
Proceedings of the Workshop on
Configuration at ECAI 2012

(ConfWS’12)

August 27, 2012

Montpellier, France

Wolfgang Mayer and Patrick Albert, Editors

Foreword

In many cases competitiveness of modern products is defined by the degree of customization, i.e. the ability of
a manufacturer to adapt a product according to customer requirements. Knowledge based configuration methods
support the composition of complex systems from a set of adjustable components. However, there are two important
prerequisites for a successful application of knowledge-based configuration in practice: (a) expressive knowledge
representation languages, which are able to capture the complexity of various models of configurable products and (b)
powerful reasoning methods which are capable of providing services such as solution search, optimization, diagnosis,
etc. The Configuration Workshop aims to bring together industry representatives and researchers from various areas
of AI to identify important configuration scenarios found in practice, exchange ideas and experiences and present
original methods developed to solve configuration problems.

The workshop continues the series of successful Configuration Workshops started at the AAAI’96 Fall Symposium
and continued on IJCAI, AAAI, and ECAI since 1999. During this time the focus of the events broadened from
configuration approaches applied to traditional products such as cars, digital cameras, PC, telecommunication switches
or railway interlock systems to configuration of software and services available on the Web. In parallel, research in the
field of constraint programming, description logic, non-monotonic reasoning, fundamentals of configuration modeling
and so forth pushed the limits of configuration systems even further.

The papers selected this year for presentation on the Configuration Workshop continue a recent trend in the research
community and focus on modeling and solving of configuration problems.

Wolfgang Mayer and Patrick Albert
July 2012

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Workshop Organization

Program Co-Chairs

Wolfgang Mayer University of South Australia, Adelaide, Australia
Patrick Albert IBM, France

Program Committee

Tomas Axling Tacton Systems AB, Sweden
Claire Bagley Oracle Corporation, USA
Conrad Drescher University of Oxford, UK
Alexander Felfernig Technische Universität Graz/Configworks, Austria
Gerhard Friedrich AAU Klagenfurt, Austria
Albert Haag SAP AG, Germany
Alois Haselboeck Siemens AG, Austria
Lothar Hotz Universität Hamburg, Germany
Klas Orsvarn Tacton System AB, Sweden
Markus Stumptner University of South Australia, Australia
Barry O’Sullivan Cork Constraint Computation Centre, Ireland
Juha Tiihonen Aalto University, Finland

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Contents

Papers

Maintaining alternative values in constraint-based configuration . 1
Caroline Becker and Hélène Fargier

K-Model – Structured Design of Configuration Models . 8
Axel Brinkop, Thorsten Krebs, and Hartmut Schlee

Towards a Formalism of Configuration Properties Propagation . 15
David Fabian, Radek Mař́ık, and Tomáš Oberhuber

Testing Object-Oriented Configurators With ASP . 21
Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon

Towards Hybrid Techniques for Efficient Declarative Configuration . 27
Ingo Feinerer

Unifying Software, Product Configuration: A Research Roadmap . 31
Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta, Tomi Mannisto, Krzysztof Czarnecki, Patrick
Heymans, Tien Nguyen, and Markus Zanker

An Improved Constraint Ordering Heuristics for Compiling Configuration Problems 36
Benjamin Matthes, Christoph Zengler, and Wolfgang Küchlin

Concurrent configuration and planning problems: Some optimization experimental results 41
Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit

Sales configurator capabilities to prevent product variety from backfiring . 47
Alessio Trentin, Elisa Perin, and Cipriano Forza

Author Index 55

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Maintaining alternative values in
constraint-based configuration

Caroline Becker and Hélène Fargier 1

Abstract. Constraint programming techniques are widely
used to model and solve interactive decision problems, an es-
pecially configuration problems. In this type of application,
the configurable product is described by means of a set of con-
straint bearing on the configuration variables. The user then
interactively solves the CSP by assigning (and possibly, relax-
ing) the configuration variables according to her preferences.
The aim of the system is then to keep the domains of the other
variables consistent with these choices. Since maintaining of
the global inverse consistency is generally not tractable, the
domains are instead filtered according to some level of local
consistency, e.g. arc-consistency.

In the present work, we aim at offering a more convenient
interaction by providing the user with possible alternative val-
ues for each of the already assigned variables - i.e. the values
that could replace the current one without leading to the vio-
lation of some constraint. We thus present the new concept of
alternative domains in a (possibly) partially assigned CSP.
We propose a propagation algorithm that computes all the al-
ternative domains in a single step. Its worst case complexity
is comparable with the one of the naive algorithm that would
run a full propagation for each variable, but its experimental
efficiency is much better.

1 Introduction

The Constraint Satisfaction Problem (CSP) formalism offers
a powerful framework for representing a great variety of prob-
lems, e.g. routing problems, resource allocation, frequency
assignment, configuration problems, etc. The main task ad-
dressed by the algorithms is the determination of the consis-
tency of the CSP and/or the search for an (optimal) solution,
and this is a difficult task: determining whether a CSP is con-
sistent is an NP-complete request. In the CSP community,
the main research stream thus addresses this question, either
directly (looking for efficient complete algorithms) or getting
around (studying the polynomial subclasses or proposing in-
complete algorithms).

But these algorithms do not help solving decision support
problems that are interactive in essence. For such problems,
the user herself is in charge of the choice of values for the
variables and the role of the system is not to solve a CSP,
but to help the user in this task. Constraint-based product
configuration [14, 18, 12, 19, 20] is a typical example of such
problems: a configurable product is defined by a finite set of

1 IRIT, University Toulouse III, France, email:
{becker,fargier}@irit.fr

components, options, or more generally by a set of attributes,
the values of which have to be chosen by the user. These
values must satisfy a finite set of configuration constraints
that encode the feasibility of the product, the compatibility
between components, their availability, etc.

Several extensions of the CSP paradigm have been pro-
posed in order to handle the constraints-based definition of a
catalog or a range of products, and more specifically the def-
inition of configurable products. These extensions have been
motivated by difficulties and characteristics that are specific
to the modeling and the handling of catalogs of configurable
products. Dynamic CSPs [13], for instance suit the problems
where the existence of some optional variables depends on
the value of another variable. Other extensions proposed by
the CSP community include composite CSPs [17], interactive
CSPs [10], hypothesis CSPs [1], generative constraint satis-
faction [19, 7], etc.

In this article, we do not deal with such representation prob-
lems: we assume that the product range is specified by a clas-
sical CSP. Instead, our work focuses on the human-computer
interaction. When configuring a product, the user specifies her
requirements by interactively giving values to variables. Each
time a new choice is made, the domains of the variables must
be pruned so as to ensure that the values available for the fur-
ther variables can lead to a feasible product (i.e., a product
satisfying all the initial configuration constraints): the aim of
the system is to keep the domains of the other variables con-
sistent with these choices. Since the maintaining of the global
inverse consistency is generally not tractable, the domains are
rather filtered according to some level of local consistency, e.g.
arc-consistency. In the present paper, we propose to make this
interaction more user-friendly by showing not only (locally)
consistent domains, but also what we call the alternative do-
mains of the assigned variables, i.e. the values that could re-
place the one of the assigned variable without leading to the
violation of some constraint.

The structure of the present article is as follows: the prob-
lematics of alternative domains is described in the next Sec-
tion. Section 3 then develop the basis of our algorithm. Our
first experimental results are shown in Section 4. Proofs are
gathered in Appendix.

2 Background and Problematics

A CSP is classically defined by a triplet (X ,D, C) where X =
{x1, . . . , xm} is a finite set of m variables, each xi taking its
values in a finite domain D(xi), and a finite set of constraints

Caroline Becker and Hélène Fargier 1

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

C. We note D =
∏n
j=1D(xj). An assignment t of a set of

variable Y ⊆ X is an element of the cartesian product of the
domains of these variables; for any xj ∈ Y we denote by t[xj]
the value assigned to xj in t.

A constraint C in C involves a set vars(C) ⊆ X and can be
viewed as a function from the set of assignments of vars(C)
to {>,⊥}: C(t) = > iff t satisfies the constraint; for any xj in
vars(C) and any v in its domain, we say that an assignment t
of vars(C) is a support of this value (more precisely, of (xj , v)
on C) iff t[xj] = v and t satisfies C.

An assignment t of X is a solution of the CSP iff it satisfies
all the constraints. If such a solution exists, the CSP is said
to be consistent, otherwise it is inconsistent.

Formally, a configurable product is represented as a CSP
(X ,D, C) and the current choices of the user by a set of couples
(xi, v) where xi is a variable in X and v the value assigned to
this variable. Following [1], the problem can be represented
by an Assumption-based CSP (A-CSP).

Definition 1 (A-CSP) An A-CSP is a 4-uple (X ,D, C,H)
where (X ,D, C) is a CSP and H a finite set of constraints on
variables of X .

In configuration, H represents the set of current user
choices, i.e. assignments of the variables: we suppose in the
sequel of the paper that all the restrictions in H bear with dif-
ferent variables and restrict their domain to a unique value2;
we will denote by hi = (xi ← v) the restriction from H on xi,
if it exists.

After each choice, the system filters the variables’ do-
mains, ideally leaving only the values compatible with cur-
rent choices. Since such a computation is intractable in the
general case, a weaker level of consistency is ensured in real
applications, generally arc-consistency. Recall that a CSP is
said to be arc consistent in the general sense (GAC) iff, for
any variable xj ∈ X and any value v in its domain, for any
constraint C bearing on xj , there exists an assignment t of
the variables of C in their domains such that t is a support of
(xj , v). The role of an arc consistency algorithm is to remove
from the domains the values that do not have any support so
as to compute a CSP that is equivalent to the original one
(i.e. having the same set of solution) and that is arc consis-
tent; this problem is called the closure by arc consistency of
the original one.

Other, more powerful, levels of local consistency can be en-
sured, e.g. Path Inverse Consistency [4], Singleton Arc Con-
sistency [5], k-inverse consistency [8, 9]. In the following defi-
nitions, we do not make any assumption on the level of local
consistency that is ensured. We simply consider that, after
each choice, an algorithm is called that ensures some level l
of local consistency - i.e. that computes the closure by l con-
sistency of the original problem. We call the current domain
of a variable its domain in this closure.

Definition 2 (Current domain of a variable) Let l be a
level of local consistency and P = (X ,D, C,H) an A-CSP.
The current domain according to l of a variable xi is its

2 Actually, the definitions and results could be set in a more gen-
eral framework and capture any type of restriction; the meaning
of alternative value when the restrictions in H are not unary is
nevertheless questionable, hence our assumption.

domain in the closure by l-consistency of (X ,D, C ∪ H) .

We can now formally define the notion of alternative do-
main of an assigned variable as the current domain that it
would have if the user would take this assignment back:

Definition 3 (Alternative domain)
Let l be a level of local consistency and P = (X ,D, C,H)
an A-CSP. The alternative domain of a variable xi accord-
ing to l is its domain in the closure by l-consistency of the
CSP(X ,D, C ∪ H \ {hi}). We write it Dl

alt(xi).

A value v is thus an alternative value for xi either if it
belongs to the current domain of xi (it is in particular the case
when xi is assigned to v), or if (i) xi is assigned another value
than v and (ii) the single relaxation of this assignment would
make v l-consistent. For instance, if xi is the last assigned
variable, all the values that were in the domain of xi just
before its assignment are alternative values.

