tree [5]. The nice characteristic of our work isthat we

1 Singapore Management University, Singapore, email: lindawati.2008,
hclau, fdzhu@smu.edu.sg

can obtain these trajectories from the target local search algorithm
with minimal additional computation effort.

Motivated by previous work [11] where human constraints give
significant improvement to its solution, we also involve user-
specified constraints to guide the clustering process. Although in
some well-known problems such as QAP, user can specify the con-
straints very easily, for other problems, user-specified constraints are
often hard to enumerate. Hence, we design our approach to antici-
pate partial (rather small) or no user-specified constraints. Note that
user-specified constraints are different from instance features.

It is interesting to note that our approach does not make use of
an explicit formulation (such as linear or Gaussian regression) that
maps instances to clusters, which may be very hard if not impossible
to derive. Instead, we exploit therich instance-specificsearch trajec-
tories as a proxy for the fitness landscape which is correlated with
algorithm performance [15]. Instances are clustered basedon these
generic features using predictive modeling. This form of clustering
preservesrich featuresthat represent the individual instances within
it.

Our approach improves the work of [12] that captures similarity
using a single (and relatively short) segment through out the entire
sequence, and works only on short and small number of sequences
due to its inherent computational bottleneck. In contrast,our ap-
proach is capable of retrieving similarity across multiplesegments
with linear-time complexity. Using a Suffix Tree data structure and
user-specified constraints, our approach can efficiently and effec-
tively form better and tighter clusters and hence improve the overall
performance of the underlying target algorithm.

We conduct experiments on the Quadratic Assignment Problem
(QAP). The experiments show that our approach offers encouraging
results for both cluster quality and overall performance compared
against existing approaches. For the overall runtime, our approach is
significantly (more than ten times) faster compared to the approach in
[12] when the search trajectories are long and the number of training
instances is large.

2 Preliminaries

To avoid confusion, we refer the algorithm whose performance is
being tuned/configured as thetarget algorithmand the one that is
used to tune/configure it as theconfigurator. We measure the target
algorithm performance based on the quality of their solutions. We
define functionH as follows.

Definition 1 (Performance Metric [H]) Let i be a problem in-
stance, andAx(i) be the objective value of the corresponding so-
lution for instancei obtained by a target algorithmA when executed

under configurationx. LetOPT (i) denote the best known value for
instancei. Hx(i) is formulated as:Hx(i) =

|OPT (i)−Ax (i)|
OPT (i)

For benchmark instances with known global optimum value, we
use the known global optimum value as itsOPT (i), while for new
instances, we use the target algorithm’s best solution. Using perfor-
mance metricH, we define the instance-specific parameter tuning
problem as follows.

Definition 2 (Instance-Specific Parameter Tuning [ISPT]) Given
a set of instancesI , a parameter configuration spaceΘ for a target
algorithmA and a performance metricH, the ISPT problem is to
find a parameter configurationx ∈ Θ for eachi ∈ I such that
Hx(i) is minimized overΘ.

Instead of finding a parameter configuration for each problemin-
stance, the ISPT problem can be approximated in a cluster-based
manner in which problem instances are grouped into clustersand
a parameter configuration is computed for each cluster [10, 12]. In
this paper, we aim to solve the ISPT problem with user-specified
constraints on the resulting clusters. In real-world applications, these
user-specified constraints often represent domain knowledge to guide
the clustering process. In particular, we consider a simpleand natu-
ral set of constraints, each of which specifies whether a pairof data
samples must belong to the same cluster, which are calledmust-link
constraints (Mlink), or must belong to different clusters, which are
calledcannot-linkconstraints (Clink) [3, 20].

Hence, we define the problem of constrained cluster-based
instance-specific parameter tuning as follows.

Definition 3 (Constrained Cluster-based Instance-SpecificPa-
rameter Tuning [CC-ISPT]) Given a set of instancesI , a parameter
configuration spaceΘ for a target algorithmA, a performance met-
ric H, a set of user-specified constraintsC, the CC-ISPTproblem
is to find a clusteringπ of all instances ofI and a parameter con-
figuration x ∈ Θ for each cluster ofπ such that (I)π satisfies all
the constraints inC; and (II) the averageHx(i) for each cluster is
minimized overΘ.

If there is no user-specified constraints, user-specified constraints
is considered as an empty set. We assume that there is no contradic-
tion betweenMlink andClink .

3 Related Work

Various approaches forone-size-fits-all configuratorhave been pro-
posed in the literature which divided into two categories:model-free
andmodel-based. For model-free approaches,F-Race and its vari-
ants [4] work by using statistical model selection to evaluate a set of
candidate configurations and discarding statistically badconfigura-
tions. Other model-free approaches that can handle large number of
parameters areParamILS [9] andGGA [2]. ParamILS applies an
iterated local search that uses an adaptive capping technique to speed
up the search process.GGA (Gender-based Genetic Algorithm) uses
a genetic algorithm which divides the parameter candidate set into
two groups and applies a different selection method for eachgroup.
For model-based approaches,CALIBRA [1] combines statistical ex-
perimental design with local search, and this approach handles upto
five parameters. A recent workSMAC [8] constructs predictive per-
formance models to focus attention on promising regions of adesign
space. One common shortcoming of the above approaches is that they
provide aone-size-fits-allconfiguration for all instances, which may
not perform well on large and diverse instances.

Three recent approaches for instance-specific tuning isHydra
[19], ISAC [10] andCluPaTra [12]. Hydra works by combining au-
tomated parameter tuning and portfolio-based algorithm selection. It
automatically builds a set of solvers with complementary strengths
by iteratively configuring new algorithms to be used in its portfolio.
ISAC andCluPaTra work by dividing instances into clusters based
on feature(s) similarity and tuning the parameter configuration for
each cluster. The main difference betweenISAC andCluPaTra is
that ISAC usesproblem-specific featureswhile CluPaTra uses a
generic feature. For a given problem,ISAC uses different problem-
specific features which require in-depth understanding of the prob-
lem. For example, in [10], 8 features are used for Set Covering Prob-
lem (SCP) and 9 features for Mixed Integer Programming Problem
(MIP). CluPaTra uses a generic feature derived from search trajec-
tories to perform clustering, and then tune the parameters for each
cluster.

4 Solution Approach

Our approach follows the framework ofCluPaTra [12] that makes
use of the search trajectories. AsCluPaTra uses sequence alignment
to calculate similarity, it suffers from the following two limitations.

1. Scalability.
In CluPaTra, pair-wise sequence alignment is implemented using
standard dynamic programming with a complexityO(m2), where
m is the maximum sequence length of the sequences. Hence, the
total time complexity for all instances isO(n2×m2), wheren is
the number of instances andm is the maximum sequence length.
This poses a serious problem for instances with long search tra-
jectories and when the number of instances is large.

2. Flexibility.
The nature of sequence alignment is to align a pair of sequence
segments that gives us the highest alignment score. A matched
symbol contributes a positive score (+1), while a gap contributes a
negative score (-1). The sum of the scores is taken as the maximal
similarity score of the two sequences. However, it is possible that
sequences share similarity on more than one segments, especially
for long sequences. Sequence alignment is not flexible enough to
capture multiple-segment alignment with an acceptable time com-
plexity.

To overcome these limitations and achieve better overall perfor-
mance, we propose a new algorithm calledSufTra that uses a com-
pact and rich data structure, namely Suffix Tree, and design amore
efficient method to calculate similarity.

SufTra addressesCluPaTra’s limitations as follows: (1) Scalabil-
ity: We propose a linear time algorithm for both Suffix Tree construc-
tion and traversal; and (2) Flexibility: We generate compact patterns
from search trajectories and use it as features. The patterns may oc-
cur in multiple segments along the search trajectory, so suffix trees
enable us to consider multiple-segment similarities to improve the
accuracy of the clusters.

We further improve the cluster quality by employing user super-
vision and proposing a new classification method to map testing in-
stances to clusters. This method enables us to generate moreaccurate
mapping in a shorter computation time. In the overall,SufTra runs in
linear-time, which is an order of magnitude improvement andtrans-
lates to a significantly faster method, compared toCluPaTra (that
runs in quadratic time). Furthermore, we show experimentally that
the quality of clusters outperform those ofCluPaTra

4.1 SufTra Framework Overview

The SufTra framework works in two phases: training and testing.
The training phase works as follows:

1. Feature Extraction. We extract a set of featuresF from search
trajectories using a suffix tree and remove insignificant features
with respect toMlink andClink .

2. Similarity Calculation. We calculate similarity scoresusing the
extracted features.

3. Clustering. We cluster the instances using AGNES (AGglomera-
tive NESting).

4. Parameter Configuration. We run an existing one-size-fits-all con-
figurator to obtain the best configuration for each cluster created.

In the testing phase, we use the knowledge from the training phase
to return instance-specific configuration(s) for testing instances. This
phase is usually performed online. To achieve this, we design a new
method for fast and accurate testing instance mapping. Our proposed
method consists of two steps:

1. Signature Construction. We construct the signatures foreach clus-
ter. This step is run once, and can be performed offline.

2. Cluster Mapping. For an arbitrary testing instance, we match its
search trajectory to the cluster’s signature and return parameter
configuration from the best-matching cluster’s as its parameter
configuration. This step will be performed online.

Thus, our framework makes use four major components: feature
extraction, similarity calculation, clustering and signature extraction.
The details of these components are given as follows.

4.2 Feature Extraction

To generate its features,SufTra mines patterns from search trajecto-
ries. To mine compact and important patterns, we select pattern that
has significant length and appear in a sufficient number of instances
[6]. We also filter the patterns using user-specified constraints.Hence,
we define the features as follows.

Definition 4 (Feature [F]) LetI be a set of problem instance,S be
a set of search trajectories for all instance inI ,minlength be a mini-
mum length threshold,minsupport be a minimum support threshold,
C be a set of user-specified constraints.F is defined as a set of dis-
tinct segments fromS that: (I) has a length greater thanminlength;
(II) occurs in at leastminsupport number of instances; and (III) has
high score for discriminating between all pairs of instances with re-
spect toC.

The steps on Feature Extraction are as follows.

4.2.1 Search Trajectory Representation

Search trajectory is defined as a path of solutions discovered by the
target algorithmA as it searches through the neighborhood search
space [7]. We represent a search trajectory as a directed sequence of
symbols before constructing suffix tree. The steps for converting a
search trajectory into a string are as follows:

• Record the instance’s search trajectory by running the target algo-
rithm using a random parameter configuration.

• Convert the search trajectory to a sequence based on its so-
lution’s attributes. Each solution in search trajectory isrepre-
sented as a symbol which encodes a combination of two solu-
tion attributes: (1) percentage deviation of quality fromOPT
(as defined in Definition 1); and (2) position type, based on
the topology of the local neighborhood as given in Table 1
[7]. These two attributes are combined; of which the first two
digits are the deviation of the solution quality and the last
digit is the position type. To handle target algorithms withcy-
cles and (random) restarts, it adds two additional symbols:’C’
and ’J’; ’C’ is used when the target algorithm returns to a
previously-visited position (cycle), while ’J’ is used when the lo-
cal search is restarted (jump). An example of a search trajectory
sequence is14L-14L-14L-14L-14L-14L-14L-14L-14L-14L-14L-
14L-14L-04M-J-24L-14L-14L-14L-14L-14L-14L-14L, where14L
represent the solution that has percentage deviation 14% and po-
sition type LEDGE.

Table 1. Position Types of Solution

Position Type Label Symbol < = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

’+’ = present, ’-’ = absent; referring to the presence of neighbor
solutions with larger (’<’), equal (’=’) and smaller (’>’) objective
values

• Construct aHash Tableto store number of repetitions. Note that
in a search trajectory, several consecutive solutions may have sim-
ilar solution properties before the final improvement and reaching
local optimum. We therefore compress the search trajectoryse-
quence to aHash Stringby removing the consecutive repetition
symbols and storing the number of repetitions in aHash Table
(to be used later in the similarity score calculation). Removing
consecutive repetition symbols gives us two advantages: (1) it of-
fers greater flexibility in capturing more varieties of similarity for
symbol patterns between two instances. Two instances may share
similar patterns but a different number of consecutive symbols,
e.g., for a particular symbol14L, in one instance it may occur
repeatedly for 10 times, while in the other instance it may occur
repeatedly for 5 times. And (2) it reduces computational cost for
constructing and traversing the suffix tree, since the time needed is
decided by its length.Hash Stringis a more compact and shorter
representation of the original search trajectory sequence. An ex-
ample ofHash Stringis 14L-04M-J-24L-14L.

• Convert the symbol for each solution to one single characterand
concatenate it into a string (Hash String).

4.2.2 Suffix Tree Construction

The suffix tree is a data structure that exposes the internal structure
of a string for a particularly fast implementation of many important
string operations. Suffix trees are used to solve exact and inexact
matching problems in linear time and are widely used in substring
problems [5]. The construction of a suffix tree proves to havea linear
time complexity w.r.t. the input string length [5].

(a) Suffix Tree for Single String

5
P$ LMMNP$

3 2

1

MNP$
M

NP$
NP$

4

(b) Suffix Tree for a Set of String

1,5
P$ MNP$ 1,1

N M

NP$

LM

2,1
NMM$

1,21,3

M

2,4

2,2

2,5
2,3

1,4
$

$
N

MM$

P$

P$
MM$

Figure 1. (a) Suffix Tree Example for stringS1 (LMMNP), number at a
leaf indicates the starting position of the suffix in that string; (b) Generalized
Suffix Tree Example for stringsS1=LMMNP andS2=LMNMM , the

first number at a leaf indicates the string and the second number indicates the
starting position of the suffix in that string.

