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Abstract. The Nested Rollout Policy Adaptation algorithm is a tree search algo-
rithm known to be efficient on combinatorial problems. However, one problem of
this algorithm is that it can converge to a local optimum and get stuck in it. We
propose a modification which limits this behavior and we experiment it on two
combinatorial problems for which the Nested Rollout Policy Adaption is known
to be good at.

1 Introduction

Recently, the Nested Monte-Carlo Search (NMC) has been proposed for solving com-
binatorial problems [2, 13]. Based on this algorithm, a new algorithm has been success-
fully introduced, the Nested Rollout Policy Adaptation algorithm [14]. This algorithm
is efficient for numerous combinatorial problems, and in particular, the Traveling Sales-
man Problem with time Windows [3] and the Morpion Solitaire puzzle [14].
The idea behind the NMC algorithm can been seen as a Meta Monte-Carlo algorithm.
This is a recursive algorithm. The first level of the search consists in simply performing
a Monte-Carlo simulation, i.e. each decision is chosen randomly until no more possible
decision are available. At the end, the score of the position that has been reached is
sent back. This first level is called the level 0. For each other levellvl > 0, the search
consists in launching a NMC algorithm with a levellvl − 1 for each possible decision.
Such as for the level 0, the score for each reached position is sent back, and the deci-
sion with the best score is chosen. This algorithm is presented in Section 3. The NRPA
algorithm is based on this idea, except that a level 0 policy is learned by gradient ascent
and is used instead of the Monte-Carlo policy. This algorithm is presented in Section 4.
One problem of this algorithm is that it can converge to local optima due to its simple
learning. In this work, we propose a modification in order to improve the behavior of
the NRPA algorithm in front of local optima. The principle of the modification consists
in keeping a beam of different sequences (with their corresponding policies).

The paper is organized as follows. The next section (Section 2) presents the two
problems studied in this work, the Traveling Salesman Problem with Time Windows in
Section 2.1 and the Morpion-Solitaire puzzle in Section 2.2. In Section 3, the Nested
Monte-Carlo Search is presented, in Section 4 we present the Nested Rollout Policy
Adaptation algorithm, and in Section 5 the improvement done on the NRPA algorithm.
Finally, in Section 6 we present comparisons between the NRPA algorithm and the
algorithm designed in this work.
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2 Problems

In this Section we present two well-known combinatorial problems. The first one, pre-
sented in Section 2.1 is the Traveling Salesman Problem with Time Windows. The
second problem is the puzzle called Morpion-Solitaire and is presented in Section 2.2.
The NRPA algorithm has been already used for solving these two problems [14, 3].

2.1 The Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem (TSP) is a well-known logistic problem. Given a list
of cities and their pairwise distances, the goal is to find the shortest possible path
that visits each city only once. The path has to start and finish at a given depot. The
TSP problem is NP-hard [9]. The Traveling Salesman Problem with Time Windows
(TSPTW) is a problem based on the TSP. Inputs are the same, but a difficulty is added.
In this version, a time interval is defined for each city, and each city has to be visited
within its corresponding period of time.

Formally, the TSPTW can be defined as follows. LetG be an undirected complete
graph.G = (N,A), whereN = 0, 1, . . . , n corresponds to a set of nodes andA =
N×N corresponds to the set of edges between the nodes. The node0 corresponds to the
depot. Each city is represented by then other nodes. A cost functionc : A → R is given
and represents the distance between two cities. A solution to this problem is a sequence
of nodesP = (p0, p1, . . . , pn) wherep0 = 0 and (p1, . . . , pn) is a permutation of
[1, N ]. Setpn+1 = 0 (the path must finish at the depot), then the goal is to minimize
the function defined in Equation 1.

cost(P ) =

n∑

k=0

c(a(pk, pk+1)) (1)

As said previously, the TSPTW version is more difficult because each cityi has to
be visited in a time interval[ei, li]. This means that a cityi has to be visited beforeli.
It is possible to visit a city beforeei, but in that case, the new departure time becomes
ei. Consequently, this case may be dangerous as it generates a penalty. Formally, if
rpk

is the real arrival time at nodepk, then the departure timedpk
from this node is

dpk
= max(rpk

, epk
).

In the TSPTW, the function to minimize is the same as for the TSP (Equation 1), but
a set of constraints is added and must be satisfied. Let us defineΩ(P ) as the number of
violated windows constraints by tour (P).
Two constraints are defined. The first constraint is to check that the arrival time is lower
than the fixed time. Formally,

∀pk, rpk
< lpk

.

The second constraint is the minimization of the time lost by waiting at a city.
Formally,

rpk+1
= max(rpk

, epk
) + c(apk,pk+1

).
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With algorithms used in this work, paths with violated constraints can be generated.
As presented in [13], a new scoreTcost(p) of a pathp can be defined as follows:

Tcost(p) = cost(p) + 106 ∗Ω(p),

with, as defined previously,cost(p) the cost of the pathp andΩ(p) the number of
violated constraints.106 is a constant chosen high enough so that the algorithm first
optimizes the constraints.

A survey of efficient methods for solving the TSPTW can be found in [10]. Existing
methods for solving the TSPTW are numerous. First, branch and bound methods were
used [1, 4]. Later, dynamic programing based methods [6], heuristics based algorithms
[15, 8] and methods based on constraint programming [7, 11] have been published.
More recently, ant colony optimization algorithms have been used [10] and have
established new state of the art scores. Works based on the NMC have been proposed
in [13] and on the NRPA in [3].

2.2 Morpion-Solitaire

Morpion-Solitaire is an NP-hard pencil-and-paper puzzle played on a square grid. A
move consists in adding a circle (on one possible intersection on the grid) such that a
line containing five circles can be drawn. The new line is then added to the grid. Lines
can be horizontal, vertical or diagonal. The initial grid contains some starting circles,
as shown in Figure 1. Two versions of this puzzle exist, the touching version and the
disjoint version. In this paper, we are interested in the first one, the disjoint version, for
which a circle can not belong to two lines that have the same direction. The best human
score for this version of the puzzle is 68 moves [5]. The Nested Monte-Carlo search
found a score of 80 moves [2], and [14] found a new record with 82 moves.

3 Nested Monte-Carlo Search

The basic idea of Nested Monte-Carlo Search is to perform a principal playout with a
bias on the selection of each decision based on the results of a Monte-Carlo tree search
[2].

The base level of the search build random solutions (i.e. playouts), random decision
are chosen until the end at this level. When a solution is completely built, the score of
the position that has been reached is sent back.

At each decision of a playout of level 1 it chooses the decision that gives the best
score when followed by a random playout. Similarly for a playout of leveln it chooses
the decision that gives the best score when followed by a playout of leveln− 1.

When a search at the highest level is finished and there is time left, another search
is performed at the highest level, and so on until the thinking time is elapsed.

Nested Monte-Carlo search has been successful in establishing world records in
single player games such as Morpion Solitaire or SameGame [2]. It provides a good
balance between exploration and exploitation and it automatically adapts its search be-
havior to the problem at hand without parameters tuning.
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Fig. 1. Example of a puzzle. Circles represent initial points and numbers represent the moves.
This 82 moves grid found by our algorithm equalizes the world record established by Rosin [14]
through a different solution.

40 504040 30 5020 2040

Fig. 2. At each step of the principal playout shown here with a bold line, an NMC of leveln

performs a NMC of leveln− 1 (shown with wavy lines) for each available decision and selects
the best one. At level 0, a simple pseudo-random playout is used.
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Figure 2 illustrates a level 1 Nested Monte-Carlo search. Three selections of cities
at level 1 are shown. The leftmost tree shows that, at the root, all possible cities are
tried and that for each possible decision a playout follows it. Among the three possible
cities at the root, the rightmost city has the best result of 30, therefore this is the first
decision played at level 1. This brings us to the middle tree. After this first city choice,
playouts are performed again for each possible city following the first choice. One of the
cities has result 20 which is the best playout result among his siblings. So the algorithm
continues with this decision as shown in the rightmost tree. This algorithm is presented
in Algorithm 1.

Algorithm 1 Nested Monte-Carlo search
nested (level,node)
if level==0 then
ply← 0
seq← {}
while num children(node)> 0 do

CHOOSE seq[ply]← child i with probability 1/numchildren(node)
node← child(node,seq[ply])
ply← ply+1

end while
RETURN (score(node),seq)

else
ply← 0
seq←{}
best score←∞
while num children(node) > 0 do

for children i ofnode do
temp← child(node,i)
(results,new)← nested(level-1,temp)
if results<best score then

best score← results
seq[ply]=i
seq[ply+1. . .]=new

end if
end for
node=child(node,seq[ply])
ply← ply+1

end while
RETURN (best score,seq)

end if

At each choice of a playout of level 1 it chooses the city that gives the best score
when followed by a single random playout. Similarly for a playout of leveln it chooses
the city that gives the best score when followed by a playout of leveln− 1.
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4 The Nested Rollout Policy Adaptation algorithm

The Nested Rollout Policy Adaptation algorithm (NRPA) is an algorithm that learns a
playout policy. There are different levels in the algorithm. Each level is associated to the
best sequence found at that level. The playout policy is a vector of weights that are used
to calculate the probability of choosing a city. A city is chosen proportionally to the
exponential of its associated weight. Learning the playout policy consists in increasing
the weights associated to the best cities and decreasing the weights associated to the
other cities. The algorithm is given in Algorithm 2.

Algorithm 2 Nested Rollout Policy Adaptation
NRPA (level,pol)
if level = 0 then
node← root
ply← 0
seq← {}
while there are possible decisionsdo

CHOOSEseq[ply]← child i the with probability proportional to exp(pol[code(node,i)])
node← child(node, seq [ply])
ply← ply + 1

end while
return (score (node), seq)

else
bestScore←∞
for N iterationsdo

(result,new)← NRPA (level− 1, pol)
if result≤ bestScore then

bestScore← result
seq← new

end if
pol← Adapt(pol,seq)

end for
end if
return (bestScore,seq)

Adapt (pol,seq)
node← root
pol′← pol

for ply← 0 to length(seq) - 1 do
pol′[code(node,seq[ply])] += Alpha
z← SUM exp(pol[code(node,i)]) over node’s children i
for children i ofnode do

pol′[code(node,i)] -= Alpha× exp(pol[code(node,i)]) / z
end for
node← child(node, seq [ply])

end for
returnpol′
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5 The Beam Nested Rollout Policy Adaptation algorithm

The idea of Beam Nested Rollout Policy Adaptation is to combine a beam search with
the Nested Rollout Policy Adaptation algorithm. Instead of memorizing one sequence at
each level of the algorithm, a set of the best sequences is memorized at each level. The
size of the beam for a given level is the number of sequences in the set of this level. Note
that the sequences are not memorized alone. Each memorized sequence is associated to
a score and a policy. The algorithm is given in Algorithm 3. In the algorithmr is a
score,s is a sequence andp is a policy.

As can be seen in the algorithm, a recursive call is performed for each sequence in
the set of best sequences for each level. At the end of the algorithm a set of the best
sequences and the associated policies and scores is returned. This set is used to adapt
the policies at the upper level and these adapted policies are inserted in the set of best
sequences at the upper level. When all the sequences coming from the calls at the lower
level have been inserted, only the B best ones are kept (B being the size of the beam at
that level).

The Adapt function that learns the policy is the same as in the original NRPA algo-
rithm.

Algorithm 3 Beam Nested Rollout Policy Adaptation
beamNRPA (level,pol)
if level = 0 then
node← root
ply← 0
seq← {}
while there are possible decisionsdo

CHOOSEseq[ply]← child i the with probability proportional to exp(pol[code(node,i)])
node← child(node, seq [ply])
ply← ply + 1

end while
return (score (node), seq, pol)

else
beam← {(∞,{},pol)}
for N iterationsdo

newBeam← {}
for (r,s,p) inbeam do

insert (r,s,p) innewBeam

beam1← beamNRPA (level − 1,p)
for (r1, s1, p1) in beam1 do

p1← Adapt(p,s1)
insert (r1,s1,p1) innewBeam

end for
end for
beam← B best scores ofnewBeam

end for
returnbeam

end if
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6 Experimental Results

We apply the beam NRPA algorithm to two applications, the TSPTW, presented in
Section 2.1 and the Morpion-Solitaire puzzle, presented in Section 2.2. Results are pre-
sented respectively in Section 6.1 and in Section 6.2. We define the complexity of the
algorithm as the total number of evaluations (rollout) done by the algorithm. Formally,
for the beam NRPA algorithm, the complexity is

C = (N ∗B)lvl

with B the size of the beam,lvl the level of the algorithm andN the number of iterations
done for the learning. Experimentally, we have found that having a beam sizeB > 1
only for the level 1 was the best choice in terms of complexity. The complexity becomes
then

C = N lvl ∗B

. For all our experiments, the size of the beam is fixed to 1 for all levels above 1 and is
changed at level 1. Consequently, increasing the complexity comes to increase the size
of the beam at level 1. In order to have comparable complexities for both beam NRPA
and NRPA algorithms, we repeat the NRPA algorithmB times, and we take the best
value found during theB runs as the return value of the algorithm.

6.1 Traveling Salesman Problem with Time Windows

In a first experiment on the TSPTW, we compare the best score found by the two al-
gorithms on two fixed problems from the set of problems from [12]. The two problems
are the problem rc203.1, which is a simple one, with 19 cities, and the rc202.3, which
has 29 cities and is then harder. We measure the average traveling score as a function
of C. We experimentN = {20, 50, 100} andB = {2, 4, 8, 16, 32, 64} for N = 20,
B = {2, 4, 8, 16} for N = 50 andB = {2, 4, 8} for N = 100. Results for the problem
rc203.1 are presented in Figure 3. We experiment three different values ofN in level
2. The beam NRPA is always better than the classic algorithm for all complexities (i.e.,
for all different sizes of beam).N = 20 andN = 50 for the beam algorithm are the
only versions that are able to find valid paths (i.e. without violated constraints).

For the second problem (rc202.3), results are presented in Figure 4. Here again, it is
always better to use the beam NRPA algorithm. We can note that, because this problem
is harder, a larger value ofN is needed, meaning that more time need to be spent during
the learning phase. Best results are found with the beam NRPA algorithm withN = 50
andN = 100.

The last experiment on the TSPTW, is to run the beam NRPA algorithm on all
problems from the set of problems from [12], and to compare our results with the results
found by the NRPA algorithm from [3]. Results are presented in Table 1.

As expected, we can see that the beam NRPA algorithm is always able to find better
scores than the NRPA algorithm. The beam NRPA is able to find 63% of state of the art
scores, and this without any expert knowledge. Expert knowledge can be added to the
beam NRPA algorithm, in the same way as in the NRPA version from [3].
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Fig. 3. Experience on the problem rc203.1 with level 2. The lower the better. Average on 30 runs.
Best results are found by the beam NRPA algorithm withN = 20. In this experiment, only the
beam NRPA algorithm is able to find a valid path, without violated constraints. The best known
score for this problem is453.48. This score is reached for the Beam NRPA withN = 20.

Fig. 4. Experience on the problem rc202.3 with level 2. The lower the better. Average on 30 runs.
Best results are found by the beam NRPA algorithm withN = 50 andN = 100. The best known
score for this problem is837.72
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Problem City
State of NRPA beam NRPA
the art

rc206.1 4 117.85 117.85 117.85
rc207.4 6 119.64 119.64 119.64
rc202.2 14 304.14 304.14 304.14
rc205.1 14 343.21 343.21 343.21
rc203.4 15 314.29 314.29 314.29
rc203.1 19 453.48 453.48 453.48
rc201.1 20 444.54 444.54 444.54
rc204.3 24 455.03 455.03 455.03
rc206.3 25 574.42 574.42 574.42
rc201.2 26 711.54 711.54 711.54
rc201.4 26 793.64 793.64 793.64
rc205.2 27 755.93 755.93 755.93
rc202.4 28 793.03 800.18 793.03
rc205.4 28 760.47 765.38 765.38
rc202.3 29 837.72 839.58 839.58
rc208.2 29 533.78 537.74 533.78
rc207.2 31 701.25 702.17 702.17
rc201.3 32 790.61 796.98 795.43
rc204.2 33 662.16 673.89 663.19
rc202.1 33 771.78 775.59 772.17
rc203.2 33 784.16 784.16 798.73
rc207.3 33 682.40 688.50 682.40
rc207.1 34 732.68 743.72 732.68
rc205.3 35 825.06 828.36 825.06
rc208.3 36 634.44 656.40 649.93
rc203.3 37 817.53 820.93 817.53
rc206.2 37 828.06 829.07 842.17
rc206.4 38 831.67 831.72 831.67
rc208.1 38 789.25 799.24 795.57
rc204.1 46 868.76 883.85 878.76

Table 1. Results on all problems from the set from Potvin and Bengio [12]. First Column cor-
responds to the problem, second column is the number of cities, third column is the state of the
art score, found in [10]. Fourth column is the best score found by the NRPA algorithm in [3] and
fifth column is the best score found by the beam NRPA algorithm. The problems for which we
find the state of the art solutions are in bold. With the beam NRPA 63% of state of the art scores
are found, where as with the classic NRPA algorithm only 43% state of the art scores are found.
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6.2 Morpion-Solitaire

The second experimented application is the Morpion-Solitaire puzzle. As for the two
first experiments on the TSPTW, we measure the best score found by the beam NRPA
and the NRPA algorithms as a function of the complexity in level 2. For this application,
the higher scores the better. Results are presented in Figure 5. For beam sizes larger
than 2, results are always better for the beam NRPA algorithm. ForB = 2, results are
equivalent.
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Fig. 5. Experience on the Morpion-Solitaire puzzle with level 2. The higher the better. Best results
are found by the beam NRPA algorithm withN = 100. Each point is an average of 30 runs.

7 Conclusion

In this work we show how to improve the Nested Rollout Policy Adaptation algorithm.
For both applications, results are good for a beam size of 4. When the size of the beam
increases, results are even better. On the first experimented application, the traveling
salesman problem with time windows, we do not use any expert knowledge. Our goal
was then, not to find new records, but to show the efficiency of having numerous learned
policies. The classic NRPA algorithm find 43% of state of the art records, whereas the
beam NRPA algorithm is able to find 63% of records. Only for 2 problems we are not
able to find equal or better scores than the NRPA algorithms. For all other problems,
scores are equal or better for the beam NRPA algorithm. On the Morpion Solitaire puz-
zle, we reach the current record (82 moves), but we are not able to beat it. However,
as shown in Figure 5 best scores are found faster with the beam algorithm than with
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the classic NRPA algorithm. This behaviour has been also observed for the traveling
salesman problem with time windows (Figures 4 and 3).
As pointed out in the future works of the NRPA algorithm’s author in [14], realizing a
parallel version of the NRPA algorithm is a challenging work. The beam NRPA algo-
rithm has the advantage to be easily parallelizable, because, all policies from the beam
can be evaluated in parallel.
An interesting future work is to keep distances between all the sequences from the
beam. Having such a modification should be much more robust in front of local optima.
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A new self-acquired knowledge process for
Monte Carlo Tree Search

André Fabbri, Frédéric Armetta, Éric Duchêne and Salima Hassas

Laboratoire GAMA

Abstract. Computer Go is one of the most challenging field in Artificial
Intelligence Game. In this area the use of Monte Carlo Tree Search has
emerged as a very attractive research direction, where recent advances
have been achieved and permitted to significantly increase programs ef-
ficiency.
These enhancements result from combining tree search used to identify
best next moves, and a Monte Carlo process to estimate and gradually
refine a position accuracy (estimation function). The more the estimation
process is accurate, the better the Go program performs.
In this paper, we propose a new approach to extract knowledge from the
Go tree search which allows to increase the evaluation function accuracy
(BHRF: Background History Reply Forest). The experiments results pro-
vided by this new approach are very promising.

1 Introduction

The game of Go is a deterministic fully observable two player game. Despite its
simple rules, it stands for one of the great challenge in the field of AI Game.

Go tactical and strategic decisions are extremely difficult to tackle, since
each move could have a high impact a long time after having been played. A sin-
gle stone move could completely change the board configuration and therefore,
there is no static evaluation function available during the game [22]. Profes-
sional human players succeed where programs fail, thanks to their expertise and
knowledge acquired from their long experience.

Recent developments in Monte Carlo Tree Search allowed to considerably
increase program’s efficiency. These enhancements result from combining Tree
Search used to identify best next moves to a Monte Carlo process based on
random playing attempts to estimate and gradually refine a position accuracy
(estimation function).

Monte Carlo Tree Search programs are able to reach up a professional level
by simulating thousands of pseudo random games [16]. However these program’s
performances does not scale with computational power increasing [2].

A promising way to increase program’s efficiency arises from learning on-line
local knowledge to enhance the relevance of random simulations used to evaluate
positions [1,17,18].

In this context, one can note that the issue is not only focused on the comput-
ing power available, but in our ability to manage additional more sophisticated
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self-acquired knowledge. Then, in the rest of the paper, we will focus on this
ability. Further work will propose additional enhancements to optimize the pro-
cess associated to knowledge management in order to decrease the computing-
resources consumption.

In this paper we propose a new approach to collect the knowledge acquired
through the tree search of estimated positions. Our proposal appears as a com-
plementary data structure. As described in section 3, a tree search is used to
define what are the best next moves to play from a completly described current
position. The structure we propose to build addresses a more abstract question:
if a set of relatives moves are played, what to play next ? We show with our
approach presented in section 4 that a natural manner to tackle this question
is to constitute a Background History Reply Forest (BHRF). We then describe
how to build and maintain this generic forest and how to exploit it. These two
points raise new questions, but we show that a first straightforward setup pro-
duces good results. Some promising experimental results are presented in 5 and
show that using BHRF allows to play better.

The next section presents the general structure of knowledge involved in
a learning process. The section 3 focus on the kind of knowledge used in the
existing Go programs. Section 4 introduces a Background History Reply Forest
(BHRF) for the Monte Carlo Tree Search. The last section sums up experiments
carried on the model. A conclusion is presented in 6.

2 Knowledge in computer Go

While a game is running, for each step, a Go player aims at selecting the best
move according to the game overall state. The overall game state involves any
information related to the current game such as the board setup, the history
of played moves, local fights and also the opponent’s level. During the decision
process, players need to select the relevant parts of the game to focus on. Human
players accumulate knowledge by studying standard techniques, watching pro-
fessional games or interacting with other players. Computer programs encode
directly Go expert knowledge (apriori knowledge) or create their own knowl-
edge using machine learning technic. This information is evaluated and stored
in a data structure (knowledge acquisition or learning) for a further exploitation
(knowledge exploitation or planning). Reinforcement learning methods itera-
tively apply these two steps to progressively build an effective policy [21,19].

2.1 Go knowledge acquiring

Knowledge is useful to evaluate a position (current state or targeted state result-
ing from a set of planned moves). Either generic (fitting many cases) or specific
knowledge could be used to do this evaluation.

For instance, understanding the shapes formed by the stones on a Goban is
a relevant way to solve local fights. In this case, local patterns are a powerful
way to encode Go expert knowledge [19,12].
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An other way is to consider a knowledge based on high-level characteristics
of the game: groups, groups stability, influences between groups, etc [11]. The
representation can then focus on the intersection around the last move played
to find local replies [22].

The value of this knowledge generally represents the probability to win if we
reach this game state representation. The quality of the estimator determines
the accuracy of the considered knowledge. The value given by poor estimators
are not reliable and have to be considered with caution. Several estimators for
the same knowledge can be combined to produce a more effective estimation.
The knowledge values are computed based on professional game records [4,20],
professional players comments [13] or self-playing [19]. These knowledge values
will be exploited to choose an action according to the current game state.

2.2 Go knowledge exploitation

The policy maps an action to each game state. The action is selected based
on the knowledge matching that game state. A high knowledge value means
a good move but the knowledge nature and its estimator might be misleading.
Therefore uncertainty is generally inserted in the policy to mitigate the influence
of wrong estimations. The ε-greedy policy selects with a probability ε the action
associated to the highest knowledge value otherwise it generally plays a random
move. The softmax policy selects each action with a probability depending on
the associated knowledge value [21].

A policy would be selected according to its context of application. During a
tutorial process, a policy might tolerate exploratory moves but during a challenge
the policy has to select the best possible action.

2.3 Reinforcement learning

Reinforcement learning is a way to manage learning in an autocatalytic way. The
program is not taught what to do and learns therefore by its own experience [21].
Temporal difference learning is one of the most applied method for such problems
and has been successfully applied to computer games. This method dynamically
bootstraps its knowledge from simulated games.

The policy evolves as the simulations runs and will influence the incoming
simulations. Since the knowledge is built on-line, the policy has to deal with ex-
ploiting the accumulated knowledge (exploitation) or gathering more knowledge
(exploration). A good policy should produce accurate simulations to enable the
learning process. A too strong policy can actually lead to a weaker program [21].

TD(λ) methods reinforce their knowledge values according to the estimation
difference of the game state between two time-step. A Monte Carlo method is a
temporal difference method which reinforcement depends on the final game state
of the simulation [19].
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3 Monte Carlo Go programs

The main idea of Monte Carlo Tree Search is to build a tree of possible sequence
of actions. The tree root corresponds to the current board situation and each
child node is a possible future game state. The tree will be progressively expanded
towards the most promising situation by repeating the 4 phases: descent, roll-out,
update and growth (Fig.1).

During the descent phase, the simulation starts from the root node and pro-
gresses trough the tree until it reaches a game state outside of the tree.

For each node the program will iteratively select the best action with respect
to the descent policy. Once it leaves the Monte Carlo Tree, the roll-out phase
generates the remaining moves according to the roll-out policy until the game
reaches a final state. The update phase propagates the final game results in the
node reached during the descent and the growth phase appends the first game
situtation ouside of the tree to the overall structure [5].

Monte Carlo Go programs involve two kinds of knowledge to guide the sim-
ulations from the current game state. The Monte Carlo Tree stores knowledge
on-line. This knowledge is exploited during the descent phase. The current best
programs exploit Go domain specific knowledge in the roll-out phase because the
tree knowledge is no more available. In the last section we will present methods
that attempt to dynamically build up knowledge for the roll-out phase.

Fig. 1. General MCTS process
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3.1 Monte Carlo tree

In the Monte Carlo tree, each node is a knowledge piece that associates a possible
future board setups with an accuracy value estimated from previous Monte Carlo
simulations. Board setups are very precise game state representations which will
be progressively selected as the simulations run. However the built tree depends
on the current board situation. Local structures are not shared between branches
leading to a new kind of horizon effect [6] and at each new turn only a subtree
is kept. All previously acquired knowledge in other branches is forgotten.

At each step of the descent phase, the policy selects in a greedy way the best
action based on the child’s node value or a default value for the resulting states
outside of the tree [22]. The node’s estimator will have a huge influence on the
policy’s behaviour. Since the policy is not perfect and the estimation sample
is too small, the mean of Monte Carlo rewards (MCTS value) is not a reliable
indicator on the long-term run [8]. The Upper Confidence bound applied to Tree
estimator (UCT value) reveals to be a good trade-off between exploration and
exploitation [15]. Recent results show that, in practice, a combination between
the MCTS value and a biased mean estimator called RAVE ensures a good
exploratory behaviour [10,8] and also minimizes the knowledge lost at each new
turn, but without control.

3.2 Go a priori knowledge

Contrary to the Monte Carlo tree, the Go expert knowledge is independent from
the overall stones disposition and therefore can be exploited for a broader set of a
board setup. The purpose of this knowledge is to guide the simulation after hav-
ing left the tree structure. However the roll-out policy should not be too strong
to do not disturb the learning process [9]. The knowledge encoded corresponds
generally to static Go tactical rules based on the current board configuration.
Sequence-like policies brought a substantial improvement by searching around
the last opponent move [22]. If no rules fit the current situation, the policy plays
randomly. Other roll-out policies use a linear combination of local pattern. The
weights are generally computed with off-line intensive machine learning [9] but
recent works obtained promising results by tuning them on-line [14,19].

3.3 Knowledge collected from Game

Several works aim at dynamically learn knowledge relative to the current game
in order to exploit it during the roll-out phase (see Fig.2). The game chosen
state representations are generally small move sequences or patterns. As for the
Monte Carlo tree, this knowledge will be built in a autocatalytic manner but
this knowledge will persist over the turns.

Pool RAVE [18] exploits the RAVE values in the Monte-Carlo tree to influ-
ence the roll-out. The best RAVE values from the covered nodes (descent phase)
are selected to influence the next roll-out. The roll-out policy proposed for the
game of Go uses first a “fill-board heuristic” [3] to ensure a good exploratory
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behaviour and then applies the moves associated with one of the pooled RAVE
values. Hence the selected RAVE value contributes directly to its own reinforce-
ment.

Contextual Monte Carlo [17] stores tiles of two moves played by the same
player. Each tiles has Monte Carlo mean value updated when the two moves
appears in the same simulation. The main idea is to link the expected success
with a couple of moves played by the same player. During the roll-out phase a
ε-greedy policy will select the best move according to the last player’s move.

Last Good Reply Forgetting heuristic [1] associates a reply to each sequence
of one or two consecutive moves. For each encountered sequence the program
stores a single reply. In the update phase all the reply sequences are updated
or forgotten according to the simulation result. Over the simulations the replies
are frequently updated but the most persisting moves are spatially local replies
[6,1]. In the roll-out phase the policy successively tries to apply the reply to the
two previous ones, the reply to the previous move or a move generated from a
Go expert knowledge policy if no appropriate reply is stored.

Fig. 2. Game relative knowledge for MCTS process

4 Proposal

In this paper, we propose a new method to learn knowledge collected from game
(game-based knowledge) persistent over the turns. We actually assume that we
can extract knowledge from the Monte Carlo tree and reuse it during the roll-out
phase. Therefore we build an independent data structure similar to the Monte
Carlo tree to store game based knowledge. The roll-out policy will be modified
to consider this new form of knowledge.
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4.1 Background History Reply Forest

A Monte Carlo node represents a future possible board setup. If we consider the
background history of the board rather than the position of the stones, a board
setup is also the sequence of moves played since the beginning of the match.
Hence each child node of the tree is a possible reply to that sequence. Our idea
is to extend the LGRF heuristic to catch the knowledge stored in the tree over
the simulations. The size of the previous sequence will be lengthened and the
reply estimation will be based on the tree values. This knowledge will be more
biased than the one provided by Monte Carlo nodes but it will be exploited in
the roll-out phase and will persist over the turns.

Fig. 3. BHRF knowledge exploitation

Hence we build a forest of search trees such that each tree root is a potential
reply and each child node a previous sequence to this reply (Fig.3). The value
associated to each node comes from the Monte Carlo tree. In the update phase
all nodes corresponding to sequences chosen in the descent phase are reinforced.
The search trees are progressively expanded in the growth phase as done in
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the Monte Carlo tree [5]. This knowledge is then exploited during the roll-out
phase, according to the previous moves played. The selected nodes with the
longest corresponding sequences will be the most dependent on the game state.

4.2 BHRF exploitaiton

For each roll-out game state, we choose a reply among all legal positions on the
board. The program progresses through the associated tree search to select the
nodes with the longest previous sequences (up to a maximum size parameter
called depth). The policy computes on-line the UCT value for the nodes with
the same previous sequence according to their last Monte Carlo rewards.

Due to the biased nature of this knowledge and in order not to restrain the
simulation diversity, we implemented a non determinist policy to generate the
moves at each roll-out step. The policy plays the root reply associated with a
selected node among those with the longest matching sequences. If no reply move
was played by the policy, a default roll-out policy is applied.

The softmax policy selects a node according to a softmax distribution based
on their UCT value and plays the associated move with a probability depending
on its UCT value multiplied by a parameter α.

Algorithm 1 softmax policy for BHRF knowledge

curLength = 0
for m in legalMoves do
i = replyTree[m].selectNode(depth,lastmoves)
nodeSelection.add(i)
if n.length > curLength then

curLength = n.length
end if

end for
n = nodeSelection.softMaxUct(curLength)
if randomValue() < α× n.uctValue then

return n.rootReply
else

return defaultRandomMove()
end if

5 Experimental results

We implemented this proposed knowledge-based model on top of the state of
art program Fuego [7]. To prove the effectiveness of our approach we tested the
BHRF player against a Monte-Carlo player using a random roll-out policy. We
disabled the expert heuristics involved in the Fuego roll-out policy except for
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the random move generation1. The experimental results were carried out on a
9x9 goban against a baseline program without the BHRF heuristic. The current
implementation is not thread-safe and is time-consuming. Therefore to provide
a fair comparison we removed the clock limitation and each turn both programs
run 10000 Monte-Carlo games on a single thread.
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Fig. 4. BHRF success rate over α against the baseline program

We first study the influence of the parameter α for the softmax policy. This
parameter tunes the involvement of the BHRF knowledge during the roll-out
phase (see Algo. 1). As we see in Fig. 4, the performance increases with α.
The program actually performs better for α = 100 where the BHRF replies are
applied quite systematically if a BHRF node matches (only 2% doesn’t). These
results show that the softmax policy provides a good simulation diversity by
itself.

Hence we next set α at 100 and focus on the depth parameter. The depth
parameter determines the “history relevance” of the selected knowledge. As the
maximum depth increases, the suggested moves should be more accurate. The
experiments were carried out up to a depth of 10 because of time consuming con-
straints. Further experiments will require an optimised BHRF implementation.

1 Fuego default random move generation use heuristics to avoid “suicidal” moves
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Fig. 5. BHRF success rate over depth against the baseline program

The figure 5 reveals that the performance of our algorithm slightly decreases as
the depth parameter grows.

To validate our approach, we compare the performance of the BHRF heuristic
according to the number of Monte-Carlo games simulated at each turn. Table 1
shows that BHRF performs better for 10000 simulations search2. The resulting
Background History Reply Forestfor deep Monte Carlo search produces better
estimators and actually matches to a wider set of game states. About 90% of
the roll-out game states benefit from a BHRF reply when the MCTS algorithm
runs 10000 games against 80% for 1000 games simulated.

Table 1. Comparative between 1000 and 10000 games simulated for the softmax policy

α 1 100

games simulated 1000 10000 1000 10000

success rate % 58.7 ± 2.49 63.4 ± 2.99 58.5 ± 2.49 68.8 ± 2.87

These results show an overall improvement when reusing game-based knowl-
edge, that is extracted from the Monte Carlo tree. As we mentionned before,
our main concern was to build self-acquired knowledge to improve Monte Carlo

2 The results are given with a 95 % confidence interval
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simulations. The computing time of this algorithm is still higher than the base-
line algorithm (up to 10 times) but improvements could be made. Indeed the
heuristic searches at each roll-out step among all the potential moves through
the whole board contrary to the Go expert policy which one focuses around
the last played move [22,7]. Furthermore we would like to point out that our
main concern was to show the good impact of Game-based knowledge model.
An optimised version will requires a deep modification of the Fuego libraries.

6 Conclusion

In this paper we present a new approach to complement the Monte Carlo Tree
Search programs. The proposed framework is inspired from the reinforcement
learning paradigm, and aims at distinguishing incorporated knowledge from its
exploitation.