Example 1 Consider the CSP X = {x1, x2, x3}, D = D1×
D2 × D3 = {1, 2, 3, 4}3, C = {Alldiff(x1, x2, x3)} ; initially,
H = ∅ and the current domains of the three variables are
DC(x1) = DC(x2) = DC(x3) = {1, 2, 3, 4}. In this example,
we suppose that that arc consistency is maintained.
Let theuser first assign value 1 to x1. We get H = {(x1 = 1)}
; then DC(x1) = {1} and arc consistency removes value 1
from the current domains of x2 and x3: DC(x2) = DC(x3) =
{2, 3, 4}. At this step, x1 is the only assigned variable and has
three alternative values, 2, 3 and 4.
Suppose that the user then assigns value 4 to x2, i.e. H =
{(x1 = 1), (x2 = 4)} ; arc consistency, removes 4 from the
current domains of x2 and x3: DC(x2) = DC(x3) = {2, 3}
while DC(x1) = {1} and DC(x2) = {4} . x1 has only two
alternative values left : 2 and 3; 4 is not alternative anymore
since it does not belong to the closure by arc consistency of the
CSP< X = {x1, x2, x3},D = D1×D2×D3 = {1, 2, 3, 4}3, C =
{Alldiff(x1, x2, x3)∪{x2 = 4}} >. x2 has also two alternative
values, 2 and 3 (see Table 1).

1 2 3 4
x1 ? � � ×
x2 × � � ?
x3 × � � ×

Table 1. Assigned (?), forbidden (×) and alternative (�) values
for the A-CSP X = {x1, x2, x3}, D = D1×D2×D3 = {1, 2, 3, 4}3,

C = {Alldiff(x1, x2, x3)}, H = {(x1 ← 1), (x2 ← 4)}).

The notion of alternative domain is orthogonal to the no-
tion of removal’s explanation, such as proposed in PaLM [16]:
explanations are a way to explain the pruning of the domains
and aim at proposing a strategy of restoration of some value
for an unassigned variable by the relaxation of a (minimal)
subset of user’s choices. On the contrary, the alternative do-
main of a variable provides a way to change the value of an
assigned variable without any modification of the other user
choices.

Caroline Becker and Hélène Fargier 2

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

The notion of alternative domain can be compared to the
concept of fault tolerant solution [21]. A fault tolerant solu-
tion is actually a solution such as all the variables have a
non-empty alternative domain: if one of the current value in
the assignment is made unavailable for any reason, a solution
can still be found by choosing a value from its alternative do-
main - this value is by definition compatible with the other
choices. The notion has been generalized by Hebrard et al.
[11] under the name ”super-solutions”. The main difference
between the notion of fault tolerant solutions and the notion
of alternative domains is that fault tolerant solutions deal
with complete assignments while alternative domains sug-
gests restoration values for partial assignments also. It should
also be noticed that the two notions target different practical
goals: when refereing to a super-solution, the one in looking
for some, but not all, robust (and complete) solutions - there
is indeed a potentially exponential number of fault tolerant
solutions. When computing alternative domains, we are look-
ing for all the alternative values, and this even during the
search, when the assignments are partial.

3 Computing alternative domains

When n variables are assigned, a naive way of computing the
alternative domains of these variables is to make n+ 1 copies
of the CSP: a reference CSP P0 (where all the n variables
are assigned), and n CSP Pi where each Pi has exactly the
same assignments than P0, with the exception of the assign-
ment of variable xi. Each Pi is filtered by l-consistency. The
alternative domain of variable xi is obviously the domain of
xi in the arc consistent closure of Pi. This method does not
require much space but does a lot of redundant computations.
It will be the reference point from our method, which follows
the opposite philosophy: memorizing information in order to
avoid a duplicate work.

3.1 Removals and sufficient justifications

The main idea of our approach is to maintain, for each value
removed by the filtering algorithm, a vector of boolean flags,
one flag for each hi ∈ H. The flag on hi must be true if and
only if the single relaxation of the user’s choice hi will lead
to have the value back in the domain of its variable. Let us
formalize:

Definition 4 (Removal, invalid tuple)
Let P = (X ,D, C,H) be an A-CSP and P l the closure of
(X ,D, C ∪ H) by some level of local consistency l.

A removal w.r.t. a level l of local consistency is a pair (xj , v),
xj ∈ X , v ∈ D(xj) such that v does not belong to the domain
of xj in P l

We write Rl the set of removals of P w.r.t. l.

Let C a constraint in C and t an assignment of vars(C)
satisfying C. t is said to be invalid w.r.t. l iff there exists
xj ∈ vars(C) such that t[xj] does not belong to domain of xj
in P l; otherwise, it is said to be valid w.r.t. l.

To improve readability, a removal (xj , v) will often be written
(xj 6= v), and we will omit to mention level l to which the
removal refers when not ambiguous.

Definition 5 (Sufficient Justification of a removal)
Let P = (X ,D, C,H) be an A-CSP, l a level of local consis-
tency, and Rl the set of P ′s removal according to l.

An user choice hi ∈ H is said to be an l-sufficient justifica-
tion of a removal (xj 6= v) ∈ Rl if and only if v belongs to the
domain of xj in the l-consistent closure of (X ,D, C∪H\{hi}).

By extension, for any xj in X and any v in D(xj), hi ∈ H
is said to be an l-sufficient justification of v for xj if and only
if v belongs to the domain of xj in the l-consistent closure of
(X ,D, C ∪ H \ {hi}).

For instance, if the propagation of the last assignment leads
to the removal of the value v in the domain of x, this assign-
ment is a sufficient justification of x 6= v. By extension, any
hi is a sufficient justification of a value that does belongs to
the current domain of its variable.

Example 1 (cont’) If we go back to example 1, once x1
and x2 are assigned, H contains two assumptions: h1 = (x1 =
1) , and h2 = (x2 = 4).
All the values deleted from the domain of x1 (resp. x2), have
h1 (resp. h2) as a (sole) sufficient justification.
Arc consistency has removed values 1 and 4 from the domains
of x2 and x3. h1 is a sufficent justification for the removals
(x2 6= 1) and (x3 6= 1), and h2 a sufficient justification of
(x2 6= 4) and (x3 6= 4).
By convention, all the values that are still in the current do-
mains of their variables receive both h1 and h2 as a sufficient
justifications.

Example 2 A removal may have several sufficient justifica-
tions, as shown by the following example. Consider the CSP
X = {x1, x2, x3, x4}, D = D1 × D2 × D3 × D4 = {1, 2, 3}4,
C = {x1 6= x2, x3 6= x2, x4 6= x2)}. Value 2 for x1 has two
supports on x2 : 1 and 3. Suppose that the user has assigned
value 1 to x3 (h3) and value 3 to x4 (h4); in other terms,
H = {(x3 = 1), (x4 = 3)}. h3 forbidds the first support
of x1 = 2 and h4 forbids its second support ; value 2 is
thus removed by arc consistency from the current domain
of x1: DC(x1) = {1, 3} and this removal has two sufficient
justifications: h3 and h4.

Of course, a value belongs v to the alternative domain of
an assigned variable xi iff hi is a sufficient justification of the
removal (xi 6= v):

Proposition 6 Let P = (X ,D, C,H) be an A-CSP, l a level
of local consistency.

For any xi ∈ X , any v ∈ D(xi), v belongs to the alternative
domain of xi iff either v belongs to the domain of xi in the
closure by l consistency of P = (X ,D, C∪H) or (xi 6= v) ∈ Rl
and hi is a sufficient justification of (xi 6= v).

The notion of sufficient justification is extended to tuples
as follows:

Caroline Becker and Hélène Fargier 3

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

supports of (x = v)

removals justification vector of each removal t1 t2 t3 t4
x1 6= v1 {h1, h2} ? ?

x2 6= v2 {h1, h3} ? ?

x3 6= v3 {h2, h4} ? ? ?

justification vector {h1, h2, h4} {h1} {h2} {h2, h4} ∅

Table 2. Computation of the vector of justifications of the removal (x 6= v) on a given constraint C; the ti are the supports of x = v. A
? in cell (ti, xj 6= vj) means that ti invalid when xj 6= vj

Definition 7 (Sufficient justification of a tuple)
Let P = (X ,D, C,H) be an A-CSP, l a level of local consis-
tency, C a constraint in C and t an assignment of vars(C)
satisfying C.

An user choice hi ∈ H is said to be an l- sufficient justifi-
cation for t if and only if, for each xj ∈ vars(t), t[xj] belongs
to the domain of xj in the closure by l consistency of the CSP
(X ,D, C ∪ H \ {hi}).

Example 1 (cont’) If we go back to example 1, once
x1 and x2 have been assigned, tupple (3, 2, 4) is not valid
anymore and has one sufficient justification, h1 (it is enough
to relax x1 = 1 to make this tupple valid again); remark
that tupple (4, 2, 1), that is also invalid, has no sufficient
justification (the relaxation of the two choices is necessary to
make it valid again).

Our algorithm is based on the fact that an assignment hi
is an l-sufficient justification for the tuple t if and only if, for
each xj involved by the tuple, either t[xj] is in the current
domain of xj or hi is a sufficient justification of the removal
(xj 6= t[xj]). Formally, let us call the conflict set of t the set
of removals that make it invalid:

Definition 8 (Conflict set)
The conflict set of a tuple t w.r.t. some level of l consis-
tency is the subset of Rl defined by: CS(t) = {(xi 6= v) ∈
Rl s. t. t[xi] = v}.

Of course, a tuple is invalid if and only if it has a non-empty
conflict set.

Proposition 9 hi is an l-sufficient justification of a tuple
t if and only it is an l-sufficient justification of each of the
removals in its conflict set w.r.t. l.

Finally, it can easily be shown that, when the level local
consistency to maintain is generalized arc consistency:

Proposition 10 hi is a sufficient justification w.r.t. Arc con-
sistency (GAC) for a removal (x 6= v) iff, for each constraint
C bearing on x, there exists a tuple t support of (x = v) on C
such that hi is GAC-sufficient justification of t.

Similar properties can be established for other levels of local
consistency based on the notion of support, typically for k
inverse consistency [8]3

3 A CSP is (1, k) consistent iff, for each variable x and each value
v in D(x), for each set V of k additional variables, x = v has a
support on V, i.e. there exists an assignment t of {x} ∪ V such
that for any C ∈ C with vars(C) ⊆ {x} ∪ V, t satisfies C

Proposition 11

hi ∈ H is a (1, k)-sufficient justification of (x 6= v) ∈ R(1,k)

iff, for each set V of k variables there exists a support t of
x = v on V such as hi is a (1, k)-sufficient justification of t.

3.2 An algorithm of maintenance of the
alternative domains w.r.t. Arc
Consistency

In our application, interactive configuration, the constraint
to be taken into account are mostly table constraints and the
level of consistency referred to is Generalized Arc Consistency.
We thus propose to maintain the alternative domain upon
the assignment of a variable using an extension of GAC4 [15].
Our algorithm propagates not only value removals, but also
justifications: for each removal (xi 6= v), we maintain a vector
f(xi 6=v) of n boolean flags, one for each choice in H, such that
f(x 6=v)(hi) = True if and only if hi is a sufficient justification
of (xi 6= v). According to Proposition 10, f(x 6=v) depends on
the justifications of the tuples that support (x, v). Hence, we
keep, for each tuple t, a bit vector ft such as, for each hi,
ft[hi] is true iff hi is a sufficient justification of t. Intuitively
(see Table 2 for an example), for the user choice hi to be
a sufficient justification for a removal (x 6= v) provoked by
constraint C, it is needed that the relaxation of hi makes at
least one support t of (x = v) on C valid again, i.e. that all
the elements in the conflict set of t have hi as a sufficient
justification (this is the meaning of Proposition 9). In other
words, ft is the intersection of the f(xj 6=w) flags of all the
removals (xj 6= w) in the conflict set of t. Formally:

Proposition 12

f(x6=v) =
∧

C|x∈vars(C)

(
∨

t∈Support(x,v,C)

(
∧

r∈CS(t)
fr))

where Support(x, v, C) is the set of assignments of vars(C)
that support (x, v).

We propose here a GAC4 like algorithm, the initialization
and main propagation of which are depicted by algorithms 1
and 2. We use the following notations:

• (X ,D, C) is the original CSP, that is supposed arc consis-
tent;

• for any constraint C ∈ C, Table(c) is the set of assignments
of vars(c) that satisfy it. We moreover the tuples involved
in the tables are valid (i.e. Table(c) is a subset of the carte-
sian product of the domains of the variables its bears on.