A suffix treeT for a stringS with m length is a rooted directed tree
having exactlym leaves numbered 1 tom. Each internal node, other
that the root, has at least two children and each edge is labeled with
a substring (including the empty substring $) ofS. No two edges out
of a node has edge-labels beginning with the same character.

To represent suffixes of a set{S1, S2,Sn } of strings, we use a
generalized suffix tree.Generalized suffix tree is built by append-
ing a different end of string marker (which is a symbol not in used in
any of the strings) to each string in the set, then concatenate all the
strings together, and build a suffix tree for the concatenatedstring [5].
An example ofgeneralized suffix tree for stringsLMMNP and
LMNMM is LMMNPLMNMM The time to build this suffix
tree is proportional to the total length of all the strings. The suffix
tree for a single stringS1 and a set of stringS1 andS2 is shown in
Fig. 4.2.2.

In a suffix tree structure, we can easily retrieve matching sub-
strings from a set of string by finding the branch that has leaves from
the corresponding strings. From our suffix tree example (Fig. 4.2.2b),
branches with edge-labelM , N , LM , MM , andMN have leaves
from both stringsS1 andS2. Those edge-labels represent the same
substring shared byS1 andS2.

We construct the suffix tree using Ukkonen’s algorithm [5]. To
cover every training instance, we build a singlegeneralized suf-
fix tree for all theHash String. The length of the concatenate string
is proportional to the sum of all theHash Stringlengths. Details of
Ukkonen’s algorithm can be found in [5]. Our implementationre-
quiresO(n × l), wheren is the number of instances andl is the
maximum length of theHash String.

4.2.3 Frequent Substring Extraction

After constructing the suffix tree, we extract frequent substrings. A
substring is considered as frequent if it has a length greater than
minlength and it occurs in at leastminsupport number of strings [6].
The values ofminlength andminsupport are different for each prob-
lem. While fixing the values would sacrifice flexibility, it isalso com-
putationally challenging to find optimal values by exhaustive search.
We therefore apply local search, a simple yet effective method to
provide sufficiently good values in reasonable time.

We use local search to move from the initial values ofminlength

andminsupport to their neighbors by changing eitherminlength or
minsupport at each move until the average distance among all in-
stances in two different clusters is no longer improving.

To find the initial values ofminlength andminsupport, we run a
competition among 5 candidates, namely: lower bound ofminlength

andminsupport, upper bound ofminlength andminsupport , mid
value between lower and upper bound and two random values. Lower
bound ofminlength andminsupport is set to 2, while upper bound is

set to 20% of the number of instances forminlength and 20% of the
maximum string length respectively forminsupport.

4.2.4 Feature Selection

We use user-specified constraints (must-link and cannot-link con-
straints) to select the ”good” features from the frequent substrings.
As in [20], we want to select features with the best constraint preserv-
ing ability. We assume that a ”good” feature should appear more in
instances that hasmust-linkconstraints rather than in instances that
hascannot-linkconstraints.

Based on that assumption, we filter the substrings using the fol-
lowing steps:

1. Generate a set of cliquesC for instances that belong to the same
cluster based onMlink

2. Calculate discriminative scoreDScore for each substring using
the following formula:

DScore(s) =

P|C|
k=0

P

(i,j)∈Ck
(x(s)ij)

P

(ii,ij)∈Clink
(x(s)ij)

(1)

where
x(s)ij =



1 if s is appear in instancei andj
0 otherwise

3. Selectn number of substring which has the highest score as fea-
tures. The default value forn is M/2, whereM is the number of
substrings.

Note that, if the user-specified constraints is not available, we use
all the extracted substrings as features.

4.3 Similarity Score Calculation

After having the features, we calculate the instance’s score for each
feature and construct an instance-feature metric using thefollowing
rules:

1. If the instance does not contain the feature, the score is 0.
2. Else the score is calculated by summing up the number of rep-

etitions for each symbol in feature from previously constructed
Hash Table. A frequent substring may occur multiple times in one
string. We calculate the score for each occurrence and choose the
maximum score as the score for the instance-feature metric.

With this metric, we calculate the similarity for each pair of in-
stances by cosine similarity, a widely-used similarity measure for
comparing vectors [5]. Cosine similarity is formulated as:

similarity =

Pn
i=0(fi(I1) × fi(I2))

p
Pn

i=0 fi(I1)
2 +

p
Pn

i=0 fi(I2)
2

(2)

wherefi(I1) andfi(I2) are the scores from the instance-feature
metric for Instance 1 and 2 respectively.

4.4 Clustering

Similar to [12], we cluster the instances by a well-known cluster-
ing approach AGNES [6] withL method [16]. AGNES or AGglom-
erative NESting is a hierarchical clustering approach thatworks by
creating clusters for each individual instance and then merging two
closest clusters (i.e., a pair of clusters with the smallestdistance) re-
sulting in fewer clusters of larger sizes until all instances belong to

one cluster or a termination condition is satisfied (e.g. a prescribed
number of clusters is reached). We implement theL method [16] to
automatically find the optimal number of clusters, which works by
using the evaluation graph where thex-axis is the number of clusters
and they-axis is the value of the evaluation function atx clusters. In
this paper, we use the average distance among all instances in two
different clusters as the evaluation function.L method fits the curve
in the evaluation graph into two lines and chooses the intersection
point between these two lines as the optimal number of clusters.

4.5 Signature Extraction

In testing phase, we use signatures to represent instance’ssearch tra-
jectories in each cluster. We define signature as follows.

Definition 5 (SignatureSIGN) Let c be a cluster of problem in-
stancei, S be a set of search trajectories for all instancei in c,
minlength be a minimum length andminsupport be a minimum sup-
port. SIGN (c) is defined as a set of distinct segments fromS that
has significant length (greater thanminlength) and appears in most
of instancei in c (at leastminsupport number of instances).

The steps for signature extraction are similar to feature extraction
(Section 4.2), but for each cluster, we need to construct a differ-
ent suffix tree and extract the features from each suffix tree.Since
each cluster already satisfy user-specified constraints, we skip the
feature selection process and use all the extracted substrings as fea-
tures. Unless stated otherwise,minlength andminsupport are set to
minlength andminsupport value in feature extraction.

4.6 Time Complexity

The time complexity for generatingHash Stringis O(n × m) with
n being the number of instances andm being the maximum string
length, while that for constructing the suffix tree isO(n × l) with
n being the number of instances andl being the maximumHash
String length. Extracting features, building instance-feature metric
and calculating similarity for each pair of instances can bedone by a
single traversal of the suffix tree structure. Hence it requiresO(n× l)
with n being the number of instances andl being the maximumHash
String length. The clustering process requiresO(n2) with n being
the number of instances. Hence, the overall time complexityfor the
training phase, excluding the time needed for tuning, isO(n2+(n×
m) + (n × l)) with n being the number of instances,m being the
maximum string length andl being the maximumHash Stringlength
(n ≪ l ≪m).

In the testing phase, cluster signature construction requiresO(n×
l) where n is the number of training instances andl is the
maximum Hash String length. For a given testing instance, we
match the signatures with the testing instance’s strings, which takes
O(signaturec × lsignature×m× l) time, wheresignaturec is the
total number of signatures in all clusters,lsignature is the maximum
length of signatures,m is the number of testing instances, andl is
the maximum string length of the testing instance (lsignature ≪ l).

5 Empirical Evaluation

In this section, we present our experimental results to measure the ef-
ficiency and effectiveness ofSufTra on a classical COPs, Quadratic
Assignment Problem (QAP).We compare our approach with two
other instance-specific configurators in the literature:ISAC [10] and

CluPaTra [12]. Note that since our aim is to measure solution qual-
ity, we do not compare our approach withHydra [19], another
instance-specific configurator that seeks to optimize run time per-
formance but not solution quality of the target algorithm.

As a target algorithm, we use hybrid Simulated Annealing and
Tabu Search (SA-TS) algorithm [13], which uses the Greedy Ran-
domized Adaptive Search Procedure (GRASP) to obtain an initial
solution, and a combined Simulated Annealing (SA) and Tabu Search
(TS) algorithm to improve it. There are four parameters to betuned
as described in Table. 2.

Table 2. Parameters for SA-TS on QAP

Parameter Description Type Range
Temp Initial temperature of SA

algorithm
Continuous [100, 5000]

Alpha Cooling factor Continuous [0.1, 0.9]
Length Length of tabu list Discrete [1, 10]
Pct Percentage of non-

improving iterations prior
to intensification strategy

Continuous [0.01, 0.1]

We used two set of instances: SET A and SET B as described in
Table. 3. All experiments were performed on a 1.7GHz Pentium-4
machine running Windows XP.

Table 3. Set of Instances for QAP

Set Description ntr nt m
SET A benchmark instances from QAPLib

with number of city 22 to 150
40 10 4,613

SET B generated instances from two gen-
erators as in [14] with number of fa-
cilities varied from 5 to 150

100 400 15,536

5.1 Cluster Analyses

We experimented on SET A instances and compared the clusters
created fromSufTra, CluPaTra and ISAC. Since ISAC requires
problem-specific features, we used 2 features:flow dominanceand
sparsityof flow metric [17].

We measured the cluster quality usingextrinsicmethod.Extrin-
sic methods compare the clusters against the known class labelsor
ground-truthclusters (i.e. the set of clusters which is supposed to
represent the ideal/optimal clustering) [6]. We used the existing well-
studied classification of QAP instances based on the distance and
flow metrics, due to [18] asground truthcluster.

For this experiment, we used two differentSufTra implementa-
tion. ForSufTra, we did not include user-specified constraints infor-
mation, while forSufTra(c), we randomly derived 20 user-specified
constraints fromground truthcluster.

The cluster quality values are shown in Table. 4 (I). Notice
that SufTra(c) andSufTra has higher cluster quality compared to
CluPaTra andISAC.

5.2 Performance Comparison

To evaluateSufTra’s effectiveness for long search trajectories and
large number of instances, we ran experiment on SET B. For
SufTra(c), we randomly used 20 user-specified constraints where we
derived from the following assumption: (1) instances from the same
generator are considered on the same cluster; and (2) instances from
different generators are considered on different clusters.

Table 4. QAP Experiment Result

Training Testing
I. Clustering Analyses
CluPaTra 0.68 0.70
ISAC 0.80 0.80
SufTra 0.85 0.85
SufTra(c) 0.91 0.93

II. Computational Time
CluPaTra 1,051 s 2,718 s
SufTra 56 s 146 s
SufTra(c) 65 s 147 s

III. Performance Result
ParamILS 1.08 2.14
CluPaTra 0.89 1.58
ISAC 0.84 1.22
SufTra 0.83 1.16
SufTra(c) 0.80 1.15
p-value** 0.061 0.042
**based on statistical test onISAC andSufTra

First, we compared the time needed (in seconds) forSufTra,
SufTra(c) andCluPaTra to form the clusters in training phase and
to map the testing instances in testing phase. Table. 4 (II) shows the
result. From the table, we observe thatSufTra andSufTra(c) is 18
times faster thenCluPaTra.

Next, we compared the target algorithm performance using pa-
rameter configuration fromSufTra, SufTra(c), CluPaTra andISAC
as well as the one-size-fits-all configuratorParamILS. For the three
instance-specific methods, we used the same one-size-fits-all config-
urator,ParamILS [9]. SinceParamILS works only with discrete pa-
rameters, we first discretized the values of the parameters.We mea-
sured the performance using performance metric as defined inDefi-
nition 1.

We set the cutoff runtime ofParamILS to 100 second. For
CluPaTra, SufTra andSufTra(c), we allowed each configurator to
execute the target algorithm for a maximum of two CPU hours for
each cluster. To ensure fair comparison, we set the time budget for
ISAC and ParamILS to be equal to the total time needed to run
SufTra. For unbiased evaluation, we used a 5-fold cross-validation
[6] and measured the average performance over all folds. We also
performed a statistical test (t-test) on the significance of our result
where ap-valuebelow 0.05 is deemed to be statistically significant.
In Table. 4 (III), we show the performance comparison results. From
the table, we observe thatSufTra andSufTra(c) performs better on
training and testing instances compare to other approaches. But the
result for training instances is not statistically significant compare to
ISAC.

6 Conclusion and Future Works

In this paper, we proposed a new generic instance-based configu-
rator via the clustering of patterns according to the instance search
trajectories using the suffix tree data structure and user specified-
constraints. We measured the cluster quality and performance of
QAP, and show thatSufTra result (with or without user-specified
constraints) is outperform the existing methods. Its cluster is almost
similar to existing benchmark instance classifications, thereby show-
ing its effectiveness. Hence, we claim that: (1)SufTra (with or with-
out user-specified constraints) is a suitable approach for instance-
specific configuration that significantly improves the performance

with minor additional computational time; and (2)SufTra has over-
comeCluPaTra limitations with a new efficient method for feature
extraction and similarity computation using suffix tree.

Up to this stage of our work, theSufTra framework can only be ap-
plied to target algorithms which are local-search-based, since our ap-
proach uses search trajectory as the generic feature. As future works,
we will investigate how to generate clusters from population-based-
algorithm using generic features pertaining to populationdynamics.

REFERENCES
[1] Belarmino Adenso-Dı́az and Manuel Laguna, ‘Fine-tuning of algo-

rithms using fractional experimental design and local search’, Oper-
ations Research, 54(1), 99–114, (2006).

[2] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney, ‘A gender-
based genetic algorithm for the automatic configuration of algorithms’,
in 15th international Conference on Principles and Practice of Con-
straint Programming, pp. 142–157, (2009).

[3] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney, ‘A probabilis-
tic framework for semi-supervised clustering’, inTenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD-2004), pp. 59–68, (2004).

[4] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, ‘Automated algo-
rithm tuning using f-races: Recent development’, in8th Metaheuristics
International Conference, (2009).