The proposed model extracts game-based knowledge from the Go Tree Search
to introduce more accurate moves through simulations. The incorporated knowl-
edge is based on history data and tends to find a trade-off between the specific
knowledge stored in the tree and more biased game-relative heuristics.

We show with our approach that a natural manner to complement Go tree
search knowledge is to constitute a Background History Reply Forest (BHRF).
We then describe how to build and maintain this generic forest and how to exploit
it. These two points raise new questions, but we show that a first straightforward
setup provides good results.

The first proposed results underline the efficiency of our model, and allows
to outperform the baseline MCTS algorithm with similar setting for up to 2/3
of the considered games. This encourages us to carry on the experiments on a
larger board or with other settings (longer sequences, use of BHRF to compute
initial values of leaf for the Go tree search, etc).
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Abstract. Online games have become very popular in recent years and
the number of players is steadily increasing. The number of game web
sites, tournaments and the underlying economic issues are now consider-
able. Unlike face-to-face games, online ones offer several cheating meth-
ods such as exchanging information through incontrollable channels such
as phone, instant messaging or any other communication means. This pa-
per focuses on online duplicate Bridge tournaments where the same deals
are played by several players. We argue that anomaly-based approaches,
which are widely used in several application domains such as computer
security, are very appropriate for detecting potential cheating activities
for a number of reasons. We finally provide preliminary experimental
evaluations showing the effectiveness of the proposed approaches.

Keywords: Online games, duplicate Bridge tournaments, anomaly de-
tection

1 Introduction

Online games are very attractive and increasing numbers of players spend lots
of time and money in playing. Some online games are played in tournaments like
card games. It is very important to mention that most of these games are free or
require paid subscriptions, consequently their business model heavily lies on the
confidence and the reputation of that online game. If a doubt bears on a given
online game that some players can cheat, this will result in catastrophic disin-
terest and turn away of ”honest” players. Moreover, some online tournaments
are officially recognized and taken into account for establishing player rankings
hence the need to deploy automated means to detect and prevent any cheating
attempt. Unfortunately, this problem has not received much interest and only
some preliminary works [14] address it.
Unlike face-to-face card games where the communication of information is really
restricted and controlled, in online ones, a player may use incontrollable channels
to obtain useful information. For example, in an online Bridge tournament where
the same deal is played in duplicate on multiple boards, one can play with two
distinct accounts (using different logins) and obtain relevant information from
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one account to use it in the second account. Checking and detecting cheating
attempts in face-to-face games is traditionally done by humans (game opponents
and organizers) but due to the games’ complexity and the number of players to
analyze and control in each tournament, this task is time consuming and com-
plex. We propose in this paper approaches from the AI field and inspired from
the anomaly detection problem to detect cheating activities in online duplicate
Bridge tournaments.
The starting point of this work is the recommendations of the prestigious AAAI
conference challenge on detecting collusive activities in online Bridge [14]. In this
paper, we point out several technical issues related to cheating scenarios that can
be performed in online Bridge tournaments where several players, on different
boards, play the same deal (card distribution) and overall scores are computed to
rank the players. Cheating can occur during the bidding phase or the card play
one. Our goal is to detect suspicious activities. We propose approaches for detect-
ing cheating activities inspired by those used in intrusion detection (in computer
security) to detect attacks [2]. Namely, our objective is to design a tool capable
of analyzing in almost real-time the data of on-going tournaments and flag the
suspicious actions and players as cheating or normal. This problem is closely
related to detecting computer attacks where an intrusion detection system IDS
[4][2] analyzes network traffic (and potentially other information such as appli-
cation log files, etc.) and flag as anomalous every suspicious activity with respect
to authorized activities. More precisely, we propose anomaly-based approaches
where significantly deviating activities from a normal activities reference profile
are detected as potential attacks. This approach is very relevant since we can
build normal profiles using the plays of the remaining players, historical data
of the same players, robot players, etc. Moreover, in addition to the game data,
we can use network-oriented data to help detecting cheating activities. For in-
stance, IP addresses of the players, the duration of each step played by a player,
the sequence of play, etc. are relevant features to consider for detecting cheating
activities in duplicate Bridge tournaments.
The contribution of this paper is an anomaly detection-based approach for de-
tecting cheating activities in online duplicate Bridge tournaments. Moreover, we
provide preliminary results showing that our approach can be efficiently imple-
mented and deployed in real online duplicate Bridge tournaments.
The rest of this paper is organized as follows: Section 2 provides basic back-
ground on online games and duplicate Bridge tournaments. Section 3 provides
insights into anomaly detection approaches in computer security. In Section 4,
we present our anomaly-based approach for detecting cheating activities. Finally,
Section 5 provides details of our experimental studies.

2 Online games and cheating activities

2.1 Online duplicate Bridge tournaments

Online games are those played by players through Internet. In some games, there
are tournaments that are organized and results of the participants are available.
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In many player games, robots often play against human players. Bridge is a
52 card game with several specificities. It is played by four players, each two
compose a team (North-South team and East-West one). After the cards are
distributed (each player receives a hand of 13 cards), the game starts with a
bidding session aiming to set the contract denoting the objective to attain. The
first player to bid is called the declarer while the player having set the contract
is called the dealer and his partner is the dummy. Once the contract set, the
card game starts where the declarer’s team tries to reach the contract while the
opponent one tries to prevent them.
Bridge programs and robots have reached an acceptable level in the late 1990s,
when the author in [8] proposed a Monte Carlo method combining a solver of
open deals with a sampling method for deals generated randomly and compati-
ble with the knowledge of the player. One of their weaknesses in the game with
a dummy is their inability to deal with opponents playing in a non-optimal way
when they are bluffing or simply because of their weakness. Another weakness is
to play the card that has the best chance, thinking that the opponents will play
perfectly, while an expert player may play a card that increases the likelihood
that the opponents make a mistake. It may be noted that significant improve-
ments have recently been made using learning methods [1][6].
Winning a Bridge game depends on the expertise of the player, his opponents
but also the distribution of cards. To better score a player, he is compared to
other players playing the same deal. This is the aim and principle of duplicate
Bridge. A player is better than another one if he gains more points than the
other having the same hand and playing the same position (South, North, ...).
Hence, duplicate Bridge tournaments are organized where several players play a
set of deals and their results over each deal are taken into account in order to
compute scores and rankings. Such tournaments are organized by Bridge clubs,
federations, etc. Online duplicate Bridge tournaments are similar to face-to-face
ones except that the players are either human players or Bridge robots. The
advantage of Bridge robots is that they can be very strong, and can play as long
as one wants and at any time. Several efficient online Bridge sites exist such as
Jack Bridge1, Wbridge52, Bridge Baron3 and GIB 4, BBO5, etc. Some of these
sites propose duplicate Bridge tournaments.

2.2 Cheating in online duplicate Bridge tournaments

As we pointed out in the introduction, a cheater can use uncontrollable channels
to cheat in online duplicate Bridge tournaments. For instance, he can play as
two different players using two different logins and access relevant information.
Another uncontrallable channel is the one of communicating game information

1 http://www.jackbridge.com/
2 http://www.wbridge5.com/
3 http://www.bridgebaron.com/
4 http://www.gibware.com/
5 http://online.bridgebase.com/
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to another human player through the phone, instant messaging, etc. A player
may also make use of specific software and robots to help him to find the opti-
mal decisions. There are several online testimonies with former cheaters showing
that cheating does exist. The authors in [14] provide some cheating scenarios.
Our objective in this paper is to focus not only on some known cheating scenar-
ios but on all potentially abnormal activities which may be cheating ones. This
approach allows on the one hand to detect new cheating scenarios and on the
other hand to not encode and search for many known cheating scenarios in huge
amounts of data making this task complex and tedious.
In the following, we argue that anomaly-based approaches are relevant for de-
tecting cheating activities without any prior knowledge on cheating.

3 Anomaly detection: Approaches and challenges

To some extent, the problem of detecting cheating activities in online duplicate
Bridge tournaments is similar to the one of detecting intrusions in computer
networks. There are two main approaches for intrusion detection:

1. Misuse-based approaches: These approaches detect only known attacks
by identifying their ”signatures” in the analyzed data. Signature-based intru-
sion detection systems (like the well-known Snort IDS6) rely on a signature
database and some pattern matching techniques to detect attacks. The ma-
jor drawback of these approaches is that they cannot detect new attacks,
namely those for which there is no corresponding signature in the database.

2. Anomaly-based approaches: Anomaly-based approaches adopt a differ-
ent and complementary strategy where the underlying assumption is that
attacks and malicious activities have a behaviour which is different from the
one of normal and legitimate ones. Hence, in order to detect abnormal ac-
tivities, one has only to build a profile or a specification of what is normal.
Such a profile can for instance be learnt after observing the normal activities
or from a security policy or protocol specification, etc. During the detection
phase, every significant deviation from the normal profile is considered as
an abnormal event and can potentially be an attack. The main advantage
of anomaly-based approaches is their ability to detect any attack (be it new
or known). In practice, anomaly-based approaches suffer from a high false
alarm rate because it is very difficult to obtain acceptable detection and false
alarm rate tradeoffs.
In anomaly-based approaches, an anomaly score relative to a given event
often depends on several local deviations measuring how much anomalous
the analyzed event is with respect to the different normal profiles. Critical is-
sues in anomaly detection are normal profile definition and anomaly scoring
and thresholding. The first issue is concerned with extracting and selecting
the best features to analyze in order to effectively detect anomalies. The
second issue is also critical as it provides the anomaly scores determining

6 www.snort.org
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whether an event should be flagged normal or anomalous. The problem of
bad tradeoffs between detection rates and the underlying false alarm ones
characterizing most anomaly-based approaches are in part due to problems
in anomaly measuring, aggregating and thresholding methods [3].

3.1 Why anomaly-based approaches are more relevant

In [14], the author pointed out only few cheating scenarios. While it is very
easy to implement a signature-based approach for detecting known cheating
scenarios, this method firstly needs to list and encode the cheating scenarios
and it cannot detect any novel cheating scenario that is not already present
in the cheating scenarios database. In order to overcome these limitations, an
anomaly-based approach may be more relevant since the normal profile can easily
be obtained from the past tournaments or from the actions of the remaining
players in duplicate Bridge tournaments. Note that a signature-based approach
can be combined with an anomaly-based one in order to exploit their mutual
complementarities.

3.2 Model definition and validation

During the model construction phase, one has to define the relevant variables
for each local anomaly model. Such an effort needs a knowledge on the duplicate
Bridge tournaments. It also needs analyzing both normal data and some cheating
scenarios. Once the variable definition has been conducted, one has to choose
which model to build and then collect and preprocess historical data in order to
build the model. Model validation should consider normal plays that should be
detected by the model as normal and cheating scenarios that should be detected
as cheating actions. The model effectiveness can be measured through an ROC
curve (Receiving Operating Curve) highlighting the detection rate with respect
to the corresponding false alert one.

4 An anomaly-based approach for detecting cheating
activities in duplicate online Bridge tournaments

4.1 Online Bridge data to analyze

Due to the different nature of data (sequential, relational, etc.) which may be
relevant to analyze, we propose a multi-model approach where each normal be-
haviour in a given data type is represented by its specific profile. Hence, the
anomaly score will be computed using local anomaly measures associated with
each local model. An aggregating function will then be used to derive a global
anomaly score and a thresholding schema is needed to decide whether the an-
alyzed event is normal or anomalous. Let us give the different data types to
analyze and an idea on the corresponding profile to capture the features of that
behaviour.
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1. Relational data (attribute-values data): Some attribute-value data is relevant
to detect some anomalies regarding the whole game of a player or during
each action during the play. For example, the player’s rank, the contract,
the lead and the result of the game. It is possible to collect historical data
and build a model of normal plays. Now, at the end of each play, we use an
anomaly score to estimate the normality of the play. An example of anomaly
scoring function that can be used here is a probabilistic one where anomaly
scores are inversely proportional to the probability of the analyzed event.
Moreover, such an anomaly score can take into account the dependences
and correlations among the attributes. These correlations can be for instance
provided by an expert or automatically learnt from the historical data.

2. Sequential data: Sequential data can be collected in Bridge games during
the bidding sequence, the card game sequence or the actions of the different
players in a duplicate tournament. For instance, the bahaviour of a player
who knows only his cards and the one who knows in addition the next ac-
tions of the remaining ones if he bids in a given way, can adapt his bidding
more advantageously. The same scenario can happen during the card play.
In addition to the sequence of actions during the bidding and card play
phases, another source of relevant information is relative to the sequence of
actions of the different plays, the durations between each two consecutive
actions, etc. Such behaviours can be captured by sequence anomaly detec-
tion models such as hidden Markov models HMM [13], etc. Here again, a
probability measure can be used to associate an anomaly score for each ac-
tion sequence. It is clear that a good estimation of a global anomaly score
should take into account the local scores. Clearly, using probabilistic-based
models and probabilistic-based anomaly scoring functions has the advantage
of preventing incommensurability problems and can be fused in many ways
(by summation, averaging, maximum, etc.).

4.2 Anomaly detection-based model architecture

Figure 1 depicts an anomaly-based model where profiles of normal activities are
built using (i) online data consisting in the plays of the players of the same
tournament on the same deal, (ii) offline data built on the past tournament on
the same deals and potentially (iii) expert knowledge formalizing for example
known cheating activities, game rules, etc.

In our experimentations, our anomaly-based approaches use an outlier de-
tection technique and a probabilistic classifier where the training data is labeled
as normal or abnormal.

5 Experimental studies

In this section, we provide preliminary experimental studies showing that anomaly-
based approaches can efficiently detect cheating activities in online duplicate
Bridge tournaments.
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Fig. 1. Building blocks of an anomaly-based approach for detecting cheating activities
in duplicate online Bridge tournaments.

5.1 Experimentation setup

In this experimentation, we are concerned with detecting anomalies in asyn-
chronous duplicate Bridge tournaments7. Our experimental evaluation is carried
out on real data collected from a real online duplicate Bridge tourna-
ment where many players play the same deals. Note that this tournament is
asynchronous and each deal is played a given day but the participating players
do not necessarily play at the same time. On each virtual board, the player plays
with a Bridge robot against two Bridge robots.
We propose in this paper two experimentations using anomaly-based approaches
for detecting cheating and abnormal activities in the analyzed data. They are
implemented using classification8 techniques allowing the prediction of cheat-
ing attempts. More precisely, in order to detect cheating attempts, we propose

7 A short description of duplicate Bridge tournaments can be found here http://en.

wikipedia.org/wiki/Duplicate_bridge
8 Formally, classification consists in predicting the value of a non observable variable

(here the nature of a play which can be normal or cheating) given the values of
observed variables. Namely, given observed variables A1,..,An describing the objects
to classify, it is required to predict the right value of the class variable C among
a predefined set of class instances. In order to build a classifier, one can either
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classification-based approaches as final objective is checking whether there is
a cheating attempt or not. Namely, we want to know for each play whether
it is normal or cheating. Hence, the most straightforward way to adopt is a
classification-based approach where the classes to predict are Normal (denot-
ing the absence of cheating) and Abnormal (revealing an abnormal, potentially
cheating attempt). In our problem, the variables are defined as follows:

1. Predictors (attribute variables): The set of attributes (observed vari-
ables) consists of the relevant features for detecting cheating attempts. For
example, attributes describing the player, the game itself and the game’s
result will be needed for detecting some cheating attempts.

2. Class variable: The class variable C represents the game category variable
whose domain involves the following values Normal and Abnormal.

Naive Bayes classifier In Experimentation 1, we use a naive Bayesian clas-
sifier [7] which is the simplest form of Bayesian network classifiers (which are
Bayesian networks used for classification purposes). Naive Bayes classifiers are
particularly simple to build while they allow very interesting classification per-
formances [10]. Moreover, this classifier is efficiently used in many works for
detecting intrusions and anomalies [3]. In addition to the naive classifier, we
conducted other experimentations using other classifiers like C4.5 decision [12]
and TAN Bayesian classifiers [10] but the results are very similar to those of
naive Bayes. That is why the results of the other classifiers are not provided in
this paper.

Input data preparation: preprocessing and labelling The data used in our
experimentations is extracted from audit Bridge files (having the .bpn extension).
This data is extracted and preprocessed in order to format it and extract only
the relevant information. The play of each human player is described by the
following features:

In our case, each play is described by the features of Table 1 and labeled
either as Normal or Abnormal by an expert. Each play data is real (collected
from real tournaments) and it is analyzed and then flagged manually. Because
of this manual analysis, the experimentations are carried out on small datasets.
The following is a snapshot of our dataset in the CSV format:

______________________________________________________________________

Duration,Serie,Rank,Contract,Declarer,Lead,Vulnerable,Result,Score,Class

141,A,85,4HX,N,DA,All,-4,-1100, Normal

172,A,85,4HX,N,DA,All,-4,-1100, Normal

593,A,1,2SX,N,DK,All,=,670, Abnormal

rely on expert knowledge (for example, provide classification rules) or simply use
machine learning techniques. In the latter case, there is need to build a training and
labeled data set in order to train the classifier. Examples of well-known classifiers
are Bayesian network classifiers [10], decision trees [12], etc.
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Feature Description Type

Duration Duration of the play in seconds Numeric

Serie Serie of the player Symbolic

Rank Rank of the player Numeric

Contract The deal set by the players after the bidding phase Symbolic

Declarer The declarer in the current play Symbolic

Lead The first card played by the dealer Symbolic

Vulnerable The vulnerable team Symbolic

Result Result of the play (it depends on the player’s score and
the ones of the other players)

Numeric

Score Player’s score after the current play Numeric
Table 1. Feature set

207,C,2,3NT,N,SQ,All,-3,300, Abnormal

91,B,3,5HX,N,SA,All,-1,200, Abnormal

85,C,3,5H,S,D8,None,-2,200, Normal

345,A,3,3NT,N,SQ,All,-2,200, Abnormal

307,D,3,4HX,N,D8,All,-1,200, Abnormal

210,A,8,5H,N,SA,NS,-1,100, Normal

146,A,8,4H,N,D8,All,-1,100, Normal

______________________________________________________________________

5.2 Experimentation 1: A classification-based approach for
detecting cheating activities

Table 2 shows the distribution of the dataset used in Experimentation 1. In
this dataset, each deal is played by nearly a hundred of different human players
(in each play, the human player plays with a robot against two robots). After
manual analysis, we found 19 cheating/abnormal plays while the remaining ones
seem normal.

Number of nomal plays 1020

Number of abnomal plays 19

Number of deals 10
Table 2. Dataset statistics used in Experimentation 1

In Table 3, we provide the results of evaluating a naive Bayes classifier on the
dataset of Table 2. The evaluation is performed using 10-fold cross-validation9.

9 Cross-validation is a technique for assessing the performances of a predictive model.
In an N-fold cross-validation, the training data is divided into N subsets. The model
is trained on N-1 subsets and then evaluated on the remaining subset. This opera-
tion is repeated changing the testing subset in each iteration. The results are then
aggregated.
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Number Rate

Detected cheating/abnormal
events

15 78.94%

Detected normal events 1004 98.43%

False alarms 16 51.61%

False negatives 4 0.39%
Table 3. Naive Bayes results

Table 3 shows that most of the abnormal plays (15 among 19) are detected
correctly and the rate of false alarms is acceptable given that in the analyzed
tournament, the number of plays is around one hundred per deal and a human
expert can analyze the raised alerts. In Experimentation 2, we detect abnormal
plays by comparing each play with a set of plays on the same deal. Other eva-
lution methods like splitting the dataset into two separate sets, one for training
and the other for testing, give nearly the same results as the ones of Table 3.

5.3 Experimentation 2: An outlier detection approach for detecting
cheating activities

In this experimentation, we propose an anomaly-based method for detecting
cheating activities using an outlier detection approach. Namely, detecting cheat-
ing activities is done by detecting outliers corresponding to significantly atypical
items. Outlier and novelty detection is generally performed by computing a simi-
larity score of an item from a reference dataset or a reference model representing
a concept. In Experimentation 2, we use a one class-classifier as an implemen-
tation of an outlier detection method [9]. Namely, the technique learns only one
target class and rejects any data item whose similarity with the learnt target
class is less than a predefined threshold. Table 4 provide details on the used
dataset and the obtained results. Note that in this experimentation, we ran the
technique on each deal which is played a given number of times (see #ofplays
column and between parantheses the number of abnormal/cheating plays). Each
deal contains only few abnormal plays. We evaluated the model using a 10-fold
cross validation as in Experimentation 1. The true negative rates10 show that
most of normal plays are recognized as normal. Note also that the model trig-
gered only few alerts most of which are false ones but most of the abnormal ones
are detected (see the number of existing abnormal plays in column #ofplays and
the number of detected abnormal plays in column #ofalerts where the number
of true positives (denoting true alarms) is between parantheses). Given that the
number of raised alerts by day is acceptable then this method can be considered
efficient since most of the cheating plays are detected. The evaluation using two
separate sets (different training and testing sets) gives similar results.

10 A true negative is a normal activity that is detected as a normal one by a predictive
model.
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Deal number # of plays
(Abnormal)

True negative
rate

# of alerts
(True posi-
tives)

False positive
rate

1 79 (1) 92,41% 8 (1) 87,50%
2 90 (2) 94,32% 6 (1) 83,33%
3 128 (1) 95,28% 7 (0) 100,00%
4 125 (3) 95,90% 8 (3) 62,50%
5 113 (1) 96,43% 5 (1) 80,00%
6 114 (1) 96,46% 5 (1) 80,00%
7 195 (3) 97,92% 4 (0) 100,00%
8 120 (5) 97,39% 6 (3) 50,00%
9 108(2) 97,17% 4 (1) 75,00%
10 95 (1) 96,81% 4 (1) 75,00%

Table 4. Outlier detetction approach results

6 Summary and conclusions

The paper dealt with the problem of detecting cheating activities in online
games. More precisely, it focused on detecting cheating activities in duplicate
online Bridge tournaments. We argued that anomaly-based approaches which
are widely used in some domains like intrusion detection are particularly suit-
able for our problem. The results presented in this paper on real data and using
anomaly-based approaches show the effectiveness of such approaches for detect-
ing cheating activities in duplicate Bridge tournaments. Moreover, these results
can be improved in several directions:

– Using more relevant datasets / models: Possible improvements can
be obtained by defining more relevant variables and more representative
datasets. For instance, the number of training instances can be increased
and data distribution can be improved to decrease the negative impact of
the class imbalance problem (in our experimentations, the proportion of
abnormal plays is very low in comparison with normal ones). As for the
used models, one can obtain some improvements by choosing more efficient
classifiers (SVM [5], decision trees [12], etc.), combining several models and
mixing them with models analyzing sequential data (like HMMs [13]).

– Combining anomaly-based approaches with signature-based ones:
Given that some cheating scenarios are known, then one can combine an
anomaly-based approach (in serial or in parallel) along with a signature-
based one. This latter will efficiently detect known cheating scenarios while
the anomaly-based one will detect unknown ones.

A potentially interesting technique for collecting cheating attempts data is de-
ploying honeypots [11] that can lure cheaters. Honeypots are widely used in
intrusion detection for collecting intruder attempts. The key issue here is how
to build a duplicate Bridge tournament platform allowing cheating and how
to automatically generate deals that can lure cheaters or generate deals where
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only cheaters can win while non cheating players cannot. Such data will help
developing efficient cheating detection systems.
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Abstract. This paper introduces Monte Carlo *-Minimax Search (MCMS), a
Monte-Carlo search algorithm for finite, turned based, stochastic, two-player,
zero-sum games of perfect information. Through a combination of sparse sam-
pling and classical pruning techniques, MCMS allows deep plans to be con-
structed. Unlike other popular tree search techniques, MCMS is suitable for
densely stochastic games, i.e., games where one would never expect to sample
the same state twice. We give a basis for the theoretical properties of the al-
gorithm and evaluate its performance in three games: Pig (Pig Out), EinStein
Würfelt Nicht!, and Can’t Stop.

1 Introduction

Monte-Carlo Tree Search (MCTS) has recently become one of the dominant paradigms
for online planning in large sequential games. Since its initial application to Computer
Go [Gelly et al., 2006, Coulom, 2007a], numerous extensions have been proposed, al-
lowing this general approach [Chaslot et al., 2008a] to be successfully adapted to a
variety of challenging problem settings, including real-time strategy games, imperfect
information games and General Game Playing [Finnsson and Björnsson, 2008, Szita
et al., 2010, Winands et al., 2010, Auger, 2011, Ciancarini and Favini, 2010]. At first,
the method was applied to games lacking strong Minimax players, but recently has
been shown to compete against strong Minimax players in such games [Ramanujan and
Selman, 2011, Winands and Björnsson, 2010].

One class of games that has proven more resistant is stochastic games. Unlike classi-
cal games such as Chess and Go, stochastic game trees include chance nodes in addition
to decision nodes. How MCTS should account for this added uncertainty remains un-
clear. The classical algorithms for stochastic games, Expectimax (exp) and *-Minimax
(Star1 and Star2), perform look-ahead searches to a limited depth. However, both algo-
rithms scale exponentially in the branching factor at chance nodes as the search horizon
is increased. Hence, their performance in large games often depends heavily on the
quality of the heuristic evaluation function, as only shallow searches are possible.

One way to handle the uncertainty at chance nodes is to simply sample a single
outcome when encountering a chance node. This is common practice in MCTS when
applied to stochastic games; however, the general performance of this method is ques-
tionable. Large stochastic domains still pose a significant challenge. For example, MCTS
is outperformed by *-Minimax in the game of Carcassonne [Heyden, 2009]. Unfortu-
nately, the literature on the application of Monte Carlo search methods to stochastic
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games is relatively small, possibly due to the lack of a principled and practical algo-
rithm for these domains.

In this paper, we introduce a new algorithm, called Monte-Carlo Minimax Search
(MCMS), which can increase the performance of search algorithms in stochastic games
by sampling a subset of chance event outcomes. We describe a sampling technique for
chance nodes based on sparse sampling [Kearns et al., 1999]. We present a theorem that
shows that MCMS approaches the optimal decision as the number of samples grows. We
evaluate the practical performance of MCMS in three domains: Pig (Pig Out), EinStein
Würfelt Nicht! (EWN), and Can’t Stop. Finally, we show in Pig (Pig Out) that the es-
timates returned by MCMS have lower mean-squared error and lower regret than the
estimates returned by MCTS.

2 Background

A finite, two-player zero-sum game of perfect information can be described as a tuple
(S, T ,A,P, u1, s1), which we now define. The state space S is a finite, non-empty
set of states, with T ⊆ S denoting the finite, non-empty set of terminal states. The
action space A is a finite, non-empty set of actions. The transition probability function
P assigns to each state-action pair (s, a) ∈ S ×A a probability measure over S that we
denote by P(· | s, a). The utility function u1 : T 7→ [vmin, vmax] ⊂ R gives the utility
of player 1, with vmin and vmax denoting the minimum and maximum possible utility
respectively. Since the game is zero-sum, the utility of player 2 in any state s ∈ T is
given by u2(s) := −u1(s). The player index function τ : S → {1, 2} returns the player
to act in given state s if s ∈ S \ T , otherwise it returns 1 in the case where s ∈ T .

Each game starts in the initial state s1 with τ(s1) := 1. It proceeds as follows, for
each time step t ∈ N: first, player τ(st) selects an action at ∈ A in state st, with the
next state st+1 generated according to P(· | st, at). Player τ(st+1) then chooses a next
action and the cycle continues until some terminal state sT ∈ T is reached. At this
point player 1 and player 2 receive a utility of u1(sT ) and u2(sT ) respectively.

2.1 Classical Game Tree Search

We now describe the two main search paradigms for adversarial stochastic game tree
search. We begin first by describing the classical techniques, that differ from modern
approaches in that they do not use Monte-Carlo sampling. The minimax value of a state
s ∈ S is defined by

V (s) :=


max
a∈A

∑
s′∈S
P(s′ | s, a)V (s′) if s /∈ T and τ(s) = 1

min
a∈A

∑
s′∈S
P(s′ | s, a)V (s′) if s /∈ T and τ(s) = 2

u1(s) otherwise,

Note that we always treat player 1 as the player maximizing u1(s) (Max), and player
2 as the player minimizing u1(s) (Min). In most large games, computing the minimax
value for a given game state is intractable. Because of this, an often used approxi-
mation is to instead compute the finite horizon minimax value. This requires limiting
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the recursion to some fixed depth d ∈ N and applying a heuristic evaluation function
h : S 7→ [vmin, vmax] when this depth limit is reached. Thus given a heuristic evaluation
function h1(s) : S → R defined with respect to player 1 that satisfies the requirement
h1(s) = u1(s) when s ∈ T , the finite horizon minimax value is defined recursively by

Vd(s) :=


max
a∈A

Vd(s, a) if d > 0, s 6∈ T , and τ(s) = 1

min
a∈A

Vd(s, a) if d > 0, s 6∈ T , and τ(s) = 2

h1(s) otherwise,

where
Vd(s, a) :=

∑
s′∈S

P(s′ | s, a)Vd−1(s
′), (1)

For sufficiently large d, Vd(s) coincides with V (s). The quality of the approximation
depends on both the heuristic evaluation function and the search depth parameter d.

A direct computation of argmaxa∈A(s) Vd(s, a) or argmina∈A(s) Vd(s, a) is
equivalent to running the well known EXPECTIMINIMAX algorithm [Russell and
Norvig, 2010]. The base EXPECTIMINIMAX algorithm can be enhanced by a technique
similar to alpha-beta pruning for deterministic game tree search. This involves correctly
propagating the [α, β] bounds and performing an additional pruning step at each chance
node. This pruning step is based on the simple observation that if the minimax value
has already been computed for a subset of successors S̃ ⊂ S , the negamax value of
state-action pair (s, a) must lie within

Ld(s, a) ≤ Vd(s, a) ≤ Ud(s, a),

where
Ld(s, a) :=

∑
s′∈S̃

P(s′ | s, a)Vd−1(s′) +
∑

s′∈S\S̃

P(s′ | s, a)vmin

Ud(s, a) :=
∑
s′∈S̃

P(s′ | s, a)Vd−1(s′) +
∑

s′∈S\S̃

P(s′ | s, a)vmax.

These bounds form the basis of the pruning mechanisms in the *-Minimax [Ballard,
1983] family of algorithms. In the Star1 algorithm, each s′ from the equations above
represents the state reached after a particular outcome is applied at a chance node fol-
lowing (s, a). In practice, Star1 maintains lower and upper bounds on Vd−1(s′) for each
child s′ at chance nodes, using this information to stop the search when it finds a proof
that any future search is pointless.

To better understand when cutoffs occur in *-Minimax, we now present an exam-
ple adapted from Ballard’s original paper. Consider Figure 1. The algorithm recurses
down from state s with a window of [α, β] = [4, 5] and encounters a chance node.
Without having searched any of the children the bounds for the values returned are
(vmin, vmax) = (−10,+10). The subtree of a child, say s′, is searched and returns
Vd−1(s

′) = 2. Since this is now known, the upper and lower bounds for that out-
come become 2. The lower bound on the minimax value of the chance node becomes
(2 − 10 − 10)/3 and the upper bound becomes (2 + 10 + 10)/3, assuming a uniform
distribution over chance events. If ever the lower bound on the value of the chance
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Fig. 1: An example of the STAR1 algorithm.

Algorithm 1 Star1
1: Star1(s, a, d, α, β, c)
2: if d = 0 or s ∈ T then return (h1(s), null)
3: else if ¬c then return alphabeta1(s, d, α, β)
4: else
5: o← genOutcomeSet(s, a, vmin, vmax)
6: N ← |o|
7: for i ∈ {0, . . . , N − 1}
8: α′ ← computeChildAlpha(o, α, i); β′ ← computeChildBeta(o, β, i)
9: s′ ← applyActionAndChanceOutcome(s, a, i)

10: (v, a′)← Star1(s′, null, d− 1,max(vmin, α
′),min(vmax, β

′), false)
11: oil ← v; oiu ← v
12: if v ≥ β′ then return (lowerBound(o), null)
13: if v ≤ α′ then return (upperBound(o), null)
14: return exactValue(o)

node exceeds β, or if the upper bound for the chance node is less than α, the subtree is
pruned. In addition, this bound information is used to compute new bounds to send to
the other child nodes.

The algorithm is summarized in Algorithm 1. The alphabeta1 procedure recursively
calls Star1. The parameter c is a boolean representing whether or not a chance node
is the next node in the tree. The outcome set o is an array of tuples, one per outcome.
The ith tuple has three attributes: a lower bound oil initialized to vmin, an upper bound
oiu initialized to vmax, and the outcome’s probability oip. The lowerBound function
returns the current lower bound on the chance node

∑
i∈{0,...,N−1} oipoil. Similarly,

upperBound returns the current upper bound on the chance node using oiu in place of
oil. Finally, the functions computeChildAlpha and computeChildBeta return the new
bounds on the value of the respective child below. Continuing the example above, sup-
pose the algorithm is ready to descend down the middle outcome. The lower bound for
the child is derived from the equation (2 + o1pα

′ + 10)/3 = α. Solving for α′ here
gives α′ = (3α− 12)/o1p. In general:

α′ =
α− upperBound(o) + oipoiu

oip
, β′ =

β − lowerBound(o) + oipoil
oip

.
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Algorithm 2 Star2
1: Star2(s, a, d, α, β, c, p)
2: if d = 0 or s ∈ T then return (h1(s), null)
3: else if ¬c then return alphabeta2(s, d, α, β, p)
4: else
5: o← genOutcomeSet(s, a, vmin, vmax)
6: N ← |o|
7: for i ∈ {0, . . . , N − 1}
8: α′ ← computeChildAlpha(o, α, i); β′ ← computeChildBeta(o, β, i)
9: s′ ← applyActionAndChanceOutcome(s, a, i)

10: (v, a′)← Star2(s′, null, d− 1,max(vmin, α
′),min(vmax, β

′), false, true)
11: if τ(s′) = 1 then
12: oil ← v
13: if lowerBound(o) ≥ β then return (lowerBound(o), null)
14: else if τ(s′) = 2 then
15: oiu ← v
16: if upperBound(o) ≤ α then return (upperBound(o), null)
17: for i ∈ {0, . . . , N − 1}
18: α′ ← computeChildAlpha(o, α, i); β′ ← computeChildBeta(o, β, i)
19: s′ ← applyActionAndChanceOutcome(s, a, i)
20: (v, a′)← Star2(s′, null, d− 1,max(vmin, α

′),min(vmax, β
′), false, false)

21: oil ← v; oiu ← v
22: if v ≥ β′ then return (lowerBound(o), null)
23: if v ≤ α′ then return (upperBound(o), null)
24: return exactValue(o)

The performance of the algorithm can be improved significantly by applying a
simple look-ahead heuristic. Suppose the algorithm encounters a chance node. When
searching the children of each outcome, one can temporarily restrict the legal actions
at a successor (decision) node. If only a single action is searched at the successor, then
the value returned will be a bound on Vd−1(s′). If the successor is a Max node, then the
true value can only be larger, and hence the value returned is a lower bound. Similarly,
if it was a Min node, the value returned is a lower bound. The Star2 algorithm applies
this idea via a preliminary probing phase at chance nodes in hopes of pruning with-
out requiring full search of the children. If probing does not lead to a cutoff, then the
children are fully searched, but bound information collected in the probing phase can be
re-used. When moves are appropriately ordered, the algorithm can often choose the best
single move and effectively cause a cut-off with exponentially less search effort. Since
this is applied recursively, the benefit compounds as the depth increases. The algorithm
is summarized in Algorithm 2. The alphabeta2 procedure is analogous to alphabeta1
except when p is true, a subset (of size one) of the actions are considered at the next
decision node. The recursive calls to Star2 within alphabeta2 have have p set to false
and a set to the chosen action.