Caroline Becker and Hélène Fargier 4

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

• Dc(xi) is the current domain of xi
• Sxi,v,C is the set of supports of (xi, v) on C and
Cpt(xi, v, C) is the number of supports of (xi, v) on C.

• for any tuple t, ft is its vector of justifications; for any
removal (xi 6= v) f(xi 6=v) is its vector of justifications; for
any removal (xi 6= v) and any constraint C bearing on xi,
f(xi 6=v,C) is the vector of justification of (xi 6= v) on C.

The difference with GAC4 is that a removal (x 6= v) must
be propagated non only when it is created, but for each change
in its vector of justifications. Since the updating of the vectors
of justification is monotonic (a hi might go from being suf-
ficient to not, but not the other way around), the algorithm
terminates. More precisely, instead of entering just once in
Q, each removal can enter in the queue n times at most (n
being the number of hi in H), i.e.as much as the number of
possible changes in a vector of justifications. The worst case
complexity is thus bounded by O(nedk) with e the number of
constraints, m the number of variables, n the maximal num-
ber of assumptions (typically, n = m), d the maximum size
of the domains and k the maximum arity of constraints. It is
thus the same complexity as the GAC-4 based naive method:
n.O(e.dk). With the important difference that in the naive
method, GAC-4 is called exactly n times while n is a worst
case bound for justification-based algorithm.

Concerning space complexity, GAC4 memorizes the sup-
port Si,v,C for each xi , each value v in its domain and each
constraint C bearing on xi; Let say that this structure is in
O(T) (T is actually proportional to the space taken by valid
tuples in constraint tables). Our algorithm also maintains, for
each tuple t, a vector of n flags, meaning a O(T.n) space. For
each removal and each constraint bearing on the variable of
the removal, we also keep a vector of n boolean flags. Since
the number of removals is bounded by the number of vari-
able/value pairs (xi, v) in the problem, the algorithm involves
in the worst case as many boolean vectors as the number of
Si,v,C sets used by GAC4; Hence a global a spatial consump-
tion bounded by O(n.T).

Procedure Initialize((X ,D, C):CSP; n: integer)
/* (X ,D, C) is the original CSP assumed to be arc consistent */

/* All the tuples are supposed to be valid */

/* n is the maximal number of assumptions to be considered */

begin
foreach C ∈ C do

foreach xi ∈ vars(C), v ∈ D(xi) do
Cpt(xi, v, C) := 0;
Si,v,C = ∅

end
foreach t ∈ Table(C) do

ft = Truen;
valid(t) = True;
CS(t) = Falsen;
foreach xi ∈ vars(C) do

Cpt(xi, t[xi], C) + +;
Add t to Si,t[xi],C

end

end

end
end

Algorithm 1: Initialization

Procedure Propagate((xk, w): assumption; (X ,D, C): the
initial CSP; H: the past assumptions; Dc: the current
domains);
Add (xk, w) to H;
Q := ∅;
/* The removal of the other values in the current domain of xk is

due to hk */

foreach u 6= w ∈ Dc(xk) do
f(xk 6=u) ← Falsem;
f(xk 6=u)[hk]← True;

end
Add (xk 6= u) to Q;
while Q 6= ∅ do

Choose and remove a (xi 6= v) from Q;
if v ∈ Dc(xi) then

Remove v from Dc(xi);
end
foreach C s.t. xi ∈ vars(C) and each tuple t in
Si,v,C do

Mem← ft;
ft ← ft ∧ f(xi 6=v);
if valid(t) then

foreach xj ∈ vars(t) s.t. j 6= i do
Cpt(xj , t[xj], C)−−;
if Cpt(xj , t[xj], C) == 0 then

f(xj 6=t[xj]),C ← Falsem /* init; will be

computed later */ ;
Add (xj 6= t[xj]) to Q;
if t[xj] ∈ Dc(xj) then

f(xj 6=t[xj]) ← Truem /* init */ ;

end

end

end
valid(t) = false;

end
if Mem! = ft /* A justif. of t is not sufficient

anymore */ then
foreach xj ∈ vars(t) s.t. j 6= i do

mem′ = f(xj 6=t[xj]);
f(xj 6=t[xj]),C = f(xj 6=t[xj]),C ∨ ft;
fxj 6=t[xj] = fxj 6=t[xj] ∧ fxj 6=t[xj],C ;

if mem′ 6= f(xj 6=t[xj]) then
Add (xj 6= t[xj]) to Q;

end

end

end

end

end
foreach hi ∈ H do

Dalt(xi) = ∅; foreach v ∈ Dxi do
if f(xi 6= v)[hi] then

Add v to Dalt(xi)
end

end

end
Algorithm 2: Propagation of decision hk = (xk ← w)

Caroline Becker and Hélène Fargier 5

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

4 First experimental results

We have tested this algorithm on an industrial prob-
lem of configuration. It involves 32 variables of domain
of size 2 to 10, 35 binary constraints. The product to
configure is a blowing machine, which blows bottles for
different matters. The benchark can be found at url
ftp://ftp.irit.fr/pub/IRIT/ADRIA/PapersFargier/Config/souffleuse.xml.

The protocol simulates 1000 sessions of configurations as
follows. First, a sample of 1000 consistent complete assign-
ments is randomly fired. For each of then, the corresponding
session is simulated by assigning the variables following a ran-
dom (uniform) order. After each assignment, we measure the
cpu time needed to make the current problem arc-consistent
and to compute the alternative domains of all the already
assigned variables are computed. The whole protocol is ap-
plied by both the justification-based algorithm described in
the previous Section and the naive method (that works on as
may copies of the original CSP as the number of user choices
in H, as decribed in introduction of Section 3) ; for the shake
of rigor, the two algorithms play on the same assignments and
the same assignment orders.

Figure 1 presents the result of these experiments. On the
x-axis is the number of the assignment in the sequence; the
y-axis is logarithmic and indicates the mean cpu time need
for the naive method (plain line, with rounds) and for the
justification-based algorithm dotted line, with squares.

Figure 1. Computation time required by both the naive
method and the justification-based algorithm (logarithmic scale).

The results are quite good: our algorithm is faster as soon
as more than 5 variables are assigned, i.e.when more than
5 alternative domains are to be computed. As expected, the
time required by the naive algorithm grows linearly with the
number of variables, while our algorithm has stable computa-
tion time. These first results have obviously to be confirmed
by more experiments on bigger configuration problems.

5 Conclusion

In this work, we have coined the new concept of the alternative
domain of a variable with respect to a local consistency level
and proposed an extension of GAC4 algorithm as a way to
compute the alternative domains when maintaining General
Arc Consistency on problems involving table constraints.

Contrarily to the naive method that applies the propaga-
tion algorithm as many times as the number of alternative

domains to be computed, our approach keeps limited justifi-
cations of the removals. Tested on two industrial benchmarks,
this method quickly outperforms the naive method.

The main limitation of our method is obviously its space
consumption; the extra space consumption depends directly
of the number of variables for which we want to compute
the alternative domain. This being said, it should be kept in
mind that for practical purposes the system is not asked to
display all the alternative domains; the human user has with
a limited mental capacity and it is not obvious that she can or
even wants to see a lot of alternative domains at a glance. In a
configuration application for instance, the user looks at only
a small number of variable simultaneously, typically the ones
involved in the subcomponent currently being configured.

The concepts we have coined are close to the notion of value
restoration. In the current work, we focused on the computa-
tion of alternative domains; an alternative value is a forbidden
value that can be restored by the sole relaxation of the assign-
ment of its variable. But more generally any value having at
least one sufficient justification can be restored by the relax-
ation of only one assignment. For each value in the domain of
an assigned variable, the user knows whether she can change
her choice to this value without modifying the other choices -
this is the notion alternative domain. But the user also knows
something about the values that have been filtered from the
domains of the unassigned variables: the justification vector
of such a value provides her with the set of , previous choices
(on other variables) she could relax in order to make the value
available again. Hence the potential use of the algorithm pro-
posed by this paper to provide the user with alternative values
in a wider sense, and more generally to support the task of
interactive relaxation by providing easily restorable values.

This work has a huge potential for developments and per-
spectives. Firstly, our algorithm obviously needs to be im-
proved, for instance with a lazy implementation, and our
experiments must be completed. Secondly, we should think
about the extension of the maintenance of alternative domain
in CSP with general constraints, and not just in table con-
straints ; such an algorithm is not too difficult to conceive for
CSPs involving binary constraints only, but the task seems
much more tricky for general constraints. Finally, we should
be able to consider the whole interaction; for the moment, we
only considered the assignment of a value to a variable: we
need to study the relaxation of choices also. This adaptation
might mean an hybridizing with the maintenance algorithms
of propagation/depropagation in dynamic CSP[2, 3, 6].

ACKNOWLEDGEMENTS

This work is partially funded by the ANR project BR4CP
(ANR-11-BS02-008)

REFERENCES

[1] Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis, ‘Con-
sistency restoration and explanations in dynamic csps appli-
cation to configuration’, Artificial Intelligence, 135(1-2), 199–
234, (2002).

[2] Christian Bessière, ‘Arc-consistency for non-binary dynamic
csps’, in Proceedings of ECAI’92, pp. 23–27, (1992).

[3] Romuald Debruyne, ‘Arc-consistency in dynamic csps is no
more prohibitive’, in Proceedings of ICTAI’96, pp. 299–307,
(1996).

Caroline Becker and Hélène Fargier 6

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

[4] Romuald Debruyne, ‘A property of path inverse consis-
tency leading to an optimal pic algorithm’, in Proceedings
of ECAI’2000, pp. 88–92, (2000).

[5] Romuald Debruyne and Christian Bessière, ‘Some practicable
filtering techniques for the constraint satisfaction problem’, in
Proceedings of IJCAI’97, pp. 412–417, (1997).

[6] Romuald Debruyne, Gérard Ferrand, Narendra Jussien,
Willy Lesaint, Samir Ouis, and Alexandre Tessier, ‘Correct-
ness of constraint retraction algorithms’, in Proceedings of
FLAIRS’03, pp. 172–176, (2003).

[7] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselböck,
Herwig Schreiner, and Markus Stumptner, ‘Configuring large
systems using generative constraint satisfaction’, IEEE Intel-
ligent Systems, 13(4), 59–68, (1998).

[8] Eugene C. Freuder, ‘A sufficient condition for backtrack-
bounded search’, Journal of the ACM, 32(4), 755–761,
(1985).

[9] Eugene C. Freuder and Charles D. Elfe, ‘Neighborhood in-
verse consistency preprocessing’, in Proceedings of AAAI’96,
pp. 202–208, (1996).

[10] Ester Gelle and Rainer Weigel, ‘Interactive configuration
using constraint satisfaction techniques’, in Proceedings of
PACT-96, pp. 37–44, (1996).

[11] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh, ‘Su-
per solutions in constraint programming’, in Proceedings of
CPAIO’04, pp. 157–172, (2004).

[12] Daniel Mailharro, ‘A classification and constraint-based
framework for configuration’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 12, 383–397,
(September 1998).

[13] Sanjay Mittal and B. Falkenhainer, ‘Dynamic constraint sat-
isfaction problems’, in Proceedings of AAAI’90, pp. 25–32,
(1990).

[14] Sanjay Mittal and Felix Frayman, ‘Towards a generic model
of configuraton tasks’, in Proceedings of the IJCAI’89, pp.
1395–1401, (1989).

[15] Roger Mohr and Gérald Masini, ‘Good old discrete relax-
ation’, in Proceedings of the ECAI’88, pp. 651–656, (1988).

[16] Samir Ouis, Narendra Jussien, and Olivier Lhomme, ‘Expli-
cations conviviales pour la programmation par contraintes’,
in Actes de JFPLC, pp. 105–118, (2002).