[5] Dan Gusfield,Algorithms on Strings, Trees and Sequences, Cambridge
University Press, 1997.

[6] J. Han and M. Kamber,Data Mining: Concept and Techniques, 2nd
Edition, Morgan Kaufman, San Francisco, 2006.

[7] H.H. Hoos and T. Stützle,Stochastic Local Search: Foundation and
Application, Morgan Kaufman, San Francisco, 2004.

[8] F. Hutter, H.H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, inLNCS: 5nd Learn-
ing and Intelligent OptimizatioN Conference, (2011).

[9] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stützle, ‘Paramils: An
automatic algorithm configuration framework’,Journal of Artificial In-
telligence Research, 36, 267–306, (2009).

[10] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘Isac:instance-
specific algorithm configuration’, in19th European Conference on Ar-
tificial Intelligence, (2010).

[11] G. Klau, N. Lesh, J. Marks, and M. Mitzenmacher, ‘Human-guided tabu
search’, inIn: National Conference on Artificial Intelligence (AAAI),
(2002).

[12] Lindawati, Hoong Chuin Lau, and David Lo, ‘Instance-based param-
eter tuning via search trajectory similarity clustering’,in LNCS: 5nd
Learning and Intelligent OptimizatioN Conference, (2011).

[13] K.M. Ng, A. Gunawan, and K.L. Poh, ‘A hybrid algorithm for the
quadratic assignment problem’, inInternational Conf. on Scientific
Computing, pp. 14–17, (2008).

[14] Gabriela Ochoa, Sebastien Verel, Fabio Daolio, and Marco Tomassini,
‘Clustering of local optima in combinatorial fitness landscape’, in
LNCS: 5nd Learning and Intelligent OptimizatioN Conference, (2011).

[15] C.R. Reeves, ‘Landscapes, operators and heuristic search’, Annals of
Operations Research, 86(1), 473–490, (1999).

[16] S. Salvador and P. Chan, ‘Determining the number of clusters/segments
in hierarchical clustering/segmentationalgorithms’, in16th IEEE Inter-
national Conference on Tools with Artificial Intelligence, pp. 576–584,
(2004).

[17] T. Stützle and S. Fernandes, ‘New benchmark instancesfor the qap and
the experimental analysis of algorithms’, inLNCS: Evolutionary Com-
putation In Combinatorial Optimization, (2004).

[18] É.D. Taillard, ‘Comparison of iterative searches for the quadratic as-
signment problem’,Location Science, 3(2), 87–105, (1995).

[19] L. Xu, H.H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically con-
figuring algorithms for portfolio-based selection’, inConference of the
Association for the Advancement of Artificial Intelligence(AAAI-10),
(2010).

[20] Daoqiang Zhang, Songcan Chen, and Zhi-Hua Zhou, ‘Constraint score:
A new filter method for feature selection with pairwise constraints’,
Pattern Recognition, 41(5), 1440–1451, (2008).

Learning-to-rank with Prior Knowledge as Global
Constraints

Tiziano Papini and Michelangelo Diligenti 1

Abstract. A good ranking function is the core of any Information
Retrieval system. The ranking function can be a simple cosine simi-
larity or, more likely for any advanced IR system like a Web search
engine, a function processing a high number of signals which typi-
cally requires a lot of hand-tuning to deal with the large variability
of queries. The result is a sub-optimal and highly complex ranking
function which, in spite of having been crafted by human experts, is
hard to control and debug. In the last few years, learning-to-rank from
examples has emerged as a more flexible approach to design ranking
functions. While learning-to-rank approaches have been proved to
significantly outperform hand-tuned solutions, they still feature many
disadvantages. First, they rely on a large number of training exam-
ples to model the high variability of the input query stream. Unfor-
tunately, constructing a training set is more complicated than label-
ing examples in classical supervised classification tasks. Indeed, the
labeling process for learning-to-rank tasks is inherently error-prone
and incomplete. Secondly, learning-to-rank schemas usually do not
account for the explicit knowledge that human experts have built over
the years. It would be nice to integrate this knowledge without hav-
ing to rely on a large set of examples to infer it. Finally, the proposed
approach opens new ways to integrate unlabeled data into the learn-
ing process, as the rules must be respected also by the unlabeled data.
This paper presents a general framework to convert prior knowledge
in form of First Order Logic (FOL) clauses into a set of continuous
constrains and shows how these constraints can be integrated into any
learning-to-rank approach which is optimized via gradient descent.

1 Introduction

Modern Information Retrieval systems like Web search engines have
available hundreds of features to represent each document to answer
users’ queries. These features range from query-independent signals
like PageRank to others measuring the match between the query and
a document. Human experts can compose these signals in order to
get a ranking function which is effective in most cases. However, be-
cause of the high number of correlated signals, it is hard to manually
design ranking functions achieving results that are close to optimal-
ity. Learning-to-rank from examples has emerged as a more flexi-
ble approach to design ranking functions, which has gained popu-
larity both in research and industrial contexts. Learning-to-rank ap-
proaches have been proved to significantly outperform hand-tuned
solutions [1], but they still feature many disadvantages. First, they
rely on a large number of training examples to model the high vari-
ability of the input query stream, in a context where the labeling
process is inherently error-prone, leading to inconsistent, incomplete

1 Dipartimento di Ingegneria dell’Informazione, Università di Siena, Italy,
email: {papinit,diligmic}@dii.unisi.it

and noisy training sets. Secondly, learning-to-rank schemas usually
discard the explicit knowledge that human experts have built over
several years, starting the optimization process from scratch.

The basic assumption of this paper is that an expert can express
the desired behavior of the ranking function via a set of FOL clauses,
and it is required to integrate this knowledge without having to rely
on a large set of examples to infer it. The training examples will also
respect the rules and a supporter of pure learning-to-rank approaches
could claim that the rules can be inferred from the examples. How-
ever, the number of training examples is often not sufficient to con-
verge to the optimal ranking function and it is therefore more com-
pact and effective to express the ranking rules in an explicit form.
Another advantage of this approach is that it allows to get advantage
of the unlabeled data into the learning process, as the data can be
used to ensure that the constraints are enforced. In a learning-to-rank
setting, unlabeled data means the actual ranking provided by the IR
system, with no labeling nor goodness judgments assigned by a hu-
man expert. Therefore, unlabeled data can be obtained in a virtually
unlimited quantity with little cost.

This paper presents a general framework to encode arbitrary prior
knowledge expressed as First Order Logic (FOL) into a set of con-
tinuous constraints, which can be added to the cost function to opti-
mize. For example, a constraint could force some degree of diversity
or freshness in the results, or make the ranking to be determined by
a single feature under a specific condition. The presented framework
is not tied to a specific learning-to-rank approach, but it can be inte-
grated into any technique, which is optimized via gradient descent.
In particular, the experimental section employs a variant of Lamb-
daRank, called LambdaNeuralRank, to show the effectiveness of the
proposed technique. The experimental results show that the approach
improves state-of-the-art results on a dataset built from the logs of a
commercial search engine when little supervised data is available.

2 Prior work
Learning-to-rank approaches can be grouped into three main classes:
pointwise, pairwise and listwise approaches. A pointwise approach
[2] takes document/score pairs as training examples to learn a docu-
ment scoring function f : D ⇒ IR, which assigns a score to a docu-
ment, under the assumption that the final rank of the documents will
be obtained by sorting the documents in descending order of score.
Pairwise methods like [3] take a set of pairs of documents as input
to the training. The training process consists in learning a function,
which correctly orders the pairs (f(u) > f(v) if u should precede in
the rank v). Pairwise approaches are generally preferred to pointwise
methods, because they do not impose specific scores to the learning
algorithm, leaving it the freedom to select the score range in which
to work. Finally, listwise methods [4, 5] get a set of lists of ranked

documents as training examples, and the optimization is performed
using a loss function over the entire list of documents.

A recent trend in learning to rank approaches is to attempt a di-
rect optimization of the target metrics [6][7], which typically are ei-
ther Mean Average Precision (MAP) for ranks having two relevance
scores or Normalized Discounted Cumulative Gain (NDCG) when
there is an arbitrary number of relevance scores. This class of ap-
proaches falls in the listwise category as the target metrics are func-
tions of ranked lists and not of individual pairs. Those approaches
are generally considered to outperform pairwise methods as they can
direct the learning toward what’s most important with regard to the
optimization of the target metric. However, direct optimization of
the target metrics is difficult, because all the commonly employed
metrics, such as NDCG and MAP, are not expressed in terms of the
scoring functions but in terms of the document ranks (which then de-
pend on the functions). This makes the resulting loss function either
constant or not differentiable in any point with respect of the training
parameters. Most learning approaches solve this issue by employing
a continuous approximation of the target metric [8].

3 LambdaRank, LambdaNeuralRank and
constraints

The proposed methodology to inject prior knowledge can be inte-
grated into any learning-to-rank approach trained via gradient de-
scent. We start introducing a variant of LambdaRank, a state-of-
the-art learning-to-rank algorithm, which will be used as underlying
learning mechanism over which FOL knowledge is injected.

Let C(f,d) be the following cost function

C(f,d) =
∑

i,j∈d,i>j

L (f(di), f(dj))

︸ ︷︷ ︸
L(f,d)

+
λr
2
||w||2

︸ ︷︷ ︸
R(f)

+

H∑

h=1

λhcΦh(f)

︸ ︷︷ ︸
C(f)

where [f(d1), · · · , f(dn)] is the vector of scores assigned by f to
the set of documents to score d, i > j indicates that document di
should be ranked higher than dj , w is the vector of parameters of f ,
λr determines the trade-off between fitting the supervised data and
the magnitude of the weights, L is a loss function and the H logic
clauses forming the prior knowledge are represented as a set of H
constraints Φh(f), each assigned a weight λhc . L(f,d),R(f), C(f)
indicate the labeled, regularization and constraint contributions to the
cost function, respectively.

In particular, L was selected to be a hinge function shifted by a
value ε which acts as the desired margin, yielding,

C(f,d) =
∑

i,j∈d,i>j

h (f(di)− f(dj)− ε) + (1)

+
λr
2
||w||2 +

H∑

h=1

λhcΦh(f) .

When λhc = 0, h = 0, . . . , H , this cost function is equivalent to
the cost function used by SVMRank [9] (in the primal). The deriva-
tive of the cost function with respect of a generic weight of f is the

following:

∂C(f,d)

∂w
=

∂R(f)

∂w
+
∂C(f)

∂w
+
∂L(f,d)

∂w
= (2)

= λrw +

H∑

h=1

λhc
∂Φh(f)

∂w
+

+
∑

i,j∈d,i>j

h′ ·
(
∂f

∂w

∣∣∣∣
di

− ∂f

∂w

∣∣∣∣
dj

)

︸ ︷︷ ︸
λij

,

where λij is the contribution to the derivative of a single pair of doc-
uments.

LambdaRank [10] provides a learning-to-rank basic mechanism,
which acts as a meta-methodology to optimize a target metric. Lamb-
daRank is a meta-approach as it relies on an underlying pairwise al-
gorithm (like the one presented so far) for computing the gradients
for each pair. LambdaRank transforms a pairwise approach into a
listwise one by weighting the contribution to the gradient of each
pair as shown in equation 2 by its utility in improving the target met-
ric. Regardless of the exact formulation of the cost function opti-
mized, LambdaRank has been proved to locally maximize the target
metric [11]. This is theoretically justified by observing that it is not
needed to explicitly know the cost function we are optimizing, only
the gradients are needed.

In particular, let θ(d, rnk) be the goodness score of rank rnk over
documents d and ∆θ(d, rnk, i, j) be the difference of the θ values
coming from swapping document i and j of d in rnk. LambdaRank
weights the the contributions λij by the impact on the target metric
∆θ(d, rnk, i, j). Therefore, the derivative of the labeled part with
respect to a weight w assumes the following form,

∂L(f,d)

∂w
=

∑

i,j∈d,i>j

λij ·∆θ(d, rnk, i, j) . (3)

This value can be directly used to optimize the function by gradient
descent together with ∂R(f)

∂w
and ∂C(f)

∂w
, which we will show in the

following section how to compute.
A common choice for the target metric in learning-to-rank envi-

ronments is the NDCG, defined as,

NDCG(d, rnk) =

|d|∑

j=1

2scr(dj) − 1

log2(rnk(dj)) + 1
.

where scr(dj) and rnk(dj) are the relevance score and its rank in
the result set for document dj .

It is easy to show that for NDCG, ∆NDCG(Bd, rnk, i, j)) is
equal to,

∆NDCG(d, rnk, i, j) =
(2scr(di) − 2scr(dj))

log2(rnk(dj) + 1)
−

− (2scr(dj) − 2scr(di))

log2(rnk(di) + 1)
. (4)

Equation 4 can be used to replace ∆θ(d, rnk, i, j) in equation 3.
The function f can be implemented using any machine learning ap-
proach. In our experimental setting, f was implemented by a Neural
Network as in RankNet [3]. For this reason, we called this learning-
to-rank approach LambdaNeuralRank.

4 Prior Knowledge expressed as FOL and its
conversion

In order to implement learning-from-constraints as described in the
previous section, one needs to devise a conversion process to trans-
late logic formalisms into real-valued functions. We focus our at-
tention on knowledge-based descriptions given by first-order logic
(FOL–KB). While the framework can be easily extended to arbitrary
FOL predicates, in this paper we will consider only unary predicates
to keep the notation simple.