Note that Star1 and Star2 are typically presented using the negamax formulation.
In fact, Ballard originally restricted his discussion to regular *-minimax trees, ones
that strictly alternate Max, Chance, Min, Chance. We intentionally present the more
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general α − β formulation here because it handles a specific case encountered by two
of our three test domains. In games where the outcome of a chance node determines
the next player to play, the cut criteria during the STAR2 probing phase depends on the
child node. The bound established by the STAR2 probing phase will either be a lower
bound or an upper bound, depending on the child’s type. This distinction is made in
lines 11 to 16. Also note: when implementing the algorithm, for better performance it
is advisable to incrementally compute the bound information [Hauk et al., 2006].

2.2 Monte Carlo Tree Search

In recent years Monte Carlo methods have seen a surge of popularity in tree search
methods for games. The main idea is to iteratively run simulations from the game’s
current position to a leaf, and incrementally grow a model of the game tree rooted at the
current position. The tree starts empty and each simulation adds (expands) the tree by
adding a single node (a leaf) to the tree. The node added to the tree may not be a terminal
state, so a rollout policy takes over and chooses actions until a terminal state is reached.
This idea of using random rollouts to estimate the value of individual positions has
proved very successful in Go and many other domains [Coulom, 2007a, Browne et al.,
2012]. When a simulation encounters a terminal state, it returns (back-propagates) the
utility of the state up to all the nodes reached during the simulation, updating reward
estimates for actions maintained at the nodes in the tree.

During a simulation through the tree, actions must be chosen. A popular way to
select actions is to do so in a way that balances exploration and exploitation as in the
well-known multi-armed bandit scenario [Auer et al., 2002]. UCT is an algorithm that
recursively applies this selection mechanism to trees [Kocsis and Szepesvári, 2006].
An improvement of practical importance has been established called Progressive Un-
pruning / Widening [Coulom, 2007b, Chaslot et al., 2008b]. The main idea here is to
purposely restrict the number of actions; this width is gradually increased so that the
tree grows deeper at first and then slowly wider over time.

The progressive widening idea is extended to include chance nodes in the double
progressive widening algorithm (DPW) [Couetoux et al., 2011]. When DPW encounters
a chance or decision node, it computes a maximum number of actions or outcomes to
consider k = dCvαe, whereC and α are parameter constants and v represents a number
of visits to the node. At a decision node, then only the first k actions from the action set
are available. At a chance node, a set of outcomes is stored and incrementally grown.
An outcome is sampled; if k is larger than the size of the current set of outcomes and
the newly sampled outcome is not in the set, it is added to the set. When the branching
factor at chance nodes is extremely high, double progressive widening prevents MCTS
from degrading into 1-ply rollout planning. We will use MCTS enhanced with double
progressive widening as one of the baseline algorithms for our experimental compari-
son.

2.3 Sampling Methods for Markov Decision Processes

Computing optimal policies in large Markov Decision Processes (MDPs) is a signifi-
cant challenge. Since the size of the state space is often exponential in the properties
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describing each state, much work has focused on finding efficient methods to compute
approximately optimal solutions. One way to do this, given only a generative model
of the domain, is to employ sparse sampling [Kearns et al., 1999]. When faced with a
decision to make from a particular state, a local sub-MDP is built using finite horizon
look-ahead search. When transitioning to successor states, a fixed number c ∈ N of
successor states are sampled for each action. Kearns et al. showed that for an appro-
priate choice of c, this procedure produces value estimates that are accurate (with high
probability). Importantly, c was shown to have no dependence on the number of states
|S|, effectively breaking the curse of dimensionality.

This method of sparse sampling was improved by using adaptive decision rules
based on the multi-armed bandit literature to give the AMS algorithm [Chang et al.,
2005]. Also, the Forward Search Sparse Sampling (FSSS) [Walsh et al., 2010] algorithm
was recently introduced, which exploits bound information to add a form of sound
pruning to sparse sampling. The pruning mechanism used by FSSS is analogous to what
Star1 performs in adversarial domains.

3 Sparse Sampling in Adversarial Games

The performance of classical game tree search suffers from a dependence on |S|. Like
Sparse Sampling for MDPs [Kearns et al., 1999], we remove this dependence using
Monte-Carlo sampling. We now define the estimated finite horizon minimax value as

V̂d(s) :=


max
a∈A

V̂d(s, a) if d > 0, s 6∈ T , and τ(s) = 1

min
a∈A

V̂d(s, a) if d > 0, s 6∈ T , and τ(s) = 2

h(s) otherwise.

where

V̂d(s, a) :=
1
c

c∑
i=1

V̂d−1(si),

for all s ∈ S and a ∈ A, with each successor state si ∼ P(· | s, a) for 1 ≤ i ≤ c.
We now state a result which shows that the previously defined value estimates are

accurate (with high probability), provided c is sufficiently large.

Theorem 1 Given c ∈ N, for any state s ∈ S, for all λ ∈ (0, 2vmax] ⊂ R, for any
depth d ∈ Z+,

P
(∣∣∣V̂d(s)− Vd(s)∣∣∣ ≤ λd) ≥ 1− (2c|A|)d exp

{
−λ2c / 2v2max

}
.

The proof is a straightforward generalisation of the result of Kearns et al. [1999]
for finite horizon, adversarial games. As it is quite long, we defer its presentation to a
forthcoming technical report.

The MCMS variants can be easily described in terms of the descriptions of Star1 and
Star2. To enable sampling, one need only change the implementation of getOutcomeSet
on line 5 of Algorithm 1 and line 5 of Algorithm 2. Instead of generating the full list of
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moves, the new function samples c outcomes with replacement and assigns a uniform
distribution over the new outcome set of size c. We call these new variants s1SS and
s2SS. If all pruning is disabled, we obtain EXPECTIMINIMAX with sparse sampling
(EXPSS), which computes V̂d(s) directly from definition. The s1SS method computes
exactly the same value as EXPSS, but can avoid useless work. The same can be said for
s2SS, provided exactly the same set of chance events is used whenever a state-action pair
is visited; this additional restriction is needed due to the extra probing phase in Star2.
Note that while sampling without replacement may work better in practice, Theorem 1
only holds in the case of sampling with replacement. We aim to extend our analysis to
cover the without replacement case in future work.

4 Experiments

In this section, we describe our empirical evaluation of MCMS. The algorithm abbrevia-
tions are expanded and summarized in Table 1. Before describing our experiments, we
describe our domains.

Table 1: Algorithms summary and abbreviations.
Abbreviation Algorithm

exp Plain expectimax search
Star1 Star1 search, as described in Algorithm 1
Star2 Star2 search, as described in Algorithm 2
MCTS MCTS, as described in Section 2.2
DPW MCTS with double progressive widening, as described in Section 2.2
expSS Expectimax search with sparse sampling
s1SS Star1 search with sparse sampling
s2SS Star2 search with sparse sampling

Pig (Pig Out) is a two-player dice game [Scarne, 1945]. Players each start with 0
points; the goal is to be the first player to achieve 100 or more points. Each turn, players
roll two dice and then, if there are no showing, add the sum to their turn total. At each
decision point, a player may continue to roll or stop. If they decide to stop, they add their
turn total to their total score and then it becomes the opponent’s turn. Otherwise, they
roll dice again for a chance to continue adding to their turn total. If a single is rolled
the turn total will be reset and the turn ended (no points gained); if a is rolled then
the players turn will end along with their total score being reset to 0.

EinStein Würfelt Nicht! (EWN) is a tactical dice game played on a 5 by 5 grid. Each
player, red or blue, starts with their 6 dice from ( , , ..., ) in the top left corner
squares or bottom-right corner squares. The goal is to reach the opponent’s corner
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square with a single die or capture every opponent piece. Each turn starts with the
player rolling a white die off the board which indicates which of their dice they can
move this turn. Pieces can only move toward the opponent’s corner square or off the
board; if they move a die over a square containing another die (belonging to them or
the opponent), it is captured. EWN is a popular game played by humans and computer
opponents on the Little Golem online board game site1; at least one MCTS player has
been developed to play it [Lorentz, 2011].

Can’t Stop is a dice game that is currently popular on online gaming sites [Sackson,
1980]. The goal is to obtain three complete columns by reaching the highest level in
each of the 2-12 columns. This done by repeatedly rolling 4 dice and playing zero or
more pairing combinations. Once a pairing combination is played, a marker is placed
on the associated column and moved upwards. Only three distinct columns can be used
during any given turn. If dice are rolled and no legal pairing combination can be made,
the player loses all of the progress made towards completing columns on this turn. After
rolling and making a legal pairing, a player can chose to lock in their progress by ending
their turn. A key component of the game involves correctly assessing the risk associated
with not being able to make a legal dice pairing given the current board configuration.

To evaluate our algorithm, we performed two separate experiments. Our first experi-
ment compares statistical properties of the estimates returned and actions recommended
by MCMS and MCTS. At a decision point, each algorithm returns a recommended move
a ∈ A and acts as an estimator of its minimax value V̂ (s). Since Pig (Pig Out) has
fewer than one million states, we solve it using the technique of value iteration which
has been applied to previous smaller games of Pig [Neller and Pressor, 2004], ob-
taining the true value of each state V (s). From this, we estimate the mean squared
error, variance, and bias of each algorithm: MSE[V̂ (s)] = E[(V̂ (s) − V (s))2] =
Var[V̂ (s)]+Bias(V (s), V̂ (s))2 by taking 30 samples of each algorithm at each decision
point. Define the regret of taking action a at state s to be Regret(s, a) = V (s)−V (s, a),
where a is the action chosen by the algorithm from state s. We measure the average
value of Regret(s, a) over the 30 samples at each decision point for each algorithm.
The results of this experiment is shown in Figure 2.

In our second experiment, we computed the performance of each algorithm by play-
ing 500 test matches for each paired set of players. Each match consists of two games
where players swap seats and a single random seed is generated and used for both games
in the match. The performance of each pairing of players is shown in Table 2.

In all of our experiments, a time limit of 0.1 seconds of search is used. MCTS
uses utilities in [−100, 100] and a tuned exploration constant value of 50. For a more
fair comparison, MCTS returns the value of the heuristic evaluation function at the
leaves rather than using a rollout policy. MCTS with double-progressive widening
(DPW) uses parameters C and α described in Section 2.2. All experiments were single-
threaded and run on the same hardware (equipped with Intel Core i7 3.4Ghz proces-
sors). The best sample widths for expSS, s1SS, s2SS, and (C,α) for DPW for Pig (Pig
Out) were (20, 2, 8, (5, 0.4)). For EWN and Can’t Stop these parameters were set to

1 http://www.littlegolem.net
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Fig. 2: Properties of MCMS on Pig (Pig Out). exp and expSS represent EXPECTIMAX
without and with sparse sampling, respectively. DPW represents MCTS using double
progressive widening.
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Table 2: Number of wins for p1 in a p1-p2 match of 1000 games in Pig (Pig Out), EWN,
and Can’t Stop.

expSS-exp s1SS-Star1 s2SS-Star2 expSS-DPW s1SS-DPW s2SS-DPW MCTS-DPW

Pig (Pig Out) 555±15.7 514±15.8 485±15.8 499±15.8 405±15.5 461±15.8 483±15.8
EWN 519±15.8 507±15.8 501±15.8 497±15.8 452±15.7 501±15.8 513±15.8
Can’t Stop 811±12.4 844±11.5 846±11.4 804±12.6 801±12.6 779±13.1 189±12.4

(5, 2, 4, (3, 0.05)) and (5, 50, 18, (10, 0.2)) respectively. These values were determined
by running a number of round-robin tournaments between players of the same type.

We see from Figure 2 that the estimated mean-squared error and bias of the values
returned by expSS are lower than both MCTS and the non-sampling algorithms. How-
ever, this comes at cost of higher variance value estimates, especially toward the end
of the game. This makes sense in Pig (Pig Out) since the chance outcomes affect the
game more heavily near the end. For future investigation, it might make sense to con-
sider using one or more variance reduction techniques [Veness et al., 2011] to improve
the performance of MCMS. expSS also exhibits lower regret than MCTS but not as low
as MCTS with double-progressive widening. While these graphs only represent a single
game, the results on other games looked similar.

The results from Table 2 show that the MCMS variants outperform their equivalent
non-sampling counterparts in all but one instance; this might be explained by the fact
that since there are only 2 actions to choose from in Pig (Pig Out), it is easy to determine
a move ordering so that the Star2 probing phase works well enough without the need for
sampling. DPW outperforms MCMS on Pig (Pig Out); this was somewhat expected since
it exhibited lower regret from the first experiment. In EWN, MCMS performs evenly
with DPW. Of the MCMS algorithms, s2SS does best in EWN, likely due to the strictly
alternating roles which give higher chances for cutoffs to occur during the Star2 probing
phase. Finally, we see that MCMS wins by large margins in Can’t Stop, the domain with
the largest branching factor at chance nodes. This seems to imply that MCMS is well
suited for densely stochastic games.

5 Conclusion and Future Work

This paper has introduced MCMS, a sparse sampling algorithm for stochastic, adversar-
ial games. The algorithm is a natural generalization of Ballard’s ideas to a Monte-Carlo
setting. We show that in one game that the mean squared error and bias are lower than
MCTS. Finally, we show performance results showing MCMS outperforming classic *-
Minimax in eight of nine instances and MCTS in a fairly complex domain.

For future work, we aim to extend our investigation to the case where sampling
without replacement is used. Finally, we plan to to apply the algorithm in larger domains
such as Backgammon, Carcassonne, Dominion, or Ra.
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Abstract. In this paper we compare several search techniques for multi-
player games. We test the performance of the minimax-based search tech-
niques maxn, paranoid search and Best-Reply Search. Furthermore, we
investigate how the tree structure of each of the minimax-based tech-
niques can be applied in MCTS. The test domain consists of four different
multi-player games: Chinese Checkers, Focus, Rolit and Blokus. Based
on the experimental results, we may conclude that Best-Reply Search
is generally the best minimax-based search technique. Monte-Carlo Tree
Search performs best with the maxn tree structure.

1 Introduction

Multi-player games are games that can be played by more than 2 players. They
have several properties that makes them an interesting challenge for computers.
First, contrary to 2-player games, pruning in search trees is considerably more
difficult. Second, the opponents’ moves are more unpredictable, as coalitions may
occur.

Over the past years, several tree search techniques have been developed for
playing multi-player games. In 1986, Luckhardt and Irani proposed a modifica-
tion of the minimax-search technique to play multi-player games, called maxn

[10]. In 2000, Sturtevant and Korf proposed the paranoid search algorithm [17].
With this technique they showed, in the trick-based card game Sergeant Major,
that much more pruning is possible than in maxn. However, due to the, often
incorrect, assumption that all opponents cooperate against the root player, a
paranoid player often plays too defensively. Trying to overcome this shortcom-
ing of the paranoid algorithm, several techniques have been developed to make
the algorithm less paranoid. In 2005, Lorenz and Tscheuschner proposed the
coalition-mixer algorithm for 4-player chess [9] and in 2009, Zuckerman et al.
proposed the MP-Mix algorithm [19]. This algorithm uses an evaluation func-
tion to determine which search technique should be used. Another algorithm
was proposed by Schadd and Winands in 2011, namely Best-Reply Search (BRS)
[14]. This algorithm performs significantly better than paranoid search in various
multi-player games.

Over the past years, Monte-Carlo Tree Search (MCTS) [6, 8] has become a
popular technique for playing multi-player games as well. MCTS is a best-first
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search technique that, instead of an evaluation function, uses simulations to guide
the search. This algorithm is able to compute mixed equilibria in multi-player
games [16], contrary to maxn, paranoid and BRS. MCTS is used in a variety of
multi-player games, such as Focus [11, 12], Chinese Checkers [11, 12, 16], Hearts
[16], Spades [16], and multi-player Go [4].

In this paper we compare several search techniques that have been developed
over the years. We test the performance of maxn, paranoid and BRS in four
different multi-player games. Furthermore, we investigate how the tree structure
of these techniques can be applied in the MCTS framework.

The paper is structured as follows. In Section 2 we give an overview of the
search techniques used in this paper. Next, in Section 3 we explain the rules
and applied domain knowledge of the four games. In Section 4 we describe the
experiments and the results. Finally, in Section 5 we provide the conclusions and
an outline of future research.

2 Search Techniques

In this section we discuss the search techniques investigated in this paper. In
Subsection 2.1 we explain the three minimax-based search techniques: maxn,
paranoid and BRS. In Subsection 2.2 we briefly discuss MCTS and explain how
the tree structure of each of the minimax-based techniques can be applied in
MCTS.

2.1 Minimax-based search techniques

The traditional algorithm for playing multi-player games is maxn [10]. This tech-
nique is an extension of minimax search to multi-player games. In the leaf nodes
of the search tree, each player is awarded a payoff. Each player chooses the child
with the highest payoff. A disadvantage of maxn is that only a limited amount of
pruning is possible. Shallow pruning [17] is the easiest and safest way to achieve
some cut-offs.

Paranoid search [17] assumes that all opponents have formed a coalition
against the root player. Using this assumption, the game can be reduced to a
2-player game where the root player is represented in the tree by MAX nodes
and the opponents by MIN nodes. The advantage of this assumption is that
αβ-like pruning [7] is possible in the search tree, allowing deeper searches in the
same amount of time. The disadvantage is that, because of the often incorrect
paranoid assumption, the player may become too defensive.

In 2011, Schadd and Winands proposed a new algorithm for playing multi-
player games, namely Best Reply Search (BRS) [14]. This technique is similar
to paranoid search, but instead of allowing all opponents to make a move, only
one opponent is allowed to do so. The advantage of this technique is that more
MAX nodes are investigated. The disadvantage is that, if passing is not allowed,
illegal positions or positions that are unreachable in the actual game are taken
into account.
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Fig. 1. Monte-Carlo Tree Search scheme (Slightly adapted from [5]).

2.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [6, 8] is a search technique that gradually
builds up a search tree, guided by Monte-Carlo simulations. In contrast to classic
search techniques such as αβ-search, it does not require a heuristic evaluation
function.

The MCTS algorithm consists of four phases [5]: selection, expansion, playout
and backpropagation (see Fig. 1). By repeating these four phases iteratively,
the search tree is constructed gradually. The tree is traversed using the Upper
Confidence bounds applied to Trees (UCT) [8] selection strategy. In our program,
UCT has been enhanced with Progressive History [11]. The child i with the
highest score vi in Formula 1 is selected.

vi = s̄i + C

√
ln(np)

ni
+W

s̄a
ni(1− s̄i) + 1

(1)

In this formula, s̄i denotes the win rate of child i, where s̄i ∈ [0, 1]. The variables
ni and np denote the total number of times that child i and parent p have been
visited, respectively. C is a constant that determines the exploration factor of
UCT. In the Progressive History part, s̄a represents the win rate of move a. W
is a constant that determines the influence of Progressive History.

The basic MCTS algorithm uses a tree structure which is analogous to the
maxn search tree. It is possible to apply the paranoid and BRS tree structures
to MCTS as well. The idea of using a paranoid tree structure in MCTS was
presented by Cazenave [4], however he did not implement or test it. When using
paranoid search or BRS in MCTS, the opponents use a different UCT formula.
Instead of considering their own win rate, they try to minimize the win rate of
the root player. In the MIN nodes of the tree, the following modified version of
Formula 1 is used.

vi = (1− s̄i) + C

√
ln(np)

ni
+W

(1− s̄a)

nis̄i + 1
(2)
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Fig. 2. A Chinese Checkers board.

3 Test Domains

The performance of the search techniques is tested in four different games: Chi-
nese Checkers, Focus, Rolit and Blokus. In this section we briefly discuss the
rules and the properties of these games in Subsections 3.2 – 3.4. In Subsection
3.5 we explain the move and board evaluators for the games.

3.1 Chinese Checkers

Chinese Checkers is a board game that can be played by 2 to 6 players. This
game was invented in 1893 and has since then been released by various publishers
under different names. Chinese Checkers is played on a star-shaped board. The
most commonly used board contains 121 fields, where each player starts with 10
checkers. We decided to play on a slightly smaller board [16] (see Fig. 2). In this
version, each player plays with 6 checkers. The advantage of a smaller board is
that games take a shorter amount of time to complete, which means that more
Monte-Carlo simulations can be performed and more experiments can be run.
Also, it allows the use of a stronger evaluation function.

The goal of each player is to move all his pieces to his home base at the other
side of the board. Pieces may move to one of the adjacent fields or they may
jump over another piece to an empty field. It is also allowed to make multiple
jumps with one piece in one turn, making it possible to create a setup that
allows pieces to jump over a large distance. The first player who manages to fill
his home base wins the game.

3.2 Focus

Focus is an abstract multi-player strategy board game, which was invented in
1963 by Sid Sackson [13]. This game has also been released under the name
Domination. Focus is played on an 8× 8 board where in each corner three fields
are removed. It can be played by 2, 3 or 4 players. Each player starts with a
number of pieces on the board. In Fig. 3, the initial board positions for the 2-,
3- and 4-player variants are given.

In Focus, pieces can be stacked on top of each other. A stack may contain up
to 5 pieces. Each turn a player may move a stack orthogonally as many fields as
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(a) 2 players (b) 3 players (c) 4 players

Fig. 3. Set-ups for Focus.

the stack is tall. A player may only move a stack of pieces if a piece of his color
is on top of the stack. It is also allowed to split stacks in two smaller stacks. If
a player decides to do so, then he only moves the upper stack as many fields as
the number of pieces that are being moved.

If a stack lands on top of another stack, the stacks are merged. If the merged
stack has a size of n > 5, then the bottom n−5 pieces are captured by the player,
such that there are 5 pieces left. If a player captures one of his own pieces, he
may later place one piece back on the board, instead of moving a stack. This
piece may be placed either on an empty field or on top of an existing stack.

There exist two variations of the game, each with a different winning condi-
tion. In the standard version of the game, a player has won if all other players
cannot make a legal move. However, such games can take a long time to finish.
Therefore, we chose to use the shortened version of the game. In this version,
a player has won if he has either captured certain number of pieces in total, or
a number of pieces from each player. In the 2-player variant, a player wins if
he has captured at least 6 pieces from the opponent. In the 3-player variant, a
player has won if he has captured at least 3 pieces from both opponents or at
least 10 pieces in total. In the 4-player variant, the goal is to capture at least 2
pieces from each opponent or capture at least 10 pieces in total.

3.3 Rolit

Rolit is a multi-player variant of the 2-player game Othello. This game was
introduced in 1975. It is similar to a game invented around 1880, called Reversi.
This game was invented by either Lewis Waterman or John W. Mollett. At the
end of the 19th century it gained much popularity in England and in 1898,
games publisher Ravensburger started producing the game as one of its first
titles. Othello is played by 2 players, Black and White, on an 8×8 board. On
this board, so-called discs are placed. Discs have two different sides: a black one
and a white one. If a disc on the board has its black side faced up, it is owned by
player Black and if it has its white side up, it belongs to player White. The game
starts with four discs on the board, as shown in Fig. 4(a). Black always starts
the game, and the players take turns alternately. When it is a player’s turn he
has to place a disc on the board in such a way that he captures at least one of
the opponents discs. A disc is captured when it lies on a straight line between
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(a)

R

Y

G

B Y

(b)

Fig. 4. Set-ups for Othello (a) and Rolit (b).

the placed disc and another disc of the player making the move. Such a straight
line may not be interrupted by an empty square or a disc of the player making
the move. All captured discs are flipped and the turn goes to the other player. If
a player cannot make a legal move, he has to pass. If both players have to pass,
the game is over. The player who owns the most discs, wins the game.

For Rolit, the rules are slightly different. Rolit can be played by up to 4
players, called Red, Yellow, Green and Blue. The initial board position is shown
in Fig. 4(b). The largest difference is that if a player cannot capture any pieces,
which will occur during the first few rounds of a 4-player game, he may put a
piece orthogonally or diagonally adjacent to any of the pieces already on the
board. Using this rule, passing does not occur and the game is finished when
the entire board is filled. The scoring is similar to Othello; the player owning
the most pieces wins. We remark that, contrary to Focus and Chinese Checkers,
Rolit can end in a draw between several players.

3.4 Blokus

Blokus is a 4-player tile placement game developed by Bernard Tavitian in 2000.
The board consists of 20×20 squares. Each player receives 21 pieces varying in
size from one to five squares in all possible shapes. Alternately, the players place
one of their pieces on the board. The pieces may be rotated in any way. The
difficulty in this game is that any square may only be occupied by one piece
and two pieces of the same player may not be orthogonally adjacent. However,
they have to be adjacent diagonally to any of the player’s pieces already on the
board. The first pieces of the players should all be placed in one of the corners.

The game finishes when none of the players can place a piece on the board
anymore. The player who has the largest number of squares on the board occu-
pied is the winner. Note that, similar to Rolit, draws can occur. However, there
is one tie breaker in this game. If more than one player manages to place all
pieces on the board, the winner is the player who placed the piece of size 1 on
the board during the last round.

3.5 Domain Knowledge

For the minimax-based techniques, a board evaluator is necessary to evaluate the
leaf nodes of the search tree. This evaluator computes a heuristic value for each
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Fig. 5. A finished game of Blokus.

player, based on the current board position. A move evaluator is used for static
move ordering. The evaluator assigns a value to a move, without considering the
board position. The move evaluator is also used in the MCTS-framework, for
determining the moves in the ε-greedy playouts [18].

For Chinese Checkers, the board evaluator uses a lookup table [16]. This
table stores, for each possible configuration of pieces, the minimum number of
moves a player should perform to get all pieces in the home base, assuming that
there are no opponents’ pieces on the board. For any player, the value of the
board equals 28−m, where m is the value stored in the table which corresponds
to the piece configuration of the player. We remark that 28 is the highest value
stored in the table. The move evaluator of Chinese Checkers uses the function
ds−dt, where ds is the distance of the source location of the piece that is moved
to the home base, and dt the distance of the target location to the home base.

For Focus, the board evaluator is based on the minimum number of pieces
each player needs to capture to win the game, r, and the number of stacks each
player controls, c. For each player, the score is calculated using the formula
600− 100r + c. The move evaluator applies the function 10(n+ t) + s, where n
is the number of pieces moved, t is the number of pieces on the target location,
and s is the number of stacks the player gained. The value of s can be 1, 0, or
–1.

For Rolit, the board evaluator is similar to the pattern based evaluation
function used by Buro in his Othello program Logistello [3]. Over 90,000
games from the WTHOR database1 were analyzed on 12 different patterns for
15 stages (4 moves per stage) in the game. For each pattern, the average score
at the end of the game is stored. To use this pattern database in Rolit, we use
the assumption that all of the opponent’s pieces have the same color [14]. This
reduces the accuracy, but it is unfeasible to create a pattern database for four
colors. The move evaluator depends on the location of the square where the piece
is placed. The values of the squares are displayed in Fig. 6.

1 http://www.ffothello.org/info/base.php
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Fig. 6. The values of the squares in Rolit.

For Blokus, the board evaluator counts the number of squares that each
player has occupied. The move evaluator depends on the size of the piece that
is played on the board. Large pieces are preferred over small ones.

For all board and move evaluators, a small random factor is added to the
score. This factor is only to differentiate between board positions or moves that
have the same value. This random factor is added to prevent the players from
being deterministic.

4 Experiments

In this section, we describe the experiments performed. The program is written in
Java [11]. For Formula 1, the constant C is set to 0.2 andW is set to 5. All MCTS-
based players use ε-greedy playouts with ε = 0.05. These values were achieved by
systematic testing. All minimax-based players use a Deep transposition table [2]
and static move ordering. Furthermore, the paranoid and BRS players use killer
moves [1] and the history heuristic [15]. Finally, for the maxn player, shallow
pruning is applied [17], while the paranoid and BRS players use αβ pruning [7].

The experiments were run on a cluster consisting of AMD64 Opteron 2.4
GHz processors. For the games, there may be an advantage regarding the order
of play and the number of different players. Games where not all player types
are playing are not interesting, so these are not considered. Table 1 shows in
how many ways the player types can be assigned. Each assignment is played
multiple times until at least 1,000 games are played and each assignment was
played equally often.

Table 1. The number of ways 2 or 3 different player types can be assigned. Between
brackets is the number of games that are played per match.

Number of players 2 player types 3 player types

3 6 (1050) 6 (1050)
4 14 (1050) 36 (1044)
6 62 (1054) 540 (1080)
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Table 2. Results of maxn vs. paranoid vs. BRS

Maxn Paranoid BRS
Game Players Time Win rate Depth Win rate Depth Win rate Depth

(ms) (%) (ply) (%) (ply) (%) (ply)
Chinese Checkers 3 250 0.6±0.5 3.22 32.7±2.8 4.38 66.8±2.8 4.87
Chinese Checkers 3 1000 0.1±0.2 3.45 24.9±2.6 5.11 75.0±2.6 5.40
Chinese Checkers 3 5000 0.0±0.0 4.23 25.9±2.7 5.64 74.1±2.7 6.61
Chinese Checkers 4 250 4.5±1.3 3.09 7.2±1.6 3.64 88.3±1.9 4.39
Chinese Checkers 4 1000 3.5±1.1 3.66 21.2±2.5 4.83 75.3±2.6 5.01
Chinese Checkers 4 5000 3.9±1.1 4.23 19.3±2.4 5.38 76.8±2.6 5.73
Chinese Checkers 6 250 16.4±2.2 3.07 16.4±2.2 3.61 67.2±2.8 3.77
Chinese Checkers 6 1000 14.3±2.1 3.84 10.4±1.8 4.07 75.2±2.6 4.70
Chinese Checkers 6 5000 24.2±2.6 4.15 11.2±1.9 4.59 64.7±2.9 5.10

Focus 3 250 4.8±1.3 3.43 41.8±3.0 4.13 53.4±3.0 4.16
Focus 3 1000 4.0±1.2 3.87 34.0±2.9 4.84 62.0±2.9 4.96
Focus 3 5000 3.6±1.1 4.60 31.0±2.8 5.18 65.4±2.9 5.75
Focus 4 250 8.6±1.7 3.29 17.7±2.3 3.37 73.7±2.7 3.99
Focus 4 1000 6.0±1.4 3.69 22.7±2.5 4.48 71.3±2.7 4.82
Focus 4 5000 7.3±1.6 4.32 28.9±2.7 5.15 63.8±2.9 5.20
Rolit 3 250 0.8±0.5 4.48 41.4±3.0 6.31 57.9±3.0 6.15
Rolit 3 1000 11.0±1.9 5.26 28.3±2.7 7.74 60.7±3.0 7.39
Rolit 3 5000 0.3±0.3 6.01 66.5±2.9 8.97 33.2±2.8 8.61
Rolit 4 250 16.8±2.3 4.52 46.6±3.0 5.88 36.7±2.9 5.45
Rolit 4 1000 13.4±2.1 5.27 40.4±3.0 6.84 46.2±3.0 6.60
Rolit 4 5000 11.1±1.9 6.01 40.7±3.0 7.87 48.2±3.0 7.68
Blokus 4 250 22.2±2.5 1.89 29.0±2.8 2.37 48.8±3.0 2.46
Blokus 4 1000 19.6±2.4 2.27 25.8±2.7 2.97 54.7±3.0 3.36
Blokus 4 5000 11.8±2.0 2.76 20.8±2.5 3.38 67.3±2.9 4.03

4.1 Minimax-based techniques

In the first set of experiments we match the three basic minimax-based players
against each other: maxn, paranoid and BRS. The win rates and the average
search depths of the players in the different games are displayed in Table 2.

The results show that maxn is by far the weakest algorithm. In every game
with any number of players and time setting, maxn has a significantly lower win
rate that both paranoid and BRS. The exception is 6-player Chinese Checkers.
Because paranoid also has barely any pruning, maxn plays at least as strong
as paranoid. Maxn also plays relatively well in Blokus, where all players have
difficulty reaching a decent search depth. Only the BRS player can reach a
second level of MAX nodes. In most games, BRS is the best search technique.
Overall, the BRS players can search slightly deeper than the paranoid players.
The most notable exception is Rolit. In this game, the paranoid players can
generally search slightly deeper. Also, with some settings paranoid outperforms
BRS. This is comparable to the results achieved by Schadd and Winands [14].

4.2 MCTS variants

In the second set of experiments, we test the performance of three different
MCTS players. Each player uses a different tree structure: maxn (MCTS-maxn),
paranoid (MCTS-paranoid) or BRS (MCTS-BRS). The win rates and the median
number of playouts per move are summarized in Table 3.