[17] Daniel Sabin and Eugene C. Freuder, ‘Configuration as com-
posite constraint satisfaction’, in AI and Manufacturing Re-
search Planning Workshop, pp. 153–161, (1996).

[18] Daniel Sabin and Rainer Weigel, ‘Product configuration
frameworks — a survey’, IEEE Intelligent Systems, 13(4),
42–49, (1998).

[19] Markus Stumptner, Gerhard E. Friedrich, and Alois
Haselböck, ‘Generative constraint-based configuration of
large technical systems’, AI EDAM, 12(04), 307–320, (1998).

[20] Junker Ulrich, ‘Configuration’, in Handbook of Constraint
Programming, 837–874, Elsevier Science, (2006).

[21] Rainer Weigel and Christian Bliek, ‘On reformulation of con-
straint satisfaction problems’, in Proceedings of ECAI’98, pp.
254–258, (1998).

A Proofs

[Proof of Proposition 9]
Of course, the proposition holds when t is valid (it has an
empty conflict set). Let us examine the case of an invalid
tuple.

⇒ Let hi be l-sufficient justification of an invalid tuple
t and suppose that there exists a removal (x 6= v) in the
conflict set of t such that hi is not a sufficient justification of
(x 6= v).
We write P li the l-consistent closure of (X ,D, C ∪ H \ {hi}).
Since hi is an l-sufficient justification of t, by definition, t is
valid in P li . Since hi is also not a sufficient justification of
(x 6= v), v is not in the domain of x in P li ; t is thus invalid in

P li , which is a contradiction.

⇐ Reciprocally, let hi be an l-sufficient justification of
all the removals in the conflict set of t. For each of these
(xj 6= vj), vj is by definition in the domain of xj in P li .
Thus, t is a valid tuple in P li - by definition of the notion of
justification, hi is thus an l-sufficient justification of t. 2

[Proof of Proposition 10]
⇒ Let hi be a GAC sufficient justification of a removal

(x 6= v) . Suppose that there exits a constraint C bearing on
x such that none of the supports of x = v on C admits hi
as a sufficient justification. This means that these tuples are
not valid in the arc consistent closure of (X ,D, C ∪ H \ {hi})
(denoted PGACi). Thus v has no support on C in PGACi : it
does not belongs to the domain of x in PGACi ; hi is thus not
a sufficient justification of (x 6= v) .

⇐ Reciprocally, consider an assumption hi and suppose
that ∀C bearing x, ∃t support of x = v such that hi is a
GAC sufficient justification of t . This means that, for any
constraint bearing on x there exists a support t of x = v valid
in PGACi ; v thus belongs to the domain of x in PGACi - by
definition, this meant that hi is a GAC-sufficient justification
of (x 6= v). 2

[Proof of Proposition 11]
∀(x1, ..., xk), ∃(v1, ..., vk) a support of x = v such that hi is a
(1, k)-sufficient justification of (v1, ..., vk)

⇔ ∀(x1, ..., xk),∃(v1, ..., vk) support of x = v such that any
of the vj belongs to the domain of its variable in the closure
by (1, k)-consistency of (X ,D, C ∪ H \ {hi})

⇔ v belongs to the domain of x the closure by (1, k)-
consistency of (X ,D, C ∪ H \ {hi}) (definition of the 1, k
consistency)
⇔ hi is a justification (1, k)-sufficient of x 6= v. 2

[Proof of Proposition 12]
According to Proposition 10, when GAC is ensured

f(x 6=v)[hi] =
∧

C,x∈vars(C)

∨

t∈Support(x,v,C)

ft[hi]

For any hi, any x ∈ X and any v ∈ Dx. I.e.:

f(x 6=v) =
∧

C,x=vars(C)

∨

t∈Support(x,v,C)

ft

Yet, according to Proposition 9, the GAC-sufficient justifica-
tions set of a tuple is the intersection of GAC-sufficient justifi-
cations of the removals from its conflict set: ft =

∧
r∈CS(t) fr.

Hence the result. 2

Caroline Becker and Hélène Fargier 7

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

K-Model – Structured Design of Configuration Models

Dr. Axel Brinkop
1
 and Dr. Thorsten Krebs

2
 and Hartmut Schlee

3

Abstract.3 The purpose of this paper is to introduce the novel
knowledge acquisition methodology K-Model. We describe the
methodology itself and how it was applied within a project for
creating a prototype configuration application at J. Schmalz
GmbH. K-Model is supporting both the formalism of designing
configuration models on a conceptual level as well as the method
to actually implement these models. Based on the experience that
configuration knowledge is tacit and distributed within the heads of
several product experts’, the methodology is focusing on cross-
department communication about future goals of the configuration
application. The visualization facilities of standard mind maps help
them to achieve a common agreement and to focus on the product
domain rather than on knowledge representation formalisms. The
methodology was successfully used in the project to set up a
configuration prototype for complex products in the area of
vacuum technology.

1 MOTIVATION

A major challenge in realizing knowledge-based configuration

systems is the acquisition and formalization of configuration

knowledge. But knowledge acquisition is notoriously a very

expensive process. Actually, most of the complexity of solving a

configuration problem is said to lie in representing the domain

knowledge [2].

One of the main reasons for the complexity of knowledge

acquisition is that two types of expertise are required: knowledge

about the product domain and dealing with the representation

language that is used for modeling the product domain. But very

few persons are both domain expert and knowledge modeling

expert. Thus, in practice the modeling task is carried out by one of

the two engineers, probably being assisted by the other one.

In this paper we introduce the knowledge acquisition

methodology K-Model. This methodology helps the knowledge

engineer to focus on the product domain rather than on knowledge

representation formalisms. K-Model consists of formalism for

designing the contents of a configuration model and a method for

acquiring configuration knowledge and actually creating the

contents. The formalism describes the types of knowledge required

for creating a configuration system in a way that is well-founded

on semantics but at the same time easily understandable for domain

experts like product managers or sales engineers. We use mind

map structures to visualize the relevant types of content, i.e.

classification data, sales questions and the sales bill of materials

1 Brinkop Consulting, Oberschlettenbach, Germany,

email: Brinkop@brinkop-consulting.com
2 encoway GmbH, Bremen, Germany,

email: Krebs@encoway.de
3 J. Schmalz GmbH, Glatten, Germany,

email: Hartmut.Schlee@schmalz.de

together with their interdependencies. We further use MS Excel to

define data about available components according to the definition

of classification data as well as tabular dependencies, i.e. variant

tables. The method describes a process consisting of workshops,

reviews and “offline” refinement steps in which the relevant

configuration knowledge for the product domain is acquired and

actually implemented within a configuration model.

J. Schmalz GmbH is a family-run company situated in Glatten,

Germany. Schmalz is a leading global supplier of vacuum

technology in the fields of automation, handling and clamping

technology with an export quota of 50%, 15 subsidiaries abroad,

and sales partners within 40 countries all over the world. When it

comes to automated production processes, Schmalz offers a wide

range of individual vacuum components and related services.

Different vacuum systems can be operated in different

environments, e.g. vacuum gripper systems are ready-to-connect

modular systems for usage in robotic applications, vacuum

handling systems are operated manually and ease the handling of

work pieces and vacuum clamping systems offer short set-up times

for CNC machining centers.

Schmalz is a very innovative company with permanent

readiness to implement and accept changes. A current change of

the company is driven by investing in a quote generation process

including configuration of vacuum products. The goal of this

change is to ease generating technically correct solutions for

complex configuration problems together with high quality quote

documents. The K-Model methodology was used to set up a

prototype quote generation application for complex configurable

products from the families of vacuum handling systems and

vacuum clamping systems.

The remainder of this paper is organized as follows. In Chapter

2 we describe the knowledge acquisition methodology K-Model,

i.e. both the formalism and the method, in more detail and give

mind map representation examples. Chapter 3 describes the

application of K-Model within a real-life customer project, i.e. both

applying the formalism and method of K-Model for acquiring a

configuration model as well as implementing the acquired contents.

Chapter 4 concludes this paper with the major findings and in

Chapter 5 we present related work.

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 8

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

2 K-MODEL

K-Model is a methodology developed by Brinkop Consulting

supporting both the formalism of designing configuration models

as well as the method to actually develop these models (“K” =

“Konfiguration”, German for configuration). It is not designed for

any specific software but it is based on the approach to separately

represent structural knowledge, configuration knowledge and

available components.

The structural knowledge is a conceptual-level representation of

the internal structure of the product to be configured; i.e. the

product itself together with the parts from which it is assembled.

The options for each part are defined in the available components

themselves. Structural knowledge and available components are

strongly related, though. The structural knowledge is expressed as

a hierarchy of classes, each class defined by a set of attributes.

Inheritance of attributes is assumed. Every available component is

an instance of a class with given attribute values. The configuration

knowledge represents knowledge about dependencies and methods

to determine components. Figure 1 illustrates the corresponding

relations. The result of the configuration process is a sales bill of

material consisting of well-defined instances from these classes. In

short, the structural knowledge defines the classes; the available

components are defining the instances.

K-Model assumes that the configuration model and the

underlying configuration engine are separated. There is no need

(and no possibility) to express specific solution strategies. It is

assumed that the configuration engine can interpret the

dependencies specified. No specific configuration software is

targeted; several commercial configuration engines can handle

configuration problems designed with the K-Model methodology.

K-Model is evolved by Brinkop Consulting in a multitude of

projects. It was learned that configuration knowledge is distributed

on several persons, each focusing on a different perspective of the

configuration task. The challenge is not to acquire the

configuration knowledge but to achieve a shared commitment of

the way how to solve the configuration task at hand. Therefore K-

Model concentrates on cross-department communication. The

methodology addresses product experts with no specific IT skills.

The formalism allows informal descriptions of configuration

details as well as formal specifications. The description of the

configuration model is based on a mind map with special keywords

and structure. The tool of choice is Freeplane4, which is open

source and easy to use.

4
 http://freeplane.sourceforge.net/

Experience shows that methodology is very well suited for

workshops from several departments such as product management,

research & development, and sales. By applying the methodology

to a known domain, the participants are learning the formalism

very easily. In early phases the discussion is focusing on domain

specific configuration problems. There is no need for deep IT

background; the content of the mind map is understood by anybody

easily. It is a good basis to discuss alternative ways for solving the

configuration problem and to achieve a shared commitment.

2.1 The Formalism

The formalism distinguishes between the items (i.e. classification

data of available components), the questions (i.e. sales-relevant

configuration questions) and the resulting sales bill of material (i.e.

proposal items).

2.1.1 The Items

The tag ITEMS introduces the class hierarchy of available

components. Below the tag ATTRIBUTES introducing the

classifying attributes with their data type, possible values and

translations and are listed. The optional tag SUBTYPES marks the

classes of the next hierarchy level. The attributes are inherited

along the hierarchy, i.e. all attributes of higher levels are known as

well. Structural sub-components might be defined using the tag

HAS-PARTS.

The data about available components is defined in so-called

selection lists in MS Excel format. The structure of the selection

lists must be consistent with the structure defined herein.

Figure 1: The relations between structural knowledge, classification data and configuration knowledge.

Figure 2: The ITEMS.

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 9

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

2.1.2 The Catalog

The catalog is the starting point for the user in the quote generation

process. A user can do both, select completely defined (standard)

products or configure an individual product that consists of a set of

items. Both types of products can be included in a quote. The

catalog is structured by categories; each category contains either

item classes or other categories. An item may be assigned to

several categories; i.e. the assignment must not be unique. The user

can find such an item on several paths.

The tags DISPLAY and SEARCH are used to define the

attributes to be shown or searched respectively.

2.1.3 The Questions

Variables are specifying the object to be configured. They are

organized in classes below the tag QUESTIONS. In fact, variables

are grouped in classes defining the user interaction. For easy

handling variables of a class might be organized additionally in

topics. This organization results in a three level hierarchy “class-

topic-attribute” which can be found again in the formal names of

variables. The use of just three levels is a simplification which was

not perceived as a restriction in past projects.