Any FOL clause has an equivalent version in Prenex Normal form
(PNF), that has all the quantifiers (∀, ∃) and their associated quanti-
fied variables at the beginning of the clause. Standard methods exist
to convert a generic FOL clause into its corresponding PNF and the
conversion can be easily automated. Therefore, without loss of gen-
erality, we restrict our attention to FOL clauses in the PNF form.
In the following, we indicate by V = {v1, . . . , vN} the set of the
variables used in the KB. In particular, vi can take values over the
document collection D to be ranked or the set of queries Q. Predi-
cates can be of two types. The first type takes a document and returns
true if the document/query meets some predefined requirement (like
having a feature above a value or its content belongs to some topical
category, etc.). This first set of predicates used in the KB is indicated
as P = {pk|pk : (v ∈ D) → {true, false}, k = 1, . . . , |P |}. A
second class of predicates R (ranking predicates) checks whether a
document d is in the first i positions of a rank over a set of n doc-
uments d = {d1, · · · , dn}, as determined by the ranking function
f for a query q. Let R = {rk|rk : (q ∈ Q, v ∈ D, IRn) →
{true, false}, k = 1, . . . , |R|}. The clauses will be built from the
set of atoms p(v) : (p ∈ P, v ∈ D) ∨ (p ∈ R, v ∈ D ×Q× IRn).
Predicates P are given and they only select whether a document has
some desired characteristic. On the other hand, predicatesR depend
on the ranking functions, which determine the rank of a document
for a given query.

We assume that all the clauses are in the following general form:

∀q ∈ Q {∀,∃}v1 . . . {∀,∃}vn E(q, p(v1), . . . , p(vn))

where E(q, p(v1), . . . , p(vn)) is a generic propositional expression
over the atoms.

The FOL–KB will contain a set of clauses corresponding to ex-
pressions with no free variables (i.e. all the variables appearing in
the expression are quantified) that are assumed to be true in the con-
sidered domain. These clauses can be converted into a set of con-
straints that can be enforced during the learning process. As detailed
in the following sections, the conversion process of a clause into a
constraint functional consists of the following steps: Conversion of
the ranking predicates, Conversion of the Propositional Expression
and Quantifier conversion.

4.1 Conversion of the ranking predicates

A ranking predicate rk(d, d, q) can be implemented by computing f
over d for q, then by sorting the scores and, finally, by checking that
the rank condition on the target document is verified. The issue with
this ranking predicate is that it is either constant or not differentiable
in any point with respect of the parameters of the ranking function f .
This makes optimization with respect of the parameters difficult. As
commonly done in the context of learning to rank [8], it is possible
to approximate the ranking predicate with a continuous and differen-
tiable surrogate approximation of the predicate. This can be done by

defining the expected position of d in the rank established by f over
the set of document d as:

ˆpos(d, d, f) =

|d|∑

i=1

P (di > d) =

|d|∑

i=1

e−α[f(d)−f(di)]

1 + e−α[f(d)−f(di)]

where P (di > d) models the probability that di precedes d using a
sigmoidal function and α > 0 is a constant. The predicate rk(d, d, q)
can now be approximated by using a sigmoidal function on top of the
estimate of the rank

r̂k(d, d, q) = sigm(k − ˆpos(d, d, f))

.

4.2 Conversion of the Propositional Expression
Prior work in the literature [12] concentrated on conversion schema
based on t-norms. A different approach based on mixtures of Gaus-
sians is exploited in this paper. This approach has been inspired by
the methodology described in [13] to integrate symbolic knowledge
into neural networks. The advantage of this approach relies in the
fact that it does not perform any independence assumption among
the variables, like it happens for t-norms.

In particular, let us consider a propositional logic clause involv-
ing n logic variables. The logic clause is equivalent to its truth table
containing 2n rows, each one corresponding to a configuration of the
variables. The continuous function approximating the clause is based
on a set of Gaussian functions, each one centered on a configuration
corresponding to the true value in the truth table. The mixture func-
tion generalizes the propositional clause into a continuous setting by
summing up the single Gaussians:

t(x1, . . . , xn) =

=
∑

[c1,...,cn]∈T
exp

(
−||[x1, . . . , xn]′ − [c1, . . . , cn]′||2

2σ2

)
,

(5)
where x1, . . . , xn is the set of variables in the propositional clause
and T is the set of all possible configurations of the input variables
which correspond to the true value in the table.

For example, let us consider the clause x ∨ y, which
is verified by the three configurations [true, true],
[true, false], and [false, true]. The clause is converted as

t(x, y) = exp
(
− ||[x,y]′−[1,1]′||2

2σ2

)
+ exp

(
− ||[x,y]′−[1,0]′||2

2σ2

)
+

exp
(
− ||[x,y]′−[0,1]′||2

2σ2

)
.

It is also possible to generalize the clause by setting the default
value to true and modeling the false configurations in the truth table:

t(x1, . . . , xn) =

= 1−
∑

[c1,...,cn]∈F
exp

(
−||[x1, . . . , xn]′ − [c1, . . . , cn]′||2

2σ2

)
,

whereF is the set of all possible configurations of the input variables
which correspond to a false value in the table.

If [x, y]′ assumes values corresponding to a configuration verify-
ing the clause, t(x, y) ≥ 1 holds. For a generic input [x, y]′, the
value of t(x, y) will decrease depending on the distance from the
closest configuration verifying the clause. The variance σ2 is a pa-
rameter that can be used to determine how quickly t(x, y) decreases
when moving away from a configuration verifying the constraint.
Please note that each configuration verifying the constraint is always
a global maximum of t.

4.3 Quantifier conversion
The quantified portion of the expression is processed recursively by
moving backward from the inner quantifier in the PNF expansion.

Let us consider the universal quantifier first. The universal quan-
tifier expresses the fact that the expression must hold for any result
in the set of documents to rank d. When considering the real–valued
mapping of the original boolean expression, the universal quantifier
can be naturally converted measuring the degree of non-satisfaction
of the expression over the domain d. More generally, let vE be the
vector of variables contained in the expression E, the satisfaction
measure can be implemented by computing the overall distance of
the penalty associated with E, i.e. ϕE(vE , f) from the constant
function equal to 0 over the domain d. Using the infinity norm on
discrete domains, this measure is

∀vq ∈ d E(vE ,P)→ max
vq∈d

|ϕE(vE ,P)| , (6)

where the resulting expression depends on all the variables in vE
except vq , and ϕE(vE ,P) = max(1 − tE(vE ,P), 0). Hence, the
result of the conversion applied to the expression Eq(vEq ,P) =
(∀vq ∈ d E(vE ,P)) is a functional ϕEq (vEq ,P), assum-
ing values in [0, 1] and depending on the set of variables vEq =
[vs(1,Eq), . . . , vs(nEq ,Eq)], such that nEq = nE − 1 and vs(j,Eq) ∈
{vr ∈ V|∃i vr = vs(i,E), vr 6= vq}. The variables in vEq need
to be quantified or assigned a specific value in order to obtain a con-
straint functional depending only on the functions P .

If we consider the conversion of the PNF representing a FOL con-
straint without free variables, the variables are recursively quantified
until the set of the free variables is empty. In the case of the universal
quantifier we apply again the mapping described previously. The ex-
istential quantifier can be realized by enforcing the De Morgan law
(∃vq ∈ d E(vE ,P)⇐⇒ ¬∀vq ∈ d ¬E(vE ,P)) to hold also in
the continuous mapped domain. Using the conversion of the univer-
sal quantifier of equation (6), we obtain the following conversion for
the existential quantifier

∃vq ∈ d E(vE ,P) → min
vq∈d

|ϕE(vE ,P)| .

It is also possible to select a different norm on the discrete domain
to convert the universal quantifier. For example, when using the ‖·‖1
norm for discrete domains, yields the conversion rule

∀vq ∈ d E(vE ,P)→ 1

|d|
∑

vq∈d

|ϕE(vE ,P)| .

As an example of the conversion procedure, let q be a query and
s(·), n(·) two predicates checking whether a result is about topic
sport or nutrition, respectively. The clause ∀v ∈ d rk(d, v, q)⇒
s(v) ∨ n(v) expresses the fact that any result in the first k po-
sitions of results for q must be about topic sport or nutrition.
The only false configuration for the quantifier-free expression is
rk(d, v, q) = true, s(v) = false, n(v) = false. Therefore,

t(q, v) = 1− exp (− (rk(d,v,q)−1)2+s(v)2+n(v)2

2σ2). Then, converting
the quantifier, adding the loss and inserting the continuous approxi-
mation of the rank predicate, we get the following constraint:

Φ(f) = max
v∈d

exp


−

(
sigm

(
k−∑|d|i=1

e−α[f(d)−f(di)]
1+e−α[f(d)−f(di)]

)
−1

)2

+s(v)2+n(v)2

2σ2


=

= 0 .

5 Experimental Results
Unfortunately, publicly available learning-to-rank datasets like
LETOR2 are not suited for testing the proposed method. Indeed,
these datasets have been designed for pure learning-to-rank ap-
proaches, where only the features are visible. For example, in order
to avoid any privacy concern which could follow the public release
of sensible data, LETOR does not provide any explicit information
about the underlying queries and documents, which are used in the
dataset. Furthermore, no additional information like the document
content is provided. For all these reasons, it is very hard to introduce
any relevant prior knowledge in this limited context.

Therefore, we decided to leverage the AOL dataset, released in
2005, to build a new learning-to-rank benchmark. The AOL dataset
has been constructed from the logs of the AOL commercial search
engine and it contains a sample of the search activity of 658000
anonymized US-based users over a three month period (March-May
2005), which has been estimated to consist of approximately 1.5% of
the overall AOL users in the considered period. The dataset contains
4.8 million queries and 1.8 million URLs. Since we are aware of the
privacy concerns of this dataset, the logs have been pruned to remove
queries that have been issued less than 30 times and by fewer than
four distinct users. This should remove personal queries and docu-
ments that could allow associating any anonymous user id to a real
person. In this dataset we follow a similar approach to that proposed
in [14] by assuming that the relevance of a document for a query
is proportional to the number of times the users selected it (click-
through-rate), in particular, the click-though-rate ranges in the [0, 1]
interval and it has been split into 7 portions of equal size. The first
sub-interval is associated to a 0 relevance level (non relevant result),
and the relevance level is constantly increased by 0.5 sub-interval by
sub-interval up to a maximum relevance level equal to 3 (essential
result). Therefore, the learning-to-rank problem consists in predict-
ing the order of the documents in order to maximize the NDCG of
the rank.

The dataset has been constructed by randomly selecting 10000
queries issued more than thirty times in the dataset. All the docu-
ments that have been selected for the query at least once by a user
have been downloaded from the Internet. All the documents that were
not available anymore at downloading time have been discarded, re-
sulting into 140740 (query, document pairs). 40% of these queries
are kept as candidates for inclusion in a training set. The validation
and test sets have been created by randomly splitting the remaining
queries into two groups containing 20% and 40% of the initial set,
respectively. All the experiments presented in this section have been
obtained as an average over 5-folds, obtained by subsampling the
pool of reserved training data.

The downloaded HTML documents have been parsed and pro-
cessed together with their associated query. The output of this pro-
cess is a vectorial representation of each (query, document) pair com-
posed by 140 features, 5 of which depending on the document only
and 135 on the document and query. In particular, the entire doc-
ument and 4 sections of the document are taken into account: ti-
tle, body, url and anchor. For each portion, 27 features compute the
match between the query and specific sub-portions of the document
like the BM25, cosine similarity, etc. Most of these features have
been implemented consistently to the LETOR dataset as reported in
[1]. Furthermore, using a set of SVM text categorizers [3] built over
the data available in the DMOZ taxonomy 3, the documents have

2 http://research.microsoft.com/users/LETOR/
3 http://www.dmoz.org

RankSVM RankNet LambdaRank SortNet LambdaNeuralRank
NDCG@1 0.462 0.333 0.390 0.450 0.477
NDCG@2 0.563 0.400 0.542 0.568 0.579
NDCG@3 0.603 0.424 0.596 0.615 0.622
NDCG@4 0.628 0.438 0.624 0.639 0.644
NDCG@5 0.647 0.452 0.644 0.658 0.662
NDCG@6 0.663 0.464 0.660 0.672 0.676
NDCG@7 0.675 0.476 0.673 0.685 0.689
NDCG@8 0.686 0.486 0.683 0.696 0.699
NDCG@9 0.696 0.497 0.692 0.704 0.708
NDCG@10 0.705 0.50.7 0.700 0.712 0.716

Table 1: NDCG@n results on the AOL Web logs dataset for the proposed method and other state-of-the-art learning-to-rank approaches.