The results reveal that MCTS clearly performs best using the standard maxn

tree structure. Only in Blokus, MCTS-maxn is not significantly stronger than
MCTS-paranoid. Paranoid and BRS perform well in the minimax framework
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10 J.A.M. Nijssen and M.H.M. Winands

Table 3. Results of MCTS-maxn vs. MCTS-paranoid vs. MCTS-BRS

MCTS-maxn MCTS-paranoid MCTS-BRS
Game Players Time Win rate Playouts Win rate Playouts Win rate Playouts

(ms) (%) (median) (%) (median) (%) (median)
Chinese Checkers 3 250 40.5±3.0 1,166 35.5±2.9 1,168 24.0±2.6 1,163
Chinese Checkers 3 1000 43.7±3.0 5,004 27.5±2.7 5,008 28.8±2.7 4,968
Chinese Checkers 3 5000 54.2±3.0 26,058 19.0±2.4 25,951 26.8±2.7 25,786
Chinese Checkers 4 250 42.5±3.0 898 33.0±2.9 900 24.4±2.6 891
Chinese Checkers 4 1000 49.1±3.0 4,042 29.8±2.8 4,022 21.1±2.5 3,962
Chinese Checkers 4 5000 62.1±2.9 21,680 17.9±2.3 21,531 20.1±2.4 20,893
Chinese Checkers 6 250 45.0±3.0 711 30.2±2.7 723 24.8±2.6 713
Chinese Checkers 6 1000 51.4±3.0 3,140 25.8±2.6 3,212 22.8±2.5 3,167
Chinese Checkers 6 5000 63.6±2.9 17,155 18.9±2.3 18,113 17.5±2.3 16,780

Focus 3 250 38.1±2.9 3,370 33.0±2.8 3,389 29.9±2.8 3,473
Focus 3 1000 37.4±2.9 12,745 29.0±2.7 13,058 33.5±2.9 12,837
Focus 3 5000 38.4±2.9 57,450 27.9±2.7 60,144 33.7±2.9 57,459
Focus 4 250 40.1±3.0 2,212 37.2±2.9 2,182 22.7±2.5 2,144
Focus 4 1000 39.1±3.0 9,189 33.0±2.9 9,220 27.9±2.7 8,881
Focus 4 5000 41.6±3.0 50,260 28.3±2.7 51,442 30.1±2.8 48,206
Rolit 3 250 44.3±3.0 2,011 31.6±2.8 2,024 24.1±2.6 2,017
Rolit 3 1000 55.6±3.0 8,333 26.0±2.7 8,356 18.4±2.3 8,320
Rolit 3 5000 67.3±2.8 41,553 16.6±2.3 41,459 16.1±2.2 42,049
Rolit 4 250 41.6±3.0 2,111 33.8±2.9 2,109 24.6±2.6 2,078
Rolit 4 1000 44.9±3.0 8,510 30.2±2.8 8,483 24.9±2.6 8,331
Rolit 4 5000 56.6±3.0 42,999 23.1±2.6 42,489 20.3±2.4 41,095
Blokus 4 250 34.9±2.9 184 36.2±2.9 185 28.9±2.7 177
Blokus 4 1000 33.3±2.9 776 34.7±2.9 780 32.1±2.8 749
Blokus 4 5000 33.0±2.9 4,170 34.5±2.9 4,212 32.6±2.8 4,061

because they increase the amount of pruning. Because αβ-pruning does not
occur in MCTS, this advantage is nonexistent in the MCTS framework. It also
becomes clear that MCTS-paranoid significantly outperforms MCTS-BRS. A
possible explanation for this result is that illegal positions are reached in the
tree. Performing a playout from these illegal or unreachable positions apparently
leads to unreliable results.

4.3 BRS versus MCTS-maxn

Based on the previous sets of experiments, we can conclude that BRS is the
strongest minimax-based technique and that MCTS-maxn is the strongest MCTS
technique. To determine which technique performs best in multi-player games,
we let these two players play against each other in the final set of experiments.
The results are displayed in Table 4.

From the results we can conclude that there is no clear winner. BRS sig-
nificantly outperforms MCTS-maxn in Focus, while MCTS-maxn is stronger in
Blokus and Rolit. In Chinese Checkers, the winner depends on the time settings.
With a higher time setting, MCTS-maxn becomes stronger than BRS. In all
games, MCTS-maxn performs relatively better with higher time settings.

5 Conclusions

Among the three minimax-based search techniques we tested, BRS turns out to
be the strongest one. Overall, it reaches the highest search depth, and because of
its tree structure more MAX nodes are investigated than in paranoid and maxn.
BRS significantly outperforms maxn and paranoid in Chinese Checkers, Focus
and Blokus. Only in Rolit, paranoid outperforms BRS with some settings.
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Table 4. Results of MCTS-maxn against BRS

MCTS-maxn BRS
Game Players Time Win rate Playouts Win rate Depth

(ms) (%) (median) (%) (ply)
Chinese Checkers 3 250 21.7±2.5 1,145 78.3±2.5 4.75
Chinese Checkers 3 1000 42.1±3.0 5,206 57.9±3.0 5.34
Chinese Checkers 3 5000 60.4±3.0 27,639 39.6±3.0 6.34
Chinese Checkers 4 250 26.1±2.7 874 73.9±2.7 4.22
Chinese Checkers 4 1000 55.2±3.0 4,007 44.8±3.0 4.93
Chinese Checkers 4 5000 71.5±2.7 21,603 28.5±2.7 5.52
Chinese Checkers 6 250 35.4±2.9 703 64.6±2.9 3.53
Chinese Checkers 6 1000 66.9±2.8 3,227 33.1±2.8 4.40
Chinese Checkers 6 5000 90.1±1.8 16,603 9.9±1.8 4.71

Focus 3 250 9.9±1.8 1,481 90.1±1.8 4.19
Focus 3 1000 19.4±2.4 7,449 80.6±2.4 4.88
Focus 3 5000 28.3±2.7 42,326 71.7±2.7 5.59
Focus 4 250 23.2±2.6 1,546 76.8±2.6 3.88
Focus 4 1000 29.1±2.8 6,883 70.9±2.8 4.69
Focus 4 5000 41.5±3.0 39,786 58.5±3.0 5.06
Rolit 3 250 83.6±2.2 1,954 16.4±2.2 6.19
Rolit 3 1000 93.4±1.5 8,103 6.6±1.5 7.44
Rolit 3 5000 93.6±1.5 41,397 6.4±1.5 8.60
Rolit 4 250 78.7±2.5 1,946 21.3±2.5 5.54
Rolit 4 1000 85.8±2.1 8,162 14.2±2.1 6.67
Rolit 4 5000 88.6±1.9 42,860 11.4±1.9 7.60
Blokus 4 250 47.8±3.0 165 52.2±3.0 2.46
Blokus 4 1000 68.8±2.8 818 31.2±2.8 3.25
Blokus 4 5000 83.7±2.2 4,412 16.3±2.2 3.83

In the MCTS framework, the maxn tree structure appears to perform best.
The advantages of paranoid and BRS in the minimax framework do not apply
in MCTS, because αβ-pruning is not applicable in MCTS. MCTS-paranoid out-
performs MCTS-BRS and a possible reason for this is that MCTS-BRS performs
playouts starting from an illegal or unreachable board position. This may lead
to inaccurate results.

Finally, in a comparison between MCTS-maxn and BRS, it turns out that
there is no clear winner. In Focus, BRS is considerably stronger, while in Rolit
and Blokus MCTS-maxn significantly outperforms BRS. In Chinese Checkers,
the winner depends on the thinking time. Overall, with higher time settings, the
MCTS-based player performs relatively better.

In this research we investigated three basic tree search algorithms, i.e. maxn,
paranoid and BRS. We did not consider algorithms derived from these tech-
niques, such as the Coalition-Mixer [9] or MP-Mix [19]. They use a combination
of maxn and (variations of) paranoid search. They also have numerous parame-
ters that need to be tuned. Tuning and testing such algorithms in multi-player
games is a direction of future research. Another possible future research direction
is the application of paranoid search and BRS in the playout phase of MCTS.
Cazenave [4] used paranoid playouts in multi-player Go, improving the perfor-
mance of an MCTS player significantly.
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Abstract. Computer Scrabble has been studied mainly by using simulation 
[Sheppard, 2002b; Katz-Brown et al., 2006]. In [Ramírez et al., 2009] an 
alternative method which uses a heuristic function that involves probability 
calculations to evaluate moves is presented. This paper presents improvements 
of this heuristic function, tackles the problem of finding the best move for every 
initial 7-letter rack and reports results and future work suggested by this study. 

Keywords: Computer Scrabble, Probabilistic Heuristic, Leave, Fishing Moves 

1   Introduction 

Leading Computer Scrabble until now rely mainly on simulation to achieve quality 
play [Sheppard, 2002b;Katz-Brown et al., 2006]. The program Maven [Sheppard, 
2002a] developed by Brian Sheppard is one of the references for this paradigm and its 
excellent results against top-level players are the best demonstration of the 
appropriateness of this approach. Jason Katz-Brown and John O'Laughlin [Katz-
Brown et al., 2006] implemented  Quackle, a program distributed under the GNU 
license, which also exploits the simulation technique. Recently Opponent modeling 
was implemented using  Bayes’  theorem to infer the opponent’s tiles based on their 
last move [Richards and Amir,2007]. 

A difference between Heuri, a Scrabble engine presented in  [Ramírez et al., 2009] 
and other programs is that the evaluation of a leave (rack residue) is calculated as a 
sum of products of probabilities times expected rewards (see 2.2) rather than 
calculating values of individual tiles, summing them, and finally adjusting for synergy 
and other factors ( [Sheppard, 2002b], Chapter 5 ).   

Heuri uses probability techniques to select the “best” move, which is frequently a 
fish. A fish is a move which seeks a bingo ( in which all 7 tiles of the rack are played 
thereby obtaining a 50-point bonus ). 

This paper gives a more ambitious evaluation function which measures board 
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openness and considers more 8-letter bingos. These two factors significantly improve 
the evaluation function in [Ramírez et al., 2009].  

In section 2 the evaluation functions Heuri_2 and Heuri_4 are given. In section 3 a 
formal definition of fish is proposed and also the problem of finding a presumably 
optimal initial move is considered. Section 4 gives the results of a 1000 game match 
between Heuri_4 and Heuri_2. Finally section 5 contains conclusions and suggestions 
for future work. 

2   Probabilistic Heuristic Functions  

2.1 Previous Heuristic 

An important part of a program that plays Scrabble is the decision of what to leave on 
the rack. In a move t tiles are played or exchanged and n-t tiles make up the leave r 
(excluding the endgame, n = 7).  

In [Ramírez et al., 2009] it was proposed to give a numerical evaluation of all 
potential moves as follows: 

The following heuristic function is used to evaluate all potential moves: 
 

dejv −+=                                 (1) 

 
where  j  is the number of points made by the move, in which  t  tiles are played ( it 

is assumed here that the bag has at least t tiles;  j=0  if  t  tiles are changed rather than 
played on the board ); e is the expected value of a bingo, given a leave r, if  t  tiles are 
drawn randomly from the augmented bag, that is, the union of the bag and the 
opponent’s rack; d is a nonnegative number which is zero if the move is not weak 
from a defensive point of view. From all potential moves one with maximal v is 
chosen.  

To explain our estimate of  e define a septet to be a lexicographically ordered 
string of seven characters of {A,B,…,Z,#} (where # is a blank) from which a 7-letter 
word can be constructed; for example {AAAAÑRR} (yielding ARAÑARA) and 
{ACEINR#} (yielding RECIBAN) are septets but {AEEQRY#} and {ADEILOS} are 
not. 

There are 130065 septets. For the calculation of e the following formula was used 
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  Let us call this heuristic Heuri_2 
 

Heuri_2 is the heuristic used in the program Heuri presented in [Ramírez et al., 2009] 
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Here  pi is the probability (which might be zero) of obtaining the i-th septet, given 
a leave r consisting of  7 – t  tiles, if t tiles are drawn randomly from the augmented 
bag; σi is the sum of the values of the characters of the i-th septet. The existence of 
premium squares, hook words, bingos of length greater than 7 and experimentation 
have led us to take presently 2.5 as the value of the constant k. 

It is better to explain the calculation of  pi using an example: 
Suppose that, in the beginning of the game, the first player has the rack 

{AAAÑHQV} and puts aside {HQV} to exchange them, keeping the leave {AAAÑ}.  
What is the probability pi of obtaining the i-th septet {AAAAÑRR} (from which 

one can form the 7-letter bingo ARAÑARA) if one has the leave {AAAÑ}, the 
augmented bag is " total bag - {AAAÑHQV}" and one draws 3 tiles from it? 

Answer: If {AAAÑ} were not contained in {AAAAÑRR} pi would be 0. However 
{AAAÑ} is contained in {AAAAÑRR} so we consider the difference set 
{AAAAÑRR}-{AAAÑ}={ARR}={AR2} and the augmented bag: 

 
{AAAAAAAAABBCCCC…RRRRR…XYZ##}={A9 B2C4 … R5 …XYZ#2} 
 

and one then computes pi = C(9,1)*C(5,2)/C(93,3)  (93 is the number of  tiles of the 
augmented bag  and the 3 in C(93,3)  is  the number of tiles that are taken from the 
bag ) where C(m, n) is the binomial coefficient: 

 
    C(m,n)= m(m-1)(m-2)…(m-n+1)/n! 
 
The numerator has n factors and C(m,n) is the number of n-element subsets of a set 

consisting of m elements. Notice that the denominator C(93,3) does not depend on the 
septet. 

2.2 Improved Heuristics 

Although the formula (2) is a good estimate of e when the board is open, it ignores 
the fact that one may have a septet in the rack which cannot be placed as a bingo on 
the board. This often happens when the board is closed. To account for this, one can 
write: 
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 .           (3) 

 
where δi , which depends on the board, is 1 if the i-th septet can be placed as a 

bingo on the board and 0 otherwise. The calculation of δi , for all i, which is 
independent of the rack, is a task that is feasible because Heuri has a fast move 
generator  based on anagrams. 

A collection of 1000 Scrabble games was gathered  with the purpose of classifying 
the bingos made in those games into 3 categories according to its length : 1) seven-
letter bingos, 2)  eight-letter bingos and 3) X-letter bingos, X > 8 .  The results gave 
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6073 bingos divided as follows:  2003 seven-letter bingos, 3972 eight-letter bingos 
and 98 bingos with more than 8 letters. This reinforced a previous thought:  the 
heuristic function should take into account the probability of making 8-letter words 
besides the 7-letter words. 

Let us define an octet as a lexicographically ordered string of eight characters of 
{A,B,…,Z,#} (where # is a blank) from which an 8-letter word can be constructed. 
A reduced octet is a lexicographically ordered string of seven characters of 
{A,B,…,Z,#}  which forms an octet when adding a certain new character. 
Let a pure septet be a septet which is not a reduced octet, in other words when 
added any character to the pure septet it does not become an octet ( there is no valid 
8-letter word ). 
There are 130065 septets, 5712 pure septets and 284805 reduced octets. Notice that 

the set of septets contain all pure septets and 124353 reduced octets.  
One desires to give an estimate of the probability of obtaining a 7-letter or 8-letter 

bingo given a leave and a board. The pure septets and the reduced octets give a total 
of 290517. 

Then the calculation of e is given by the formula 
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 .         (4) 

       Let us call this heuristic Heuri_4 
 
where  pi , σi , k and δi were explained in (2) and (3). 

3 Fishing 

3.1 Fishing Moves 

Intuitively a fish is a move which seeks a bingo in the next turn. More precisely,  
using Heuri’s probabilistic heuristic,  v = j + e – d , let us define a fish as a move 
where e > j (its expected value of a bingo is greater than the points made by the 
move). The most common example of a fish is an exchange with e > 0. Almost all 
exchanges are fishing moves; however in the pre-endgame (when there are few tiles 
in the bag) we might change a Q tile to avoid getting stuck with it at the end; it is 
likely that e = 0 since no more bingos can be placed on the board, or it is impossible 
to construct a bingo with your rack leave and the tiles left inside the bag. 

The following is an example of a possible line of play using Heuri that shows and 
involves fishing moves: 
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Figure 1. Example of fishing moves using Heuri’s engine 
 

The first player has played ( H4 ) jades 42pts. Then it is Heuri’s turn. Heuri has  
the following rack: [ r h t u u q e ]  Using  (1) v = j + e – d  with d = 0,  and using (4) 
to calculate e  Heuri’s engine gives us the following fishing moves: 

Table 1.  Examples of fishing moves for the rack:  [ r h t u u q e ] . See Figure 1 above 

Coordinate and word or 

Exchange and leave v j e d 
7G  he  43.39 9 34.39 0 

7H  eh 43.39 9 34.39 0 

 I4  uh  39.85 19 20.85 0 

 5G  ah  39.39 5 34.39 0 

 5H  ah 39.39 5 34.39 0 

 Exch.  h, Leave: ( e q r t u u ) 34.39 0 34.39 0 

  5E  huta 33.21 14 19.21 0 
     

 
Therefore Heuri plays 7G he for 9 points and takes an “a” out of  the bag. The first 

player exchanged letters and Heuri with the rack [ r a t u u q e ] plays 8A  turqueas 
106 points ! See Figure 1 above.  

 

Fishing plays are important because they seek high scoring moves in next turns. 
Brian Sheppard the developer of  Maven writes the following in [Sheppard,2002b]. 

“Maven’s lack of a move generator for fishing may be its biggest weakness.  All of 
the moves that Maven overlooked in its match against Adam Logan were fish.”  

Brian Sheppard [2002b] also mentions that there are less than 4 million distinct 
racks of 7 or fewer tiles, and proposes to learn a value for every single one. Quackle 
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follows this advice using simulations to learn these values for different languages and 
lexicons. They are known as the superleaves and they are precalculated before the 
engine plays. Quackle can play without them but the quality of play drops 
considerably.  

3.2 The best Initial Move 

As in Chess it might be possible to build openings for Scrabble. They could consist 
of the first couple of moves. For the moment let us study only the very first move. In 
2002 Steve Gordon proposed to build a database of all possible opening racks 
together with their recommended moves under simulation.  There are 3,199,724 
seven-letter racks in the English version using the full bag [59]. 

As mentioned in [Sheppard,2002b] the proposal may be impractical since it would 
take too much CPU time to complete the simulations of the 3,199,724 racks. Instead 
he suggests that a simple evaluator should be able to improve upon the evaluation of 
opening turns. 

To start working  on answering the question: given an initial 7-letter rack, what is 
the best move?, it is convenient to follow two different approaches simultaneously. 
The probabilistic heuristic shown in (4) is used as well as the simulation approach 
with the aid of the Quackle simulator tool.  

The two Scrabble engines Heuri and Quackle examined some random initial 7-
letter racks and proposed a move. Then using the Quackle simulator tool a move, 
which we called “best”, was obtained; comparisons and deductions through 
observations were then made.  

3.3 Results, observations and deductions 

Table 2 shows some Spanish initial rack examples. Let us analyze them next. 
Examples 1,2 and 3 show how good a fisher Heuri is, especially when exchanging 

tiles. This is due to Heuri’s probabilistic heuristic function. Quackle can not find the 
best move because the authors did not precalculate the superleaves for the Spanish 
lexicon. Quackle is using the English superleaves to play in Spanish. Sometimes this 
error can be fixed by the simulation employed by Quackle, but the candidate solution 
must be among the first 21 candidates since, because of  time constraints of the game, 
only 21 moves are simulated. 

Example 4 shows the need for a method to break ties. A possible way to solve this 
problem is to build a defense module that penalizes moves for opening bingo lines 
and hot spots.    

Finally in example 5 where Heuri and Quackle played 8H DETALL for 42 points, 
the best play is an exchange because 8H DETALL opens with an A a possible four 
timer bingo and it keeps a very bad leave [HQLL].  
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Table 2.  Examples of initial moves in spanish 

Rack Heuri Quackle Best 

1. [NAMXQGO] Exch. 4 , leave [MANO] 8D MONGA Exch. 4 , leave [MANO] 

2. [SIABRHD] Exch. 2 , leave [RIBAS] 8D HIDRA Exch. 2 , leave [RIBAS] 

3. [DLAIOLS] Exch. 1 , leave [LAIDOS] 8D DOLIAS Exch. 1 , leave [LAIDOS] 

4. [IVDGORY] 8F, 8G, 8H VOY 8G VOY 8G  VOY 

5. [LL HDTAEQ] 8H  DETALL 8H DETALL Exch. 3 , leave [ DATE] 

 
Heuri recently started playing in English; it is now possible to present the 

following English initial rack examples: 
 

Table 3.  Examples of initial moves in english 

Rack Heuri Quackle Best 

1. [ERTTVVW] Exch. 4, leave [RET] Exch. 4, leave [RET] Exch. 4, leave [RET] 

2. [DDGSTVY] Exch. 5, leave [ST] Exch. 5, leave [ST] Exch. 5, leave [ST] 

3. [IRLTAOE] Exch. 1, leave [LATIRE] Exch. 1, leave [LATIRE] Exch. 1, leave [LATIRE] 

4. [HNOQSTW] 8H SOWTH Exch. 3, leave [NOST] Exch. 3, leave [NOST] 

5. [ADEHORT] (8G, 8H  OH)=(8G, 8H  HO)  8D HORDE 8G  HO, leave [RATED] 
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Quackle is now using superleaves for the corresponding English lexicon. This can 

be observed in examples 1-4 where Quackle gets the best move every time. Heuri 
demonstrates good fishing qualities in English too. In Example 5 it almost gets the 
best move due to good calculation of the bingo probability of the leave [RATED], but 
fails to discover it due to the lack of a defensive adjustment which could break ties 
properly. In example 4 Heuri opens two lucrative bingo lines for the opponent (a four 
timer with a T and a triple timer with an S); besides, it is unlikely Heuri could use one 
of these bingo lines in the next turn because of the bad rack leave [QN].  

4 Experimental  Results 

 
Table 4 shows the results from 1000 games in which Heuri_2 heuristic competed 

against Heuri_4 heuristic. Heuri_4 scored, on average, 31 points per game more than 
Heuri_2 and won 82 more games. The  difference  is  statistically   significant  with   
p < 0.01 ( a 99% confidence interval ). 

 
 

Table 4.  Results for 1000 games between Heuri_2 and Heuri_4 
 
 Heuri_2 Heuri_4 

Wins 459 541 
Mean Score 479 510 
Biggest Win 278 311 
 
 
The significant game winning percentage shown by Heuri_4 strategy and its 31 

points average spread against Heuri_2 indicate a substantial improvement between the 
new Heuri_4 heuristic and the old Heuri_2 heuristic. Another factor, not shown in the 
table, that indicates the superiority of Heuri_4 vs. Heuri_2 is that Heuri_4 averaged 
42.5 points per move while Heuri_2 averaged 39.9 pts.  This 2.6-point  spread is due 
to a better ability of Heuri_4 to find playable bingos.       

5 Conclusions and Future work 

 
Heuri_4, unlike Heuri_2, pays attention to the fact that one may have on the rack a 
bingo which is not playable on the board. Also much more importance is given to 8-
letter bingos. These two characteristics are very important since it is not desirable to 
have a bingo that is not playable; this happens more frequently in Heuri_2 than in 
Heuri_4 due to the δi factor which measures board openness.  As mentioned in section 
2.2, 8-letter bingos are more likely to occur than 7-letter bingos. This also helps  
Heuri_4 perform better than Heuri_2. 
    

Besides gathering several statistics from game collections to discover useful 
Scrabble domain knowledge, we believe that a combination of simulation, probability 
methods and opponent modelling might improve even more Computer Scrabble.  
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One question that comes to mind is: Is it possible to find the best move for any 

given initial rack without using simulation in every single rack? Indeed it seems 
possible to achieve this task, or at least a quite good approximation. A possibility is to 
precalculate dangers of any given board such as bingo lines and hot spots. Then it 
would be possible to calculate a measure of defense for a given move. This could be 
done using special census for many board situations, or by using precalculated 
simulations in a similar fashion as the calculus of the superleaves.  

More difficult is to try to find the best move in any given situation without using 
simulation when actually playing. A similar approach could work, but it would need 
many more board situations which would act as training examples.  

While analyzing games it is possible to seek common situations and try to build a 
defense for them. An important feature one can contemplate is to take into account the 
opponents’ last moves to try to deduce information about the opponents’ rack. In 
other words, it is possible to include opponent modeling in the precalculations of the 
defense and to capture key defensive strategies while analyzing games. 

Finally the probabilistic heuristic (4) can be improved by adjusting the constant 
value k ( currently k =2.5 ). In the opening move a few experiments indicated that 
k=2.7, but still more experiments are needed. Besides it is likely that k is not a 
constant value since it probably changes throughout the game. 
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Abstract. The game description language GDL has been developed as a logic-
based formalism for representing the rules of arbitrary games in general game
playing. A recent language extension called GDL-II allows the description of
nondeterministic games with any number of players who may have incomplete,
asymmetric information. In this paper, we applymodel checkingto address the
problem of verifying that games specified in GDL-II satisfy appropriate tempo-
ral and knowledge conditions. We present a systematic translation of a GDL-II
description to a model checking tool, and show the feasibility by two case studies.

1 Introduction

The general game description language GDL, which has been established as input lan-
guage for general game-playing systems [7, 10], has recently been extended to GDL-
II to incorporate games with nondeterministic actions and where players have incom-
plete/imperfect information [20]. However, not all GDL-II descriptions correspond to
games, let alone meaningful, non-trivial games. [7, 10] list a few properties that are nec-
essary for well-formed GDL games, e.g., it terminates after finite steps and all players
have at least one legal move in non-terminal states. The introduction of incomplete in-
formation to GDL-II also raises new questions, e.g., can playersalways knowtheir legal
moves in non-terminal states orknowtheir goal values in terminal states?

Temporal Logics have been applied to the verification of computer programs, or
more broadly computer systems, initially by A. Pnueli and Z. Manna et al. [14, 11], and
by E. Clarke and E. A. Emerson et al. [4]. The programs are in certain states at each
time instance, and the correctness of the programs can be expressed as temporal spec-
ifications, such as “AG¬deadlock” meaningthe program can never enter a deadlock
state. Epistemic logics, on the other hand, are the formalisms of knowledge and beliefs.
Its application in verification was originally motivated by the need to reason about com-
munication protocols. One is typically interested in what knowledge different parties to
a protocol have before, during and after a run (an execution sequence) of the protocol.
[5] gives a comprehensive study on epistemic logic for multiple interacting agents.

We have previously analysed the epistemic logic behind GDL-II and in particular
shown that the situation at any stage of a game can be characterised by a multi-agent
epistemic (i.e., S5-) model [16]. Yet, this result only provides a static characterisation of
what players know (and don’t know) at a certain stage. This paper extends such analysis
with a temporal dimension, and also provides a practical method for verifying temporal
and epistemic properties using a model checker named MCK [6]. The main idea is
to translate a GDL-II description into the model specification language of MCK in a
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systematic and equivalent way. Checking whether a propertyϕ holds for descriptionG
is then equivalent to checking whetherϕ holds for the translationπ(G). The latter can
be automatically checked in MCK.

The paper is organised as follows. Section 2 introduces GDL-II and MCK. Section 3
gives the main translation and some optimisations that can be applied to the translation.
Experimental results are given for two cases in Section 4. The paper concludes with a
discussion of related work and directions for further research.

2 GDL-II and MCK

GDL-II A complete game description consists of the names of (one or more) players,
a specification of the initial position, the legal moves and how they affect the position,
and the terminating and winning criteria. The emphasis of game description languages
is on high-level, declarative game rules that are easy to understand and maintain. At
the same time, GDL and its successor GDL-II have a precise semantics and are fully
machine-processable. Moreover, background knowledge is not required—a set of rules
is all a player needs to know to be able to play a hitherto unknown game. The description
language GDL-II uses thesekeywords:

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position

legal(?r,?m) ?r can do move?m
does(?r,?m) player?r does move?m
next(?f) ?f holds in the next position
terminal the current position is terminal

goal(?r,?v) goal value for role?r is?v

sees(?r,?p) ?r perceives?p in the next position
random the random player

GDL (without sees andrandom) is suitable for describing finite, synchronous,
and deterministicn-player games with complete information about the game state [10].
The extended game description language GDL-II allows the specification of games with
randomness and imperfect/incomplete information [20]. Valid game descriptions must
satisfy certain syntactic restrictions; for details we have to refer to [10] for space rea-
sons.

The GDL-II rules in Fig. 1 formalise a simple but famous game calledMonty Hall
where a car prize is hidden behind one of three doors and where a candidate is given two
chances to pick a door. The intuition behind the rules is as follows. Line 1 introduces
the players’ names (the game host is modelled byrandom). Lines 3–4 define the four
features that comprise the initial game state. The possible moves are specified by the
rules for legal: in step 1, therandom player must decide where to place the car (line 6)
and, simultaneously, the candidate chooses a door (line 10); in step 2,random opens
a door that is not the one that holds the car nor the chosen one (lines 7–8); finally,
the candidate can either stick to their earlier choice (noop) or switch to the other, yet
unopened door (line 12 and 13, respectively). The candidate’s only percept throughout
the game is to see the door opened by the host (line 15) and where the car is after step 3
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1 role(candidate). role(random).
2

3 init(closed(1)). init(closed(2)). init(closed(3)).
4 init(step(1)).
5

6 legal(random,hide_car(?d)) <= true(step(1)), true(closed(?d)).
7 legal(random,open_door(?d)) <= true(step(2)), true(closed(?d)),
8 not true(car(?d)), not true(chosen(?d)).
9 legal(random,noop) <= true(step(3)).

10 legal(candidate,choose(?d)) <= true(step(1)), true(closed(?d)).
11 legal(candidate,noop) <= true(step(2)).
12 legal(candidate,noop) <= true(step(3)).
13 legal(candidate,switch) <= true(step(3)).
14

15 sees(candidate,?d) <= does(random,open_door(?d)).
16 sees(candidate,?d) <= true(step(3)), true(car(?d)).
17

18 next(car(?d)) <= does(random,hide_car(?d)).
19 next(car(?d)) <= true(car(?d)).
20 next(closed(?d)) <= true(closed(?d)), not does(random,open_door(?d)).
21 next(chosen(?d)) <= does(candidate,choose(?d)).
22 next(chosen(?d)) <= true(chosen(?d)), not does(candidate,switch).
23 next(chosen(?d)) <= does(candidate,switch),
24 true(closed(?d)), not true(chosen(?d)).
25 next(step(2)) <= true(step(1)).
26 next(step(3)) <= true(step(2)).
27 next(step(4)) <= true(step(3)).
28

29 terminal <= true(step(4)).
30

31 goal(candidate,100) <= true(chosen(?d)), true(car(?d)).
32 goal(candidate, 0) <= true(chosen(?d)), not true(car(?d)).
33 goal(random,0).

Fig. 1. A GDL-II description of the Monty Hall game adapted from [21].

(line 16). The remaining rules specify the state update (rules for next), the conditions for
the game to end (rule for terminal), and the payoff for the player depending on whether
they got the door right in the end (rules for goal).

We refer the formal semantics of GDL-II to [16] due to limited spaces. The seman-
tics enables us to derive a game model from a given game description.

MCK In this paper, we will use MCK, for ‘Model Checking Knowledge’, which is a
model checker for temporal and knowledge specifications [6, 12]. The overall setup of
MCK supposes a number of agents acting in an environment. This is modelled by an
interpreted system where agents perform actions according to protocols. Actions and
the environment may be only partially observable at each instant in time. In MCK,
different approaches to the temporal and epistemic interaction and development are
implemented. Knowledge may be based on current observations only, on current ob-
servations and clock value, or on the history of all observations and clock value. The
last corresponds tosynchronous perfect recall. In the temporal dimension, the specifi-
cation formulas may describe the evolution of the system along a single computation,
i.e., using linear time temporal logic, or they may describe the branching structure of
all possible computations, i.e, using branching time or computation tree logic. We give
the basic syntax of Computation Tree Logic of Knowledge (CTLK).
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Definition 1. The language of CTLK (with respect to a set of atomic propositionsΦ),
is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | AXϕ | AFϕ | AGϕ | AϕU ψ | EϕU ψ | Kiϕ

wherep ∈ Φ. Other logic constants and connectives⊤,⊥,∨,→ are defined as usual.

We only explain the semantics informally here (cf. [17] for more details). The for-
mulas of CTLK can be interpreted on states of game models. A game model consists
of a set of agents, a set of possible states (esp., one initial state and a subset of terminal
states), and a transition function for states. IntuitivelyAXϕ means that for all the next
statesϕmust hold;AFϕmeans that for all the paths of the gameϕ will eventually hold
in the future;AGϕ means that for all the paths of the gameϕ always hold in the future;
AϕU ψ means that for all the paths of the game,ϕ holds untilψ holds;EϕU ψ means
that there exists a path of the game,ϕ holds untilψ holds; andKiϕ means thatϕ holds
in all the states that agenti can not distinguish from. An agent with synchronous per-
fect recall, can not distinguish two states if it made the same moves and had the same
perceptions along two histories from the initial state.

3 Translation from GDL-II to MCK

Given a GDL-II description G, our program generates a translationπ(G) as the input
for MCK. The result of the translation,π(G), is equivalent toG in the sense that, the
game model derived from G using GDL-II semantics satisfies same formulas as the
model that is derived fromπ(G) using MCK operational semantics.

Proposition 1. Given a GDL-II description G, letπ(G) be the translation from GDL-II
to MCK andϕ a temporal epistemic property, then:

G |=GDL ϕ iff π(G) |=MCK ϕ

This enables us to check temporal epistemic properties againstG by checking them
againstπ(G), which can be done by MCK automatically. For detailed proof, see [17].

We use the GDL-II description of Monty Hall game in Fig. 1, denoted asGMH , to
illustrate the whole process. The translationπ can be divided into the following steps.

Computing Domains

The first step is to compute the domains, or rather supersets of the domains, of all pred-
icates and functions of the game description. This is done by generating a dependency
graph from the rules of the game description, following [19]. The nodes of the graph
are the arguments of functions and predicates in game description, and there is an edge
between two nodes whenever there is a variable in a rule of the game description that
occurs in both arguments. Connected components in the graph share a (super-)domain.

Take, for example, the Monty Hall rules, line 3 and 6 give us the domain graph in
Fig. 2, from which it can be seen that the argument of bothclosed andhide car ranges
over the domain{1, 2, 3}.
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hide_car,1

1

2

3

closed,1

Fig. 2. A domain graph for calculating domains of functions and predicates.

Once we have computed the domains, we instantiate all the variables inG. E.g., the
rule in line 6-7 in the above example are turned into three rules

legal(random,hide_car(1)) <= true(step(1)), true(closed(1)).
legal(random,hide_car(2)) <= true(step(1)), true(closed(2)).
legal(random,hide_car(3)) <= true(step(1)), true(closed(3)).

Deriving MCK Variables

The second step is to derive all the variables forπ(G). For this, we distinguish pred-
icates that occur as arguments ofinit or true, and those that do not. The former
are translated to boolean variables. For example,step(1) andclosed(1) appear in
π(GMH ) as

step_1: Bool
closed_1: Bool

Predicates of the second type typically depend on the first type of expressions. E.g.,
the following rule shows that thelegal predicate depends on twotrue predicates:

legal(random,hide_car(1)) <= true(step(1)), true(closed(1)).

There are two ways to deal with these cases: (1) translate them into booleans like
above and then use valuation statements or (2) directlydefinethem in terms of the
booleans translated from the first type of predicates. For example, we can translate
legal(random, hide car(1)) to a boolean (and assign a proper value later):

legal_random_hide_car_1: Bool
legal_random_hide_car_1:= step_1 /\ closed_1

or as a definition,

define legal_random_hide_car_1 = step_1 /\ closed_1

wherestep 1 andclosed 1 are both booleans and/\ is the symbol for conjunction.
The advantage of using definitions is that no new variables are introduced to the

state representation. This reduces the number of variables in the overall translation and
therefore potentially saves model checking time. The predicatesterminal andgoal
can also be treated this way.

In GDL-II, sees predicates specify the perceptions of agents. Such predicates de-
pend on the first type of predicates as well but they cannot be given as definitions in the
translation because they have to be observable for the relevant agents in agent protocols
(given below). Therefore we translate such predicates into separate boolean variables.

Since agents can recall their past moves, we make moves as part of the history,
along with the perceptions of agents. While MCK’s algorithms for CTLK with perfect
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recall semantics do not include moves as part of the history, weneed to embed such
information as part of a state. Therefore we introduce an extra boolean for eachlegal

instance, and replacelegal with did. E.g., forlegal(random, hide car(1)), we add

did_random_hide_car_1: Bool.