K-Model assumes that there is no additional specification for

the user interface; the variables are presented to the user “as they

are”. Input variables are tagged as EDIT, SELECT, CHECKBOX

etc. and output variables as OUTPUT or HIDDEN. The

organization in classes and topics is assumed to be used for

organizing the questions, for instance in tabs.

Tags for language specific translations of the variables are

included as well (LANG: en, LANG: de, etc.).

2.1.4 The Sales Bill of Material

The result of the configuration process is a sales bill of material

tagged as BOM. The bill of material can be structured to any level

desired, the “leaves” are instances of the classes below ITEMS.

Hereafter the “leaves” are called in short “positions”.

Every position is defined by a query. A query to select a

position consists of the specification of the class to be searched and

conditions to be met by the attributes of the position. It is required

that the assignment is unique.

 To express relations like “select the drive with the lowest

power which is higher as required by x, queries can be specified

using the combination of the tags ORDER-BY with FIRST or

LAST with the same meaning as in SQL.

2.2 The Method

The method describes the steps that are necessary to set up a

configuration model using the formalism presented in the previous

section. The following sections each describe a step of the process

that are carried out during workshops or reviews, according to

figure 5.

2.2.1 Capture variables

The model design process starts with a kick-off workshop to define

the scope of the model and to get an idea about the configuration

problem. In a kind of brainstorming the relevant characteristics are

collected and captured in the mind map. These characteristics are

called variables in the following. The objective is not to describe

the configuration problem formally but to gain the key variables

for the problem.

After the first phase the variables are discussed more in detail, e.g.

whether a variable is an input or an output. In case of an input,

does the value come from a fixed set of values or is a user free to

enter any value. In case of an output it is discussed how the value

can be computed.

2.2.2 Organize variables

Variables describing the same object should be placed as attributes

of the same class. K-Model has the concept of a “topic” to organize

attributes of a class in another level. This allows easily handling

classes with a large number of attributes.

As already stated, it is assumed that the organization of the

variables directly influences the user interface. Variables belonging

to the same topic are represented to the user at the same time: e.g.

classes in tabs and topics as groups of decisions.

Figure 4: QUERY in the BOM.

Figure 3: The QUESTIONS.

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 10

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

2.2.3 Set up component selection criteria

Available components are organized in classes according to the

defined ITEMS. Individual components as parts of the

configuration solution are selected by a set of specific criteria.

These criteria make up the characteristic attributes of the

components’ class.

For every component class these characteristic attributes have to

be listed and their domains specified. Especially for discrete value

domains, every possible value has to be specified.

2.2.4 Identify dependencies

It is the dependencies between variables that turn a configuration

problem into a hard problem. There are several ways in which

variables can influence one another. The calculation of the

following variables’ properties may be based on other variables:

 Value

 Default value

 Existence condition

 Selection of component type (i.e. the type of class)

It is assumed that the configuration engine selected for the

implementation exposes default values to the user and does not

assign defaults directly to the variable.

2.2.5 Analyze dependencies

After the informal definition dependencies are analyzed. As

already stated, the variables (“questions”) are describing classes of

user interaction. Variables which have a strong relationship should

be placed in the same class. This reduces complexity for the model

as well as complexity of user interaction.

A good tool for analysis is a dependency matrix containing the

configuration variables as header for rows and columns. A field (x,

y) contains a cross when variable x influences variable y. The

distribution of the crosses visualizes the dependencies.

2.2.6 Classify available components

Available components are organized in classes with characteristic

attributes; every individual component is classified by assigning

values to its attributes. Available components are selected by their

attribute values; i.e. they represent the providing “function” within

the attributes.

In case of automatic selection, the components must have

mutually exclusive sets of attribute values. Each query should have

exactly one hit. This requirement can be relaxed when there is a

scenario of interactive selection by the user. In that case there

might be multiple hits of a query, but user must have the possibility

to distinguish between the components. Ideally, there is either a

text or a picture describing the components.

2.2.7 Formalize dependencies

Finally the specifications of the variables and the dependencies are

written down formally using formulas, algorithms and query

statements. This step is required for ensuring that the model can be

implemented with the configuration software.

It is important to keep the informal description as well for

documentation purposes and to control the formalization and to

keep the ability for an easy discussion.

3 APPLICATION OF K-MODEL IN THE
CASE OF SCHMALZ

This section describes how K-Model was applied at J. Schmalz

GmbH to acquire the relevant configuration knowledge and for

realizing a prototype configuration application.

3.1 Procedure in the Workshops

According to the K-Model method the relevant configuration

knowledge for realizing a configuration application was acquired

during a kick-off workshop and follow-up review workshops.

The configuration team was set up from product manager, sales

manager, product data management and K-Model expert. The

knowledge acquisition process is driven by the K-Model expert and

supported by all other team members. During all workshops the K-

Model expert takes notes visible for every participant using the K-

Model mind map.

The kick-off workshop started with specifying the scope of the

configuration model. Two distinct product families were chosen for

realizing the prototype application in order for being able to assess

the results independent from a single product domain. After this the

K-Model methodology was applied by capturing variables,

organizing variables, setting up components’ selection criteria, and

identifying dependencies. This work is done in a kind of

Figure 5: The cycle of workshops and reviews for designing configuration models.

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 11

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

“brainstorming” style with documenting every statement

informally in the K-Model mind map.

After the kick-off workshop the mind map was refined by

adding formalized definitions according to the informal notes that

were taken within the workshop. The individual components are

classified and the specifications and the dependencies are

formalized. This is typically done “offline”; the K-Model expert is

extending the mind maps and dependencies accordingly and the

product managers or other persons at the customer’s site define the

available components within MS Excel sheets.

The resulting mind map and data in Excel sheets were reviewed

in some follow-up review workshops by the same team. Just a few

cycles of the design process were required to extend the mind map

and MS Excel documents for reaching a level that satisfies all

participants. After that the model was released for realization.

The main point of discussion in the workshops at J. Schmalz

GmbH was about the targeted user group. Should the product

configurator be designed for the product novice with only little

knowledge about Schmalz’ products and enrich the application

with product details or should it rather address the expert and thus

focus on few decisions without explicit marketing information? At

the end it was decided to assist both of them. The system should

guide the novice and should not stop the expert from realizing the

configuration he has in mind.

3.2 Realization at encoway

encoway received the mind maps and Excel sheets that are the

result of applying the K-Model methodology. The documents

contain a formal description of the product structure and

dependencies together with the available component for two

product families. Our modeling experts were directly able to use

this structured information for modeling the products within

encoway’s modeling environment K-Build.

K-Build is web-based application for formalizing configuration

knowledge consisting of structure-based modeling facilities, i.e.

concepts together with their attributes arranged in taxonomy and

partonomy, as well as constraint definitions. This modeling tool

contains a test environment which uses the inference engine

engcon for interpreting the configuration knowledge. For detailed

information about structure-based configuration and engcon the

interested reader is referred to [4] and [3], respectively.

The structure within a K-Model mind map can be mapped

directly to concepts representing separate branches within the

taxonomy: one each represents the sales questions, the

classification data and the sales bill of materials:

 A group of sales questions is mapped to a single concept; the

questions themselves are mapped to attributes of that concept.

 The classification data is mapped to concepts and the available

components defined in MS Excel sheets are imported into

lower levels of the specialization hierarchy; i.e. as

specializations of those concepts.

 The sales bill of materials (also called bom) can be structured

into groups. Each group is mapped to a concept. The

configuration solution consists of instances of the available

components which are modeled as parts of the bom group

structure.

The dependencies within a K-Model mind map can be mapped

to so-called rules, each being equipped with a condition and

possibly multiple constraints. A condition describes a situation of

the configuration solution that must be given for the constraints to

be evaluated. engcon offers a wide variety of pre-defined

constraints that restrict a given set of concept attributes, including

formulae and tables. Simple dependencies (such as greater, less,

equals, and so on) and formulae can easily be created using K-

Build. Tabular dependencies from K-Model can also be mapped to

K-Build’s Excel representation with little effort.

The configuration application for Schmalz was set up in two

distinct steps. In a first step we created a proof-of-concept for

which the least effort should be used. This proof-of-concept was

the configuration model running in K-Build’s test environment K-

Test. In a second step we realized the configuration application

full-scale: with stable data exchange interfaces and full graphical

user interface. Hence, the data about available components was

received in two different ways within the respective steps.

1. In the proof-of-concept step the product data was transferred

from the K-Model Excel format to the K-Build Excel format.

2. In the full-scale step the configuration application was set up

using encoway’s standard architecture. The product data

contained in the Excel sheets was converted into encat, which

is encoway’s standard format for realizing media-neutral

master data exchange, based on a well-defined xml structure.

The K-Model Excel sheets containing product data can be

transformed into a corresponding K-Build Excel sheet with little

manual effort. This way, the available components are imported

into the configuration model as specializations of concepts that

stem from the classification data. This first step was carried out for

testing purposes.

The encat xml document containing product data was imported

into the so-called catalogue. encat documents also contain all

relevant translations and pricing information, which is relevant for

the application user interface and for quote generation, i.e. during

run-time, not for creating the configuration model during build-

time. Instead, encoway configuration models are typically

language-neutral and do not contain the available components or

pricing information. The catalogue is a single place for all this

information. Technically, it is a database that comes with an

advanced API for querying the different types of data during run-

time.

While product information, including the translations and

pricing information change over time, the physics, on which the

product configuration is based, typically stays stable. The physics

is represented within the configuration model while the actual

components are not. The major benefit of using encat as stable data

exchange interface is thus that the configuration model need not be

changed when importing new product data.

For realizing the Schmalz configuration application we use

encoway’s quoting process-supporting tool QuoteAssistant. The

QuoteAssistant is a web-based application for browsing catalogue

content, configuring products, creating quoting structures together

with pricing and generating high quality quote documents; all in

one place. The QuoteAssistant contains a standard user interface

design for displaying concepts and their attributes within a tab

structure using a widget collection containing checkboxes, select

boxes or text input fields. This means that, when treating all

concepts that are modeled as parts of the K-Model questions as

tabs, the placement of sales questions is determined by their

attributes and no extra definition for user interface is required.

The user is free in structuring configurable products and

available components from the catalogue within folders of a

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 12

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

quoting structure. The result of the quoting process is such a

structure together with pricing and conditions. This quote result

can be exported to a MS Word or PDF documents via the tool K-

Document. This tool allows using pre-defined MS Word templates

and enriching them with the configuration results, content from a

CRM system (such as address data) and from the catalogue

(product information or images) automatically during run-time.

4 CONCLUSION

In this paper we have shown how the knowledge acquisition

methodology K-Model helps a knowledge engineer to focus on the

product domain rather than on knowledge representation

formalisms while creating a configuration model. The visualization

facilities of standard mind maps ease the creation of configuration

models for product managers and sales personnel who are typically

not experts in the area of knowledge representation. Especially

within workshops where persons with different backgrounds

together acquire the relevant knowledge for a configuration

applications this informal mind map representation is a valuable

tool.

The results which are produced by the analysis steps described

in Section 2.2 may seem rather tentative at first sight. However, the

results remain stable once the process of designing a configuration

model has gone through a small number of design cycles (see also

Figure 5). K-Model was already used to analyze and design

configuration models for roughly 20 domains, mostly of very

different nature and size. The largest domains consist of up to 2000

variables that are relevant for product configuration within this

domain. We thus see this as a significant number of cases to call K-

Model a success for supporting the process of analyzing a

configuration domain and designing a respective configuration

model. For encoway, however, the Schmalz configurator is the first

application of a K-Model. But nonetheless, the input in form of

well-designed mind maps and Excel sheets significantly improved

setting up a configuration model from scratch.