Baseline (no constraints) Adult Shopping Health Society Sports Recreation Combined
NDCG@1 0.375 0.425 0.427 0.423 0.398 0.436 0.423 0.435
NDCG@2 0.493 0.544 0.545 0.543 0.523 0.555 0.544 0.554
NDCG@3 0.547 0.600 0.596 0.591 0.573 0.602 0.584 0.598
NDCG@4 0.580 0.625 0.625 0.622 0.604 0.603 0.610 0.620
NDCG@5 0.603 0.645 0.645 0.642 0.624 0.650 0.628 0.640
NDCG@6 0.620 0.661 0.661 0.657 0.639 0.665 0.643 0.655
NDCG@7 0.635 0.672 0.673 0.670 0.653 0.678 0.657 0.668
NDCG@8 0.647 0.685 0.685 0.681 0.664 0.689 0.668 0.679
NDCG@9 0.657 0.694 0.694 0.690 0.674 0.698 0.678 0.689
NDCG@10 0.666 0.702 0.702 0.697 0.684 0.705 0.686 0.697
P@1 0.402 0.451 0.452 0.450 0.424 0.462 0.452 0.463
P@2 0.338 0.368 0.370 0.367 0.355 0.373 0.369 0.377
P@3 0.295 0.315 0.316 0.312 0.304 0.317 0.309 0.316
P@4 0.262 0.276 0.276 0.276 0.268 0.277 0.267 0.274
P@5 0.236 0.247 0.247 0.247 0.240 0.248 0.237 0.246
P@6 0.216 0.226 0.224 0.223 0.218 0.224 0.216 0.222
P@7 0.198 0.203 0.203 0.203 0.200 0.204 0.198 0.203
P@8 0.183 0.187 0.187 0.187 0.185 0.188 0.188 0.187
P@9 0.170 0.174 0.173 0.173 0.172 0.174 0.170 0.174
P@10 0.158 0.162 0.161 0.161 0.160 0.161 0.159 0.162
MAP 0.518 0.555 0.556 0.536 0.561 0.530 0.550 0.561

Table 2: NDCG@n, Precision@n and MAP results on the AOL Web logs dataset as a 5-fold average when using LambdaNeuralRank on 4
supervised and 4000 unsupervised queries per fold and a rule for each single category or all the categories combined. The Baseline column
represents the results obtained by training without the rules.

been assigned a vector of eight scores in [−1, 1] depending on how
much their content belongs to the following categories: Adult, Arts,
Business, Shopping, Health, Society, Sports and Recreation. These
topicality scores has also been added to the vector of features. The
queries, represented as their bag-of-words, have also been classified
into the same categories (non-exclusively, meaning that a query can
belong to multiple classes). Let Q be the set of all queries, we in-
dicate with Qc the subset of queries classified as belonging to cate-
gory c. The ranking functions have been implemented by a 2-layer
neural network with 40 hidden neurons with tahn activations. Cross-
validation on the validation set has been performed to select the best
performing neural network during the training process.

LambdaNeuralRank is a non-trivial extension of LambdaRank.
Therefore, even if not the main focus of this paper, we start evalu-
ating its performance before showing how it can be further improved
using prior knowledge. In particular, table 1 reports the NDCG scores
obtained on this dataset by various learning-to-rank approaches in
the pairwise (RankSVM [9], RankNet [15] and SortNet [16]) and
listwise category (LambdaRank [10]) against LambdaNeuralRank.
This table shows that LambdaNeuralRank over-performs with a sig-
nificant margin the other approaches for all values of NDCG@i.
Therefore, LambdaNeuralRank provides a very solid learning-to-
rank package, which is not trivial to improve.

The tested ranking rules where in the following form:

∀q ∈ QT ∃d ∈ d rk(q, d) ∧ T (d)

where rk(q, d) is a predicate in R returning true if d is one of the
first k position in the rank for q and T (d) is a predicates returning
true if d is about topic T . This rule states that at least one result in
the first k should be about a category if also the query is about that
category.

In our experimental setting, k = 3 and, as said before, all the first
level DMOZ categories have been considered.

Table 2 and 3 reports the NDCG and MAP scores on the test set as
an average over 5-folds by randomly subsampling 4 and 40 queries as
training set for each fold, respectively. The Baseline column reports
the results provided by LambdaNeuralSort without integrating the
logic knowledge. The other columns (excluding the last) show the
results of the integration of the logic knowledge for a single class.
The weight of the rule in each experiment has been determined via
crossvalidation on the validation set. Finally, the Combined column
reports the results provided by a classifier integrating all the logic
knowledge at the same time. The weight of each rule λhc in equation 1
has been set to a value proportional to the gain introduced by the rule
on the validation set (more informative rules get higher weights). The
benefit of the integration is very significant for both datasets, and it
is very large on the experiment using few supervised queries. Please
note that the additional logic helps generalization also for queries that
do not belong to the category that is directly involved in the rule, for
this reason it is possible to substantially increase the NDCG and P
scores even when using singe rules. The Combined classifier is able

Baseline (no constraints) Adult Shopping Health Society Sports Recreation Combined
NDCG@1 0.419 0.426 0.444 0.435 0.416 0.414 0.436 0.454
NDCG@2 0.538 0.540 0.561 0.552 0.537 0.541 0.552 0.566
NDCG@3 0.586 0.589 0.608 0.600 0.585 0.587 0.589 0.608
NDCG@4 0.610 0.615 0.631 0.625 0.611 0.614 0.614 0.631
NDCG@5 0.632 0.635 0.651 0.646 0.629 0.635 0.633 0.649
NDCG@6 0.647 0.651 0.666 0.660 0.646 0.650 0.647 0.662
NDCG@7 0.660 0.664 0.678 0.672 0.659 0.663 0.660 0.676
NDCG@8 0.671 0.675 0.689 0.683 0.671 0.675 0.672 0.687
NDCG@9 0.681 0.684 0.698 0.692 0.680 0.685 0.683 0.696
NDCG@10 0.690 0.692 0.705 0.701 0.689 0.693 0.691 0.704
P@1 0.446 0.451 0.471 0.462 0.443 0.441 0.465 0.483
P@2 0.368 0.367 0.383 0.374 0.365 0.370 0.374 0.385
P@3 0.312 0.315 0.324 0.319 0.312 0.313 0.308 0.323
P@4 0.270 0.272 0.278 0.277 0.272 0.273 0.268 0.278
P@5 0.243 0.246 0.249 0.249 0.242 0.246 0.240 0.247
P@6 0.221 0.223 0.226 0.224 0.220 0.223 0.216 0.222
P@7 0.202 0.204 0.206 0.205 0.201 0.204 0.198 0.203
P@8 0.186 0.188 0.190 0.188 0.186 0.188 0.183 0.188
P@9 0.173 0.174 0.175 0.174 0.173 0.174 0.171 0.174
P@10 0.161 0.162 0.163 0.162 0.161 0.162 0.159 0.161
MAP 0.550 0.554 0.569 0.562 0.550 0.550 0.556 0.571

Table 3: NDCG@n, Precision@n and MAP results on the AOL Web logs dataset as a 5-fold average when training LambdaNeuralRank on 40
supervised and 4000 unsupervised queries per fold and a rule for each single category or all the categories combined. The Baseline column
represents the results obtained by training without the rules.

to get use of the overall knowledge and it performs the best on most
experiments.

6 Conclusions

This paper presents a novel approach to integrate prior knowledge in
form of FOL clauses into learning-to-rank approaches. This method-
ology allows to get advantage of the usually extensive prior knowl-
edge developed by human experts to build a given ranking function,
without relying on a very large amount of training data to infer it.
The experimental results show that this approach provides a large
precision increase of the ranking function when little training data
is available. This should allow to apply learning-to-rank approaches
also in contexts where it is not economically possible to invest a large
amount of time and money to label the training data.

7 Acknowledgments

This work has been partially founded by a research award from
Google Inc. and by a grant from the MPS foundation. We thank
Marco Gori, Marco Maggini, Nino Freno and Edmondo Trentin for
the fruitful discussions that helped us to define this model.

REFERENCES
[1] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li, “Letor: Benchmark dataset

for research on learning to rank for information retrieval,” in Proceed-
ings of SIGIR 2007 workshop on learning to rank for information re-
trieval, pp. 3–10, Citeseer, 2007.

[2] K. Crammer and Y. Singer, “Pranking with ranking,” in Advances in
Neural Information Processing Systems (NIPS), pp. 641–647, MIT
Press, 2001.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” in Pro-
ceedings of the 22nd international conference on Machine learning,
pp. 89–96, ACM, 2005.

[4] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in Proceedings of the 24th in-
ternational conference on Machine learning, pp. 129–136, ACM, 2007.

[5] T. Qin, X. Zhang, M. Tsai, D. Wang, T. Liu, and H. Li, “Query-level loss
functions for information retrieval,” Information Processing & Man-
agement, vol. 44, no. 2, pp. 838–855, 2008.

[6] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector
method for optimizing average precision,” in Proceedings of the 30th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pp. 271–278, ACM, 2007.

[7] M. Volkovs and R. Zemel, “Boltzrank: learning to maximize expected
ranking gain,” in Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pp. 1089–1096, ACM, 2009.

[8] T. Qin, T. Liu, and H. Li, “A general approximation framework for
direct optimization of information retrieval measures,” Information re-
trieval, vol. 13, no. 4, pp. 375–397, 2010.

[9] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang, and H. Hon, “Adapting rank-
ing svm to document retrieval,” in Proceedings of the 29th annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval, pp. 186–193, ACM, 2006.

[10] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth cost
functions,” Advances in neural information processing systems, vol. 19,
p. 193, 2007.

[11] P. Donmez, K. Svore, and C. Burges, “On the local optimality of lamb-
darank,” in Proceedings of the 32nd international ACM SIGIR confer-
ence on Research and development in information retrieval, pp. 460–
467, ACM, 2009.

[12] M. Diligenti, M. Gori, M. Maggini, and L. Rigutini, “Multitask Kernel-
based Learning with Logic Constraints,” in Proceedings of the 19th Eu-
ropean Conference on Artificial Intelligence, pp. 433–438, IOS Press,
2010.

[13] P. Frasconi, M. Gori, M. Maggini, and G. Soda, “Representation of fi-
nite state automata in recurrent radial basis function networks,” Ma-
chine Learning, vol. 23, no. 1, pp. 5–32, 1996.

[14] N. Craswell and M. Szummer, “Random walks on the click graph,” in
Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 239–246,
ACM, 2007.

[15] P. Li, C. Burges, and Q. Wu, “Learning to rank using classification and
gradient boosting,” in Proceedings of the International Conference on
Advances in Neural Information Processing Systems (NIPS), Citeseer,
2007.

[16] L. Rigutini, T. Papini, M. Maggini, and F. Scarselli, “SortNet: learning
to rank by a neural-based sorting algorithm,” in In proceedings of the
SIGIR 2008 Workshop on Learning to Rank for Information Retrieval
(LR4IR), vol. 42, pp. 76–79, 2008.

Using SAT and SQL for Pattern Mining in
Relational Databases

Emmanuel Coquery1 and Jean-Marc Petit1 and Lakhdar Sais2

Abstract. In this paper, we present an ongoing work bridg-
ing the gap between pattern mining, SQL and SAT for a
particular class of patterns. We extend the work presented
in [2] that proposes a logical query language for rule patterns
satisfying Armstrong’s axioms. Our contributions are the fol-
lowing: firstly, we allow a large part of the relational tuple
calculus (SQL) to be used in the specification of queries. Sec-
ondly, we propose a boolean encoding of the query that can be
used to compute answers even in the case of non Armstrong-
compliant queries. Some experiments have been performed on
top of Derby (embedded Java DBMS) and a modified version
of MiniSat to show the feasibility of the approach.

1 INTRODUCTION

Declarative approaches for pattern mining attracted a grow-
ing attention in the recent years. On one hand, a way to in-
crease declarativity is to devise high level query languages for
data mining [10, 13, 14, 5, 8, 11, 2]. On the other hand, more
declarativity often induce a greater expressivity, at the cost
of a reduced efficiency. Constraint programming approaches
for pattern mining, initiated in [15], were proposed to provide
a good compromise between expressivity and efficiency.

In this paper, we propose to use SQL and SAT together
for pattern mining. We extend the work presented in [2] that
proposes a logical query language for rule patterns satisfying
Armstrong’s axioms. While such patterns can be enumerated
with efficient algorithms they might be seen as too restrictive.
The first contribution of this paper is to allow a large part of
the relational tuple calculus (SQL) to be used in the specifi-
cation of queries. The second one is the use of a SAT solver
for enumerating patterns even in the case of non Armstrong-
compliant queries.

The rest of this paper is organized as follows. Section 2
presents the RLT query language. Section 3 presents the ba-
sic principles of the query boolean encoding. Implementation
principles are presented in section 4 together with a few opti-
mizations, while section 5 provides some ways to reduce the
number of answers. Finally some experimental results are pre-
sented in section 6 and we conclude in section 7.

2 THE RLT LANGUAGE

In this section, we introduce the syntax and semantics of the
RLT language, which is based on a mixture of tuple relational

1 Université de Lyon, CNRS, France, email: first-
name.lastname@liris.cnrs.fr

2 Université d’Artois, CNRS, France, email: sais@cril.univ-artois.fr

calculus [1] and RL language [2].

2.1 Preliminaries

We introduce the following definitions and notations used in
the RLT language:

• U is a set of attributes, noted Ā, B̄ . . .,
• CST is a set of constants,
• CMP is a set of binary3 comparisons over CST . It is as-

sumed that if c̄ and c̄′ are two constants, and if 2 ∈ CMP,
then c̄ 2 c̄′ is computable in constant time.

• a schema R is a finite, nonempty set of attributes from U ,
• a tuple t̄ over a schema R is a total function from R to
CST ,

• t̄[Ā] denotes the value of t̄ for attribute Ā,
• a relation r̄ over a schema R is a set of tuples over R.

• s, t, u, s1, . . . are tuple variables,
• A,B,C,A1, B1 . . . are attribute variables, i.e. capital letters

from the beginning of the alphabet,
• X,Y, Z,X1, Y1 . . . are schema variables, i.e. capital letters

from the end of the alphabet,
• r, r1, r

′ . . . are relation symbols.

To avoid ambiguity with variables, we shall use the follow-
ing notations for attributes, set of attributes and tuples:

• Ā, B̄, C̄, Ā1, B̄1 . . . are single attributes,
• X̄, Ȳ , Z̄, X̄1, Ȳ1 . . . are set of attributes,
• s̄, t̄, t̄1, t̄2, . . . are tuples,
• c̄, c̄1, c̄′ are constants.

For any function f : E → E′, we denote by f [e := e′],
where e ∈ E and e′ ∈ E′, the function f ′ which maps e to e′

and maps e1 to f(e1) if e 6= e1.
For any function f : E → E′, and any subset E1 ⊆ E, we

denote by f|E1
the restriction f ′ : E1 → E′ of f to E1, which

maps e1 ∈ E1 to f(e1).