The above procedure can already generate all the variables needed. We can do fur-
ther optimisation on two kinds of predicates: these appearing in the rules with empty
bodies and those never appearing in the head of rules. Under GDL-II semantics, the first
kind is always true and the second kind is always false. Therefore we can replace them
universally with their corresponding truth values. E.g., consider the following program:

1 succ(1,2)
2 succ(2,3)
3 next(step(?y)) <= true (step(?x)), succ(?x, ?y).

We can first translate the program to the following by using the dependency graph:

4 succ(1,2)
5 succ(2,3)
6 next(step(2)) <= true(step(1)), succ(1,2).
7 next(step(2)) <= true(step(2)), succ(2,2).
8 next(step(3)) <= true(step(2)), succ(2,3).
9 next(step(3)) <= true(step(3)), succ(3,3).

Because bothsucc(2, 2), succ(3, 3) are always false, andsucc(1, 2), succ(2, 3)
are always true, we replace them using their truth values. Then we can further simplify
this program by removing the rules with a “False” conjunct, and by removing the “True”
conjuncts universally:

10 next(step(2)) <= true(step(1)).
11 next(step(3)) <= true(step(2)).

It is easy to check that lines 10–11 are equivalent to lines 1–3 (and also lines 4–9)
in terms of changes overstep predicates. This will effectively reduce the number of
variables in the translation.

Initial Conditions

This step specifies the initial condition ofπ(G). All the booleans translated from the
predicates included withininit are made true and all other predicates are made false.
TakingGMH (lines 3-4) for example, we have

init_cond =
closed_1 == True /\ closed_2 == True /\ closed_3 == True /\
step_1 == True /\ step_2 == False /\ step_3 == False /\ step_4 == False /\
car_1 == False /\ car_2 == False /\ car_3 == False /\ ...

Agent Protocols

This step specifies the agents and their protocols during the game play. The agent bind-
ing operation binds distinct agent names to the protocols they run, and instantiate each
protocol’s parameters. In GDL-II, the names of the agents are read off from the rules for
therole predicate, and moves are read off from thelegal predicates. Each agent has
its own protocol. In MCK, protocol parameters are typed and some haveobservable

before the type to indicate that agents canseethese parameters, which are then used for
agents’ accessibility relations. Taking the rolecandidate in GMH for example, the
following protocol is constructed inπ(GMH ),
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protocol "candidate" (
step_1: Bool, step_2: Bool, step_3: Bool, ... ,
sees_Candidate_1: observable Bool, sees_Candidate_2: observable Bool, ...,
did_Candidate_Choose_1: observable Bool, ... )
begin do
legal_Candidate_Choose_1 -> <<Choose_1>>
[] legal_Candidate_Choose_2 -> <<Choose_2>>
[] legal_Candidate_Choose_3 -> <<Choose_3>>
[] legal_Candidate_Noop -> <<Noop>>
[] legal_Candidate_Switch -> <<Switch>>
od

end

Here the parameters prefixed withsees or did are observable to thecandidate.
The variables prefixed withlegal are booleans or definitions (explained above) and
they represent the preconditions of moves, e.g.,legal Candidate Choose 1 is the
precondition for agent to chose move<< Choose 1 >>. “[]” means non-deterministic
choice, so in each step, one of these statements withindo...odwill be non-determinstically
executed whenever their guards are true.

We bind agentCandidate to the above protocolcandidate as this:

agent Candidate "candidate" ( parameter variables )

A protocol can be bound to multiple names, so this gives potential to code reuse
when several agents share the same protocol.

State Transition
This step specifies the statements that update the variables after agents have decided
which moves to make. The first part is update the variables prefixed withdid . E.g., the
following lines inπ(GMH ) indicates that agentCandidate made moveChoose 1 on
the previous state.

if Candidate.Choose_1 -> did_Candidate_Choose_1 := True
[] otherwise -> did_Candidate_Choose_1 := False
fi;

Essentially, the effects of the agents’ joint actions will be computed so this section
is connected to thedoes andnext predicates in the description G. Here we use Clark
Completion to update these variables. This can be illustrated by the variablechosen 1

from our running example. First take all the rules that havechosen(1) in the head from
the original descriptionGMH and instantiate?d with 1:

1 next(chosen(1)) <= does(candidate,choose(1)).
2 next(chosen(1)) <= true(chosen(1)),
3 not does(candidate,switch).
4 next(chosen(1)) <= does(candidate,switch),
5 true(closed(1)),
6 not true(chosen(1)).

Then translate the bodies of these three rules and take their disjunction to be the
guard of the resulting ‘if’ statement as follows: (note thatchosen(1) is translated to
chosen 1 and so are the other ground atoms)

if (did_Candidate_Choose_1) \/ (chosen_1 /\ neg did_Candidate_Switch) \/
(did_Candidate_Switch /\ closed_1 /\ neg chosen_1) -> chosen_1 := True
[] otherwise -> chosen_1 := False
fi;
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In addition, we may need to arrange the order of MCK statements carefully, because
MCK’s input language is imperative, which means that the statements are executed in
a given order. In contrast, GDL-II is a declarative language and the order of the rules
does not change the meaning (or semantics) of the whole description. Take the following
example:

1 next(step(2)) <= true(step(1)).
2 next(step(3)) <= true(step(2)).
3 next(step(4)) <= true(step(3)).

The first rule means that ifstep(1) is true in the current state, thenstep(2) will
be true in the next state. Note that this rule is the only rule with headnext(step(2)),
so we can apply the Clark Completion and get a statement:step 2 := step 1. This is
fine by itself, but we have a problem when the three rules are translated together in the
original order:

step_2 := step_1;
step_3 := step_2;
step_4 := step_3;

The problem is this: ifstep 1 is true originally, then after executing this three
statements we have all the variables to be true, whereas in GDL-IIstep(3) andstep(4)
would still be false in the next state. In fact, when we update the value ofstep 3 in
MCK, we need to make sure to use the guard valuestep 2 from the previous state.
When we follow the exact order of above, thenstep 2 is updated beforestep 3 is
getting updated. One solution to this problem is to use a dependency graph:

step(4) step(3) step(2) step(1)

This graph indictaes the order in which the variables need to be updated:step 4, ..., step 1.
Thus the correct program in MCK is as follows:

step_4 := step_3;
step_3 := step_2;
step_2 := step_1;

But what if the dependency graph has loops? Consider this example:

1 next(holds(x,a)) <= true(holds(x,a)).
2 next(control(x)) <= true(control(o)).
3 next(control(o)) <= true(control(x)).

The first loop is a self loop and does not create any problem, but the second one
does pose a problem. The following program does not capture the meaning of lines 2–3
in the above description:

control_x := control_o;
control_o := control_x;

where the second statement uses a boolean updated by the first.
Our solution is to break the loop by cutting one dependency and then creating a

new variable to record the last variable in the new dependency graph. Back to the above
example, we can cut the dependency fromcontrol(o) to control(x), and then use a
new variable to give the following correct translation:
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control_x_old := control_x;
control_x := control_o;
control_o := control_x_old;

Put in words,control x old is used to remember the old value ofcontrol x.
There is another more general way to solve this problem: give all ground atoms

a new variable (appended withold) and use them to record the values of their cor-
responding part in the beginning of the translation. But this can be computationally
expensive for MCK in practice, because the number of variables will be doubled. It will
not increase the number of reachable states of the game, but the total state space of the
MCK program will be increased exponentially (i.e.,2n for n new variables). So our
above solution by using dependency graphs will be much more efficient in practice.

Specifications

The last step is to encode the temporal and epistemic properties to be verified, using:

<specification type> = ... temporal and epistemic formula ...

The specification types we will use are “spec spr nested”, “ spec obs ctl” and
“spec spr bmc n”, where spr indicates that the model checking algorithm will use
synchronous perfect recall semantics, andobs indicates observational semantics,bmc

means bounded model checking. The first two algorithm use Ordered Binary Decision
Diagram (OBDD) encoding and the second uses SAT encoding. We will explain the
difference when we present the experimental results in the next session. Our temporal
and epistemic formulas are given in CTLK syntax.

MCK checks a propertyϕ on the initial state of the translated gameπ(G) with
specification typex, and then when the computation is done, it returns either ‘holds’
(i.e.,π(G) |=x ϕ) or ‘fails’ (otherwise).

4 Experimental Results

We present some experimental results on two incomplete information games: Monty
Hall and Krieg-Tictactoe. The machines have Intel Core i5-2500 Quad CPU 3.3 GHz
and 8GB Ram running under GNU Linux OS 2.6.32. The MCK version is 1.0.0.

Monty Hall

Following the method presented in the previous section, we compare the efficiency of
two different translations of the Monty Hall game from Fig. 1. The first translation
π1(GMT ) is the straightforward one without optimisation. It contains 43 boolean vari-
ables. The second translationπ2(GMT ) is the result of applying the various optimisa-
tions given above, resulting in only 28 boolean variables.

The following properties have been checked using MCK on these two translations:

– ϕ1 = (
∧

m

legal(Candidate,m) → KCandidatelegal(Candidate,m))

This property intuitively means that‘Candidate’ knows his legal moves at the
current state. Furthermore, we defineϕ2 = AXϕ1 which intuitively means that
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‘Candidate’ knows his legal moves at all next states; ϕ3 = AXAXϕ1; andϕ4 =
AXAXAXϕ1.

– ϕ5 = AXAXAX(terminal ∧ KCandidateterminal). This property intuitively
means that for all states after three steps, the game is terminal and the candidate
knows this.

– ϕ6 = ¬AXAXAX(goal(Candidate, 100))∧¬AXAXAX(goal(Candidate, 0)).
This property intuitively means that it is not always the case thatCandidatewill win
(i.e.,goal(Candidate, 100) is true) after three steps, nor that he will always lose.

– ϕ7 = AFterminal. This property means the game will eventually reach a terminal
state.

We checkϕ1 to ϕ5 using thespr nested algorithm associated withsynchronous
perfect recall(spr) semantics because they all involve knowledge, and then checkϕ6

andϕ7 using theobs ctl algorithm associated with theobservational(obs) semantics
because these formulas do not involve knowledge (which reduces the model checking
time). For comparison, we also checkϕ6 under spr semantics. The following table
shows the model checking time (measured in seconds) for these seven formulas. These
formulas all hold in the initial state ofGMT and MCK returns corrected results.

Translation ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6(spr)ϕ6(obs) ϕ7

π1(GMT ) 6.70 20.63 49.37129.66222.06 561.24 3.41 6.47
π2(GMT ) 0.53 3.10 9.01 19.59 17.25 39.32 0.50 0.49

We can see that our second translation needs notably less time than the first transla-
tion under both semantics. Also when a formula contains more temporal depth, it tends
to need more time. The result onϕ6 shows that the model checking under obs-semantics
may need much less time than that of spr-semantics. Forϕ7, it cannot be checked under
spr-semantics because operator AF is not supported.

Krieg-TicTacToe

We also studied a more complex game called Krieg-TicTacToe, an incomplete infor-
mation version of TicTacToe. In this game, two players cannot see their opponent’s
markings, and if one player tries to mark a position that has been occupied by the oppo-
nent, then the game master will tell the player that the move is not valid and ask it to try
again. The turn-taking and winning conditions remain the same. The GDL-II descrip-
tion of this game (call itGKT ) can be found on ggpserver.general-game-playing.de.

Our first translationπ1(GKT ) has 111 boolean variables, and the optimised trans-
lation π2(GKT ) has 70 boolean variables. Both are around six times larger than the
translations of the Monty Hall game.

We select a few representative properties:

– ψ1 = (
∧

m

legal(xplayer,m) → Kxplayerlegal(xplayer,m)). This property intu-

itively means that‘xplayer’ knows his legal moves at the current state. Similarly
we defineψ2 = AXψ1, ψ3 = AXAXψ1 andψ4 = AXAXAXψ1.
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– ψ5 = AXAXcontrol(xplayer). This property says thatafter two steps xplayer
is in control in all the resulting states. This property would be true for the original
TicTacToe due to the turn taking under complete information. But under incomplete
information, this is not true anymore. It is because after one step,oplayer has
control and she might try an invalid move, in that case, she will be given another
chance to select a move for the next step.

– ψ6 = AG(tried(xplayer, 1, 1) → AXtried(xplayer, 1, 1)). This property says
that it is always the case that if xplayer already tried to mark the position (1,1), then
in all the next states, this is still true.

We first checkψ1 to ψ4 using thespr nested algorithm. The following table only
shows the model checking time (in seconds) for the second translationπ2(GKT ):

Translation ψ1 ψ2 ψ3 ψ4

π2(GKT ) 86.24 1539.2426782.95 NA

It indicates that the time complexity increases quickly with the depth of the formula.
In the case ofϕ4 we could not obtain a result within 24 hours. This led us to bounded
model checking (BMC) in which the specification is required to be a formula in the
so-called universal fragment of a logic. The universal fragment of a logic requires that
the negation operator may apply only to atomic propositions, and the modal operators
can only beAX , AF , AG, A U andKi. Each specification will also be given a bound
numbern to indicate the depth of the game tree to be checked by MCK. The following
table shows the model checking time (in seconds) for both translations:

Translationψ1(b 1) ψ2(b 2) ψ3(b 3) ψ4(b 4) ψ5(b 3) ψ6(b 5) ψ6(b 4)
π1(GKT ) 0.27 1.70 4.40 10.34 3.69 11.87 6.87
π2(GKT ) 4.63 8.69 32.00 588.38 24.33 113.62 48.81

Note that each formula is given a bound when being fed to MCK; theboundn is
indicated as(b n). It is interesting to see that under BMC, the first translation has a
better efficiency now. The main disadvantage of BMC is that it only check the model
up to boundn. So if there is no counter example found under boundn, it usually does
not mean that no counter example can be found at boundn + 1. E.g., formulaϕ6 has
no counter example under bound 4, but it has a counter example under bound 5.

We can partially answer why a seemingly more optimised translation yields a worse
result in BMC. Unlike the OBDDs, SAT algorithms are more sensitive to the complex-
ity of boolean statements which can express complicated relations between booleans,
rather than to the number of booleans. In the optimised versionπ2(GKT ), we use “def-
initions” to reduce the number of variables but that, on the other hand, increases the
complexity of boolean statements.

5 Related Work and Further Research

There are a few papers on reasoning about games in GDL and its extension GDL-II. [8]
uses Answer Set Programming for verifying finitely-bounded temporal invariance prop-
erties against a given game description by structural induction. [9] extends [8] to deal
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with epistemic properties for GDL-II. That formalism restricts on positive-knowledge
formulas while the approach in this paper does not have such restriction and can handle
more expressive epistemic and temporal formulas. [15] provides a reasoning mecha-
nism for strategic and temporal properties but it is restricted on the original GDL for
complete information games. [16] exams the epistemic logic behind GDL-II and in
particular shows that the situation at any stage of a game can be characterised by a
multi-agent epistemic (i.e., S5-) model. [18], an extension to [15, 16], provides both se-
mantic and syntactic characterisations of GDL-II descriptions in terms of a strategic and
epistemic logic, and shows the equivalence of these two characterisations. The current
paper does not handle strategies but is more applied than [18] as we can directly using
a model checker.

Some other work are related to this paper more generally in terms of planning and
model checking. [1] applies symbolic planning to solve parity games equivalent toµ-
calculus model checking problems. [2] solves planning problems based on a high-level
action language and model checking; and [3] gives automatic plan generation for non-
deterministic domains using OBDD (which is also used by MCK). [13] introduces an
approach to conformant planning (where the initial situation is not fully known and
actions may have non-deterministic effects) by converting such problems into classical
planning problems. It is similar to our approach in sprit but the actual formalisms are
rather different.

We conclude by pointing out some directions for further research. Our case study
on Krieg-TicTacToe suggests that the optimisation we have applied allows us to verify
some formulas in a reasonable amount of time but is not yet fully functional for more
complex formulas. However a hand-made version of Krieg-TicTacToe (with more ab-
straction) in MCK does suggest that MCK has no problem to cope with the amount of
reachable states of Krieg-TicTacToe. So the question is, what other optimisation tech-
niques can we find for the translation? On the other hand, we would like to investigate
how to make MCK language more expressive by allowing n-ary predicates, fixpoints,
loops in transition relations. This may result in a more direct translation.

Also there are logics that deal with strategic and epistemic reasoning, so we are
interested in generalising this model checking approach to such logics (see [18] for a
first theoretical result). Similar to [1–3, 13], we would like to also explore how plans (or
strategies) can be generated via model checking for general game playing.
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A General Multi-Agent Modal Logic K Framework for
Game Tree Search

Abdallah Saffidine? and Tristan Cazenave??

LAMSADE, Université Paris-Dauphine, 75775 Paris Cedex 16, France

Abstract. We present an application of Multi-Agent Modal Logic K
(MMLK) to model dynamic strategy game properties. We also provide
several search algorithms to decide the model checking problem in MMLK.
In this framework, we distinguish between the solution concept of in-
terest which is represented by a class of formulas in MMLK and the
search algorithm proper. The solution concept defines the shape of the
game tree to be explored and the search algorithm determines how the
game tree is explored. As a result, several formulas class and several of
search algorithms can represent more than a dozen classical game tree
search algorithms for single agent search, two-player games, and multi-
player games. Among others, we can express the following algorithms in
this work: depth-first search, Minimax, Monte Carlo Tree Search, Proof
Number Search, Lambda Search, Paranoid Search, Best Reply Search.

1 Introduction

1.1 Motivation
Deterministic perfect information strategy games constitute a broad class of games rang-
ing from western classic chess and eastern go to modern abstract games such as hex
or multiplayer chinese checkers [22]. Single-agent search problems and perfect infor-
mation planning problems can also naturally be seen as one-player strategy games. A
question in this setting is whether some agent, can achieve a specified goal from a given
position. The other agents can either be assumed to be cooperative, or adversarial.

For example, an instance of such a question in chess is: “Can White force a capture of
the Black Queen in exactly 5 moves?” In chinese checkers, we could ask whether one
player can force a win within ten moves. Ladder detection in go and helpmate solving
in chess also belong to this framework. The latter is an example of a cooperative two
player game.

1.2 Intuition
The main idea of this article is that we should see the structure of a game and the be-
haviour of the players as two distinct parts of a game problem.

Thus, a game problem can be seen as the combination of a Game Automaton (the
structure of the game) and a solution concept represented by a modal logic formula (the
behaviour of the players).
? abdallah.saffidine@dauphine.fr
?? cazenave@lamsade.dauphine.fr
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1.3 Contributions and Outline

Our contributions in this work are:

– We establish a relation between strategy games and the Multi-Agent Modal Logic
K (MMLK). Then, we show that many abstract properties of games such as those
mentioned in the introduction can be formally expressed as model checking prob-
lems in MMLK with an appropriate formula (Section 2).

– We describe three possible algorithms to solve the model checking problem in MMLK.
These algorithms are inspired by depth-first search, effort numbers, and Monte Carlo
playouts (Section 3).

– We show that numerous previous game tree search algorithms can be directly ex-
pressed as combinations of model checking problems and model checking algo-
rithms (Section 4).

– We demonstrate that the MMLK allows new solution concepts to be rigorously de-
fined and conveniently expressed. Moreover, many new algorithms can be derived
through new combinations of the proposed search algorithms and existing or new
solution concepts (formulas). Finally, it is a convenient formal model to prove some
kind of properties about game algorithms (Section 5).

We believe that these contributions can be of interest to a broad class of researchers.
Indeed, the games that fall under our formalism constitute a significant fragment of the
games encountered in General Game Playing [11]. We also express a generalization of
the Monte Carlo Tree Search algorithm [10] that can be used even when not looking for
a winning strategy. Finally, the unifying framework we provide makes understanding
a wide class of game tree search algorithms relatively easy, and the implementation is
straightforward.

2 Strategy Games and Modal Logic K

2.1 Game model

We now define the model we use to represent games, namely the Game Automaton (GA).
We focus on a subset of the strategy games that are studied in Game Theory. The games
we are interested in are turn-based games with perfect and complete information. Despite
these restrictions, the class of games considered is quite large, including classics such as
chess and go, but also multiplayer games such as chinese checkers, or single player
games such as sokoban.

Informally, the states of the game automaton correspond to possible positions over
the board, and a transition from a state to another state naturally refers to a move from a
position to the next.

Although the game is turn-based, we do not assume that positions are tied to a player
on turn. This is natural for some games such as go or hex. If the turn player is tightly
linked to the position, we can simply consider that the other players have no legal moves,
or we can add a pass move for the other players that will not change the position.

We do not mark final states explicitly, neither do we embed the concept of game out-
come and reward explicitly in the following definition. We rather rely on a labelling of

85



the states through atomic propositions. It is then possible to generate an atomic propo-
sition for each possible game outcome and label each final state with exactly one such
proposition.

Definition 1. A Game Automaton is a 5-tuple G = (Π,Σ,Q, π, δ) with the following
components :

– Σ is a non-empty finite set of agents (or players)
– Π is a non-empty set of atomic propositions
– Q is a set of game states
– π : Q→ 2Π maps each state q to its labels, the set of atomic propositions that are

true in q
– δ : Q×Σ → 2Q is a transition function that maps a state and an agent to a set of

next states.

We write q a−→ q′ when q′ ∈ δ(q, a). We understand δ as: in a state q, agent a is free
to choose as the next state any q′ such that q a−→ q′.

Note that we lift the restriction that the turn order is fixed and that in a given position,
only one player can move. That is, we assume that any player can move from a given
position if asked to. This generalisation is straightforward for many games. For the other
games where moves for non-turn players cannot be conceived easily, we either add a
single pass move or simply accept that there are no legal moves for non-turn players.

We will assume for the remainder of the paper that one distinguished player is de-
noted by A and the other players (if any) are denoted by B (or B1, . . . , Bk). Assume
two distinct atomic propositionsw and l, such thatw is understood as a label of terminal
positions won by A, while l is understood as a label of terminal positions not won by
A.1

2.2 Multi-Agent Modal Logic K

Modal logic [5] is often used to reason about the knowledge of agents in a multi-agent en-
vironment. In such environments, the states in the GA are interpreted as possible worlds
and additional constraints are put on the transition relation which is interpreted through
the concepts of knowledge or belief. In this work, though, the transition relation is in-
terpreted as a legal move function, and we do not need to put additional constraints on
it. Since we do not want to reason about the epistemic capacities of our players, we use
the simplest fragment of Multi-Agent Modal Logic K (MMLK) [5].

Syntax Let Π be a finite set of state labels and Σ be finite set of agents. We define the
Multi-Agent Modal Logic K (MMLK) over Π and Σ, noted T , as follows:

Definition 2. The MMLK T is defined inductively.

∀p ∈ Π, p ∈ T
∀φ1, φ2 ∈ T,¬φ1 ∈ T, (φ1 ∧ φ2) ∈ T
∀a ∈ Σ,∀φ ∈ T,2a φ ∈ T

1 Note that the atom l is not formally needed, as it can be defined using w and δ.
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That is a formula (or threat) is either an atomic proposition, the negation of a for-
mula, the conjunction of two formulas, or the modal operator 2a for a player a applied
to a formula. We read 2a φ as all moves for agent a lead to states where φ holds.

We define the following syntactic shortcuts.

– φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)
– 3a φ ≡ ¬2a ¬φ

We read 3a φ as there exists a move for agent a leading to a state where φ holds. The
precedence of 3a and 2a, for any agent a, is higher than ∨ and ∧, that is, 3a φ1∨φ2 =
(3a φ1) ∨ φ2.

Semantics For a GA G = (Π,Σ,Q, π, δ), a state q in Q, and a formula φ, we write
G, q |= φ when state q satisfies φ in game G. We omit the game G when obvious from
context. The formal definition of satisfaction is as follows.

– q |= p with p ∈ Π if p is a label of q: p ∈ π(q)
– q |= ¬φ if q 6|= φ
– q |= φ1 ∧ φ2 if q |= φ1 and q |= φ2
– q |= 2a φ if for all q′ such that q a−→ q′, we have q′ |= φ.

It can be shown that the semantics for the syntactic shortcuts defined previously
behave as expected.

Proposition 1.
– q |= φ1 ∨ φ2 if and only if q |= φ1 or q |= φ2
– q |= 3a φ if there exists an actions of agent a in q, such that the next state satisfies
φ: ∃q a−→ q′, q′ |= φ.

2.3 Formalization of some game concepts

We now proceed to define several classes of formulas to express interesting properties
about games.

Reachability A natural question that arises in one-player games is reachability. In this
setting, we are not interested in reaching a specific state, but rather in reaching any state
satisfying a given property.

Definition 3. We say that a player A can reach a state satisfying φ from a state q in
exactly n steps if q |= 3A . . .3A︸ ︷︷ ︸

n times

φ.

Winning strategy We now proceed to express the concept of having a winning strategy
in a finite number of moves in an alternating two-player game.

Definition 4. Player A has a winning strategy of depth less or equal to n in state q if
q |= WSαn

, where WSαn
is defined as

– WSα0 = WSβ0 = w
– WSαn = w ∨ (¬l ∧3AWSβn−1)
– WSβn = w ∨ (¬l ∧ 2BWSαn−1)

87



Ladders The concept of ladder occurs in several games, particularly go [16] and hex.
A threatening move for player A is a move such that, if it was possible for A to play a
second time in a row, then A could win. A ladder is a sequence of threatening moves by
A followed by defending moves by B, ending with A fulfilling their objective.

Definition 5. Player A has a ladder of depth less or equal to n in state s if q |= Lαn
,

where Lαn
is defined as

– Lα0 = Lβ0 = w
– Lαn = w ∨ (¬l ∧3A(w ∨ (3A w ∧ Lβn−1)))
– Lβn = w ∨ (¬l ∧ 2B Lαn−1)

For instance, Figure 1a presents a position of the game hex where the goal for each
player is to connect their border by putting stones of their color. In this position, Black
can play a successful ladder thereby connecting the left group to the bottom right border.

(a) hex position featuring a ladder for Black. (b) chess position featuring a helpmate
for Black in four moves.

Fig. 1: Game positions illustrating the concepts of ladder and helpmate.

Helpmates In a chess helpmate, the situation seems vastly favourable to player Black,
but the problemist must find a way to have the Black king checkmated. Both players
move towards this end, so it can be seen as a cooperative game. Black usually starts in
helpmate studies. See Figure 1b for an example. A helpmate in at most 2n plies can be
represented through the formula Hn where H0 = w and Hn = w ∨3B 3AHn−1.

Selfmates A selfmate, on the other hand, is a situation where Black forces White to
checkmate the Black King, while White must do their best to avoid this. Black starts
moving in a selfmate and a position with a selfmate satifies Sn for somen, where S0 = w
and Sn = w ∨3B 2A Sn−1.
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3 Search paradigms

We now define several model checking algorithms. That is, we present algorithms that
allow to decide whether a state q satisfies a formula φ (q |= φ).

3.1 Depth First Threat Search

Checking whether a formula is satisfied on a state can be decided by a depth-first search
on the game tree as dictated by the semantics given in Section 2.2. Pseudo-code for the
resulting algorithm, called Depth First Threat Search (DFTS) is presented in Algorithm 1.

dfts(state q, formula φ)
switch on the shape of φ do

case p ∈ Π
return p ∈ π(q)

case φ1 ∧ φ2

return dfts(q, φ1) ∧ dfts(q, φ2)
case ¬φ1

return ¬ dfts(q, φ1)
case 2a φ1

let l = {q′, q a−→ q′};
foreach q′ in l do

if not dfts(q′, φ1) then
return false

return true
Algorithm 1: Pseudo-code for the DFTS algorithm.

3.2 Best-first Search Algorithms

We can propose several alternatives to the DFTS algorithm to check a given formula in
a given state. We present a generic framework to express best first search model check-
ing algorithms. Best-first search algorithms must maintain a partial tree in memory, the
shape of which is determined by the formula to be checked.

Nodes are mapped to a (state q, formula φ) label. A leaf is terminal if its label is
an atomic proposition p ∈ Π otherwise it is non-terminal. Each node is associated to a
unique position, but a position may be associated to multiple nodes. 2

The following static observations can be made about partial trees:

– an internal node labelled (q,¬φ) has exactly one child and it is labelled (q, φ);
– an internal node labelled (q, φ1 ∧ φ2) has exactly two children which are labelled

(q, φ1) and (q, φ2);
– an internal node labelled (q,2a φ) has as many children as there are legal transition

for a in q. Each child is labelled (q′, φ) where q′ is the corresponding state.
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bfs(state q, formula φ)
let r = new node with label (q, φ);
r.info← init-leaf(r);
let n = r;
while r is not solved do

while n is not a leaf do
n← select-child(n);

extend(n);
n← backpropagate(n);

return r

extend(node n)
switch on the label of n do

case (q, p)
n.info← info-term(n);

case (q, φ1 ∧ φ2)
let n1 = new node with label (q, φ1);
let n2 = new node with label (q, φ2);
n1.info← init-leaf(n1);
n2.info← init-leaf(n2);
Add n1 and n2 as children of n;

case (q,¬φ1)
let n′ = new node with label (q, φ1);
n′.info← init-leaf(n′);
Add n′ as a child of n;

case (q,2a φ1)

let l = {q′, q a−→ q′};
foreach q′ in l do

let n′ = new node with label (q′, φ1);
n′.info← init-leaf(n′);
Add n′ as child of n;

backpropagate(node n)
let new info = update(n);
if new info = n.info ∨ n = r then

return n
else

n.info← new info;
return backpropagate(n.parent)

Algorithm 2: Pseudo-code for a best-first search algorithm.
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The generic framework is described in Algorithm 2. An instance must provide a data
type for node specific information which we call node value and the following proce-
dures. The info-term defines the value of terminal leaves. The init-leaf proce-
dure is called when initialising a new leaf. The update procedure determines how the
value of an internal node evolves as a function of its label and the value of the children.
The select procedure decides which child is best to be explored next depending on
the node’s value and label and the value of each child. We present possible instances in
Sections 3.3 and 3.4.

3.3 Proof Number Threat Search (PNTS)

We present a first instance of the generic best-first search algorithm described in Sec-
tion 3.2 under the name PNTS. This algorithm uses the concept of effort numbers and is
inspired from Proof Number Search (PNS) [2, 28].

The node specific information needed for PNTS is a pair of numbers which can be
positive, equal to zero, or infinite. We call them proof number (PN) and disproof number
(DN). Basically, if a subformula φ is to be proved in a state s and n is the corresponding
node in the constructed partial tree, then the PN (resp. DN) in a node n is a lower bound
on the number of nodes to be added to the tree to be able to exhibit a proof that s |= φ
(resp. s 6|= φ). When thePN reached 0 (and theDN reaches∞), the fact has been proved
and when the PN reached∞ (and the DN reaches 0) the fact has been disproved.

The info-term and init-leaf procedures are described in Table 1, while Ta-
ble 2 and 3 describe the update and select-child procedures, respectively.

Table 1: Initial values for leaf nodes in PNTS.
Node label PN DN

info-term
(q, p) when p ∈ π(q) 0 ∞
(q, p) when p /∈ π(q) ∞ 0

init-leaf (q, φ) 1 1

Table 2: Determination of values for internal nodes in PNTS.
Node label Children PN DN

(q,¬φ) {c} DN(c) PN(c)
(q, φ1 ∧ φ2) C

∑
C PN minC DN

(q,2a φ) C
∑
C PN minC DN

2 While it is possible to store the state q associated to a node n in memory, it usually is more
efficient to store move information on edges and reconstruct q from the root position and the
path to n.
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Table 3: Selection policy for PNTS.
Node label Children Chosen child

(q,¬φ) {c} c
(q, φ1 ∧ φ2) C argminC DN
(q,2a φ) C argminC DN

3.4 Monte Carlo Proof Search (MCPS)

Monte Carlo Tree Search (MCTS) [9, 8] is a recent game tree search technique based on
multi-armed bandit problems [4]. MCTS has enabled a huge leap forward in the playing
level of artificial go players. MCTS has been extended to prove wins and losses under
the name MCTS Solver [31] and it can be seen as the origin of the algorithm presented
in this section which we call MCPS.

The basic idea in MCPS is to evaluate whether a state s satisfies a formula via probes
in the tree below s. A probe, or Monte Carlo playout, is a random subtree of the tree
below s whose structure is given by the formula to be checked in s. In the original MCTS
algorithm, the structure of playouts is always a path. We lift this constraint here as we
want to model check elaborate formulas about states. A probe is said to be success-
ful if the formulas at the leaves are satisfied in the corresponding states. Determining
whether a new probe generated on the fly is successful can be done as demonstrated in
Algorithm 3.

probe(state q, formula φ)
switch on the shape of φ do

case p ∈ Π
return p ∈ π(q)

case φ1 ∧ φ2

return probe(q, φ1) ∧ probe(q, φ2)
case ¬φ1

return ¬ probe(q, φ1)
case 2a φ1

let q′ be a random state such that q a−→ q′;
return probe(q′, φ1)

Algorithm 3: Pseudo-code for a Monte-Carlo Probe.

Like MCTS, MCPS explores the GA in a best first way by using aggregates of in-
formation given by the playouts. For each node n, we need to know the total number of
probes rooted below n (denoted by N) and the number of successful probes among them
(denoted by R). We are then faced with an exploration-exploitation dilemma between
running probes in nodes which have not been explored much (N is small) and running
probes in nodes which seem successful (high R

N ratio). This concern is addressed using
the UCB formula [4].
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Similarly to MCTS Solver, we will add another label to the value of nodes called
P. P represents the proof status and allows to avoid solved subtrees. P can take three
values: >, ⊥, or ?. These values respectively mean that the corresponding subformula
was proved, disproved, or neither proved nor disproved for this node.

We describe the info-term, init-leaf, update, and select-child pro-
cedures in Table 4, Table 5, and Table 6.

Table 4: Initialisation for leaf values in MCPS for a node n.
Node label P R N

info-term
(q, p) where p ∈ π(q) > 1 1
(q, p) where p /∈ π(n) ⊥ 0 1

init-leaf (q, φ) ? probe(q, φ) 1

Table 5: Determination of values for internal nodes in MCPS.
Node label Children P R N

(q,¬φ) {c} ¬P(c) N(c)− R(c) N(c)
(q, φ1 ∧ φ2) C

∧
C P

∑
C R

∑
C N

(q,2a φ) C
∧
C P

∑
C R

∑
C N

Table 6: Selection policy for MCPS in a node n.
Node label Children Chosen child

(q,¬φ) {c} c

(q, φ1 ∧ φ2) C argmaxC,P(c)=?
N−R

N
+

√
2 log N(n)

N

(q,2a φ) C argmaxC,P(c)=?
N−R

N
+

√
2 log N(n)

N

4 Simulation of existing game tree algorithms

By defining appropriate formulas classes, we can simulate many existing algorithms by
solving model checking problems in MMLK with specific search algorithms.