An extension of K-Model that is currently under development is

modularizing the mind map in multiple sub-maps. With this

approach it is possible to describe smaller parts of a configuration

that can be reused (multiple times) within larger configuration

contexts. The modularization also enhances keeping an overview

of large configuration domains.

For J. Schmalz GmbH, K-Model was applied while creating a

working prototype configuration application. It took just a few

workshops with product managers and sales personnel to set up the

K-Model mind maps and MS Excel. This input data was of high

quality and could be directly used by encoway modeling experts

for creating a configuration model of the product domain.

Schmalz is now able to fully benefit from the configuration

application that was set-up using the K-Model knowledge

acquisition methodology. Applying K-Model within this project

was successful in that all relevant persons – including product

managers, sales personnel and technicians – were able to focus on

the specific characteristics of the desired configuration application

without extra effort for learning representation facilities. The

methodology significantly increased the efficiency of cross-

department communication and reduced the time-to-prototype

during realization.

5 RELATED WORK

Because knowledge acquisition in the environment of knowledge-

based configuration systems is notoriously a very expensive

process, there is other work concentrating on this task. Support for

knowledge acquisition tasks ranges from propose-and-revise

techniques that help users in deciding on correctness to graphical

representation in form of UML class diagrams or mind maps.

The work described in [7] explicitly targets to support the task

of knowledge acquisition for configuration knowledge bases with a

propose-and-revise strategy. It is implemented in the knowledge

acquisition tool EXPECT, which uses LOOM, a knowledge

representation system based on description logics. The focus of this

work is on correctness of the underlying knowledge and does not

take graphical representation into account.

In [6] a UML representation for configuration knowledge bases

is introduced for the purpose of enhancing sharing, distribution and

cooperation within the use configuration knowledge. UML

stereotypes are defined to represent the specifics of configuration

such as concepts, attributes, taxonomy and partonomy. Constraints

are defined using OCL. In [8] the authors bring the idea one step

further by introducing a set of rules for transforming UML models

into configuration knowledge based on description logics such as

OIL or DAML+OIL. This work explicitly aims at supporting the

knowledge acquisition bottleneck with graphical representation as

a frontend and can thus be seen similar to the K-Model approach,

although K-Model prefers mind maps over UML diagrams.

The authors of [5] also use mind map structures to support

knowledge engineers. However, their work focuses on formalizing,

sharing and reusing experiences of past projects in order to help

avoiding mistakes that these projects have already encountered.

Their work differs from ours in the sense that they use mind maps

to capture and represent project experience while we use mind

maps to capture and represent configuration knowledge.

The methodology K-Model is novel in the way that is explicitly

targets to support non-experts during the acquisition of

configuration knowledge by using mind maps as a graphical

frontend. Furthermore, the K-Model explicitly distinguishes master

data and product structure, configuration decisions and the

configuration solution. It defines the syntax and semantics of

usable mind map structures as well as the modeling process, i.e.

how to use the mind maps in workshop situations together with

non-experts such as product managers or sales personnel.

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 13

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

REFERENCES

[1] A. Brinkop. Variantenkonstruktion durch Auswertung der

Abhängigkeiten zwischen den Konstruktionsbauteilen, Dissertationen

zur Künstlichen Intelligenz, Band 204, Infix, St. Augustin, 1999.

[2] D. Sabin and R. Weigel. Product Configuration Frameworks – a

Survey. IEEE Intelligent Systems, 13(4):42–49, 1998.

[3] O. Hollmann et al. EngCon: A Flexible Domain-independent

Configuration Engine. In: Proceedings of Configuration (ECAI 2000-

Workshop):94–96, 2000.

[4] C. Ranze et al. A Structure-based Configuration Tool: Drive Solution

Designer (DSD), In: Proceedings of AAAI02 / IAAI02: 845–852,

2002.

[5] C.-S. Chen and Y.-C. Lin. Enhancing Knowledge Management for

Engineers Using Mind Mapping in Construction, New Research on

Knowledge Management Technology, Dr. Huei Tse Hou (Ed.), ISBN:

978-953-51-0074-4, 2012.

[6] A. Felfernig et al. Configuration Knowledge Representation Using

UML/OCL, Lecture Notes in Computer Science, Volume 2460, 91-

108, 2002.

[7] S. Ramachandran, Y. Gil. Knowledge Acquisition for Configuration

Tasks: The EXPECT Approach. In: Proceedings of Configuration

(AAAI 1999-Workshop):29–34, 1999.

[8] A. Felfernig at al. UML As Knowledge Acquisition Frontend for

Semantic Web Configuration Knowledge Bases, In: RuleML 2002 –

Proceedings of the International Workshop on Rule Markup

Languages for Business Rules on the Semantic Web, Michael

Schröder and Gerd Wagner (Eds.), Volume 60, 2002.

Axel Brinkop, Thorsten Krebs, and Hartmut Schlee 14

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Towards a Formalism of Configuration Properties
Propagation

David Fabian1and Radek Mařík2and Tomáš Oberhuber3

Abstract. Software configuration often studies two issues: firstly,
how to merge various software components together to create a pro-
gram with a fixed structure that fits the requirements, and secondly,
how to effectively set up the remaining (usually installation specific)
configuration options when deploying the program. Nowadays, the
user demands a simple and well arranged way to set up these options,
possibly through a graphical user interface (GUI). There are vari-
ous tools designed to assist the user with these tasks. In this paper,
a general multi-platform configuration tool Freeconf is introduced.
Our technique to simplify a GUI, which has been incorporated into
Freeconf, is described. This technique is based on a set of properties
that allow splitting the universe of configuration options into sev-
eral categories with a clear semantics and rules that control the dy-
namics of options distribution to these categories in response to the
user’s actions. The rules are currently only implemented in the source
code of Freeconf as a proof-of-concept without any formal proof of
soundness or completeness. Results from the domain of Rule-Based
Constraint Programming have been applied in the paper to develop a
formal description of the rules.

1 Introduction
While working with a software application, the user usually needs to
adjust a working environment to her needs. Nowadays, almost every
application lets the user to perform some configuration. The aver-
age user often does not understand the background of the program
and expects a nice graphical user interface (GUI) to assist her. How-
ever, there are many applications (especially in the GNU/Linux en-
vironment) that do not have any GUI whatsoever and the only way
how to configure them is through configuration text files. A serious
problem of these files is that their syntax differs greatly, so the user
must learn it first from the documentation. It is also necessary for
the user to deeply understand the meaning of various configuration
options (configuration keys), their dependencies, and their possible
values.

1.1 Configuration Tools
There exist tools that address the above mentioned difficulties. Some
are focused on a given domain (or even at one application, Linux
kernel is popular) like SmartFrog [2] and LCFG [1, 3] which are

1 Dept. of Mathematics, Faculty of Nuclear Sciences and
Physical Engineering, Czech Technical University in Prague,
(fabiadav@fjfi.cvut.cz).

2 Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical
University in Prague.

3 Dept. of Mathematics, Faculty of Nuclear Sciences and Physical Engineer-
ing, Czech Technical University in Prague.

designed to administer the installation of large scaled networks of
UNIX systems, or MenuConfig [16, ch. 7] which is a primary tool for
Linux kernel configuration. Then there exist general tools like Lin-
uxConf [10] and Freeconf [9]. Freeconf is a unique tool as it offers a
multi-platform and a multi-desktop configuration of applications of
any kind.

1.2 Configuration Properties

Many automatic configuration tools suffer from the overwhelming
complexity of the user interface they generate which is a severe prob-
lem for the user. One of the possibilities of solving this issue consists
in breaking the uniform universe of keys to several categories and
providing the categories with an exact semantics. Then, only the keys
from a category which is the most interesting to the user at a given
moment can be displayed. The solution presented here is based on a
set of properties of keys, in other words, on a set of labels that are
assigned to every key and determine its membership to a category. In
Table 1, there is an example of a set of possible properties for keys
categorization. The last property undefined represents a set of keys
that do not have their value set and therefor could cause problems in
the output of the configuration. In other words, this property allows
us to describe a form of inconsistency with the instant state of the
configuration.

property meaning
mandatory The key is important to the configured application and

must be filled in.
meaningful The key has sense in the present settings and its exis-

tence is not ruled out by any dependency.
undefined The key finds itself in an invalid state such as that it

has no value set or the value is in conflict with depen-
dencies.

Table 1. Properties used for configuration keys categorization.

Having each key as a feature, this approach resembles feature
modeling [7] with extra-functional attributes. The semantics for op-
erators and dependencies, however, is different.

The distribution of keys into categories does not have to be static,
some keys can change their roles during the configuration process
in response to an outer activity (a dependency event, user input). A
mechanism is needed to control the development of the categories.
For this, Freeconf uses rules to control the propagation of properties.
The current set of rules in Freeconf has been constructed by hand
and tested only empirically; it has not been proved, whether the rules
are sound or complete. Techniques of the rule-based constraint pro-
gramming can provide a proof; however, one must first give a formal
description to the rules.

David Fabian, Radek Mař́ık, and Tomáš Oberhuber 15

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

The rest of this paper is divided as follows. In Section 2, a brief in-
troduction to Rule-Based constraint programming is presented. Sec-
tion 3 describes the structure of Freeconf and a set of properties used
in the tool. Section 4 introduces the way Freeconf handles propa-
gation of properties. Finally, Section 5 presents a formalized set of
rules, and Section 6 concludes.

2 Rule-based Constraint Programming

Rule-Based constraint programming is a special case of a more gen-
eral constraint programming studied in [4, 8, 12, 13]. Constraint pro-
gramming is an alternative approach to programming in which a
model of a problem is declarative, and then it is solved by general
or domain-specific methods. The model is formed by a set of con-
straints (requirements) on variables so that acceptable variable as-
signments correspond to solutions to the problem [4]. Following [8],
let us assume a sequence of variables

X = x1, . . . , xn

with respective domains

D1, . . . , Dn,

so each xi takes its value from the set Di.

Definition A constraint C on X is a pair 〈CR, X〉 where CR is an
n-ary relation over the domains Di, i.e., CR ⊆ D1 × . . . × Dn, of
solutions to the constraint.

Definition A constraint satisfaction problem (CSP) is a triple
〈C, X,D〉 where X = x1, . . . , xn is a finite sequence of variables
with respective domains D = D1, . . . , Dn, and C is a finite set of
constraints, each on a sub-sequence of X .

Definition A solution to the CSP 〈C, X,D〉 is an element d ∈ D1×
. . .×Dn such that for each constraint C ∈ C on a sequence of vari-
ables Y it holds d [Y] ∈ C where d [Y] stands for a projection of d to
Y = xi(1), . . . , xi(l), i.e., d [Y] = di(1), . . . , di(l). Sol (〈C, X,D〉)
will denote the set of all solutions to the CSP 〈C, X,D〉.

There exist general algorithms for solving a CSP [8, 14] and even
entire frameworks, such as Skyblue [15], ECLiPSe [5], and Minion
[11]..

The core concept of Rule-Based programming is a rule. Rules are
condition-action pairs where the condition part is used to determine
whether the rule is applicable and the action part defines the action
to be taken [6]. A formal definition of a rule taken from [8] follows.

Definition Assume thatA and B are sets of constraints such that the
constraints in A and B are on the variables X with domains D. The
expression B ← A is a constraint propagation rule. A is called the
condition and B the body of the rule. Rules act as functions on CSPs.
The application of a rule to a CSP with the variables X is given by

(B ← A)(〈C, X,D〉) :=
{
〈C ∪ B, X,D〉 ifA ⊆ C,
〈C, X,D〉 otherwise.

The rule B ← A is correct if Sol(〈A, X,D〉) ⊆ Sol(〈B, X,D〉).

3 Freeconf

To help the user to overcome difficulties of software configuration,
the project Freeconf has been established. The purpose of this project
is to unify the existing configuration process and to assist the user
by automatically creating the configuration dialog window similar
to one in Fig.1. The configuration process must be smooth from the
point-of-view of the user: the dialog must fit nicely into the desktop
environment, configuration options must be presented in the logical
order, and only what is crucial to fill in should be shown. To better
understand how Freeconf addresses these tasks, a short description
of its inner structure is presented.