2.2 RL Formulas

This section recalls the syntax and semantics of the RL lan-
guage [2]. In this paper, we restrict the use of tuple vari-
able quantifiers, by removing them from definition 1 and re-
introducing them in section 2.4. We also limit the use of at-
tribute quantifiers to some form of restricted quantification.

3 the binary restriction can be easily lifted, allowing arbitrary SQL
boolean expressions

Let A,B be attribute variables, t, s tuple variables, c̄ a con-
stant, X a schema variable.

Definition 1 The set of RL-formulas, noted δ, δ1, δ, . . ., is
inductively defined as the smallest set verifying:

• t.A 2 c̄, t.A 2 s.B, A = B and A = Ā are atomic RL-
formulas

• If δ is a RL-formula and A an attribute variable, ∀A(X)(δ)
is a RL-formula

• If δ is a RL-formula and A an attribute variable, ∃A(X)(δ)
is a RL-formula

• If δ1 and δ2 are RL-formulas, then ¬δ1 and (δ1 ∧ δ2) are
RL-formulas

Other logical connectors such as ∨,⇒ and abbreviations true,
false are defined as usual.

Definition 2 A RL-interpretation is a quadruplet
(R,Σ, σ, τ) where:

• R ⊆ U is a schema,
• Σ, the schema interpretation, is a function mapping each

schema variable X to a subset of R,
• σ, the attribute interpretation, is a function mapping each

attribute variable A to an attribute Ā ∈ R,
• τ , the tuple interpretation, is a function mapping each tuple

variable t to a tuple t̄ over R.

Definition 3 Let δ be a RL-formula. The satisfaction of δ
with respect to a RL interpretation (R,Σ, σ, τ), denoted by
(R,Σ, σ, τ) |= δ, is defined inductively as follows:

• (R,Σ, σ, τ) |= t.A 2 c̄ if τ(t)[σ(A)] 2 c̄
• (R,Σ, σ, τ) |= t.A 2 s.B if τ(t)[σ(A)] 2 τ(t)[σ(B)]
• (R,Σ, σ, τ) |= A = Ā if σ(A) = Ā
• (R,Σ, σ, τ) |= A = B if σ(A) = σ(B)
• (R,Σ, σ, τ) |= ∀A(X)(δ) if for all Ā ∈ Σ(X),

(R,Σ, σ[A := Ā], τ) |= δ
• (R,Σ, σ, τ) |= ∃A(X)(δ) if for some Ā ∈ Σ(X),

(R,Σ, σ[A := Ā], τ) |= δ
• (R,Σ, σ, τ) |= ¬δ if (R,Σ, σ, τ) 6|= δ
• (R,Σ, σ, τ) |= (δ1∧δ2) if (R,Σ, σ, τ) |= δ1 and (R,Σ, σ, τ) |=
δ2

2.3 Relational Calculus

Here we recall some definitions of the tuple relational cal-
culus [1] (abbreviated TRC in the following). Let Ā, B̄ be
attributes, t, s be tuple variables, c̄ be a constant and r be a
relation symbol.

Definition 4 The set of TRC-formulas, noted ψ,ψ1, ψ
′, . . .,

is inductively defined as the smallest set verifying:

• t.Ā 2 c and t.Ā 2 t.B̄ are atomic TRC-formula
• r(t) is an atomic TRC-formula
• if ψ is a TRC-formula, and t is a tuple variable then ∃t(ψ)

is a TRC-formula
• if ψ1 and ψ2 are TRC-formulas then (ψ1)∧ (ψ2) and ¬(ψ1)

are TRC formulas

Other logical connectors such as ∨,⇒, quantifier ∀ and ab-
breviations true, false are defined as usual.

Now we recall the logical semantics of TRC-formulas. For
sake of simplicity, we assume that all relations and schemas
are defined over the same schemaR. This restriction can easily
be lifted though.

Definition 5 A TRC interpretation is a pair (d, τ) where:

• d is a function, the database, mapping each relation symbol
r to a relation r̄ over R,

• τ is a function, the tuple interpretation, mapping each tuple
variable t to a tuple t̄ over R.

Definition 6 Let ψ be a TRC-formula. The satisfaction of ψ
with respect to a TRC interpretation (d, τ), denoted (d, τ) |=
ψ, is inductively defined as follows:

• (d, τ) |= t.Ā 2 c̄ if τ(t)[Ā] = c̄
• (d, τ) |= t.Ā 2 t.B̄ if τ(t)(Ā) = τ(t)(B̄)
• (d, τ) |= r(t) if τ(t) ∈ d(r)
• (d, τ) |= ¬(ψ) if (d, τ) 6|= ψ
• (d, τ) |= ∃t(ψ) if there exists a tuple t̄′ over R such that

(d, τ [t := t̄′]) |= ψ
• (d, τ) |= (ψ1) ∧ (ψ2) if (d, τ) |= ψ1 and (d, τ) |= ψ2

In the rest of the paper, we restrict ourselves to authorized
relational calculus [1], a syntactical restriction of the rela-
tion calculus which garanties domain independence. That is,
given a database d, the set of tuple interpretations τ such that
(d, τ) |= ψ only depends on d and ψ.

Definition 7 Given a TRC formula ψ, with t1, . . . , tk as free
variables, the answer of ψ w.r.t. a database d, denoted by
ans(ψ, d), is defined as:

{τ|{t1,...,tk} | (d, τ) |= ψ}

Note that for an authorized TRC formula ψ and a database
d that associate only finite relations to relation symbols, the
answer ans(ψ, d) is finite.

2.4 RLT Queries

We introduce RLT queries, which constitute the RLT -
language.

Definition 8 A RLT query is of the form:

{〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}

where

• X1, . . . , Xn are schema variables
• t1, . . . , tk are tuple variables over the same schema R
• ψ is an authorized TRC-formula, that has exactly t1, . . . , tk

as free variables.
• δ is a RL-formula in which:

– the only (free) tuple variables are t1, . . . , tk

– the only (free) schema variables are X1, . . . , Xn

– there is no free attribute variable.

∀t1 . . .∀tk ψ ⇒ δ is said to be the (RLT) formula of the
query.

In order to give an idea of how querying can be done using
RLT , let us consider the following query, which finds func-
tional dependencies in a relation r over R:

Q1 = {〈X,Y 〉 : R | ∀t∀s(r(t) ∧ r(s))⇒
(∀A(X)(t.A = s.A))⇒ (∀B(Y)(t.B = s.B))}

Non Armstrong-compliant queries can also be expressed, such
as:

Q2 = {〈X,Y 〉 : R | ∀t∀s(r(t) ∧ r(s))⇒
(∃A(X)(t.A = s.A))⇒ (∃B(Y)(t.B = s.B))}

or the following query for finding influence of genes

Q3 = {〈X,Y 〉 : R | ∀t r(t) ∧ r(s) ∧ s.īd = t.īd+ 1⇒
(∀A(X)(t.A > 0.6))⇒ (∀B(Y)(t.B < 0.4))}

assuming that >, < and c̄ = c̄′ + 1 are comparisons in CMP.
We now define the semantics of the language, first by defin-

ing the satisfaction ofRLT query formulas, and then by defin-
ing the answers of a RLT query w.r.t. a given database.

Definition 9 A RLT interpretation is a triple (d,R,Σ)
where:

• R ⊆ U is a set of attributes;
• d is a function, the database, mapping each relation symbol
r to a relation r̄ over R;

• Σ, the schema interpretation, is a function mapping each
schema variable X to a subset of R.

Definition 10 Let ζ = ∀t1 . . .∀tk ψ ⇒ δ be a RLT -
formula. ζ satisfies a RLT interpretation (d,R,Σ), denoted
(d,R,Σ) |= ζ, if for any tuple interpretation τ , and any at-
tribute interpretation σ, if (d, τ) |= ψ then (R,Σ, σ, τ) |= ψ.

Taking any tuple interpretation corresponds to the use of ∀
quantifiers in RLT formulas. On the other hand, attribute
interpretation are not important since δ does not contain free
variables.

Definition 11 Given a database d and a RLT query Q =
{〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}, the answer of Q in d,
denoted by ans(Q, d) is defined as:
ans(Q, d) = {〈Σ(X1), . . . ,Σ(Xn)〉 | (d,R,Σ) is a RLT in-

terpretation and (d,R,Σ) |= ∀t1 . . .∀tk ψ ⇒ δ}

3 BOOLEAN ENCODING

In order to find answers of a query Q = {〈X1, . . . , Xn〉 : R |
∀t1 . . .∀tk ψ ⇒ δ} w.r.t. a database d, we propose an encod-
ing of the query and the database into a boolean formula.
More precisely, for each interesting tuple interpretation τ , we
generate a boolean formula representing the truth value of δ
w.r.t. Σ. A tuple interpretation is considered to be interest-
ing if, together with d, it satisfies ψ. The boolean formula for
computing ans(Q, d) is then the conjunction of the formulas
for each interesting tuple interpretation.

3.1 Translation To Boolean Formula

Domain The domain, that is the boolean variables encod-
ing an answer in ans(Q, d), is defined straightforwardly as

follows: for each schema variable X ∈ {X1, . . . , Xn} and each
attribute Ā ∈ R, the boolean variable pXĀ is true whenever
Ā ∈ Σ(X).

The following definition explains how the boolean formula
is built from the RL formula. This definition relies on an
attribute interpretation. However, this interpretation has no
influence on top-level RL formulas, as they have no free at-
tribute variable.

Definition 12 Given a RL formula δ, a tuple interpretation
τ , an attribute interpretation σ and a set of attributes R, the
boolean encoding of δ, denoted by enc(δ, τ, σ,R), is inductively
defined as:

• enc(t.A = c̄, τ, σ,R) = true if τ(t)[σ(A)] = c̄, false other-
wise

• enc(t.A = s.B, τ, σ,R) = true if τ(t)[σ(A)] = τ(s)[σ(B)],
false otherwise

• enc(A = Ā, τ, σ,R) = true if σ(A) = Ā
• enc(A = B, τ, σ,R) = true) if σ(A) = σ(B), false other-

wise
• enc(¬δ, τ, σ,R) = ¬enc(δ, τ, σ,R)
• enc(δ1 ∧ δ2, τ, σ,R) = enc(δ1, τ, σ,R) ∧ enc(δ2, τ, σ,R)
• enc(∀A(X)δ, τ, σ,R) =∧

Ā∈R(pXĀ ⇒ enc(δ, τ, σ[A := Ā], R))
• enc(∃A(X)δ, τ, σ,R) =∨

Ā∈R(pXĀ ∧ enc(δ, τ, σ[A := Ā], R))

Definition 13 A boolean interpretation I is a function from
boolean variables to {true, false}. It satisfies a boolean for-
mula γ, denoted by I |= γ, if the formula obtained by replacing
each variable p by I(p) is equivalent to true in the boolean al-
gebra.

Property 1 Let Σ be a schema interpretation, δ a RL for-
mula, τ a tuple interpretation, σ an attribute interpretation
and R a set of attributes. Let IΣ be a boolean interpretation
such that for any schema variable X and any attribute Ā,
IΣ(pXĀ) = true if and only if Ā ∈ Σ(X).

Then (R,Σ, σ, τ) |= δ if and only if IΣ |= enc(δ, τ, σ,R).

Proof By definitions 3 and 12.

Definition 14 The boolean encoding of a query Q =
{〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ} w.r.t. a database d,
denoted by enc(Q, d) is defined as:

∧

τ∈ans(ψ,d)
enc(δ, τ, σ,R)

where σ is any attribute interpretation4.

Property 2 Let Q = {〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}
be a RLT query, d a database and Σ a schema interpretation.
Let IΣ be a boolean interpretation such that for any schema
variable X and any attribute Ā, IΣ(pXĀ = true) if and only if
Ā ∈ Σ(X).
〈Σ(X1), . . . ,Σ(Xn)〉 ∈ ans(Q, d) if and only if IΣ |=

enc(Q, d).

4 σ is not actually used in the encoding since δ is closed w.r.t.
attribute variables

Proof By definitions 11, 7 and 14, by property 1 and by re-
marking that if τ|{t1,...,tk} = τ ′|{t1,...,tk}, then enc(δ, τ, σ,R) =
enc(δ, τ ′, σ, R).

3.2 Theoretical Complexity

The cost of evaluating a RLT query using a boolean formula
can be evaluated by the size of the formula and its number
of boolean variables. Except for quantifiers, each construc-
tion of RL formula generate only a constant amount of ad-
ditional symbols in the encoding. For each use of a quantifier
2A(X)δ, if the size of enc(δ, τ, σ,R) is n, then the size of
enc(2A(X)δ, τ, σ,R) is in O(|R| × n).

Let us consider a RLT query Q = {〈X1, . . . , Xn〉 : R |
∀t1 . . .∀tk ψ ⇒ δ}. Let n∀∃ be the maximal number of quan-
tifiers on a branch of the abstract syntax tree of δ. Then, an
upper bound on the size of enc(Q, d) is O(|ans(ψ, d)| × |δ| ×
|R|n∀∃).

Let timeψ,d be the time required to evaluate ans(ψ, d).
Then an upper bound on the time complexity of the evalua-
tion of a RLT query is timeψ,d+O(|ans(ψ, d)|×|δ|×|R|n∀∃×
2n×|R|).

4 IMPLEMENTATION AND
OPTIMIZATION

In this section we present the principles used in the imple-
mentation of RLT , as well as a few optimizations that help to
drastically reduce the size of generated formulas. In this sec-
tion, we assume given both RLT query Q = {〈X1, . . . , Xn〉 :
R | ∀t1 . . .∀tk ψ ⇒ δ} and database d. Figure 1 presents the
different steps used in the computation of answers.