Definition 6. Let φ be a formula, S be a model checking algorithm and A be a specific
game algorithm. We say that (φ, S) simulatesA if for every game, for every state q where
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A can be applied, we have the following: solving q |= φ with S will explore exactly the
same states in the same order and return the same result as algorithmA applied to initial
state q.

Table 7 presents how combining the formulas defined later in this section with the
model checking algorithms defined in Section 3 allows to simulate many important al-
gorithms. For instance, using the DFTS algorithm to model-check an APSn formula on
a hex position represented as a state of a GA is exactly the same as running the Abstract
Proof Search algorithm on that position.

Table 7: Different algorithms expressed as a combination of a formula class and a search
paradigm.

Formula Search Paradigm

DFTS PNTS MCPS

πn Depth-first search Single-player MCTS [21]
WSαn αβ [14] PNS [2] MCTS Solver [31]
PAn Paranoid [26] Paranoid PNS [19] Multi-player MCTS [17]
LSd,n Lambda-search [27] Lambda-PNS [33]1

BRSn Best Reply Search [20]
APSn Abstract proof search [6]
1 We actually need to change the update rule for the PN in internal φ1 ∧ φ2 nodes in PNTS

from
∑
C PN to maxC PN.

4.1 One-player games

Many one-player games, the so-called puzzles, involve finding a path to a terminal state.
Ideally this path should be the shortest possible. Examples of such puzzles include the
15-puzzle and rubik’s cube.

Recall that we defined a class of formulas for reachability in exactly n steps in Defi-
nition 3. Similarly we define now a class of formulas representing the existence of a path
to a winning terminal state within n moves.

Definition 7. We say that agent A has a winning path from a state q if q satisfies πn
where πn is defined as π0 = w and πn = w ∨3A πn−1 if n > 0.

4.2 Two-player games

We already defined the winning strategy formulas WSαn
and WSβn

in Definition 4. We
will now express a few other interesting formulas that can be satisfied in game states in
two player games.
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λ-Trees λ-trees have been introduced [27] as a generalisation of ladders as seen in Sec-
tion 2.3. We will refrain from describing the intuition behind λ-trees here and will be
satisfied with giving the formal corresponding property as they only constitute an exam-
ple of the applicability of our framework.

Definition 8. A state q has an λ-tree of order d and maximal depth n for player A if
q |= LSαd,n

, where LSαd,n
is defined as follows.

– LSα0,n = LSαd,0 = LSβ0,n = LSβd,0 = w
– LSαd,n = w ∨3A(¬l ∧ LSαd−1,n−1 ∧LSβd,n−1)
– LSβd,n = w ∨ 2B(¬l ∧ LSαd,n−1)

λ-trees are a generalisation of ladders as defined in Definition 5 since a ladder is a
λ-tree of order d = 1.

Abstract proof trees Abstract proof trees were introduced to address some perceived
practical limitations of α−β when facing a huge number of moves. They have been used
to solve games such as phutball or atari-go. We limit ourselves here to describing how
we can specify in MMLK that a state is root to an an abstract proof tree. Again, we refer
the reader to the literature for the intuition about abstract proof trees and their original
definition [6].

Definition 9. A state q has an abstract proof tree of order n for playerA if q |= APSαn
,

where APSαn
is defined as follows.

– APSα0 = APSβ0 = w
– APSαn = w ∨3A(¬l ∧APSαn−1 ∧APSβn−1)
– APSβn = w ∨ 2B(¬l ∧APSαn−1)

Other concepts Many other interesting concepts can be similarly implemented via a
class of appropriate formulas. Notably minimax search with iterative deepening, the
Null-move assumption, and Dual Lambda-search [25] can be related to model checking
some MMLK formulas with DFTS.

4.3 Multiplayer games

Paranoid Algorithm The Paranoid Hypothesis was developed to allow for more α − β
style safe pruning in multi-player games [26]. It transforms the original k + 1-player
into a two-player game A versus B. In the new game, the player B takes the place of
B1, . . . , Bk andB is trying to prevent playerA from reaching a won position. Assuming
the original turn order is fixed and is A,B1, . . . , Bk, A,B1, . . . , we can reproduce a
similar idea in MMLK.

Definition 10. Player A has a paranoid win of depth n in a state q if q |= PAαn
, where

PAαn is defined as follows.

– PAα0 = PAβi
0
= w

– PAαn = w ∨3A(¬l ∧ PAβ1
n−1

)

– PAβk
n
= w ∨ 2Bk (¬l ∧ PAαn−1)

– PAβi
n
= w ∨ 2Bi(¬l ∧ PA

βi+1
n−1

) for 1 ≤ i < k
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Best Reply Search Best Reply Search (BRS) [20] is a new search algorithm for multi-
player games. It consists of performing a minimax search where only one opponent is
allowed to play after A. For instance a principal variation in a BRS search with k = 3
opponents could involve the following turn orderA,B2, A,B1, A,B1, A,B3, A, . . . in-
stead of the regular A,B1, B2, B3, A,B1, B2, B3, . . . .

The rationale behind BRS is that the number of moves studied for the player in turn
in any variation should only depend on the depth of the search and not on the number
of opponents. This leads to an artificial player selecting moves exhibiting longer term
planning. This performs well in games where skipping a move does not influence the
global position too much, such as chinese checkers.

Definition 11. Player A has a best-reply search win of depth n in a state q if q |=
BRSαn , where BRSαn is defined as follows.

– BRSα0 = BRSβ0 = w
– BRSαn = w ∨3A(¬l ∧ BRSβn−1)

– BRSβn = w ∨ ∧ki=1 2Bi(¬l ∧ BRSαn−1)

5 Creation of new game tree algorithms

We now turn to show how MMLK Model Checking framework can be used to develop
new research in game tree search. As such, the goal of this section is not to put forward
a single well performing algorithm, nor to prove strong theorems with elaborate proofs,
but rather to demonstrate that the MMLK Model Checking is an appropriate tool for
designing and reasoning about new game tree search algorithms.

Progress Tree Search It occurs in many two-player games that at some point near the end
of the game, one player has a winning sequence of nmoves that is relatively independent
of the opponent’s moves. For instance Figure 2 presents a hex position won for Black
and a chess position won for White. In both cases, the opponent’s moves cannot even
delay the end of the game.

To capture this intuition, we define a solution concept we name progress tree. The
idea giving its name to the concept of progress trees is that we want the player to focus
on those moves that brings them closer to a winning state, and discard the moves that
are out of the winning path.

Definition 12. PlayerA has a progress tree of depth 2n+1 in a state q if q |= PTα2n+1 ,
where PTα2n+1

is defined as follows.

– PTβ0 = w
– PTα2n+1 = w ∨3A(¬l ∧ πn ∧PTβ2n)
– PTβ2n = w ∨ (¬l ∧ 2B PTα2n−1)

We can check states for progress trees using any of the model checking algorithms
presented in Section 3, effectively giving rise to three new specialised algorithms. Note
that if a player has a progress tree of depth 2n + 1 in some state, then they also have a
winning strategy of depth 2n + 1 from that state (see Proposition 2). Therefore, if we
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(a) hex position featuring a progress tree of depth
7 for Black.

(b) chess endgame featuring a progress
tree of depth 11 for White.

Fig. 2: Positions illustrating the concepts of progress tree.

prove that a player has a progress tree in some position, then we can deduce that have a
winning strategy.

We tested a naive implementation of the DFTS model checking algorithms on the
position in Figure 2 to check for progress trees and winning strategies. The principal
variations consists for White in moving the pawn up to the last row and move the resulting
queen to the bottom-right hand corner to deliver checkmate. To study how the solving
difficulty increases with respect to the size of the formula to be checked, we model
checked every position on a principal variation and present the results in Table 8.

We can see that proving that a progress tree exists becomes significantly faster than
proving an arbitrary winning strategy as the size of the problem increases. We can also
notice that the overhead of checking for a path at each α node of the search is more than
compensated by the early pruning of moves not contributing to the winning strategy.

Examining new combinations We have seen in Section 3 that we could obtain previously
known algorithms by combining model checking algorithms with solution concepts. On
the one hand, some solution concepts such a winning strategy and paranoid win, were
combined with the three possible search paradigms in previous work. On the other hand,
other solution concepts such as best-reply search win were only investigated within the
depth-first paradigm.

It is perfectly possible to model check a best-reply search win using the MCPS algo-
rithm, for instance, leading to a new Monte Carlo Best Reply Search algorithm. Similarly
model checking abstract proof trees with PNTS would lead to a new Proof Number based
Abstract Proof Search (PNAPS) algorithm. Preliminary experiments in hex without any
specific domain knowledge added seem to indicate that PNAPS does not seem to perform
as well as Abstract Proof Search, though.

Finally, most of the empty cells in Table 7 can be considered as new algorithms
waiting for an optimised implementation and a careful evaluation.
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Table 8: Search statistics for a DFTS on positions along a principal variation of the chess
problem in Figure 2b.

MC
problem Time (s) Number of queries

atomic listmoves play

PTα5 0.1 6040 328 5897
WSα5 0.2 11172 624 5587

PTα7 1.4 99269 5312 98696
WSα7 3.5 194429 10621 97217

PTα9 23.6 1674454 88047 1668752
WSα9 63.8 3382102 181442 1691055

PTα11 260.4 25183612 1297975 25106324
WSα11 953.6 52209939 2759895 26104986

Expressing properties of the algorithms We now demonstrate that using the MMLK
model checking framework for game tree search makes some formal reasoning straight-
forward. Again, the goal of this section is not to demonstrate strong theorems with elab-
orate proofs but rather show that the framework is convenient for expressing certain
properties and helps reasoning on them.

It is easy to prove by induction on the depth that lambda trees, abstract proof trees,
and progress trees are all refinements of winning strategies.

Proposition 2. For all order d and depth n, we have LSαd,n
⇒ WSαn

, APSαn
⇒

WSαn
, and PTαn

⇒WSαn
.

Therefore, whenever we succeed in proving that a position features, say, a lambda
tree, then we know it also has a winning strategy for the same player: ∀q, q |= LSαd,n

→
q |= WSαn .

On the other hand, in many games, it is possible to have a position featuring a winning
strategy but no lambda tree, abstract proof tree, or even progress tree. Before studying the
other direction further, we need to rule out games featuring zugzwangs, that is, positions
in which a player would rather pass and let an opponent make the next move.

Definition 13. A φ-zugzwang for player A against players B1, . . . , Bk is a state q such
that q |= ¬φ∧ (2B1 φ∨ · · · ∨2Bk φ). A game is zugzwang-free for a set of formulas Φ
and player A against players B1, . . . , Bk if for every state q, and every formula φ ∈ Φ,
q is not a φ-zugzwang for A against B1, . . . , Bk.

The usual understanding of zugzwang is in two player games with φ a winning strat-
egy formula or a formula representing forcing some material gain in chess.

We can now use this definition to show that in games zugzwang-free for winning
strategies, such as hex or connect-6, an abstract proof tree and a progress tree are equiv-
alent to a winning strategy of the same depth.

Proposition 3. Consider a two-player game zugzwang-free for winning strategies. For
any depth n and any state q, q |= APSαn ↔ q |= PTαn ↔ q |= WSαn .
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6 Conclusion and discussion

We have defined a general way to express the shape of a search tree using MMLK. We
have shown it is possible to use different search strategies to search the tree shape. This
combination of a tree shape and of a search strategy yields a variety of search algorithms
that can be modelled in the same framework. This makes it easy to combine strategies
and shapes to test known algorithms as well to define new ones.

We have shown that the Multi-Agent Modal Logic K was a convenient tool to express
various kind of threats in a game independant way. Victor Allis provided one of the
earliest study of the concept of threats in his Threat space search algorithm used to
solve gomoku [1].

Previous work by Schaeffer et al. was also concerned with providing a unifying view
of heuristic search and the optimizations tricks that appeared in both single-agent search
and two-player game search [23].

Another trend of related previous work is connecting modal logic and game the-
ory [29, 32, 15]. In this area, the focus is on the concept of Nash equilibria, extensive
form games, and coalition formation. As a result, more powerful logic than the restricted
MMLK are used [3, 30, 12]. Studying how the model checking algorithms presented in
this article can be extended for these settings is an interesting path for future work.

The model used in this article differs from the one used in General Game Playing
(GGP) called Multi-Agent Environment (MAE) [24]. In an MAE, a transition correspond to
a joint-action. That is, each player decide a move simultaneously and the combinaison
of these moves determines the next state. In a GA, as used in this article, the moves
are always sequential. It is possible to simulate sequential moves in an MAE by using
pass moves for the non acting agents, however this ties the turn player into the game
representation. As a result, testing for solution concepts where the player to move in a
given position is variable is not possible with an MAE. For instance, it is not possible
to formally test for the existence of a ladder in a GGP representation of the game of go
because we need to compute the successors of a given position after a white move and
alternatively after a black move.

Effective handling of transpositions is another interesting topic for future work. It
is already nontrivial in PNS [13] and MCTS [18], but it is an even richer subject in this
model checking setting as we might want to prove different facts about a given position
in the same search.

Table 7 reveals many interesting previously untested possible combinations of for-
mula classes and search algorithms. Implementing and optimising one specific new com-
bination for a particular game could lead to insightful practical results. For instance, it
is quite possible that a Monte Carlo version of Best Reply Search would be successful
in multiplayer go [7].
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Abstract. Multiple choice systems in the domain of games, for example
3-Hirn and consultation algorithm, have been researched and their ad-
vantages have been reported. However, little is known about the reason
why these systems work well. In this paper, we introduce a mathematical
representation of multiple choice systems to determine the necessary and
sufficient condition of successful decision making on voting algorithm.
Then, we derive a reasonable explanations for 3-Hirn and consultation
algorithm in this context.

Keywords: 3-Hirn, consultation algorithm, multiple choice system, vot-
ing algorithm, decision making

1 Introduction

In game engine research, improving performance by multiple choice systems has
been researched. In 1985 Althöfer started 3-Hirn with a seminal experiment
in the game of chess [1]. 3-Hirn is a system such that “one or more programs
compute a clear handful of candidate solutions and a human chooses amongst
these candidates” [2]. In chess, the 3-Hirn consists of two different strong chess
engines and one human weak chess player. When the human plays a game by
choosing a move from moves which the engines suggest as candidates, his/her
performance is improved and overcome the each individual engine. This result
is surprising because if the weakest player chooses a move from moves which are
suggested by the other stronger human players, the outcome is expected to be
the opposite.

After Althöfer’s delightful success, Obata et al. reported consultation algo-
rithm where many game engines choose one move by simple majority rule, which
improves the performance on Shogi game. This is “a method where a machine
chooses a move automatically without human intervention” [3]. They also re-
ported optimistic consultation algorithm [4]. The consultation algorithm adopts
consultation between many individual engines. To make many engines, they ap-
ply noises on an evaluate function which BONANZA, a strong engine has. Also,
they reported consultation of three strong Shogi programs: YSS, GPS, and BO-
NANZA plays better games than any of the three individual programs.

This algorithm works well in other games like chess and Go [5, 6]. In 2010,
AKARA, which is a game player uses consultation algorithm defeated a top
player in the Ladies Professional Players Group [7].
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Even though the advantage of multiple choice systems is clear in practice,
the reason why these systems work well is not clear. In 3-Hirn, both engines are
stronger than the human who decides which candidate to play. Also, in some con-
sultation algorithm, weak engines which are made from a strong original engine
with random numbers suggest candidate moves. In other words, contribution of
weak players improves total output. This is a paradox. In this paper, we report
a reasonable explanation of this paradox.

In section 2, we introduce a mathematical representation of these systems,
especially for consultation with random numbers. In section 3, we introduce an
analysis of these systems. This is an extension of the discussion in [3] and a
reasonable explanation of the paradox. In section 4, we apply our representation
to 3-Hirn and give a reasonable explanation for it. In section 5, we discuss our
result. In section 6, we conclude the paper.

2 Mathematical representation of general consultation
algorithm with majority rule

In this section we introduce a mathematical representation of consultation al-
gorithm. Then, in the next section, we apply this representation to analyze
experiments of consultation which are reported in [3]. To analyze consultation,
the most important point of view is that an engine is a program which chooses
a move in a position in a deterministic way, except if a random algorithm is
adopted. Therefore, we can represent an engine as a mapping from positions to
moves. To do that, an order for positions and moves is needed to be introduced.
This order indexes positions and moves. We do not need to specify this order.
The only restriction is that this order needs to be total, i.e., all the positions
and moves are needed to be indexed in this order. After indexing, we can rep-
resent an engine as a function from indexes of positions to indexes of moves. In
this way, we can treat an engine as a function from natural numbers to natural
numbers.

Let us denote the set of all positions of a game as P and the set of all moves
as M . These sets are indexed by natural numbers. Engine decides a move in
each position, and this choice is expressed as deciding an index of move for each
index of position. This representation of an engine makes our discussion clear and
nothing important is missed for analysis. We represent an engine as a function
from a set of natural numbers of 1 to |P | to a set of natural numbers of 1 to |M |
in this paper.

Also, an engine must have an evaluation function f . An evaluation function
is a function which evaluates the advantage of a move in a position. If an engine
does not have an evaluation function, it is impossible to decide which move is
better. As a result, it has no choice and must return a random move. Random
players are not suitable for our purpose. Therefore, we omit systems which do
not have an evaluation function.

An evaluation function is a mapping from Cartesian products of positions
and moves to real numbers. This mapping also becomes a function if positions
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and moves are indexed. Therefore, an evaluation function is a function which is
defined on 2-dimensional lattice points. To evaluate each move which is chosen by
engine, let us suppose that there exists a perfect player, and denote its evaluation
function as f∗. When p is a position,m is a move and x is a real number, formally

f∗(p,m) = x , (1)

This f∗ is used to calculate the exact advantage of consultation. M is the all
moves which the game has, therefore m could be an illegal move in p. If it is,
define the evaluation value as the minimum.

Now, we can start making the mathematical representation of the consulta-
tion algorithm. Let us denote p ∈ P = {1, 2, · · · , |P |} as the position from which
the engine needs to play and m ∈ M = {1, 2, · · · , |M |} as the move which the
engine chooses in that position, then the engine is defined as follows.

AI(p) = m , (2)

If you want an analytical function, use a polynomial function as like AI(p) =∑|P |
i=1 λip

i = m. It is possible to choose λi to mimic the target engine’s decision,
because this engine is deterministic. The important point is that this mathemat-
ical function returns completely the same move as a real engine which is written
as a program. If there are n engines, let us denote them as AI1, AI2, · · ·, AIn.

To analyze the consultation algorithm, we need to make a matrix as

Mij(p) = AIi(p)−AIj(p) (3)

Mij(p) = 0 if and only if AIi(p) − AIj(p) = 0, i.e., the matrix element is 0 if
and only if corresponding engines choose the same move. To convert this matrix
to an easy to use one, let us use the function δ(x) which returns 1 if x = 0 and
0 if x ̸= 0. Then,

Vij(p) = δ(Mij(p))

=

{
1 (AIi(p) = AIj(p))
0 (AIi(p) ̸= AIj(p))

(4)

hence if AIi(p) = AIj(p) then Mij(p) = 0 and if AIi(p) ̸= AIj(p) then Mij(p) ̸=
0. Let us call this the voting matrix. Then,

∑n
j=1 Vij(p) is the number of engines

who agree with AIi. This is greater than or equals to 1, because AIi always
chooses the same candidate as AIi.

In the consultation algorithm, a weight vector w is used. This vector repre-
sents a priority of each engine. Heavily weighted engines have more priority than
lightly weighted ones. For example, in simple majority consultation algorithm,
all the elements of weight vector are 1. In consultation algorithm with a leader,
the leader is weighted as 1.5 and the others are 1. In this way, voting vector v
is calculated as follows.

V11(p) V12(p) . . . V1n(p)
V21(p) V22(p) . . . V2n(p)

...
...

. . .
...

Vn1(p) Vn2(p) . . . Vnn(p)




w1

w2

...
wn

 =


v1
v2
...
vn

 (5)
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The index of the max coordinate in v represents the accepted engines in the
consultation algorithm.

Of course, there is the case where two or more different candidates get the
same number of votes. For example, in a 5 engines consultation, the leader is
alone, 2 engines choose some candidate and the other 2 engines choose another
candidate. In this case, we need to decide which candidate to play. Therefore,
a conflict resolution is needed. To do so, resolution function r is used. Then, a
consultation algorithm with majority rule is represented as follows

C(p) = AIr(v)(p) (6)

where

r(v) = r




∑n
j=1 w1δ(AI1(p)−AIj(p))∑n
j=1 w2δ(AI2(p)−AIj(p))

...∑n
j=1 wnδ(AIn(p)−AIj(p))


 (7)

One example of r is random choose from candidates which have a conflict.
This r is used in [3]. Another is to use the evaluation function fs of the strongest
engine. In this case, the index of engine which is used in consultation algorithm
is written as follows

Max[fs(p,AIi(p))] (8)

where i ∈ {vi|∀j.vj ≤ vi} and vi =
∑n

j=0 wjVij(p).

Now, we finished the mathematical representation of consultation algorithm
with majority rule. We want to analyze the conditions in which the consultation
algorithm works well. Therefore, we need a reasonable definition of working well.
The following definition is suitable for our purpose.

Definition 1 The consultation algorithm absolutely works well if and only if

∀i.∀p.f∗
AIi(p) ≤ f∗

C(p)

where f∗
AIi

(p) = f∗(p,AIi(p)) and f∗
C(p) = f∗(p, C(p)) and f∗ is the evaluation

function of the perfect player.

This definition is too strict in practice. What we expect is an average im-
provement. In other words, what we expect from the consultation algorithm is
choosing a better move for most of the positions, but not necessarily for all of
the positions. Then, the practical definition becomes.

Definition 2 The consultation algorithm works well under a distribution of po-
sitions D if and only if

∀i.
|P |∑
p=1

Pr(p)f∗
AIi(p) <

|P |∑
p=1

Pr(p)f∗
C(p) ⇔ ∀i.AveDf∗

AIi(p) < AveDf∗
C(p)
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where Pr(p) is the probability of occurrence of position p under distribution D
and AveD is an average.

If the engine is stochastic, we need an extended definition as follows.

Definition 3 The consultation algorithm is expected to work well under distri-
bution of positions D and distribution of moves D′ if and only if

∀i.
|P |∑
p=1

Pr(p)

|M |∑
m=1

π(p,m)f∗
AIi(p) <

|P |∑
p=1

Pr(p)

|M |∑
m=1

Π(p,m)f∗
C(p)

⇔ ∀i.AveDEx[f∗
AIi(p)] < AveDEx[f∗

C(p)]

where π(p,m) and Π(p,m) are the probabilities that AIi and C choose move m
under distribution D′, and Ex[·] is an expectation value. If a move m is illegal
in p, π(p,m) and Π(p,m) are 0.

Under these definitions, we continue to analyze the consultation algorithm
in this paper.

3 Mathematical analysis of consultation algorithm with
random numbers

In the previous section we formed a mathematical representation of the consul-
tation algorithm and defined when the consultation algorithm works well. Now,
it is time to analyze reported experimental results and give a reasonable ex-
planation of the consultation algorithm. We analyze consultation with random
numbers as reported in [3].

Obata et al. reported experiments of consultation algorithm with random
numbers. In these experiments, they prepared many engines that contribute
to consultation which are generated with random numbers in the evaluation
function of the original strong Shogi engine, BONANZA. Let us denote the
original engine as AIO and derived noisy engine as AI ′. Then, the difference of
these engines can be represented by noise function NO. In other word, a prepared
engine is represented as follows

AI ′(p) = AIO(p) +NO(p) , (9)

NO(p) is a function which is generated by a fixed list of random numbers,
once NO(p) is generated, it is fixed. Therefore, AI ′ is still deterministic. NO(p)
depends on p and the original engine, because some positions or engines could
be sensitive for noises, some could be not.

If one makes n of engines which join consultation, let us denote them as
AIi(p) = AIO(p) +N i

O(p). Then, a voting matrix becomes as follows

V = δ




N1
O(p)−N1

O(p) N
1
O(p)−N2

O(p) . . . N
1
O(p)−Nn

O(p)
N2

O(p)−N1
O(p) N

2
O(p)−N2

O(p) . . . N
2
O(p)−Nn

O(p)
...

...
. . .

...
Nn

O(p)−N1
O(p) N

n
O(p)−N2

O(p) . . . N
n
O(p)−Nn

O(p)


 (10)
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because for each AIi(p), AIO(p) is common. As you see, if the voting matrix
does not depend on positions nor types of the original engine, it only depends on
random numbers. Therefore, consultation views the engine as playing randomly.
However NO depends on positions and the original engine. This dependency is
important for an improvement of performance.

In the experiments reported in [3], all engines which join in the consultation
are weaker than the original engine. In other words,

∀i.AveDf∗
AIi(p) < AveDf∗

AIO (p) (11)

This equation means random noise makes the decision worse. This is reason-
able, because random choice is not expected to be better than careful choice.
Even though no engine is stronger than the original engine, the majority of them
choose better candidates compared to the original one. This seems a paradox.
However, there exists a reasonable explanation.

As definition, if consultation algorithm works well, the average of the evalu-
ation values by the perfect player becomes better. In these experiments, consul-
tation worked well. Therefore, the following condition must be satisfied.

∀i.AveDf∗
AIi(p) < AveDf∗

C(p) (12)

Additionally, they reported that the consultation algorithm is stronger than
the original engine. Therefore,

∀i.AveDf∗
AIi(p) < AveDf∗

AIO (p) < AveDf∗
C(p) (13)

must be satisfied. This equation could be satisfied for some noise function NO.
However,NO are generated randomly. Therefore, whether consultation algorithm
works well or not is stochastic in this case. Therefore, we need to treat probability
explicitly.

Before discuss about it, we need a partition of M which is made according
to a classification as follows.

b(p) = {m|f∗(p,m) > f∗
AIO (p))} (14)

e(p) = {m|f∗(p,m) = f∗
AIO (p))} (15)

w(p) = {m|f∗(p,m) < f∗
AIO (p)} (16)

In b(p), the moves have a better evaluation value, in e(p) and w(p), they
do not. This partition depends on p because better or worse is only relative
property. Illegal moves have the minimum as its evaluate value, therefore they
are classified in w(p). What we expect for the consultation algorithm is that the
majority of noisy engines choose a candidate from b(p).

At position p, engines which join in the consultation have three behaviors.
One is to choose an equivalent candidate of the original engine. The other is to
choose a better or worse candidate compared to the original one. Therefore, any
stochastic changes on AIi by noise are classified as three types, i.e., going on
b(p) or w(p), and staying on e(p).
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Suppose there exists exact probabilities of AIO changing its move from
AIO(p) to m. Let us denote this probability as π(p,m). We assume this proba-
bility is common for all AIi. Then, from experiment which is reported in [3],

AveDEx[f∗
AIi(p)] < AveDEx[f∗

AIO (p)] (17)

⇔ AveD

|M |∑
m=1

π (p,m)f∗(p,m) < AveDf∗
AIO (p) (18)

M is divided into a partition by evaluation as b(p), e(p) and w(p). Therefore,
a summation on M is divided into a summation on b(p), e(p) and w(p). Let us

denote such a summation as
∑b(p)

,
∑e(p)

and
∑w(p)

. Then,

|M |∑
m=1

π (p,m)f∗(p,m) =

b(p)∑
π(p,m)f∗(p,m)

+

e(p)∑
π(p,m)f∗(p,m) +

w(p)∑
π(p,m)f∗(p,m)

=

b(p)∑
π(p,m)f∗(p,m) +

e(p)∑
π(p,m)f∗

AIO (p) +

w(p)∑
π(p,m)f∗(p,m) (19)

because in e(p), f∗(p,m) = f∗
AIO

(p).
Therefore, equation (18) is fixed as follows.

AveD

|M |∑
m=1

π(p,m)f∗(p,m) < AveDf∗
AIO (p)

⇔ AveD

|M |∑
m=1

π(p,m)f∗(p,m) < AveD

(b(p)∑
π(p,m)f∗

AIO (p)

+

e(p)∑
π (p,m)f∗

AIO (p) +

w(p)∑
π(p,m)f∗

AIO (p)
)
(20)

⇔ AveD

b(p)∑
m=1

π(p,m){f∗(p,m) − f∗
AIO (p)}

< AveD

w(p)∑
m=1

π (p,m){f∗
AIO (p,m)− f∗(p,m)} (21)

because
∑b(p)

π(m, p) +
∑e(p)

π(m, p) +
∑w(p)

π(m, p) = 1 and AveD is linear.
This equation means an average of an expected improvement on b(p) is less than
an average of an expected reduction in quality and is a reasonable condition of
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this experiment. Let us denote the expected improvement of AI ′, i.e., expected
improvement by changing AIO to AI ′ as ExAI′

i (p). Then,

ExAIi
i (p) =

b(p)∑
π(p,m){f∗(p,m)− f∗

AIO (p)} (22)

Also, let us denote the expected reduction of AI ′, i.e., expected reduction by
changing AIO to AI ′ as ExAI′

r (p). Then,

ExAIi
r (p) =

w(p)∑
π(p,m){f∗

AIO (p,m)− f∗(p,m)} (23)

The experimental condition becomes as follows

∀i.AveDExAIi
i (p) < AveDExAIi

r (p) (24)

Theorem 1

∀i.AveDEx[f∗
AIi(p)] < AveDEx[f∗

AIO (p)] ⇔ ∀i.AveDExAIi
i (p) < AveDExAIi

r (p)

Proof. As above. ⊓⊔

Let denote us the consultation algorithm with random numbers works well
if and only if ∀i.AveDEx[f∗

AIi
(p)] < AveDEx[f∗

AIO
(p)] < AveDEx[f∗

C(p)].

Theorem 2 The consultation algorithm with random numbers works well if and
only if {

∀i.AveDExAIi
i (p) < AveDExAIi

r (p)
AveDExC

r (p) < AveDExC
i (p)

Proof.
AveDEx[f∗

AIO (p)] < AveDEx[f∗
C(p)] (25)

⇔ AveDf∗
AIO (p) < AveD

|M |∑
m=1

Π(p,m)f∗
C(p) (26)

⇔ AveDf∗
AIO (p) < AveD

(b(p)∑
Π(p,m)f∗(p,m)

+

e(p)∑
Π(p,m)f∗(p,m) +

w(p)∑
Π(p,m)f∗(p,m)

)
(27)

⇔ AveD

w(p)∑
Π(p,m){f∗

AIO (p) − f∗(p,m)}

< AveD

b(p)∑
Π (p,m){f∗(p,m)− f∗

AIO (p)} (28)

⇔ AveDExC
r (p) < AveDExC

i (p) (29)

because a summation on M is divided into
∑b(p)

,
∑e(p)

and
∑w(p)

and f∗
C(p)

= f∗
AIO

(p) in e(p). ⊓⊔
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Theorem 3 The lower bound of the consultation algorithm chooses a better
move, Πb(p,m) and the upper bound of the consultation algorithm chooses a
worse move, Πw(p,m) is as follows

Πb(p,m) =
n∑

i=2

(
n

i

)
π(p,m)i −

⌊n/2⌋∑
i=2

(
n

i

)
π(p,m)i

n∑
j=i

e(p),w(p)∑ (
n

j

)
π(p,m′)j

Πw(p,m) =

n∑
i=1

(
n

i

)
π(p,m)i −

⌊n/2⌋−1∑
i=1

(
n

i

)
π(p,m)i

n∑
j=i

e(p),b(p)∑ (
n

j

)
π(p,m′)j

Proof. If consultation algorithm chooses a move, the move needs to be the ma-
jority of the candidates. If more than half of engines choose the same candidate,
the candidate is chosen as a move in any case. Moreover, if some move is chosen
by relatively many engines it is majority. Therefore, the sum of these two is the
probability of a move being chosen by consultation.

The probability of a better move m ∈ b(p) being chosen by more than half
of the engines is

n∑
i=⌊n/2⌋+1

(
n

i

)
π(p,m)i (30)

and the probability of relatively many engines choosing the better move is

⌊n/2⌋∑
i=2

(
n

i

)
π(p,m)i

(
1−

n∑
j=i

e(p),w(p)∑ (
n

j

)
π(p,m′)j

)
(31)

where
∑e(p),w(p)

is a summation on e(p) and w(p). We eliminated the case such
that the same number of engines choose a better move and another worse move.
In this case, conflict resolution needed. For example, in the experiments in [3],
this is done by randomly choosing a move from the candidates. Therefore, in
such a case, the better move is not necessarily chosen. This is the reason why
we omit this case. This case is counted in the probability that the consultation
chooses a worse move.

The summation of these two

Πb(p,m) =
n∑

i=⌊n/2⌋+1

(
n

i

)
π (p,m)i

+

⌊n/2⌋∑
i=2

(
n

i

)
π (p,m)i

(
1−

n∑
j=i

e(p),w(p)∑ (
n

j

)
π(p,m′)j

)

=
n∑

i=2

(
n

i

)
π(p,m)i −

⌊n/2⌋∑
i=2

(
n

i

)
π(p,m)i

n∑
j=i

e(p),w(p)∑ (
n

j

)
π(p,m′)j (32)

is the lower bound of m ∈ b(p) is chosen by consultation at p.
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In the same context, the upper bound of m ∈ w(p) is chosen by consultation
at p is

Πw(p,m) =

n∑
i=1

(
n

i

)
π(p,m)i −

⌊n/2⌋−1∑
i=1

(
n

i

)
π(p,m)i

n∑
j=i

e(p),b(p)∑ (
n

j

)
π(p,m′)j

(33)
⊓⊔

These probabilities are useful to calculate the lower bound of expected im-
provement and the upper bound of expected reduction. AveDExC

r (p)<AveD
ExC

i (p) is satisfiable under ∀i.AveDExAIi
i (p) < AveDExAIi

r (p). There exists
such situations and it is easy to find them by numerical trial and error.

4 Reasonable explanation for 3-Hirn

3-Hirn is a system which is made of two engines and a human [1, 2]. In this sys-
tem, the human chooses a better candidate from candidates which are suggested
from engines. The human is weaker than each engine in the game, but this sys-
tem is stronger than each engine. The weak player’s contribution improves the
final outcome. It looks unreasonable that this system becomes stronger than any
individual engines. However, there is a reasonable explanation of this puzzle in
almost the same context as consultation algorithm, as follows.

Let us denote two engines in this system as AI1 and AI2 and the evaluation
function of the human as fh. Then the 3-Hirn system is written as follows

H3(p) =

{
AI1(p) (fh

AI1
(p)− fh

AI2
(p) > 0)

AI2(p) (fh
AI1

(p)− fh
AI2

(p) ≤ 0)
(34)

If 3-Hirn works well, the following condition is satisfied

∀i.AveDf∗
AIi(p) < AveDf∗

H3
(p) (35)

where i is 1 or 2.
This condition is satisfiable. An engine has an evaluation function to improve

its search speed. This function tends to be rough compared to the one a human
has. Even though the engine has a rough evaluation function, the computer is
really powerful, so it is able to cover the weakness by making a vast search tree.
For human, the situation is opposite. A strong human player has a really good
evaluation function and cuts the search tree efficiently.