Figure 1. Example of Freeconf generated configuration dialog.

LibraryClient KDE

Client Win

Client Console Configuration
PackageDialog

Figure 2. Components of the Freeconf project.

3.1 Structure of Freeconf

The project consists of several components as shown in Fig.2. The
most important one is the Freeconf library which contains the en-
tire functionality. The library is shared by graphical client applica-
tions (clients), the sole purpose of which is to present a configuration
dialog to the user. One can have many different clients, each for one
desktop environment. The clients are supposed to be very small (less
than a 1000 lines of code), so it should be very simple to create an-
other one. To be able to configure an existing application, the library
needs to be provided with an appropriate configuration package. The
package is a collection of XML files that semantically describe the
configuration file the application understands (native configuration
file). It contains a list of all keys, their default values, properties and
dependencies, and a rough description of what the resulting dialog
should look like. Keys can be organized into configuration sections.

David Fabian, Radek Mař́ık, and Tomáš Oberhuber 16

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

The number of keys can vary depending on the configured applica-
tion. Usually, configuration packages have tens to hundreds of keys,
but some configurations utilize up to thousands of keys like in the
case of the Linux kernel.

When a package is loaded, the library constructs three tree struc-
tures — a template tree for storing key properties, a configuration
tree for storing values and handling dependencies, and a GUI tree
for dialog modeling. The trees are interconnected, and one can freely
traverse from one node of one tree to the matching node of another
tree. Leave nodes correspond to keys and their properties, the non-
leave nodes represent configuration sections (there is always a root-
section present). When a client needs data for dialog construction,
it connects to the library through the client-library interface and ob-
tains various properties for each node. Fig.3 shows the situation. The
interface forms a tree which is placed between the GUI tree in the
library and the hierarchy of GUI elements (group-boxes, line edits,
check-boxes, etc.). The client organizes the GUI elements to another
tree that is very closely related to the actual look of the dialog.

client tree

group-box

group-boxcheck-box

spin-box line-edit

i
n
t
e
r
f
a
c
e

section

sectionboolean

number string

library GUI tree

Figure 3. Tree data structures and the client-library interface. The top figure
shows how the client tree is transformed into a dialog form.

3.2 Properties in Freeconf
Since the beginning of the project, every client could use the basic
set of properties for each key. These basic properties are presented in
Table 2.

property meaning
name Name of the key.
label Label for the key.
help Tooltip help text.
value Value of the key or default value if no value exists.
type Type of the key. It can be: boolean, number, string,

stringlist, or section.

Table 2. Basic properties of configuration keys.

Every key type adds additional properties, e.g., a number can have
a minimum, a maximum, and a step by which the value increments
and decrements. String keys usually have a regular expressions asso-
ciated with them constraining their value.

While the basic set of properties would generally suffice to con-
struct a dialog, the dialog would look overfilled and confusing to the

user. That is why another set of properties was added to Freeconf
which would enable splitting keys into different categories. Thus,
only keys from a specific category can be shown to the user. The
current set of properties which extends those presented in Table 1 is
summarized in Table 3.

property meaning
static mandatory If it is true, the key is mandatory and must be

always shown.
static active If it is false, the key is not visible to the

client.
dynamic mandatory This property can only be set from a depen-

dency handler. If it is true, the key is manda-
tory and must be shown. This property has
no meaning when the static mandatory prop-
erty is set to false.

dynamic active This property can only be set from a depen-
dency handler. If it is false, the key does not
have sense in the current settings. This prop-
erty has no meaning when the static active
property is set to false.

inconsistent The key does not have neither a value, nor a
default value set and is dynamically manda-
tory and dynamically active.

empty The property is only applicable to section
nodes. It states whether the section is empty,
i.e., all its children are hidden.

Table 3. Additional properties used for keys categorization.

All static properties are stored in the package as a part of a tem-
plate describing the native configuration file, while the dynamic ones
are a part of a file describing dependencies.

Mandatory property states, whether the key is important or not.
Important keys should be visible in the dialog while non-mandatory
keys can be hidden, so the dialog becomes less confusing. The static
version of this property is used for packages with no dependencies
or for keys unaffected by any dependency. The dynamic version can,
as in the current version of Freeconf, override the static state only
when the static mandatory property is not false (that means static
non-mandatory keys are definite).

Active property has two different semantics. In its static version, it
is used to prevent the library from announcing the key to the client.
In other words, if the property is set to false, the key is virtually
commented out. It is easier to disable the key that way than to delete
it from the entire package which is non-trivial. The dynamic version
of this property serves the purpose of ruling out situations that do not
have sense (e.g., when the user checks the "no sound" option, setting
the "volume" option becomes nonsensical and this option should be
left out from the dialog or at least disabled).

Inconsistency is a special situation when the key does not have any
value set, but it is important to the configured program. This can hap-
pen, especially when the configuration is run for the first time, and
there exist keys which do not have default value set by the creator
of the package. When this situation occurs, the user has to be told
so and must be able to solve the problem with minimum effort. It
follows from the above mentioned description of the properties there
are situations where inconsistency is acceptable and the user needs
not to be alerted (e.g., when the key is statically inactive). In fact,
there exists exactly one combination of the properties which needs
some user assistance (i.e., the client must be informed) — the key
is dynamically mandatory, dynamically active, and inconsistent at
the same time. In other situations, such as when the key is only dy-
namically active but not mandatory, the key is simply left out from
the native output (so the native output will always contain only keys

David Fabian, Radek Mař́ık, and Tomáš Oberhuber 17

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

with a defined value).
Emptiness is an important property which naturally arose from the

need of hiding non-mandatory keys. The user cannot be distracted by
optional keys, so those must be hidden. If there is a section containing
only hidden keys, there is no point of displaying it. The empty prop-
erty can help the client with hiding of unnecessary GUI elements.

4 Properties Propagation

Freeconf maintains properties in connected tree structures as de-
scribed in Section 3. The Freeconf library must be able to inform
the clients about the state of each property in every node the client–
library interface announces. For leave nodes, this becomes trivial. For
non-leave nodes, however, the state of a property must reflect what is
happening in all of node’s direct successors.

4.1 Propagation Mechanism

To keep record of the number of properties in children nodes, ev-
ery section has a set of counters, each bound to a specific property.
Counters hold how many times the matching property occurs in the
successors. For example, for the inconsistent property the "inconsis-
tent count" counter exists in each section and if it is, for instance, set
to two, then there are exactly two children nodes that are inconsistent.

If a counter reaches zero, a message about the change of a property
is sent to the client from the affected section. The section must also
inform its parent (i.e., another section) about the change, so the ap-
propriate counter of the parent can be adjusted. Similarly, a message
must be sent whenever a nullified counter is incremented.

The entire propagation schema can be seen in Fig.4.

section

sectionboolean

number string

inconsistency
changed to false

notify parent

if counter = 0 then notify parent

send message
to client tree

send message
to client tree

counter
decrement

Figure 4. Propagation of properties in Freeconf. Inconsistency of the bold
node has been changed. The information is propagated into the parent
node (dashed). The property can be further propagated. Every change is sent
to the client tree also.

When the state of a property (inconsistency in this case) has been
changed, the node notifies its parent about the change. The parent
section increments or decrements the matching counter and checks,
whether the counter is zero or not. If it is zero, the notification is
propagated further up the tree. This leads to the expected behavior in
the client since every path leading to an inconsistent key is marked,
so the client can render it appropriately. The top-level section (a con-
figuration tab in fact) also knows about the overall state of all keys
underneath and it can, for instance, forbid creating the native output
until all inconsistencies have been resolved. This method requires a
protection mechanism against resending the same message. An ob-
vious solution would be to remember the last state of each property
for every node and inform the parent only if the state changes.

For this algorithm to be valid, all counter must be set to the correct
value at start time. This is called the initialization phase. All counters
are set to zero, and the tree is traversed by depth-first search. Every
leave node is evaluated and the existing propagation framework is
used to initialize all counter values.

It is also possible to emit a global change, for instance, when the
user overrides the mandatory property and enforces showing all keys
which are dynamically active. In such a case, all leave nodes are
asked to reevaluate their states similarly to the initialization phase.
In fact, the initialization phase is a form of a global change.

5 Rules
The above mentioned algorithm was implemented in an ad hoc man-
ner. All property evaluation procedures were tailored to the seman-
tics described in Section 3. The result is a set of rules implemented
as condition statements in the source code.

The goal of this section is to bring a formal description of the
resulting rules based on definitions from Section 2.

5.1 Formal Description
Let K = {k1, . . . , kn} be a set of indices for keys and S =
{s1, . . . , sl} a set of indices for sections. Let parent : K ∪ S →
S ∪ {∅} be a mapping returning for each key or section its parent.
The symbol of an empty set is returned for the top-level section. All
properties of keys will be modeled as Boolean variables. For exam-
ple, dynactx will denote a dynamic active property of a key with an
index x ∈ K. Together with the properties from Table 3, variables
defvalsetx and valsetx will be used to describe the states where a
default value and a value have been set to the key, respectively.

Section counters will be modeled as non-negative integer vari-
ables. As an example, inconsistcounty represents the state of an
inconsistent counter in a section with an index y ∈ S. If the index is
∅, no action is performed.

Moreover, there is a Boolean variable called showallact which
enables showing even non-mandatory properties (i.e., showing all ac-
tive keys regardless of the state of the mandatory property). The list
of all rules currently used in Freeconf follows.

In the initialization phase, dynactx and dynmanx are set accord-
ing to the static version of the properties and inconsistentx is eval-
uated for the first time.

dynactx ←staticactx ∀x ∈ K
dynmanx ←staticmanx ∀x ∈ K

inconsistentx ←(¬defvalsetx ∧ ¬valsetx)∧
∧ dynmanx ∧ dynactx ∀x ∈ K

When the valsetx variable changes its value, these rules are ap-
plied to update inconsistency.

inconsistentx ←(¬defvalsetx ∧ ¬valsetx)∧
∧ ¬inconsistentx ∧ dynmanx∧
∧ dynactx ∀x ∈ K

¬inconsistentx ←¬(¬defvalsetx ∧ ¬valsetx)∧
∧ inconsistentx ∀x ∈ K

Whenever either dynmanx or dynactx variable changes its
value, the inconsistent state of the node must be reevaluated and the
parent’s counter is adjusted accordingly.

David Fabian, Radek Mař́ık, and Tomáš Oberhuber 18

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

inc(inconsistcountparent(x))←
← dynmanx ∧ inconsistentx ∧ dynactx ∀x ∈ K

dec(inconsistcountparent(x))←
← (dynmanx ∧ inconsistentx ∧ ¬dynactx)∨
∨ (dynactx ∧ inconsistentx∧
∧ (¬dynmanx ∨ ¬inconsistentx)) ∀x ∈ K

(1)

If the inconsistcounty alters, the section must test if it is not
necessary to propagate the information further.

dec(inconsistcountparent(y)) ∧ ¬inconsistenty ←
← (inconsistcounty = 0) ∧ inconsistenty ∀y ∈ S

inc(inconsistcountparent(y)) ∧ inconsistenty ←
← ¬(inconsistcounty = 0) ∧ ¬inconsistenty ∀y ∈ S

The mandatoryshowny and activeshowny counters change
when a dependency alters dynmanx and dynactx, respectively. It
must be also tested whether the static equivalents to the respective
properties have not been set to false.

¬dynmanx ←¬staticmanx∧
∧ dynmanx ∀x ∈ K

¬dynactx ←¬staticactx∧
∧ dynactx ∀x ∈ K

inc(mandatoryshownparent(x))←dynmanx ∀x ∈ K
dec(mandatoryshownparent(x))←¬dynmanx ∀x ∈ K

inc(activeshownparent(x))←dynactx ∀x ∈ K
dec(activeshownparent(x))←¬dynactx ∀x ∈ K

The emptyy variable must be reevaluated for each section every
time any of its counters (except inconsistcounty) changes.