RLT Query

SQL Query

Eval. using DBMS

Atomic Formula
Evaluations

CNF

Enumerate using
SAT Solver

Answers

Decode

SAT Models
Intermediate

Formula

Figure 1. Architecture

4.1 Naive translation

The first step in generating enc(Q, d) is to evaluate answers
ans(ψ, d). Since ψ is an authorized TRC formula, it can evalu-
ated using a SQL engine, at the cost of an attribute renaming
to avoid attribute name clashes between tuples. We will see
in section 4.3 that in the final implementation this problem
disappears. Using SQL allows to easily extend the comparison
predicates and expressions used in the TRC formula ψ. Then
for each tuple combination τ we generate enc(δ, τ, σ,R), with
σ being uninitialized5.

4.2 Getting Answers From Boolean
Formula

Because of property 2, the answers ans(Q, d) can be ob-
tained by the boolean interpretations satisfying the formula

5 In fact, we just initialize the data structure for representing the
function

enc(Q, d). We use a modified SAT-solver [6] based on Min-
isat [7]. Using a SAT solver requires the formula to be trans-
lated into conjunctive normal form (CNF). For this we use
a linear translation based on [16]. This translation propa-
gates constants through standard logical equivalences such
as η1∧ true ≡ η1 and η1∧ false ≡ false. The translation into
CNF also introduce new variables. However, the value of these
new variables can be deduced from the values of the variables
in the original formula. This information can be transmitted
to the enumerating SAT solver, allowing it to branch only on
variables of the original formula. Moreover the use of modern
SAT solvers allows to benefit from efficient propagation tech-
niques, learning [12, 17] and dynamic search heuristics [17, 4].
For an extensive overview of current techniques to solve SAT,
the reader is referred to [3].

4.3 Caching Subformulas

By looking at definition 12, one can see that the generated
formula for each tuple interpretation depend on the structure
of δ and on the evaluation of the atomic sub formulas of δ
for (all) the possible attribute interpretations σ. That is, the
actual value of tuples is not important, only the value they
give to atomic formulas in δ matters.

For each atomic formula δ1 in δ, we introduce a series of
boolean variables qδ1σ for all possible attribute interpretation
σ : A → R where A is the set of attribute variables appearing
in δ1.

Definition 15 The intermediate encoding enc′(δ, σ,R) is in-
ductively defined as follows:

• enc′(t.A = c̄, σ, R) = qt.A=c̄
σ|{A}

• enc′(t.A = s.B, σ,R) = qt.A=s.B
σ|{A,B}

• enc′(A = Ā, σ,R) = true if σ(A) = Ā
• enc′(A = B, σ,R) = true) if σ(A) = σ(B), false otherwise
• enc′(¬δ, σ,R) = ¬enc′(δ, σ,R)
• enc′(δ1 ∧ δ2, σ, R) = enc′(δ1, σ, R) ∧ enc′(δ2, σ, R)
• enc′(∀A(X)δ, σ,R) =∧

Ā∈R(pXĀ ⇒ enc′(δ, σ[A := Ā], R))
• enc′(∃A(X)δ, σ,R) =∨

Ā∈R(pXĀ ∧ enc′(δ, σ[A := Ā], R))

This definition is similar to definition 12, except for atomic
formulas where tuple variables appear. By construction, for a
given tuple interpretation τ , enc(δ, τ, σ,R) can be obtained by
replacing each variable qδ1σ1 in enc′(δ, σ,R) by enc(δ1, τ, σ1, R).

This suggests a change in the generation of enc(Q, d): the
SQL engine can be used to evaluate the value of atomic for-
mulas in δ w.r.t. all relevant attribute interpretations σ, that
is w.r.t. all combination of values for attribute variables ap-
pearing in the sub formula. The encoding of the RL formula
for this tuple combination is then obtained by propagating
these boolean values in the intermediate encoding.

The benefits of this change are twofold. Firstly, the com-
parison operator and expressions used in atomic RL formulas
can easily be extended to any operator supported by the SQL
engine. Secondly, and more importantly, given two tuple inter-
pretations τ1 and τ2, if the evaluation of all atomic formulas
w.r.t. all attribute interpretation are the same for τ1 and τ2,
then enc(δ, τ1, σ, R) = enc(δ, τ2, σ, R). Since the occurrence of

these two formulas are used in same conjunction, one of them
is useless and can be discarded. This discarding behavior can
be obtained, either by the use of the DISTINCT keyword in
the SQL query, or more efficiently, by the use of a prefix tree
to store and search for atomic formula evaluations. This opti-
mization can be essential for the diminution of the size of the
generated formula as shown in section 6.

4.4 Attribute Variable Combinatorics

Another way to reduce the size of enc(Q, d) is to try to reduce
the number of nested attribute quantifiers in δ. We assume,
without loss of generality, that each attribute variable appears
exactly in one quantifier in δ. The attribute quantifiers can
be “pushed down” towards atomic formulas in δ, by using the
following standard logical equivalences:

• ∀A(X)(δ1 ∧ δ2) ≡ (∀A(X)δ1) ∧ δ2 if A does not appear in
δ2

• ∃A(X)¬δ1 ≡ ¬∀A(X)δ1
• ∀A(X)∀B(Y)δ1 ≡ ∀B(Y)∀A(X)δ1

For example, using these equivalences ∃A(X)∀B(Y)(t.A =
1 ⇒ t.B = 1) ≡ (∀A(X)t.A = 1) ⇒ (∀B(Y)t.B = 1). The
size of the generated formula in the second case is O(|R|)
smaller than the one generated in the first case.

The use of ∧ commutativity and associativity may allow
for more optimizations such as ∀A(X)∀B(Y)(δ1∧ (δ2∧δ3)) ≡
∀B(Y)(δ2)∧∀A(X)(δ1 ∧ δ3) if A does not appear in δ2 and B
does not appear in δ1 nor δ3. From this point of view, this kind
of optimization can be brought near rule based optimization
in relational queries [1].

5 REDUCING RESULT SIZE

As the search space size is 2n×|R|, it is interesting to reduce
the number of results. For example, it is usual when mining
functional dependancies to output a minimal base of rules
from which all rules can be inferred using Armstrong’s ax-
ioms [9]. However, since our language is not supposed to be
Armstrong-compliant [2], we express a wider class of queries
without knowing a priori whether or not a given property
is true (e.g. transitivity or reflexivity).Thus a canonical con-
densed representation of rules may not exist. Nevertheless, we
provide means to end-users to reduce the number of results,
while keeping interesting information. These means come in
two flavors: firstly constraining the resulting sets of attributes,
and secondly output only minimal sets (or maximal) w.r.t. set
inclusion for some schema variables.

5.1 Constraining schema variables

The following examples illustrate how RL formulas can
be used to constrain schema variables. Assume one wants
to constraint two schema variables X and Y , such that
Σ(X) ∩ Σ(Y) = ∅. This constraint can be expressed by
∀A(X)∀B(Y) ¬A = B. The formula ∃A(X) true imposes
that Σ(X) contains at least one attribute, while the formula
∀A(X)∀B(X) A = B imposes that Σ(X) contains at most
one attribute.

One can remark that (R,Σ, σ, τ) |= ∃A(X)X = Ā if and
only if Ā ∈ Σ(X). Therefore enc(∃A(X)X = Ā, τ, σ,R) ≡

pXĀ
6. This allows constraining schema variables by using any

boolean formula on the variables pXĀ through the RL formula
of an RLT query. A consequence of this remark is that given
d and Q, the problem of determining whether ans(Q, d) 6= ∅
is NP-Hard.

5.2 Minimizing/Maximizing Schema
Variables

Another way to reduce the number of results is to minimize
or maximize schema interpretation values for some variables.

Definition 16 A schema interpretation Σ is said to be min-
imal (resp. maximal) w.r.t. a schema variable X, a database
d and RLT query Q = {〈X1, . . . , Xn〉 : R | ζ}, if there
is no RX such that RX ⊂ Σ(X) (resp. RX ⊃ Σ(X)) and
(d,R,Σ[X := RX]) |= ζ.

Σ is said to be locally minimal (resp. maximal) w.r.t. X, d
and Q if there is no RX such that RX ⊂ Σ(X) with |RX | =
|Σ(X)| − 1 (resp. RX ⊃ Σ(X) with |RX | = |Σ(X)| + 1) and
(d,R,Σ[X := RX]) |= ζ.
Q is said to be monotone (resp. antimonotone) w.r.t. X

if for all d, Σ and RX such that Σ(X) ⊂ RX ⊆ R (resp.
RX ⊂ Σ(X)), if (d,R,Σ) |= ζ then (d,R,Σ[X := RX]) |= ζ.

It is clear that if Q is monotone (resp. antimonotone) w.r.t.
X, then if Σ is locally minimal (resp. maximal) w.r.t. X, d
and Q then it is maximal (resp. minimal) w.r.t. X, d and Q.
We propose the following boolean encoding of the locally mini-
mal/maximal constraint on a schema variable X, a database d
and aRLT query Q = {〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}.
Given a boolean formula γ, we denote by γ[γ′/p] the formula
obtained by replacing each occurrence of p in γ by γ′.

• encmin(X, d,Q) =
∧
Ā∈R p

X
Ā ⇒ ¬(enc(Q, d)[false/pXĀ])

• encmax(X, d,Q) =
∧
Ā∈R ¬pXĀ ⇒ ¬(enc(Q, d)[true/pXĀ])

The size of this constraint’s boolean encoding is |R| times the
size of the original query’s boolean encoding.

6 PRELIMINARY EXPERIMENTS

The CNF generator has been coded in Java, while the mod-
ified MiniSat solver in C++. We have used an embedded
DBMS (Derby), since it allows to include the execution of
SQL statements in CPU time results. The experiments were
conducted on a 2GHz dual core Athlon processor with 3GB
of RAM, running Linux.

This section presents a few experimental results on the fol-
lowing RLT query:

{〈X,Y 〉 : R | ∀t1∀t2 r(t1) ∧ r(t2)⇒
((∀A(X)t1.A = t2.A)⇒ (∀B(Y)t1.B = t2.B))
∧(∀A(X)∀B(Y) ¬A = B)
∧(∃B(Y) true) ∧ (∀B1(Y)∀B2(Y) B1 = B2)}

This query finds functional dependancies X → Y in r, X
and Y having an empty intersection and Y being a singleton.
Moreover X was minimized.

The relation initially contains 2013 tuples and 27 attributes.
Figure 2 shows evolution of CPU time w.r.t. the number m

6 This simplification is automatically performed through the prop-
agation of true and false in the generated boolean formula.

 1

 10

 100

 1000

 0 5 10 15 20 25 30

total
minisat

CNF gen.

Figure 2. CPU time (in sec.) w.r.t. |R|

of attributes in R, i.e. only m attributes were kept in the re-
lation r. As expected, the CPU time increases exponentially
w.r.t. the number of attributes, as it increases both the search
space and the size of the boolean formula. Figure 3 shows the

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

CNF size
tuple inter.

useful tuple inter.

Figure 3. cache influence w.r.t. # tuples in r

size of the generated CNF (in number of variable occurrences)
and the number of attribute interpretations w.r.t. the num-
ber of tuples, the query being run on the 27 attributes of the
relation. As expected, the number of interpretations grows
quadratically as there are two uncorrelated tuple variables in
the query. One can remark that the size of the CNF, increases
slowly. This is due to the low number of useful additional
tuple interpretations. Indeed the size of the generated CNF
increases proportionally to the number of useful tuple inter-
pretations. This shows the efficiency of the cache optimization
on boolean formula generation.

7 CONCLUSION

We presented an ongoing work on the query language RLT
for pattern mining. Namely, we presented the semantics of the
language, as well as a translation of queries and data into a
boolean formula. Implementation techniques used for imple-
menting a query engine were presented and some experimental
results show the feasibility of the approach.

Several issues remain to be explored. One the theoretical
side, it would be interesting to characterize the complexity
of answering RLT queries (e.g. the complexity of determin-

ing the emptiness of a query). One the practical side, per-
formances of the query engine and query optimization tech-
niques have to be investigated through a comprehensive set
of databases.The performance of the current implementation
could be improved either through high level optimization in
order to generate better, more easy to solve, formulas, or
through the elaboration of (SAT) engines dedicated to the
enumeration of models of boolean formulas. An other direc-
tion of improvement is to enrich the language, for example
with counting statements to be able to take into account the
well-known frequency constraint in data mining. This could
be treated using pseudo-boolean constraints such as in [15].

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases, Addison Wesley, 1995.

[2] Marie Agier, Christine Froidevaux, Jean-Marc Petit, Yoan
Renaud, and Jef Wijsen, ‘On Armstrong-compliant Logical
Query Languages’, in 4th International Workshop on Logic
in Databases (LID 2011), pp. 33–40. ACM, (March 2011).

[3] Handbook of Satisfiability, eds., A. Biere, M. J. H. Heule,
H. van Maaren, and T. Walsh, volume 185 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2009.

[4] Armin Biere, ‘Adaptive restart strategies for conflict driven
SAT solvers’, in Theory and Applications of Satisfiability
Testing, pp. 28–33, (2008).

[5] Toon Calders and Jef Wijsen, ‘On monotone data mining
languages’, in 8th International Workshop on Database Pro-
gramming Languages, (2001).

[6] Emmanuel Coquery, Säıd Jabbour, and Lakhdar Sais, ‘A con-
straint programming approach for enumerating motifs in a se-
quence’, in Workshop on Declarative Pattern Mining, ICDM
Workshops, pp. 1091–1097, (2011).

[7] Niklas Eén and Niklas Sörensson. Minisat. http://minisat.
se/.