Mathematically, this situation is represented as follows

AveD|fh(p,m)− f∗(p,m)| < AveD|fAIi(p,m)− f∗(p,m)| (36)

for almost all of m ∈ M .
This situation is satisfiable. An evaluation function is a function from Carte-

sian product of positions and moves to real numbers. This means it only depends
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on the current position, not on search depth. However the strength of a player
depends on an evaluation function and search depth. Therefore, if the human is
good at evaluation but not for search, and engines are oppositely good at search
but not for evaluation, the situation could arise.

If the above equations are satisfied, the human can choose the best candidate
at a glance from candidates which engines found by wide and deep search effort.
In other word, this system works well “By combining the gifts and strengths of
humans and machines in appropriate ways” as Althöfer mentioned in [1]. This
is the reason why 3-Hirn works well.

5 Discussion

Now, we have an analysis and reasonable explanation for consultation algorithm
with random numbers and 3-Hirn. There exists many situations in which consul-
tation works well. However, it is difficult to derive a property which is common
for all cases. Everything depends on the game and the engine. Therefore, con-
sultation algorithm with random numbers is not a general solution. The domain
which is available to consultation is limited. A clear explanation of 3-Hirn is
obtained in the same context.

The consultation algorithm with random numbers is formally explained by
our approach, but we have another type of consultation, i.e., optimistic con-
sultation. Unfortunately, it is impossible to find the origin of an advantage of
optimistic consultation in this approach. To analyze optimistic consultation al-
gorithm, we need to analyze detailed structures of an evaluation function. This
is difficult.

Also, consultation of different types of engines are reported [3]. This is a
slightly different situation from our analyses. It is possible to apply our analyses
for this case. This consultation makes a large improvement on the original engine.
No longer using a noisy weak engine but different type of engine. Therefore, it
could be possible to approximate this consultation using our analyses.

We conclude that the effectiveness of the consultation algorithm depends on
the game. In our representation, a game has positions and moves, i.e., current
states and decisions to make. Therefore, some human activity is included in our
analyses. For example, the case in which one human considers his idea from
many points of view has an analogy with our analyses. To get different point of
view, one needs to come up with options which is not the first choice. This means
generating worse options under his evaluation. If his evaluation is close enough
to perfect, this is the same as adding random noise to his thinking. Consultation
with many humans could also be approximated by our approach. Solomon de-
scribes a result of social epistemology as “If group deliberation does take place,
outcomes are better when members of the group are strangers, rather than col-
leagues or friends.” [8]. By taking a group of friends, and adding randomness
to the decision process, a group of strangers is formed. This is a case of human
activity to which our approach is applicable.

112



6 Conclusions

In this paper, we clearly explained the origin of an advantage of consultation
algorithm with random numbers, and 3-Hirn. The consultation algorithm with
random numbers works well if and only if the expected improvement of consul-
tation is greater than the expected reduction of consultation and the expected
improvement of each engine is less than the expected reduction of each engine.
In this paper a new definition is derived of the necessary and sufficient condition
for consultation algorithm working well. This new definition is an improvement
of the existing one because it considers all choices. A explanation of 3-Hirn is
given, elaborating on the existing one. Formulas for bounds of probability of con-
sultation algorithm improving/reducing are given. Our analysis has a possibility
to be applicable to human activities not only engine.
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Université de Grenoble (LIG), INRIA, CNRS, Collège de France (LPPA)

Abstract. We describe a generative Bayesian model of tactical attacks in strategy games, which can be used both to predict
attacks and to take tactical decisions. This model is designed to easily integrate and merge information from other (probabilis-
tic) estimations and heuristics. In particular, it handles uncertainty in enemy units’ positions as well as their probable tech tree.
We claim that learning, being it supervised or through reinforcement, adapts to skewed data sources. We evaluated our ap-
proach on StarCraft1: the parameters are learned on a new (freely available) dataset of game states, deterministically re-created
from replays, and the whole model is evaluated for prediction in realistic conditions. It is also the tactical decision-making
component of a competitive StarCraft AI.

1 Introduction

1.1 Game AI

We believe video game AI is central to new, fun, re-playable gameplays, being them multi-player or not. Cooperative (player
versus AI) games are enjoying a new boom, recent RTS games delegate more micro-management to the AI as ever, and ever
more realistic first-person shooters (FPS) immersion hardly cope with scripted (unsurprising) non-playing characters (NPC). In
their study on human like characteristics in RTS games, Hagelbäck and Johansson [1] found out that “tactics was one of the
most successful indicators of whether the player was human or not”. No current non-cheating AI consistently beats good human
players in RTS (aim cheating is harder to define for FPS games), nor are fun to play many games against. Finally, as the world
is simulated but the players are not, multi-player game AI research is in between real-world robotics and more theoretical AI,
and so can benefit both fields.

1.2 RTS Gameplay

Real-time strategy (RTS) gameplay consist in producing and managing group of units with attacks and movements specificities
in order to defeat an enemy. Most often, it is required to gather resources and build up an economic and military power while
expanding a technology tree. Parts of the map not in the sight range of the player’s units are under fog of war, so the player
only has partial information about the enemy buildings and army. The way by which we expand the tech tree, the specific units
composing the army, and the general stance (aggressive or defensive) form what we call strategy. At the lower level, the actions
performed by the player (human or not) to optimize the effectiveness of its units is called micro-management. In between lies
tactics: where to attack, and how. A good human player takes much data in consideration when choosing: are there flaws in the
defense? Which spot is more worthy to attack? How much am I vulnerable for attacking here? Is the terrain (height, chokes) to
my advantage? etc.

In this paper, we focus on tactics, in between strategy (high-level) and micro-management (lower-level), as seen in Fig. 1.
We propose a model which can either predict enemy attacks or give us a distribution on where and how to attack the opponent.
Information from the higher-level strategy constrains what types of attacks are possible. As shown in Fig. 1, information from
units’ positions (or possibly an enemy units particle filter as in [2]) constrains where the armies can possibly be in the future.
In the context of our StarCraft AI (“bot”), once we have a decision: we generate a goal (attack order) passed to units groups
(see Fig.1). A Bayesian model for micro-management [3], in which units are attracted or repulsed by dynamic (goal, units,
damages) and static (terrain) influence maps, actually moves the units in StarCraft. Other previous works on strategy prediction
[4, 5] allows us to infer the enemy tech tree and strategies from incomplete information (due to the fog of war).

1.3 StarCraft Tactics

We worked on StarCraft: Brood War, which is a canonical RTS game. It had been around since 1998, sold 9.5 million licenses
and reigned on competitive RTS for more than a decade. StarCraft (like most RTS) has a mechanism, replays, to record every

1 StarCraft and its expansion StarCraft: Brood War are trademarks of Blizzard EntertainmentTM
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Fig. 1. Left: Gameplay levels of abstraction for RTS games, compared with their level of direct (and complete) information and orders of
magnitudes of time to change their policies. Right:Information centric view of the StarCraft bot player, the part presented in this paper is
inside dotted lines (tactics). Dotted arrows represent constraints on what is possible, plain simple arrows represent simple (real) values, either
from data or decisions, and double arrows represent probability distributions on possible values. The grayed surfaces are the components
actuators (passing orders to the game).

player’s actions such that the state of the game can be deterministically re-simulated. Numerous international competitions and
professional gaming (mainly in South Korea) produced a massive amount of data of highly skilled human players, performing
about 300 actions per minute while following and adapting their strategies. In StarCraft, there are two types of resources, often
located close together, minerals (at the base of everything) and gas (at the base of advanced units and technologies). There are
3 factions (Protoss, Terran and Zerg) which have workers to gather resources, and all other characteristics are different: from
military units to “tech trees”, gameplay styles.

Units have different abilities, which leads to different possible tactics. Each faction has invisible (temporarily or perma-
nently) units, flying transport units, flying attack units and ground units. Some units can only attack ground or air units, some
others have splash damage attacks, immobilizing or illusion abilities. Fast and mobile units are not cost-effective in head-to-head
fights against slower bulky units. We used the gamers’ vocabulary to qualify different types of tactics:

– ground attacks (raids or pushes) are the most normal kind of attacks, carried by basic units which cannot fly,
– air attacks (air raids), which use flying units’ mobility to quickly deal damage to undefended spots.
– invisible attacks exploit the weaknesses (being them positional or technological) in detectors of the enemy to deal damage

without retaliation,
– drops are attacks using ground units transported by air, combining flying units’ mobility with cost-effectiveness of ground

units, at the expense of vulnerability during transit.

This will be the only four types of tactics that we will use in this paper: how did the player attack or defend?
RTS games maps, StarCraft included, consist in a closed arena in which units can evolve. It is filled with terrain features like

uncrossable terrain for ground units (water, space), cliffs, ramps, walls. Particularly, each RTS game which allows production
also give some economical (gathering) mechanism and so there are some resources scattered on the map, where players need
to go collect. It is way more efficient to build expansion (auxiliary bases) to collect resources directly on site. So when a player
decides to attack, she has to decide where to attack, and this decision takes into account how it can attack different places, due
to their geographical remoteness, topological access possibilities and defense strength. Choosing where to attack is a complex
decision to make: of course it is always wanted to attack poorly defended economic expansions of the opponent, but the player
has to consider if it places its own bases in jeopardy, or if it may trap her own army. With a perfect estimator of battles outcomes
(which is a hard problem due to terrain, army composition combinatorics and units control complexity), and perfect information,
this would result in a game tree problem which could be solved my α − β. Unfortunately, StarCraft is a partial observation
game with complex terrain and fight mechanics.

2 Background

2.1 Related Work

Aha et al. [6] used case-based reasoning (CBR) to perform dynamic tactical plan retrieval (matching) extracted from domain
knowledge in Wargus. Ontañó et al. [7] based their real-time case-based planning (CBP) system on a plan dependency graph115
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which is learned from human demonstration in Wargus. A case based behavior generator spawn missing goals which are missing
from the current state and plan according to the recognized state. In [8, 9], they used a knowledge-based approach to perform
situation assessment to use the right plan, performing runtime adaptation by monitoring its performance. Sharma et al. [10]
used richly parametrized CBR for strategic and tactical AI in Spring (Total Annihilation open source clone). [11] combined
CBR and reinforcement learning to enable reuse of tactical plan components. Cadena and Garrido [12] used fuzzy CBR (fuzzy
case matching) for strategic and tactical planning. Chung et al. [13] applied Monte-Carlo planning to a capture-the-flag mod
of Open RTS. Inspired by successes of MCTS with upper confidence bounds on trees (UCT) policies [14] on the game of Go,
Balla and Fern [15] applied UCT to tactical assault planning in Wargus.

In Starcraft, Weber et al. [16, 17] produced tactical goals through reactive planning and goal-driven autonomy, finding the
more relevant goal(s) to follow in unforeseen situations. Kabanza et al. [18] performed plan and intent recognition to find
tactical opportunities. On spatial and temporal reasoning, Forbus et al. [19] presented a tactical qualitative description of terrain
for wargames through geometric and pathfinding analysis. Perkins [20] automatically extracted choke points and regions of
StarCraft maps from a pruned Voronoi diagram, which we used for our regions representations. Wintermute et al. [21] used a
cognitive approach mimicking human attention for tactics and units control. Ponsen et al. [22] developed an evolutionary state-
based tactics generator for Wargus. Finally, Avery et al. [23] and Smith et al. [24] co-evolved influence map trees for spatial
(tactical) reasoning in RTS games.

Our approach (and bot architecture, depicted in Fig. 1) can be seen as goal-driven autonomy [16] dealing with multi-
level reasoning by passing distributions (without any assumption about how they were obtained) on the module input. Using
distributions as messages between specialized modules makes dealing with uncertainty first class, this way a given model do not
care if the uncertainty comes from incompleteness in the data, a complex and biased heuristic, or another probabilistic model.
We then take a decision by sampling or taking the most probable value in the output distribution. Another particularity of our
model is that it allows for prediction of the enemy tactics using the same model with different inputs. Finally, our approach
is not exclusive to most of the techniques presented above, and it could be interesting to combine it with UCT [15] and more
complex/precise tactics generated through planning.

2.2 Bayesian Programming

Probability is used as an alternative to classical logic and we transform incompleteness (in the experiences, observations or the
model) into uncertainty [25]. We introduce Bayesian programs (BP), a formalism that can be used to describe entirely any kind
of Bayesian model, subsuming Bayesian networks and Bayesian maps, equivalent to probabilistic factor graphs [26]. There are
mainly two parts in a BP, the description of how to compute the joint distribution, and the question(s) that it will be asked.

The description consists in explaining the relevant variables {X1, . . . , Xn} and explain their dependencies by decomposing
the joint distribution P(X1 . . . Xn|δ, π) with existing preliminary knowledge π and data δ. The forms of each term of the product
specify how to compute their distributions: either parametric forms (laws or probability tables, with free parameters that can be
learned from data δ) or recursive questions to other Bayesian programs.

Answering a question is computing the distribution P(Searched|Known), with Searched and Known two disjoint sub-
sets of the variables.

P(Searched|Known) =
∑

Free P(Searched, Free, Known)

P(Known)

=
1

Z
×

∑
Free

P(Searched, Free, Known)

BP


Desc.


Spec.(π)


V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

Bayesian programming originated in robotics [27] and evolved to all sensory-motor systems [28]. For its use in cognitive
modeling, see [29] and for its first use in video games (FPS, Unreal Tournament), see [30]; for MMORPG, see [31].116
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3 Methodology

3.1 Dataset

We downloaded more than 8000 replays to keep 7649 uncorrupted, 1v1 replays of very high level StarCraft games (pro-
gamers leagues and international tournaments) from specialized websites234, we then ran them using BWAPI5 and dumped
units positions, pathfinding and regions, resources, orders, vision events, for attacks (we trigger an attack tracking heuristic
when one unit dies and there are at least two military units around): types, positions, outcomes. Basically, every BWAPI event
was recorded, the dataset and its source code are freely available6.

3.2 Spatial Reasoning

Fig. 2. A very simple map on the left, which is transformed into regions (between chokes in dotted red lines) by Voronoi tesselation and
clustering. These plain regions (numbers in red) are then augmented with choke-dependent regions (letters in blue)

We used two kinds of regions: BroodWar Terrain Analyser (BWTA) regions and choke-dependent (choke-centered) regions.
BWTA regions are obtained from a pruned Voronoi diagram on walkable terrain [20] and give regions for which chokes are the
boundaries. As battles often happens at chokes, choke-dependent regions are created by doing an additional (distance limited)
Voronoi tesselation spawned at chokes, its regions set is (regions \ chokes) ∪ chokes. Figure 2 illustrate regions and choke-
dependent regions (CDR). Results for choke-dependent regions are not fully detailed.

3.3 Value Heuristics

The idea is to have (most probably biased) lower-level heuristics from units observations which produce information exploitable
at the tactical level, and take some advantage of strategic inference too. The advantages are that 1) learning will de-skew the
model output from biased heuristic inputs 2) the model is agnostic to where input variables’ values come from 3) the updating
process is the same for supervised learning and for reinforcement learning.

We note sa|dunit type(r) for the balanced score of units from attacker or defender (a|d) of a given type in region r. The balanced
score of units is just the sum of units multiplied by each unit score (= minerals value + 4

3gas value + 50supply value).

2 http://www.teamliquid.net
3 http://www.gosugamers.net
4 http://www.iccup.com
5 http://code.google.com/p/bwapi/
6 http://snippyhollow.github.com/bwrepdump/ 117
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The heuristics we used in our benchmarks (which we could change) are:

economical scored(r) =
sdworkers(r)∑

i∈regions s
d
workers(i)

tactical scored(r) =
∑

i∈regions
sdarmy(i)× dist(i, r)−1.5

We used “−1.5” such that the tactical value of a region in between two halves of an army, each at distance 2, would be higher
than the tactical value of a region at distance 4 of the full (same) army. For flying units, dist is the Euclidean distance, while for
ground units it takes pathfinding into account.

ground defensed(r) =
sdcan attack ground(r)

saground units(r)

air defensed(r) =
sdcan attack air(r)

saair units(r)

invis defensed(r) = numberddetectors

3.4 Tactical Model

We preferred to discretize continuous values to enable quick complete computations. Another strategy would keep more values
and use Monte Carlo sampling for computation. We think that discretization is not a concern because 1) heuristics are simple
and biased already 2) we often reason about imperfect information and this uncertainty tops discretization fittings.

Variables With n regions, we have:

– A1:n ∈ {true, false}, Ai: attack in region i or not?
– E1:n ∈ {no, low, high}, Ei is the discretized economical value of the region i for the defender. We choose 3 values: no

workers in the regions, low: a small amount of workers (less than half the total) and high: more than half the total of workers
in this region i.

– T1:n ∈ discrete levels, Ti is the tactical value of the region i for the defender, see above for an explanation of the
heuristic. Basically, T is proportional to the proximity to the defender’s army. In benchmarks, discretization steps are
0, 0.05, 0.1, 0.2, 0.4, 0.8 (log2 scale).

– TA1:n ∈ discrete levels, TAi is the tactical value of the region i for the attacker (see above).
– B1:n ∈ {true, false}, Bi tells if the region belongs (or not) to the defender. P(Bi = true) = 1 if the defender has a

base in region i and P(Bi = false) = 1 if the attacker has one. Influence zones of the defender can be measured (with
uncertainty) by P(Bi = true) ≥ 0.5 and vice versa.

– H1:n ∈ {ground, air, invisible, drop}, Hi: in predictive mode: how we will be attacked, in decision-making: how to
attack, in region i.

– GD1:n ∈ {no, low,med, high}: ground defense (relative to the attacker power) in region i, result from a heuristic. no
defense if the defender’s army is ≥ 1/10th of the attacker’s, low defense above that and under half the attacker’s army,
medium defense above that and under comparable sizes, high if the defender’s army is bigger than the attacker.

– AD1:n ∈ {no, low,med, high}: same for air defense.
– ID1:n ∈ {no detector, one detector, several}: invisible defense, equating to numbers of detectors.
– TT ∈ [∅, building1, building2, building1 ∧ building2, techtrees, . . . ]: all the possible technological trees for the given

race. For instance {pylon, gate} and {pylon, gate, core} are two different T ech T rees.
– HP ∈ {ground, ground∧ air, ground∧ invis, ground∧ air ∧ invis, ground∧ drop, ground∧ air ∧ drop, ground∧
invis ∧ drop, ground ∧ air ∧ invis ∧ drop}: how possible types of attacks, directly mapped from TT information. In
prediction, with this variable, we make use of what we can infer on the opponent’s strategy [5, 4], in decision-making, we
know our own possibilities (we know our tech tree as well as the units we own).

Finally, for some variables, we take uncertainty into account with “soft evidences”: for instance for a region in which no player
has a base, we have a soft evidence that it belongs more probably to the player established closer. In this case, for a given region,
we introduce the soft evidence variable(s) B′ and the coherence variable λB and impose P(λB = 1|B,B′) iff B = B′, while
P(λB |B,B′)P(B′) is a new factor in the joint distribution. This allows to sum over P(B′) distribution (soft evidence).118
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Decomposition The joint distribution of our model contains soft evidence variables for all input family variables (E, T ,
TA, B, GD, AD, ID, HP ) to be as general as possible, i.e. to be able to cope with all possible uncertainty (from incomplete
information) that may come up in a game. To avoid being too verbose, we explain the decomposition only with the soft evidence
for the family of variables B, the principle holds for all other soft evidences. For the n considered regions, we have:

P(A1:n, E1:n, T1:n, TA1:n, B1:n, B
′
1:n, λB,1:n,

H1:n, GD1:n, AD1:n, ID1:n, HP, TT )

=
n∏

i=1

[P(Ai)P(Ei, Ti, TAi, Bi|Ai). (1)

P(λB,i|B1:n, B
′
1:n)P(B

′
1:n)

P(ADi, GDi, IDi|Hi)P(Hi|HP )]P(HP |TT )P(TT )

Forms and Learning We will explain the forms for a given/fixed i region number:

– P(A) is the prior on the fact that the player attacks in this region, in our evaluation we set it to nbattles/(nbattles +
nnot battles). In a given match it should be initialized to uniform and progressively learn the preferred attack regions of the
opponent for predictions, learn the regions in which our attacks fail or succeed for decision-making.

– P(E, T, TA,B|A) is a covariance table of the economical, tactical (both for the defender and the attacker), belonging scores
where an attacks happen. We just use Laplace succession law (“add one” smoothing) [25] and count the co-occurrences,
thus almost performing maximum likelihood learning of the table.

– P(λB |B,B′) = 1.0 iff B = B′ is just a coherence constraint.
– P(AD,GD, ID|H) is a covariance table of the air, ground, invisible defense values depending on how the attack happens.

As for P(E, T, TA,B|A), we use a Laplace’s law of succession to learn it.
– P(H|HP ) is the distribution on how the attack happens depending on what is possible. Trivially P(H = ground|HP =
ground) = 1.0, for more complex possibilities we have different maximum likelihood multinomial distributions on H
values depending on HP .

– P(HP |TT ) is the direct mapping of what the tech tree allows as possible attack types: P(HP = hp|TT ) = 1 is a function
of TT (all P(HP 6= hp|TT ) = 0).

– P(TT ): if we are sure of the tech tree (prediction without fog of war, or in decision-making mode), P(TT = k) = 1 and
P(TT 6= k) = 0; otherwise, it allows us to take uncertainty about the opponent’s tech tree and balance P(HP |TT ). We
obtain a distribution on what is possible (P(HP )) for the opponent’s attack types.

There are two approaches to fill up these probability tables, either by observing games (supervised learning), as we did in the
evaluation section, or by acting (reinforcement learning). In match situation against a given opponent, for inputs that we can
unequivocally attribute to their intention (style and general strategy), we also refine these probability tables (with Laplace’s rule
of succession). To keep things simple, we just refine

∑
E,T,TA P(E, T, TA,B|A) corresponding to their aggressiveness (aggro)

or our successes and failures, and equivalently for P(H|HP ). Indeed, if we sum over E, T and TA, we consider the inclination
of our opponent to venture into enemy territory or the interest that we have to do so by counting our successes with aggressive
or defensive parameters. In P(H|HP ), we are learning the opponent’s inclination for particular types of tactics according to
what is available to their, or for us the effectiveness of our attack types choices.

The model is highly modular, and some parts are more important than others. We can separate three main parts:
P(E, T, TA,B|A), P(AD,GD, ID|H) and P(H|HP ). In prediction, P(E, T, TA,B|A) uses the inferred (uncertain) eco-
nomic (E), tactical (T ) and belonging (B) scores of the opponent while knowing our own tactical position fully (TA). In
decision-making, we know E, T,B (for us) and estimate TA. In our prediction benchmarks, P(AD,GD, ID|H) has the lesser
impact on the results of the three main parts, either because the uncertainty from the attacker on AD,GD, ID is too high or
because our heuristics are too simple, though it still contributes positively to the score. In decision-making, it allows for rein-
forcement learning to have pivoting tuple values for AD,GD, ID at which to switch attack types. In prediction, P(H|HP ) is
used to take P(TT ) (coming from strategy prediction [4]) into account and constraints H to what is possible. For the use of
P(H|HP )P(HP |TT )P(TT ) in decision-making, see the Results sections.

Questions For a given region i, we can ask the probability to attack here,

P(Ai = ai|ei, ti, tai, λB,i = 1)
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=

∑
Bi,B

′
i
P(ei, ti, tai, Bi|ai)P(ai)P(B′

i).P (λB,i|Bi, B
′
i)∑

Ai,Bi,B
′
i
P(ei, ti, tai, Bi|Ai)P(Ai)P(B′

i)P(λB,i|Bi, B′
i)

∝
∑
Bi,B′

i

P(ei, ti, tai, Bi|ai)P(ai)P(B′i)P(λB,i|Bi, B
′
i)

and the mean by which we should attack,

P(Hi = hi|adi, gdi, idi)
∝

∑
TT,P

[P(adi, gdi, idi|hi)P(hi|HP )P(HP |TT )P(TT )]

For clarity, we omitted some variables couples on which we have to sum (to take uncertainty into account) as for B (and B′)
above. We always sum over estimated, inferred variables, while we know the one we observe fully. In prediction mode, we sum
over TA,B, TT, P ; in decision-making, we sum over E, T,B,AD,GD, ID. The complete question that we ask our model is
P(A,H|FullyObserved). The maximum of P(A,H) may not be the same as the maximum of P(A) or P(H), for instance
think of a very important economic zone that is very well defended, it may be the maximum of P(A), but not once we take
P(H) into account. Inversely, some regions are not defended against anything at all but present little or no interest. Our joint
distribution (1) can be rewritten: P(Searched, FullyObserved,Estimated), so we ask:

P(A1:n, H1:n|FullyObserved) (2)

∝
∑

Estimated

P(A1:n, H1:n, Estimated, FullyObserved)

4 Results

4.1 Learning

To measure fairly the prediction performance of such a model, we applied “leave-100-out” cross-validation from our dataset:
as we had many games (see Table. 1), we set aside 100 games of each match-up for testing (with more than 1 battle per
match: rather ≈ J11 . . . 35K battles/match) and train our model on the rest. We write match-ups XvY with X and Y the first
letters of the factions involved (Protoss, Terran, Zerg). Note that mirror match-ups (PvP, TvT, ZvZ) have fewer games but
twice as many attacks from a given faction. Learning was performed as explained in III.B.3: for each battle in r we had
one observation for: P(er, tr, tar, br|A = true), and #regions − 1 observations for the i regions which were not attacked:
P(ei6=r, ti6=r, tai6=r, bi6=r|A = false). For each battle of type t we had one observation for P (ad, gd, id|H = t) and P (H =
t|p). By learning with a Laplace’s law of succession [25], we allow for unseen event to have a non-zero probability.

An exhaustive presentation of the learned tables is out of the scope of this paper, but we displayed interesting cases in which
the posteriors of the learned model concur with human expertise in Figures 3 and 4. In Fig. 3, we see that air raids/attacks are
quite risk averse and it is two times more likely to attack a region with less than 1/10th of the flying force in anti-aircraft warfare
than to attack a region with up to one half of our force. We can also notice than drops are to be preferred either when it is safe to
land (no anti-aircraft defense) or when there is a large defense (harassment tactics). In Fig. 3 we can see that, in general, there
are as many ground attacks at the sum of other types. The two top graphs show cases in which the tech of the attacker was very
specialized, and, in such cases, the specificity seems to be used. In particular, the top right graphic may be corresponding to a
“fast Dark Templars rush”. Finally, Fig. 4 shows the transition between two types of encounters: tactics aimed at engaging the
enemy army (a higher T value entails a higher P(A)) and tactics aimed at damaging the enemy economy (at high E, we look
for opportunities to attack with a small army where T is lower).

4.2 Prediction Performance

We learned and tested one model for each race and each match-up. As we want to predict where (P(A1:n)) and how (P(Hbattle))
the next attack will happen to us, we used inferred enemy TT (to produce P ) and TA, our scores being fully known: E, T , B,
ID. We consider GD, AD to be fully known even though they depend on the attacker force, we should have some uncertainty
on them, but we tested that they accounted (being known instead of fully unknown) for 1 to 2% of P(H) accuracy (in prediction)
once P was known. We should point that pro-gamers scout very well and so it allows for a highly accurate TT estimation with
[4]. Training requires to recreate battle states (all units’ positions) and count parameters for 5000 to 30000 battles (depending
on the match-up). Once that is done, inference is very quick: a look-up in a probability table for known values and #F look-ups
for free variables F on which we sum. We chose to try and predict the next battle 30 seconds before it happens, 30 seconds120
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Fig. 3. Left: (top) P(H = invis) and P(H = drop) for varying values of GD (summed on other variables); (bottom) P(H = air)
and P(H = drop) for varying values of AD (summed on other variables), for Terran in TvP. We can see that it is far more likely that
invisible (“sneaky”) attacks happen where there is low ground presence (top left plot). For drops, we understand that the high value for
P(H = drop|GD = 1.0) is caused by the fact that drop armies are small and this value corresponds to drops which are being expected
by the defender. Drops at lower values of GD correspond to unexpected (surprise) drops. As ground units are more cost efficient than flying
units in a static battle, we see that both P(H = invis|AD = 0.0) and P(H = drop|AD = 0.0) are much more probable than situations
with air defenses. Right: P(H|HP ) for varying values of H and for different values of P (derived from inferred TT ), for Protoss in PvT.
Conditioning on what is possible given the tech tree gives a lot of information about what attack types are possible or not. More interestingly,
it clusters the game phases in different tech levels and allows for learning the relative distributions of attack types with regard to each phase.
For instance, the last (bottom right) plot shows the distribution on attack types at the end of a technologically complete game.

Fig. 4. P(A) for varying values ofE and T , summed on the other variables, for Terran in TvT. Higher economical values is strongly correlated
with surprise attacks with small tactical squads and no defenses, which almost never happens in open fields (“no eco”) as this would lead to
very unbalanced battles (in terms of army sizes): it would not benefit the smaller party, which can flee and avoid confrontation, as opposed to
when defending their base.
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being an approximation of the time needed to go from the middle of a map (where the entropy on “next battle position” is
maximum) to any region by ground, so that the prediction is useful for the defender (they can position their army).

The model code7 (for learning and testing) as well as the datasets (see above) are freely available. Raw results of predictions
of positions and types of attacks 30 seconds before they happen are presented in Table. 1: for instance the bold number (38.0)
corresponds to the percentage of good positions (regions) predictions (30 sec before event) which were ranked 1st in the
probabilities on A1:n for Protoss attacks against Terran (PvT). The measures on where corresponds to the percentage of good
prediction and the mean probability for given ranks in P(A1:n) (to give a sense of the shape of the distribution). As the most
probable The measures on how corresponds to the percentage of good predictions for the most probable P(Hbattle) and the
number of such battles seen in the test set for given attack types. We particularly predict well ground attacks (trivial in the
early game, less in the end game) and, interestingly, Terran and Zerg drop attacks. The where & how row corresponds to the
percentage of good predictions for the maximal probability in the joint P(A1:n, H1:n): considering only the most probable
attack (more information is in the rest of the distribution, as shown for where!) according to our model, we can predict where
and how an attack will occur in the next 30 seconds ≈ 1/4th of the time. Finally, note that scores are also useful 60 seconds
before the attack (obviously, TT , and thus P , are not so different, nor are B and E): PvT where top 4 ranks are 35.6, 8.5, 7.7,
7.0% good versus 38.0, 16.3, 8.9, 6.7% 30 seconds before; how total precision 60 seconds before is 70.0% vs. 72.4%, where &
how maximum probability precision is 19.9% vs. 23%. This gives even more time for the player to adapt their tactics.

Table 1. Results summary for multiple metrics at 30 seconds before attack. The number in bold (38.0) is read as “38% of the time, the region
i with probability of rank 1 in P(Ai) is the one in which the attack happened 30 seconds later”.

%: good predictions Protoss Terran Zerg
Pr: mean probability P T Z P T Z P T Z

total # games 445 2408 2027 2408 461 2107 2027 2107 199
measure rank % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr

1 40.9 .334 38.0 .329 34.5 .304 35.3 .299 34.4 .295 39.0 0.358 32.8 .31 39.8 .331 37.2 .324

w
he

re

2 14.6 .157 16.3 .149 13.0 .152 14.3 .148 14.7 .147 17.8 .174 15.4 .166 16.6 .148 16.9 .157
3 7.8 .089 8.9 .085 6.9 .092 9.8 .09 8.4 .087 10.0 .096 11.3 .099 7.6 .084 10.7 .100
4 7.6 .062 6.7 .059 7.9 .064 8.6 .071 6.9 .063 7.0 .062 8.9 .07 7.7 .064 8.6 .07

measure type % N % N % N % N % N % N % N % N % N
G 97.5 1016 98.1 1458 98.4 568 100 691 99.9 3218 76.7 695 86.6 612 99.8 567 67.2 607

ho
w A 44.4 81 34.5 415 46.8 190 40 5 13.3 444 47.1 402 14.2 155 15.8 19 74.2 586

I 22.7 225 49.6 337 12.9 132 NA NA NA NA 36.8 326 32.6 227 NA NA NA NA
D 55.9 340 42.2 464 45.2 93 93.5 107 86 1183 62.8 739 67.7 535 81.4 86 63.6 588

total 76.3 1662 72.4 2674 71.9 983 98.4 806 88.5 4850 60.4 2162 64.6 1529 94.7 674 67.6 1802
where & how (%) 32.8 23 23.8 27.1 23.6 30.2 23.3 30.9 26.4

When we are mistaken, the mean ground distance (pathfinding wise) of the most probable predicted region to the good one
(where the attack happens) is 1223 pixels (38 build tiles, or 2 screens in StarCraft’s resolution), while the mean max distance
on the map is 5506 (172 build tiles). Also, the mean number of regions by map is 19, so a random where (attack destination)
picking policy would have a correctness of 1/19 (5.23%). For choke-centered regions, the numbers of good where predictions
are lower (between 24% and 32% correct for the most probable) but the mean number of regions by map is 42. For where &
how, a random policy would have a precision of 1/(19*4), and even a random policy taking the high frequency of ground attacks
into account would at most be ≈ 1/(19*2) correct.

For the location only (where question), we also counted the mean number of different regions which were attacked in a
given game (between 3.97 and 4.86 for regions, depending on the match-up, and between 5.13 and 6.23 for choke-dependent
regions). The ratio over these means would give the best prediction rate we could expect from a baseline heuristic based solely
on the location data. These are attacks that actually happened, so the number of regions a player have to be worried about is at
least this one (or more, for regions which were not attacked during a game but were potential targets). This baseline heuristic
would yield (depending on the match-up) prediction rates between 20.5 and 25.2% for regions, versus our 32.8 to 40.9%, and
between 16.1% and 19.5% for choke-dependent regions, versus our 24% to 32%.

Note that our current model considers a uniform prior on regions (no bias towards past battlefields) and that we do not
incorporate any derivative of the armies’ movements. There is no player modeling at all: learning and fitting the mean player’s
tactics is not optimal, so we should specialize the probability tables for each player. Also, we use all types of battles in our
training and testing. Short experiments showed that if we used only attacks on bases, the probability of good where predictions
for the maximum of P(A1:n) goes above 50% (which is not a surprise, there are far less bases than regions in which attacks
happen). To conclude on tactics positions prediction: if we sum the 2 most probable regions for the attack, we are right at least
half the time; if we sum the 4 most probable (for our robotic player, it means it prepares against attacks in 4 regions as opposed
to 19), we are right ≈ 70% of the time.

7 https://github.com/SnippyHolloW/AnalyzeBWData122
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Mistakes on the type of the attack are high for invisible attacks: while these tactics can definitely win a game, the counter
is strategic (it is to have detectors technology deployed) more than positional. Also, if the maximum of P(Hbattle) is wrong,
it doesn’t mean than P(Hbattle = good) = 0.0 at all! The result needing improvements the most is for air tactics, because
countering them really is positional, see our discussion in the conclusion.

4.3 In Game Decision-Making

In a StarCraft game, our bot has to make decisions about where and how to attack or defend, it does so by reasoning about
opponent’s tactics, bases, its priors, and under strategic constraints (Fig. 1). Once a decision is taken, the output of the tactical
model is an offensive or defensive goal. There are different military goal types (base defense, ground attacks, air attacks,
drops...), and each type of goal has pre-requisites (for instance: a drop goal needs to have the control of a dropship and military
units to become active). The spawned goal then autonomously sets objectives for Bayesian units [3], sometimes procedurally
creating intermediate objectives or canceling itself in the worst cases.

The destinations of goals are from P(A), while the type of the goal comes from P(H). In input, we fully know tactical scores
of the regions according to our military units placement TA (we are the attacker), what is possible for us to do P (according to
units available) and we estimate E, T , B, ID, GD, AD from past (partial) observations. Estimating T is the most tricky of all
because it may be changing fast, for that we use a units filter which just decays probability mass of seen units. An improvement
would be to use a particle filter [2], with a learned motion model. From the joint (2) P(A1:n, H1:n|ta, p, tt) may arise a couple
i,Hi more probable than the most probables P(Ai) and P(Hj) taken separately (the case of an heavily defended main base and
a small unprotected expand for instance). Fig. 5 displays the mean P(A,H) for Terran (in TvZ) attacks decision-making for the
most 32 probable type/region tactical couples. It is in this kind of landscape (though more steep because Fig. 5 is a mean) that
we sample (or pick the most probable couple) to take a decision. Also, we may spawn defensive goals countering the attacks
that we predict from the opponent.

Fig. 5. Mean P(A,H) for all H values and the top 8 P(Ai, Hi) values, for Terran in TvZ. The larger the white square area, the higher
P(Ai, Hi). A simple way of taking a tactical decision according to this model, and the learned parameters, is by sampling in this distribution.

Finally, we can steer our technological growth towards the opponent’s weaknesses. A question that we can ask our model
(at time t) is P(TT ), or, in two parts: we first find i, hi which maximize P(A,H) at time t+ 1, and then ask a more directive:

P(TT |hi) ∝
∑
P

P(hi|HP )P(P |TT )P(TT )

so that it gives us a distribution on the tech trees (TT ) needed to be able to perform the wanted attack type. To take a decision
on our technology direction, we can consider the distances between our current ttt and all the probable values of TT t+1.

5 Conclusions

5.1 Possible Improvements

There are three main research directions for possible improvements: improving the underlying heuristics, improving the dy-
namic of the model and improving the model itself. The heuristics presented here are quite simple but they may be changed, and
even removed or added, for another RTS or FPS, or for more performance. In particular, our “defense against invisible” heuristic123
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could take detector positioning/coverage into account. Our heuristic on tactical values can also be reworked to take terrain tac-
tical values into account (chokes and elevation in StarCraft). For the estimated position of enemy units, we could use a particle
filter [2] with a motion model (at least one for ground units and one for flying units). There is room to improve the dynam-
ics of the model: considering the prior probabilities to attack in regions given past attacks and/or considering evolutions of the
T ,TA,B,E values (derivatives) in time. The discretizations that we used may show their limits, though if we want to use continu-
ous values, we need to setup a more complicated learning and inference process (MCMC sampling). Finally, one of the strongest
assumptions (which is a drawback particularly for prediction) of our model is that the attacking player is always considered to
attack in this most probable regions. While this would be true if the model was complete (with finer army positions inputs and
a model of what the player thinks), we believe such an assumption of completeness is far fetched. Instead we should express
that incompleteness in the model itself and have a “player decision” variable D ∼Multinomial(P(A1:n, H1:n), player).

5.2 Final Words

We have presented a Bayesian tactical model for RTS AI, which allows both for opposing tactics prediction and autonomous
tactical decision-making. Being a probabilistic model, it deals with uncertainty easily, and its design allows easy integration into
multi-granularity (multi-scale) AI systems as needed in RTS AI. Without any temporal dynamics, its exact prediction rate of
the joint position and tactical type is in [23-32.8]% (depending on the match-up), and considering the 4 most probable regions
it goes up to ≈ 70%. More importantly, it allows for tactical decision-making under (technological) constraints and (state)
uncertainty. It can be used in production thanks to its low CPU and memory footprint. The dataset, its documentation8, as well
as our model implementation9 (and other data-exploration tools) are free software and can be found online. We plan to use this
model in our StarCraft AI competition entry bot as it gives our bot tactical autonomy and a way to adapt to our opponent.
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8. Mishra, K., Ontañón, S., Ram, A.: Situation Assessment for Plan Retrieval in Real-Time Strategy Games. In: ECCBR. (2008) 355–369
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Abstract. Monte-Carlo Tree Search (MCTS) has been successfully ap-
plied to many games, particularly in Go. In this paper, we investigate
the performance of MCTS in Tron, which is a two-player simultaneous
move game. We try to increase the playing strength of an MCTS program
for the game of Tron by applying several enhancements to the selection,
expansion and play-out phase of MCTS.
Based on the experiments, we may conclude that Progressive Bias, al-
tered expansion phase and play-out cut-off all increase the overall playing
strength, but the results differ per board. MCTS-Solver appears to be a
reliable replacement for MCTS in the game of Tron, and is preferred over
MCTS due to its ability to search the state space for a proven win. The
MCTS program is still outperformed by the best αβ program a1k0n,
which uses a sophisticated evaluation function, indicating that there is
quite some room for improvement.

1 Introduction

The classic way of exploring the game tree is using αβ-search [9] with a domain-
specific evaluation function. However, for games that require a complex posi-
tional evaluation function, this approach might not be the best way. An al-
ternative approach is Monte-Carlo Tree Search (MCTS) [6, 10]. In contrast to
αβ-search, MCTS does not require a positional evaluation function as it relies
on stochastic simulations. MCTS has proven itself to be a viable alternative in,
for instance, the board games Go [6], Hex [1], Amazons [11] and Lines of Action
[19].

A challenging new game is Tron. It is a two-player game that bears resem-
blance to Snake, except that in Tron, players leave a wall behind at each move.
An interesting aspect of Tron is that it is a simultaneous move game, rather
than the usual turn-taking game. In 2010, the University of Waterloo Computer
Science Club organized an AI tournament for the game of Tron [18]. Overall,
the MCTS programs were outperformed by αβ programs. In this paper, the
performance of MCTS in Tron is investigated, continuing the pioneering work
performed by Samothrakis et al. [12]. We examine approaches to improve the
program’s playing strength, by trying out different evaluation functions and
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Fig. 1. A Tron game on a board with obstacles after 13 moves. The blue player (1) has
cut off the upper part of the board, restricting the space the red player (2) can fill.

MCTS enhancements. Our MCTS program equipped with the enhancements is
subsequently matched against the top αβ program a1k0n.

This paper is organized as follows. Section 2 gives a brief description of the
game of Tron and the difficulties that a program has to be able to handle, to play
at a decent skill level. Section 3 explains the MCTS and MCTS-Solver method
applied to Tron. The enhancements applied to MCTS regarding the selection
strategy are described in Section 4, followed by an enhanced expansion strategy
in Section 5. Play-out strategies are described in Section 6. Experiments and
results are given in Section 7. Finally, in Section 8, conclusions from the results
are drawn and future research is suggested.

2 The Game of Tron

The game of Tron originates from the movie Tron, released by Walt Disney
Studios in 1982. The movie is about a virtual world where motorcycles drive at
a constant speed and can only make 90◦ angles, leaving a wall behind them as
they go. The game of Tron investigated in this paper is a board version of the
game played in the movie.

Tron is a two-player board game played on an m × n grid. It is similar to
Snake: each player leaves a wall behind them as they move. In Snake, the player’s
wall is of a limited length, but Tron does not have such a restriction. At each
turn, the red and blue player can only move one square straight ahead, or to the
left or right. Both players perform their moves at the same time; they have no
knowledge of the other player’s move until the next turn. Players cannot move to
a square that already contains a wall. If both players move to the same square, it
is considered a draw. If a player moves into a wall, he loses and the other player
wins. Usually the boards are symmetric, such that none of the players has an
advantage over the other player. A typical board size is 13× 13.

The game is won by outlasting your opponent such that the opponent has
no moves left other than moving into a wall. At the early stage of the game, it
is difficult to find good moves as the number of possible move sequences is quite
large and it is difficult to predict what the opponent will do. Boards can contain
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obstacles (see Figure 1), further increasing the difficulty of the game because
filling the available space becomes a more difficult task. Obstacles can provide
opportunities to cut off an opponent, reducing the opponent’s free space while
maximizing your own.

3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a best-first search method that constructs
a search tree using many simulations (called play-outs) [6, 10]. Play-outs are
used to evaluate a certain position. Positions with a high winning percentage
are preferred over those with a lower winning percentage. MCTS constructs
a search tree consisting of nodes, where each node represents a position of the
game. Each node i has a value vi and a visit count ni. The search starts from the
root node, which represents the current position. The tree is explored at random,
but as the number of simulated nodes increases, it gains a better evaluation of
the nodes and can focus on the most promising nodes.

Although Tron is a simultaneous move game, it is possible to represent it
as a turn-taking game. The player under consideration is always first to move
inside the tree, followed by the other player. An issue arises when the players
can run into each other. A solution is given in Subsection 3.1.

MCTS is divided into four phases [5]. These phases are executed until time
is up. The phases are illustrated in Figure 2. We explain the phases in detail
below.

Repeated X times

Selection Expansion Play-out Backpropagation

The selection strategy is
applied recursively until a leaf
node is reached

One simulated
game is played

The result of this game 
is backpropagated in 
the tree

Nodes are added to 
the tree

Fig. 2. Outline of the Monte-Carlo Tree Search [5].
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Selection. In the selection phase, a child node of a given node is selected ac-
cording to some strategy until a leaf node is reached. The selection task is an
important one, as the goal is to find the best move. Because moves are evalu-
ated by simulation, promising nodes should be played (exploited) more often
than unpromising nodes. However, to find these nodes, unvisited nodes have
to be tried out as well (exploration). Considering that in Tron, a player has
at most 3 different moves at any turn (except for the first turn, where there
could be 4 moves), this is not a problem. Because the number of simulations
that can be performed is limited, a good balance has to be found between
exploring and exploiting nodes. The simplest selection strategy is selecting a
child node at random. A selection strategy that provides a balance between
exploration and exploitation, is UCT (Upper Confidence Bound applied to
Trees) [10]. It is based on the UCB1 algorithm (Upper Confidence Bound)
[2]. UCT selects a child node k from node p as follows:

k ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

)
(1)

C is a constant, which has to be tuned experimentally. Generally, UCT is
applied after the node has first been visited a certain number of times T , to
ensure all nodes have been sufficiently explored to apply UCT. If a node has
a visit count less than T , the random-selection strategy is applied [6].

Expansion. In the expansion phase, the selected leaf node p is expanded. Since
the number of child nodes is at most 3 in Tron, all nodes are added. The
selection strategy is then applied to node p, returning the node from which
the play-out starts.

Play-out. In this phase, the game is simulated in self-play, starting from the
position of the selected node. Moves are performed until the game ends, or
when the outcome can be estimated reliably. In contrast to the selection
phase, both players move simultaneously in the play-out phase. The strat-
egy used for selecting the moves to play can either be performing random
moves, or using domain-specific knowledge that increases the quality of the
simulation. The play-out phase returns a value of 1, 0 or -1 for the play-
out node p, depending on whether the simulated game resulted in a win,
draw, or loss, respectively. The same values are awarded to terminal nodes
in the search tree. If the play-out node belongs to the player under consid-
eration, the other player will first perform a move, such that both players
have performed the same number of moves.

Backpropagation. The result of the simulation is backpropagated from the
leaf node all the way back to the root node of the search tree. The values of
the nodes are updated to match the new average of the play-outs.

After the simulations, the final move to be played by the MCTS program
has to be chosen. The move is selected by taking the most ‘secure’ child of the
root node [5]. The secureness of a node i is defined as: vi + A√

ni
, where A is a

constant. In the experiments, based on trial-and-error for the MCTS program,
A = 1 is used.
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3.1 Handling Simultaneous Moves

Treating Tron as a turn-taking game inside the tree works out quite well in
almost every position of the game. However, if a position arises where the MCTS
program has the advantage, but the players are at risk of crashing into each other,
the program might play the move that leads to a draw. This happens because
inside the search tree, the root player is always the first to move (as done in
[12]). Because the root player already moved to the square that was accessible
to both, the non-root player can no longer move to this square.

This problem is solved by adding an enhancement to the expansion strategy:
if a node n belongs to the root player, and the non-root player could have moved
to the square the root player is currently at, a terminal node is added to n with
the value of a draw (i.e., 0). An example is shown in Figure 3.

Fig. 3. A game tree of Tron. In the left-most branch, both players moved to the same
square, resulting in a terminal node that ends in a draw.

3.2 Monte-Carlo Tree Search Solver

Monte-Carlo Tree Search Solver (MCTS-Solver) [19] is an enhancement for
MCTS that is able to prove the game-theoretic value of a position. MCTS com-
bined with UCT may require significantly more time to find the best move, be-
cause it requires a large number of play-outs to converge to the game-theoretic
value. Running MCTS-Solver requires a negligible amount of additional compu-
tation time on top of MCTS. Since proven positions do not have to be evaluated
again, time can be spent on other positions that have not been proven yet. The
original MCTS-Solver only considered win and loss outcomes, because in the
test domain Lines of Action draws are exceptional [19]. Since draws occur often
in Tron, an enhanced MCTS-Solver is used that does handle draws.

The Score-Bounded MCTS-Solver [4] extends MCTS-Solver to games that
have more than two game-theoretic outcomes. It attaches an interval to each
node, as done in the B* algorithm [3]. The interval is described by a pessimistic
and optimistic bound. The pessimistic score represents the lowest achievable out-
come for the root player, and the optimistic score represents the best achievable
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outcome for the root player. Given sufficient time, the pessimistic and optimistic
score of a node n will converge to its true value. An advantage of Score-Bounded
MCTS is that the bounds enable pruning as in αβ search, skipping unpromising
branches. The initial bound of a node is set to [−1.0, 1.0]. Score-Bounded MCTS
has been shown to solve positions considerably faster than MCTS-Solver [4].

3.3 Progressive Bias

Although UCT gives good results compared to other selection strategies that
do not use knowledge of the game, there is room for improvement. The random
strategy applied when the visit count of the node is small, can be replaced by
the more promising play-out strategy. Since the accuracy of the UCT selection
strategy increases as the number of visits increases, it is desirable to introduce a
so-called ‘progressive strategy’. The progressive strategy provides a soft transi-
tion between the two strategies [5]. A popular choice is progressive bias (PB) that
combines heuristic knowledge with UCT to select the best node [5]. By using
Tron knowledge, node selection can be guided in a more promising direction, one
that might not have been found by using play-outs only. This domain knowledge
can be computationally expensive. A trade-off has to be made between simulat-
ing more games and spending more time for computing the domain knowledge.

When few games have been played, the heuristic knowledge has a major
influence on the decision. The influence gradually decreases when the node is
visited more often. The PB formula is as follows: W×Pmc

li+1 [19]. W is a constant
(set to 10 in the experiments). Pmc is the transitional probability of a move
category mc [17]. li denotes the number of losses in node i, this way, nodes that
do not turn out well are not biased for too long. The formula of UCT and PB
combined is:

k ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

+
W × Pmc

li + 1

)
(2)

The transitional probability of each move category is acquired from games
played by expert players. Since no such games are available, the probabilities
are obtained from self-play experiments of the MCTS program. The transitional
probability Pmc of a move belonging to the move category mc is given by:

Pmc =
nplayed(mc)

navailable(mc)
(3)

nplayed(mc) denotes the number of positions in which a move belonging to move
category mc was played. navailable(mc) is the number of positions where a move
belonging to move category mc could have been played.

We distinguish six move features in Tron:

– Passive: The player follows the wall that it is currently adjacent to.
– Offensive: The player moves towards the other player, when close to each

other.
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– Defensive: The player moves away from the other player, when close to each
other.

– Territorial: The player attempts to close off a space by moving across open
space towards a wall.

– Reckless: The player moves towards a square where the other player could
have moved to, risking a draw.

– Obstructive: The player moves to a square that contains paths to multiple
subspaces, closing off these spaces (at least locally).

4 Heuristic Knowledge in Tron

Estimating the remaining available space of a player is a useful heuristic in Tron
because the game is won by filling a larger space than the opponent. Space
estimation is valuable when, for instance, the program is at a square where it
has to choose between two spaces. Biasing the selection towards moving to larger
spaces saves time on simulating less-promising nodes that lead towards smaller
spaces. We only focus on estimating the number of moves a player can make in
a space that is not reachable by the other player.

Counting the number of empty squares does not always give an accurate
estimation of the number of moves a program requires to fill the available space.
Spaces can contain squares that can be reached, but offer no path back to fill
the rest of the space.

One way to get an estimation of the available space is by filling up the
space in a single-player simulation, and counting the number of moves [13]. The
simulation uses a greedy wall-following heuristic. This heuristic works as follows.
A move is selected such that the player moves to a square that lies adjacent to
one or more walls (excluding the wall at its current square). If any of the moves
cuts the player off from the other possible moves, the available space of each
move is estimated and the move leading having the largest available space is
selected. If there are multiple possible moves of equal score, a move is selected
at random. This method does not always give the correct number of moves, but
it gives a good lower bound on the amount of available space.

Instead of counting the number of empty squares, a tighter upper bound
can be obtained by treating the board as a checker board. The difference in the
number of grey and white squares gives an indication of the number of moves
that can be performed [7]. The estimated number of moves M is computed
by: M = Z − |cg − cw|. Z is the total available space, cg is the number of
grey tiles (including the one the player is currently standing on), and cw is the
number of white tiles. The estimated number of moves can be substantially off
if the space contains large subspaces that offer no way back to other subspaces.
Three example spaces are shown in Figure 4. The estimated number of moves for
boards a, b and c are 13, 9 and 11, respectively. The true number of moves for
the boards are 13, 9 and 10. Note that the estimation of board c is off because
of the two separated subspaces. Had Z been solely used as the move estimation,
the estimated number of moves would have been 14, 10 and 12.
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Fig. 4. Three example boards where the player is isolated from the other player. The
player starts at square S.

5 Predictive Expansion Strategy

In Tron, players will often get separated from each other (if not, the game ends
in a draw). If a game is in such a position, the outcome of a game can be
predicted in reliable way. The predictive expansion strategy uses space estimation
to predict the outcome of a position. It has to be noted that only nodes of the
non-root player are evaluated, so both players have performed their moves when
the position is evaluated.

If the outcome of a node can be predicted with certainty, the node does
not have to be simulated, and is treated as a terminal node. This works as
follows. The node candidate for expansion is evaluated using the space estimation
heuristic. If there is a way for the players to reach each other, the node is
expanded in the default way. If the players are isolated from each other and
the outcome can be predicted, the node is not expanded and it is treated as a
terminal node. The result of the prediction is backpropagated.

This strategy has two advantages over the old expansion strategy. First,
applying space estimation is faster than performing a play-out. If a sufficient
number of games are cut off, the time spent on space estimation is regained, and
more time can be spent on searching through other parts of the tree. Second,
the outcome prediction is more reliable than performing multitudes of play-outs.
This prevents the program from underestimating positions where one or more
players are closed off in a large space.

Once the game reaches the endgame phase, the enhanced expansion strategy
is no longer applied since the MCTS program is has shown to be capable of
efficiently filling up the remaining space.

6 Play-out Strategies

The simplest play-out strategy is the random-move strategy. During the play-
out, players perform a random move. Moves that result in an immediate defeat
are excluded from the selection.

The authors observed that play-outs performed using a random-move strat-
egy give surprisingly good results in Tron, considering that the randomly moving
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Tron programs frequently trap themselves. The reliability of the play-outs can
be further increased by using a more advanced play-out strategy [8].

We propose six play-out strategies. The resulting playing strength of each of
these strategies is determined in the experiments.

Wall-following strategy. This strategy is inspired by the wall-following heuris-
tic described in Section 4. The strategy selects the move leading to the square
with the most number of walls (but smaller than 3). If multiple of moves lead
to squares of the same number of walls, one of the moves is randomly se-
lected. A problem with the wall-following strategy is that it does not leave
much room for a rich variety of simulations. During each play-out, the moves
performed will roughly be the same. It means that running more simulations
does not necessarily increase the accuracy of the move value.

Offensive strategy. The offensive strategy selects moves that bring the player
closer to the opponent player. If more than one move brings the player closer,
one of the moves is selected at random. If there is no move that brings it
closer to the opponent, a random move is performed.

Defensive strategy. This play-out strategy selects the move that increases the
distance to the opponent player. If there is no such move, a random move is
performed. If more than one move increases the distance from the opponent
player, one of the moves is played at random.

Mixed strategy. The mixed strategy is a combination of the random play-out
strategy and the previously mentioned strategies. At each move, a strategy
is randomly selected according to a certain probability. The reasoning be-
hind this strategy is that none of the strategies are particularly strong, and
combining them may give better results.

The wall-following strategy has a 50% probability of being played, whereas
the random-move, defensive and offensive are played 20%, 25% and 5% of
the time, respectively.

Move-category strategy. This strategy uses the move category statistics used
by the Progressive Bias enhancement to select a move. Moves are selected
by roulette-wheel selection.

ε-greedy strategy. This strategy has a probability of 1−ε (i.e. 90%) of playing
the wall-following strategy, and a probability of ε (i.e. 10%) of playing a
random other play-out strategy [14, 15].

6.1 Endgame Strategies

The game of Tron can be split into two phases: the phase where players try to
maximize their own available free space, and the phase where the players are
isolated and attempt to outlast the other player by filling the remaining space
as efficiently as possible, referred to as the endgame phase.

During the endgame phase, the same play-out strategies as mentioned above
can be used, with the exception of the offensive and defensive strategy since
there is no point in biasing the move on the position of the other player.
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Fig. 5. The three boards used in the experiments.

6.2 Play-out Cut-Off

Although a Tron game is guaranteed to terminate, as each move brings the game
moves closer to a terminal position, the number of moves performed during the
play-out phase can be reduced. This saves time, leaving room for more simula-
tions. Using heuristic knowledge, the result of a game can be predicted without
the need to completely simulate it. A major problem with applying heuristic
knowledge is that it costs much computation time compared to playing moves.
Therefore, the positions are only evaluated once every 5 moves. An additional ad-
vantage of predicting the play-out outcome is that the accuracy of the play-outs
is increased, because the player with the largest space can still lose a portion
of the simulated games due to the weak play of the play-out strategies. The
heuristic to predict the outcome of a game is the same as used in Subsection 4.

7 Experiments and Results

In this section, the proposed enhancements of Section 4, 5 and 6 are tested in
our MCTS program [16]. The experiments are conducted on a 2.4 GHz AMD
Opteron CPU with 8 GB of RAM. Experiments are conducted for three different
boards, each providing different difficulties for MCTS. The boards are shown
in Figure 5. Although all boards are symmetric, experiments are run for both
colours to eliminate the possibility that the playing strength of the program is
affected by its colour.

The following settings are used for the experiments, unless mentioned other-
wise. In each experiment, 100 games are played on each board for both setups.
In total 600 games are played. The time players can spend on computing the
next move is 1 second. The programs have no knowledge about the move the
other program will be performing.

Progressive Bias is tested in Subsection 7.1. Next, Subsection 7.2 describes
the results of the various play-out strategies. Subsequently, Subsection 7.3 eval-
uates the play-out cut-off enhancement. The Predictive Expansion strategy is
reported in Subsection 7.4. The playing strength of MCTS-Solver is tested in
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Subsection 7.5. Finally, MCTS programs combined with the enhancements are
tested against the winning program of the Tron Google AI Challenge in Subsec-
tion 7.6.

7.1 Progressive Bias

In the first series of experiment the Progressive Bias (PB) strategy is tested
for different values of W . The MCTS-PB program is tested against the MCTS-
UCT program [16]. Table 1 shows the transitional probabilities, obtained from
600 self-play games by the MCTS-UCT program at the three boards (200 games
per board).

Table 2 shows that Progressive Bias does not improve the playing strength
at boards a and b for any of the tested values of W , but it noticeably increases
the playing strength at board c. Furthermore, the exact value of W does not
seem to matter that much.

Table 1. Move categories and their respec-
tive transitional probabilities.

Move category Pmc

Defensive 28.9%
Defensive/Territorial 36.2%

Offensive 29.6%
Offensive/Reckless 0.0%
Offensive/Territorial 21.6%

Passive/Defensive 77.1%
Passive/Defensive/Obstructive 92.8%

Passive/Offensive 78.9%
Passive/Offensive/Obstructive 86.5%
Passive/Offensive/Reckless 6.6%
Passive/Off./Obs./Reck. 15.9%

Table 2. Win rates of MCTS-PB vs.
MCTS-UCT.

W Board a Board b Board c Total

0.5 45% 48% 65% 53 ± 4 %
1 49% 45% 67% 54 ± 4 %
5 55% 45% 63% 54 ± 4 %
10 48% 49% 63% 53 ± 4 %
20 36% 52% 66% 51 ± 4 %

7.2 Play-out Strategy Experiments

In the next of series of experiments the various play-out strategies proposed are
tested in the MCTS program. They are matched against each other in a round-
robin tournament. The tournament is run at all three boards. Table 3 gives the
results for each board. Table 4 shows the averaged results over all three boards.

The results show that the boards have a large influence on the effectiveness
of the strategies. As such, it is difficult to select the best strategies based on
these results. Overall, the random-move, defensive and wall-following strategies
seem to be the best strategies. The random-move strategy performs well for all
boards, whereas the defensive strategy stands out for board c. The wall-following
strategy works well against the random-move strategy on board b. The random-
move strategy is used in the experiments of the next subsections.
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Table 3. Play-out strategy results for board a, b and c.

Board a Rand. Wall Off. Def. Mixed Cat. ε-g.

Random 58% 90% 83% 71% 67% 52%
Wall 42% 90% 52% 21% 40% 26%

Offensive 10% 10% 31% 16% 13% 12%
Defensive 17% 48% 69% 55% 35% 32%
Mixed 29% 79% 84% 45% 49% 28%

Category 33% 60% 87% 65% 51% 38%
ε-greedy 48% 74% 88% 68% 72% 62%

Board b Rand. Wall Off. Def. Mixed Cat. ε-g.

Random 15% 100% 70% 56% 53% 58%
Wall 85% 99% 50% 78% 86% 88%

Offensive 0% 1% 0% 0% 0% 0%
Defensive 30% 50% 100% 77% 96% 51%
Mixed 44% 22% 100% 23% 37% 45%

Category 47% 14% 100% 4% 63% 36%
ε-greedy 42% 12% 100% 49% 55% 64%

Board c Random Wall Off. Def. Mixed Cat. ε-g.

Random 91% 98% 18% 43% 50% 49%
Wall 9% 81% 15% 7% 44% 9%

Offensive 2% 19% 9% 20% 12% 15%
Defensive 82% 85% 91% 76% 80% 90%
Mixed 57% 93% 80% 24% 40% 50%

Category 50% 56% 88% 20% 60% 57%
ε-greedy 51% 91% 85% 10% 50% 43%

7.3 Play-out Cut-off

The play-out cut-off (PC) enhancement is tested by matching the MCTS-PC
program against the MCTS-UCT program. MCTS-PC runs considerably fewer
play-outs (25,000 per second on average) due to the computation time required
by the play-out cut-off heuristic.

Table 5 shows the win rate for MCTS-PC against MCTS-UCT. At boards
a and b, 800 games were run to ensure that the observed win rate was not
influenced too much by statistical noise. 400 games were run for board c. The
bad performance at board c might have to do with the difficulty for a player to
isolate itself on this board.

7.4 Expansion Strategy Experiments

In the subsequent series of experiments are conducted for the predictive expan-
sion (PDE) strategy. The MCTS-PDE program is tested against the MCTS-UCT
program. The MCTS-PDE program ran 60,000 play-outs per second on average.
The results are shown in Table 6. For each board, 600 games were run.

Similar to the results of the play-out cut-off experiment, the MCTS-PDE
program appears to be slightly better than the MCTS-UCT program at board a

137



MCTS for the Simultaneous Move Game Tron 13

Table 4. Averaged play-out strategy results for all boards.

Random Wall Off. Def. Mixed Cat. ε-g.

Random 55% 96% 57% 56% 57% 53%
Wall 45% 90% 39% 35% 57% 41%

Offensive 4% 10% 13% 12% 8% 9%
Defensive 43% 61% 87% 69% 71% 58%
Mixed 44% 65% 88% 31% 42% 41%

Category 43% 43% 92% 29% 58% 44%
ε-greedy 47% 59% 91% 42% 59% 56%

Table 5. Win rates of MCTS-PC vs. MCTS-UCT.

Board a Board b Board c Total

Win 54% 56% 33% 48 ± 2 %

and b. The poor win rate at board c is likely caused by the behaviour of MCTS
for this board. The programs spiral around the centre, leaving the outer edges
of the board open. Because the space estimation heuristic used by the predictive
expansion strategy is only applicable when the players are isolated from each
other, the MCTS-PDE program is squandering computation time on a mostly
useless heuristic. Since the MCTS-UCT program spends all of its time on the
play-outs, it can look further ahead and therefore has an advantage over the
MCTS-PDE program.

7.5 MCTS-Solver Experiments

In this series of experiments the Score-Bounded MCTS-Solver is tested. The
MCTS-Solver program ran at the same speed as the MCTS-UCT program. In
the experiments of MCTS-Solver, MCTS-Solver-PDE and MCTS-Solver-PDE-
PC, 400 games were run on each board.

As shown in Table 7, the MCTS-Solver program shows a slight improvement
over MCTS-UCT. MCTS-Solver in combination with PDE or PDE-PC performs
poorly at board a because it tends to cut off one side of the board, and due to
lower number of simulations, cannot look ahead far enough to see the resulting
outcome (i.e. loss). PDE and PDE-PC perform well at boards b and c, probably
due to the obstacles and mistakes made by MCTS-UCT.

In terms of computation time and playing style, the MCTS-Solver program is
the preferred choice since it requires no additional computations once a move has
been proven to lead to a guaranteed win (or draw, when this is the best achievable
outcome). Furthermore, the program can look up and play the shortest move
sequence leading to a win by searching for the shortest winning path in the tree.

7.6 Playing against an αβ program

In the final series of experiment, the MCTS program is tested against the winning
program of the Tron Google AI Challenge, a1k0n [13]. The a1k0n program uses
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Table 6. Win rates of MCTS-PDE vs. MCTS-UCT.

Board a Board b Board c Total

Win 53% 58% 48% 53 ± 2 %

Table 7. Win rates of MCTS-Solver variants against MCTS-UCT.

Win Board a Board b Board c Total

Solver 50% 52% 57% 53 ± 3 %
Solver-PDE 32% 74% 53% 53 ± 3 %
Solver-PDE-PC 30% 82% 70% 61 ± 3 %

αβ-search [9] together with a good evaluation function that is primarily based
on the tree of chambers heuristic.

Table 8. Win rates of various MCTS players against a1k0n.

Board a Board b Board c Total

MCTS-UCT 40% 0% 0% 14 ± 3 %
MCTS-PDE 44% 0% 0% 15 ± 3 %
Solver-PDE 13% 12% 0% 8 ± 3 %

Solver-PDE-PC 28% 10% 16% 18 ± 3 %
Solver-PDE-PC-PB 12% 18% 0% 10 ± 3 %

As can be seen in Table 8, a1k0n is the stronger player by far, achieving a
win rate of 82% against MCTS-Solver-PDE-PC and a win rate higher than 85%
against the other MCTS programs. Applying PB to MCTS-Solver does not seem
to give an improvement in overall playing strength. Although the MCTS-Solver
reaches a decent level of play, it still makes mistakes, mainly due to the fact
that the reliability of the play-outs rapidly drops as the players get more distant
from each other. By the time MCTS-Solver sees that it is in a bad position, it
is already too late to correct.

8 Conclusion and Future Research

In this paper we developed an MCTS program for the game of Tron. Several
enhancements were made to the selection, expansion and play-out phase. All of
the enhancements were tested against an MCTS-UCT program.

The enhancement made to the selection phase, the progressive bias strategy,
showed no improvement over UCT at two out of three boards. At board c the
enhancement scored a consistent win rate of over 63%.

The experiments of the play-out strategies have shown that the board config-
uration has a large influence on the game and the effectiveness and accuracy of
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the play-out strategies. The random-move strategy appeared to be the most ro-
bust choice, doing reasonably well on all three boards. The wall-following strat-
egy outperformed the other strategies only at board b, whereas the defensive
strategy outperformed the other strategies at board c.

Applying play-out cut-off showed an increase in playing strength at boards
a and b (54% and 56%, respectively), but significantly decreased the playing
strength at board c. The bad performance at board c may have to do with the
difficulty for a player to isolate itself on this board.

Similar to the play-out cut-off enhancement, the predictive expansion strat-
egy showed a slight increase in playing strength at board a (53%) and b (58%),
but not at board c. The poor win rate at board c is likely caused by the be-
haviour of MCTS for this board. The MCTS programs keep a large space open
behind them, up until late in the game. In such positions, the space estimation
heuristic used is not helpful.

The Score-Bounded MCTS-Solver was tested against MCTS, and turned out
to be an improvement, although MCTS-Solver with PDE performs poorly at
board a, in comparison to MCTS-PDE. MCTS-Solver is preferred for its ability
to look up the shortest path leading to a win (or draw, when a draw is the best
achievable outcome) once one or more moves have been proven. In contrast,
MCTS-UCT usually postpones the victory.

Using PDE on MCTS-Solver enables the program to prove a position more
quickly, however, the extra time spent on computing the heuristic did not work
out well for all boards. PDE and PC in combination with MCTS-Solver further
increased the overall playing strength of the program. MCTS-Solver-PDE-PC
achieves a surprisingly high win rate on board c (70%), where MCTS-PC only
scored (33%).

The experiment involving the αβ program showed that the MCTS programs
struggle at evaluating positions where the players are distant from one another
(further than 10 steps away). Overall, the Solver-PDE-PC program is the best
performing program, winning approximately 1 out of 5 games on average against
the αβ program, and achieving a win rate of 61% against MCTS-UCT.

The experiments show that the board configuration has a large influence on
the playing strength of the enhancements tested. Since our goal was to create a
Tron program capable of playing on any 13 × 13 map, the experiments should
be conducted for many more boards.

As future research, applying a more sophisticated play-out strategy may in-
crease the playing strength of MCTS in Tron. It would be interesting to see
whether the play-out strategy and selection strategy can be improved such that
MCTS can correctly look far ahead. The play-out phase might even have to be
replaced completely by a sophisticated evaluation function (e.g. tree of cham-
bers), as used by the αβ program a1k0n.
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