[8] Fosca Giannotti, Giuseppe Manco, and Franco Turini, ‘To-
wards a logic query language for data mining’, in Database
Support for Data Mining Applications, LNCS 2682, pp. 76–
94, (2004).

[9] G. Gottlob and L. Libkin, ‘Investigations on Armstrong rela-
tions, dependency inference, and excluded functional depen-
dencies’, Acta Cybernetica, 9(4), 385–402, (1990).

[10] Tomasz Imielinski and Heikki Mannila, ‘A database perspec-
tive on knowledge discovery’, Commun. ACM, 39(11), 58–64,
(1996).

[11] Hong-Cheu Liu, Aditya Ghose, and John Zeleznikow,
‘Towards an algebraic framework for querying inductive
databases’, in DASFAA (2), pp. 306–312, (2010).

[12] Joao P. Marques-Silva and Karem A. Sakallah, ‘GRASP -
A New Search Algorithm for Satisfiability’, in Proceedings
of International Conference on Computer-Aided Design, pp.
220–227, (1996).

[13] Rosa Meo, Giuseppe Psaila, and Stefano Ceri, ‘An extension
to sql for mining association rules’, Data Min. Knowl. Dis-
cov., 2(2), 195–224, (1998).

[14] Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, and Usama M.
Fayyad, ‘Integration of data mining with database technol-
ogy’, in VLDB, pp. 719–722, (2000).

[15] Luc De Raedt, Tias Guns, and Siegfried Nijssen, ‘Constraint
programming for itemset mining’, in KDD, pp. 204–212,
(2008).

[16] G.S. Tseitin, ‘On the complexity of derivations in the propo-
sitional calculus’, in Structures in Constructives Mathematics
and Mathematical Logic, Part II, ed., H.A.O. Slesenko, pp.
115–125, (1968).

[17] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz,
and Sharad Malik, ‘Efficient conflict driven learning in
Boolean satisfiability solver’, in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, pp.
279–285, (2001).

XQuake as a Constraint-Based Mining Language
Valerio Grossi and Andrea Romei 1

Abstract. XQuake is a language for data mining inspired by the
inductive databases theory. This work extends XQuake with the def-
inition of domain-specific constraints. An ontology is usedto de-
scribe the domain knowledge. We give the main idea of the work-in-
progress discussing its possibilities and advantages.

1 INTRODUCTION AND MOTIVATION

The use of constraints in a mining application has rapidly become a
challenging topic for research community. The aim is to find aunified
approach for the definition of aconstraint-based mining language.
The use of constraints helps the analyst to model mining problems
by specifying desirable properties of the mined patterns. This feature
involves several aspects. In fact, even when the set ofdomain-specific
constraintsis known, it is challenging to provide both a query lan-
guage for formalizing them and a system that can process their prop-
erties in an efficient way. For example, the extraction of association
rules implies the discovery of a large quantity of useless rules. An
approach that permits to extract rules by specifying properties based
on the analyst needs is required.

Our goal is the definition of a constraint-based language that en-
ables the specification of domain-specific constraints withthe aid
of an ontology. Specifically, this paper proposes an extension of
XQuake [5, 6], a language and system for supporting complex min-
ing tasks out of XML data. Surprisingly, no previous work hasad-
dressed the use of both ontology-based mining constraints and, at the
same time, a coherent and uniform framework for representing data,
mining models, and the KDD process. Since XQuake already sup-
ports the second aspect, we concentrate on its extension to express
domain-dependent constraints.

2 XQUAKE AT A GLANCE

XQuake is a language and system for programming data mining pro-
cesses over native XML databases, in the spirit of inductivedatabases
[4]. While we refer the reader to [5] for a detailed description, here
we summarize its main features as follows:(i) it satisfies the clo-
sure principle, since both data and mining models are represented
in XML; (ii) it represents the KDD process in a declarative way, by
means of an XQuery [9] program extended with mining primitives;
(iii) it permits to evaluate constraints via XQuery predicates, with the
aid of a built-in library;(iv) the system architecture is conceived to
automatically capture the proprieties of such constraints(e.g. mono-
tonicity and anti-monotonicity), to be used directly during the extrac-
tion of the mining model.

1 Department of Computer Science, University of Pisa, Italy.Email:
{vgrossi,romei}@di.unipi.it

The question now is, why the choice of a mining language out of
XML data? We provide three answers.(i) The amount of informa-
tion XML-coded is steadily growing.(ii) XQuake takes advantage
of the XML philosophy also for representing the results of the min-
ing process, according to the PMML standard [7].(iii) Ontologies
represented as OWL [8] are de facto XML documents, and they can
be used to describe a domain knowledge. This latter point is exactly
what we introduce in the next section.

3 A SIMPLE APPLICATION SCENARIO

We propose a scenario involving a simple Market Basket Analysis
application inspired by our previous work [2]. The study of con-
strained association rule mining and constraint programming is well-
known in literature (e.g. see [3]). Here, we introduce a mining lan-
guage for defining, in an uniform approach, both mining tasksand
domain-specific constraints on the extracted knowledge.

Application scenario. Let us suppose that a domain expert inves-
tigates for a future promotional campaign during the holidays. The
goal is to study the relation between the most frequent drinks pro-
moted in Easter, and the most frequent cakes promoted in Christmas
in the past.
Input data. Data of a national supermarket has been translated from
a relational format (see [2]) to an XML format, stored in the native
XML database of XQuake. An XML fragment of theMBA.xml doc-
ument is reported below.
<MBA>
<store @id="id00193">

<purchase @date="05/01/2012">
<item @qty="2" @price="3.5">vodka lemon</item>...

</purchase>...
</store>...

</MBA>

Here, each<store> tag represents a sequence of<purchase>
elements, each encoding our transaction. The attribute@date de-
notes the date of that purchase. Each transaction is made up of a not
empty set of purchased items, encoded in the<item> XML ele-
ment. Two XML attributes denote the quantity and the price ofthat
item. The resulting XML database contains 775,000 transactions and
about 30,000 distinct items.

Domain knowledge.We enrich our data with the domain knowl-
edge represented as an OWL document containing a description of
each item and their hierarchical organization. A fragment of the
items.owl ontology is depicted in Fig. 1.

Data constraints. Input data is filtered by considering(i) only pur-
chases made between the1st December and the1st May and,(ii)
for each transaction, only the items having a total price (i.e.@qty *
@price) greater than 5 Euros.

Simple knowledge constraints.We aim at extracting association
rules having exactly one item in the consequent, a minimum support
of 0.5 and a minimum confidence of0.7.

Advanced domain-specific constraints.Our purpose is to extract

OWL:THINGS

. . . SUPERMARKET

DRINK AND FOOD

DRINKS

VODKA

neutral lemon

attribute value
hasColour neutral
hasAlcoholic high
hasFlavour lemon
hasBrand Best
hasSize 70 cl
hasPrice EUR 7.56
hasPromotion Christmas

Figure 1. A fragment of the hierarchical structure ofitems.owl (left).
Data properties for ’Vodka Lemon’ at the lower level (right).

association rules of the following form:

(i1 ∈ EasterDrink) and (i2 ∈ AnyItem) and ... and (in ∈ AnyItem)⇒
(in+1 ∈ ChristmasCake) [supp] [conf]

where EasterDrink (resp.ChristmasCake) is the class of
items that are drinks (resp. cakes) having an Easter (resp. Christmas)
promotion, andAnyItem is the entire set of distinct items.

Our proposed solution.Among the plethora of languages for query-
ing RDF and OWL documents, we integrate in XQuake an adapta-
tion of [1], where, XQuery is employed for querying and reasoning
with OWL and RDF ontologies. This solution appears to be adequate
to our purposes for two main reasons. First, since XQuake extends
XQuery with mining primitives, in turn, the implementationof an
extension of XQuery for querying OWL documents is quite intuitive
to be used by the user. Second, this permits to maintain the principle
of closure that is at the basis of the inductive databases theory.

Fig. 2 provides a snapshot of the XQuake implementation, for
further details see [5, 6] and [1]. The query is composed by four
parts. First, the set of transactions (i.e. the<purchase> elements)
is specified by thefor data clause (row 1). Items of each trans-
action (i.e. the elements<item>) are defined in thelet group
clause (row 2).

Second, thelet supplementary clause is evaluated for each
frequent item (row 3). Here, a pair of XML elements are constructed
by using the user-defined function reported below2:

declare function local:hasRec($class, $prop)
as xs:boolean {

let $owl := owldoc("items.owl")
return sw:hasSuperclass($owl, mfn:item(), $class)

and sw:hasProperty($owl, mfn:item(),
$prop, "hasRecurrency")]

};

Third, thehaving clause operates on the output result (rows 4-
7). It contains an XQuery predicate that is evaluated for each mined
association rule. Basically, it evaluates the required constraints on the
domain knowledge defined at row 33.

Finally, thereturn clause (row 8) is evaluated once, to return
a PMML document containing the association rules satisfying the
constraints.

Flexibility. It is important to note that our language is flexible both as

2 If the current frequent itemi (obtained through the built-in mining function
mfn:item()) belongs to the superclassc in the ontologyd, the built-in
functionsw:hasSuperclass(d,i,c) returns true. The build-in func-
tion sw:hasProperty(d,i,p,v) returns true if, for the itemi, the
data propertyp has valuev in d

3 The mfn:supplementary-body() (resp. mfn:supplemen-
tary-head()) built-in function returns the domain knowledge
associated to the items of the body (resp. head) of the rule.

(: Transactions, items and data constraints specif. :)
1. for data $trans in doc("MBA")/store/purchase

[@date > "01/01/2012" and @date < "01/05/2012"]
2. let group $item := $trans/item[@price * @qty > 5.0]

(: Domain knowledge specification :)
3. let supplementary $hasRec :=

(<drink>{local:hasRec("Drink","Easter")}</drink>,
<cake>{local:hasRec("Cake","Christmas")}</cake>)

(: Output constraints specification :)
4. having (some $v in mfn:supplementary-body()

satisfies $v/drink) and
5. count(mfn:supplementary-head()) = 1 and
6. mfn:supplementary-head[1]/cake and
7. mfn:support() > 0.50 and mfn:confidence() > 0.70

8. return pmml

Figure 2. A possible implementation of the MBA scenario with XQuake.

far as amodification of the domain knowledge(since we use special
constructs to traverse the ontology) and as far as theintroduction of
different kinds of constraints(since we use XQuery predicates for
expressing them).

4 CONCLUSION

This work focuses on a general solution for XML data mining, and
more generally, for a data mining query language. The solution pro-
posed, even if at a preliminary stage, gives an additional improve-
ment, in terms of the definition of complex domain-specific con-
straints. Our main advantages consist in a framework in which one
can define, in anexpressive, declarative anduniform way, both the
KDD process and the mining constraints on the extracted knowledge.
While the former aspect has been discussed in [6], this paperinves-
tigated the latter aspect. Basically, constraints are expressed through
XQuery expressions supported by a built-in library. The proposed
study can be refined in several directions. Here, we mention only the
exploitation of domain-specific constraints for other kinds of models,
such as sequential patterns and clusters.

ACKNOWLEDGMENTS

This work was supported by the EU FET-Open project “ICON - In-
ductive Constraint Programming”, contract number FP7-284715.

REFERENCES
[1] J. M. Almendros-Jiménez, ‘Querying and reasoning withRDF(S)/OWL

in XQuery’, in Proceedings of the13th Web Technologies and Applica-
tions Conference (APWeb), pp. 450–459, (2011).

[2] A. Bellandi, B. Furletti, V. Grossi, and A. Romei, ‘Ontology-driven asso-
ciation rules extraction: a case study’, inProceedings of the International
Workshop on Contexts and Ontologies: Representation and Reasoning
(C&O:RR), (2007).

[3] T. Guns, S. Nijssen, and L. De Raedt, ‘Itemset mining: A constraint pro-
gramming perspective’,Artif. Intell., 175(12-13), 1951–1983, (2011).

[4] T. Imielinski and H. Mannila, ‘A database perspective onknowledge dis-
covery’,Comm. Of The Acm, 39(11), 58–64, (1996).

[5] A. Romei and F. Turini, ‘XML data mining’,Softw., Pract. Exper., 40(2),
101–130, (2010).

[6] A. Romei and F. Turini, ‘Programming the KDD process using XQuery’,
in Proceedings of the4th International Conference on Knowledge Dis-
covery and Information Retrieval (KDIR), pp. 131–139, (2011).

[7] The Data Mining Group. The Predictive Model Markup Language
(PMML). Version 4.1.www.dmg.org, 2012.

[8] W3C. OWL Web Ontology Language. W3C Recommendation 10 Febru-
ary 2004.www.w3.org/TR/owl-features, 2004.

[9] W3C. XQuery 3.0: An XML Query Language. W3C Working Draft14
December 2010.www.w3.org/TR/xquery-30/, 2010.

Author Index

Andrews, Tara , 15

Blockeel, Hendrik , 15
Bogaerts, Bart , 15
Bruynooghe, Maurice , 15

Coquery, Emmanuel, 41
Cussens, James, 21

De Pooter, Stef , 15
Denecker, Marc , 15
Diligenti, Michelangelo , 23, 35

Fabrizio Costa, 13
Frandina, Salvatore, 23

Gori, Marco , 23
Grossi, Valerio, 47

Hoos, Holger, 7

Lau, Hoong Chuin, 29
Leyton-Brown, Kevin, 7
Lindawati, 29

Macé, Caroline, 15

Paolo Viappiani, 5
Papini, Tizano , 35
Petit, Jean-Marc , 41

Ramon, Jan, 15
Romei, Andrea , 47

Sacca, Claudio, 23
Sais, Lakhdar , 41
Schaub, Torsten , 7
Schneider, Marius , 7

Zhu, Feida , 29