¬emptyy ∧ dec(sectionshownparent(y))←
← emptyy ∧ ¬(sectionshowny = 0)∨
∨ (showallact ∧ ¬(activeshowny = 0))∨
∨ (¬showallact ∧ ¬(activeshowny = 0)∧
∧ ¬(mandatoryshowny = 0)) ∀y ∈ S

emptyy ∧ inc(sectionshownparent(y))←
← ¬emptyy ∧ ((mandatoryshowny = 0)∧
∧ (sectionshowny = 0)) ∨ ((activeshowny = 0)∧
∧ (sectionshowny = 0)) ∀y ∈ S

(2)

5.2 Weaknesses of Freeconf Design
It can be easily seen that some of the rules are not optimal. For in-
stance, the second rule in 1 could be shortened by leaving out the last
occurrence of inconsistentx. In 2, the rules should be mutually ex-
clusive, but it is non-trivial showing the head formulas really behave
that way.

Clearly, a problem of the current implementation is the lack of
formal description. All condition statements are scattered across
the source code, and it is very complicated maintaining them even
though the number of the properties is very small. The design is also
not very robust since a small change in any of the conditions will
render the system non-functioning. This actually happened — one
conjunction was overwritten by mistake by a disjunction, and the
client started behaving strangely. It was obvious there was a mistake
in a condition, but it was difficult to find it.

6 Conclusion
This paper introduces Freeconf, a multi-platform configuration tool,
and a technique which reduces the problem of very complex graph-
ical user interfaces that are often generated by automatic configura-
tion tools. The technique is based on splitting configuration options
into categories using properties and forming a set of rules that con-
trol the dynamics of the evolution of the categories. A set of rules has
been proposed to be used in Freeconf to simpify its graphical output.
The rules have been implemented in the source code as a proof-of-
concept, and it has been empirically verified that the rules work. In
this paper, a formal description of the rules has been presented based
on the theory of Rule-Based programming. The proof of soundness
and completeness of the rules is subject of future work.

7 Acknowledgments
This work was partially supported by the project of the Stu-
dent Grant Agency of the Czech Technical University in Prague
No. SGS11/161/OHK4/3T/14, 2011-13 and Research Direction
Project of the Ministry of Education of the Czech Republic No.
MSM6840770010.

REFERENCES
[1] Paul Anderson, LCFG: A Practical Tool for System Configuration, The

USENIX Association, 2008.
[2] Paul Anderson, Patrick Goldsack, and Jim Paterson, ‘SmartFrog Meets

LCFG: Autonomous Reconfiguration with Central Policy Control’, in
Proceedings of the 17th USENIX conference on System administration,
LISA ’03, pp. 213–222, Berkeley, CA, USA, (2003). USENIX Associ-
ation.

[3] Paul Anderson, Alastair Scobie, and Division Of, ‘LCFG - the Next
Generation’, in UKUUG Winter Conference. UKUUG, (2002).

[4] K.R. Apt, Principles of Constraint Programming, Cambridge Univer-
sity Press, 2003.

[5] K.R. Apt and M. Wallace, Constraint Logic Programming Using
ECLiPSe, Cambridge University Press, 2007.

[6] Krzysztof R. Apt and Eric Monfroy, ‘Constraint Programming viewed
as Rule-based Programming’, CoRR, cs.AI/0003076, (2000).

[7] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés, ‘Auto-
mated reasoning on feature models’, in Proceedings of the 17th in-
ternational conference on Advanced Information Systems Engineering,
CAiSE’05, pp. 491–503, Berlin, Heidelberg, (2005). Springer-Verlag.

[8] Sebastian Brand, Rule-Based Constraint Propagation Theory and Ap-
plications, Ph.D. dissertation, 2004.

[9] David Fabian, System for Simplified Generating of Configurations,
Master thesis, Faculty of Nuclear Sciences and Physical Engineering,
Prague, 2011. in Czech.

[10] Jacques Gélinas. Linuxconf homepage, 2005.
http://www.solucorp.qc.ca/linuxconf/.

[11] Ian P. Gent, Chris Jefferson, and Ian Miguel, ‘Minion: A fast scalable
constraint solver’, in Proceedings of ECAI 2006, Riva del Garda, pp.
98–102. IOS Press, (2006).

[12] Michael Gleicher, ‘Practical issues in graphical constraints’, in Princi-
ples and Practice of Constraint Programming, pp. 407–426. MIT Press,
(1995).

David Fabian, Radek Mař́ık, and Tomáš Oberhuber 19

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

[13] K. Marriott and P.J. Stuckey, Programming With Constraints: An Intro-
duction, Mit Press, 1998.

[14] Nico Roos, Yongping Ran, and H. Jaap van den Herik, ‘Combining Lo-
cal Search and Constraint Propagation to Find a Minimal Change Solu-
tion for a Dynamic CSP’, in Proceedings of the 9th International Con-
ference on Artificial Intelligence: Methodology, Systems, and Applica-
tions, AIMSA ’00, pp. 272–282, London, UK, UK, (2000). Springer-
Verlag.

[15] V. Saraswat and P. Van Hentenryck, Principles and Practice of Con-
straint Programming: The Newport Papers, chapter The SkyBlue Con-
straint Solver and Its Applications, 385–405, Mit Press, 1995.

[16] Sven Vermeulen, ‘Linux sea’. http://swift.siphos.be/linux_sea, 2012.

David Fabian, Radek Mař́ık, and Tomáš Oberhuber 20

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Testing Object-Oriented Configurators With ASP 1

Andreas A. Falkner and Gottfried Schenner 2, Gerhard Friedrich and Anna Ryabokon 3

Abstract. Testing is an important aspect of every software project.
For configurator applications it is equally important but often ne-
glected. This paper shows how to support testing object-oriented and
constraint-based configurators by automatically generating positive
and negative test cases using answer set programming (ASP). The
object-model of the configurator is mapped to ASP code; the con-
straints to be tested are coded redundantly in ASP. Based on that, the
ASP solver generates appropriate test cases, which are then used for
unit testing in the object-oriented configurator. There are different
strategies to improve this basic process, e.g. reduction of the number
of test cases with symmetry breaking.

1 Introduction
Testing is an important but often neglected aspect of every software
development project. Especially for object-oriented (OO) languages,
unit testing with a testing framework like JUnit [3] is well established
and an integral part of development methods like Extreme Program-
ming [4]. Unit testing frameworks are also gaining acceptance out-
side of object-oriented programming [9].

A configurator is a software system that enables the user to con-
figure complex systems or services using predefined components. In
a constraint-based configurator, constraints describe the conditions
which the configured system must satisfy. In order to test the correct-
ness of each individual constraint, the tester must provide positive
and negative test cases for it. A positive (negative) test case is a partial
configuration where the constraint is satisfied (violated). Obviously,
the test cases cannot be created by the solver of the configurator be-
cause one cannot use the possible faulty constraint to generate the test
case. Therefore, the test cases currently must be created manually.

There are different testing strategies such as black-box and white
box testing ([16]. In black-box testing, the internal structure of the
test object must not be known to the tester and the tests are devised
according to the specification of the software system. In white-box
testing, the internal structure is known and the tester designs the tests
to achieve a high test coverage. In practise both strategies should be
used because they tend to find different kind of errors.

The basic idea of this paper is to semi-automatically generate test
cases for object-oriented configurators by first translating the con-
figurator’s knowledge base (without the constraints to be tested) to
an answer set programming (ASP) program. The constraints to be
tested are then coded manually in ASP. Implementing the same con-
straint both in Java and ASP achieves the necessary diversity to de-
tect conceptional errors (similar to N-Version programming [1]). The

1 This work has been developed within the scope of the project RECONCILE
(reconciling legacy instances with changed ontologies) and was funded by
FFG FIT-IT (grant number 825071).

2 Siemens AG Österreich, Vienna, Austria firstname.{middleinitial.}last-
name@siemens.com

3 Universität Klagenfurt, Austria firstname.lastname@aau.at

ASP solver runs this program and generates positive and negative test
cases which are translated back into test cases for the object-oriented
configurator.

The following section defines necessary features of the configura-
tor and provides a brief introduction to the ASP systems. In Section 3
we describe the approach in more details presenting the OO-ASP
mapping and examples for a small application. We show different
ways to reduce the number of generated test cases to a reasonable
size in Section 4 and conclude in Section 5.

2 Context
For this work, we used a configurator based on Generative Constraint
Satisfaction (GCSP) which is a combination of object-oriented and
constraint-based technologies. In general however, any system that
complies to the definition of the following subsection can be used.
The current target system is the Potassco ASP suite4 [12] - it could
easily be replaced by another ASP system.

2.1 Object-oriented constraint-based configurator
The results of this paper can be applied to any existing configurator
framework which complies to the following definitions.

Definition 1 (Knowledge Base, KB) The knowledge base of an
object-oriented and constraint-based configurator comprises an ob-
ject model and a set of constraints.

The KB specifies the relevant domain knowledge in a declarative
way. The solver comprises a general constraint solver which reasons
over that knowledge, e.g. checks consistency, searches solutions (i.e.
valid configurations), etc.

Definition 2 (Object Model) An object model contains classes,
their inheritance hierarchy, attributes (Boolean, enumeration, inte-
ger), and associations (bidirectional).

The object model describes the structure of the possible configu-
rations, including the multiplicities (cardinalities) of the parts. It can
be specified by an UML class diagram [17].

Definition 3 (Configuration) A configuration is an instantiation of
the object model.

Without loss of generality, only instances of leaf classes (classes
without subclasses) are allowed in a configuration. For the course of
this paper, it is assumed that the configurator maintains one current
configuration. In an interactive configurator, the user would manipu-
late the current configuration by adding/deleting objects and setting

4 http://potassco.sourceforge.net

Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon 21

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

attributes and associations until a valid configuration is found. Alter-
natively the constraint solver can be used to extend a configuration
to a valid configuration. Constraints are used to describe the valid
configurations of the configurator.

Definition 4 (Constraint) A constraint is a condition which every
valid configuration must satisfy.

This is a very general definition of the concept constraint. To make
our approach broadly applicable, no special constraint techniques
like domain-filtering, constraint propagation, etc. are required. A
constraint can be thought of as an invariant constraint in UML/OCL.
In its simplest form, constraints are Boolean methods of an object-
oriented language defined over the current configuration. From a
knowledge engineering view, constraints should correspond to some
requirements that the product to configure must satisfy. The scope of
a constraint can range from simple expressions like ’wheel1.size =
wheel2.size’ to ’The light-system of this vehicle is configured cor-
rectly’ (represented by some complex code accessing sub-parts and
their properties).

2.2 Answer Set Programming
Answer set programming is an approach to declarative problem
solving which has its roots in logic programming and deductive
databases. This is a decidable fragment of first-order logic extended
with default negation, aggregation and weight constraints. ASP al-
lows modeling of a variety of search and optimization problems in a
declarative way [13, 7, 5] using model-based problem specification
methodology. Efficient ASP solvers allow fast identification of solu-
tions that correspond to answer sets of a program. Recent examples
include areas such as molecular biology, decision support and plan-
ning. The DLV system [15] was used to plan shifts at Gioia-Tauro
Seaport which reduced the time required to define working teams’
assignments from hours to just a few minutes. A Potassco [12] pro-
gram is able to detect inconsistencies in large biological networks.

Since configuration problems are a type of combinatorial (opti-
mization) problems, ASP was used by Soininen et al. [18] in their ap-
proach which was one of the earliest industrial applications of ASP.
This first approach to the configuration problem was extended by
Friedrich et al. [10] to both configuration and reconfiguration cases.
Recently, Gebser et al. [11] have suggested a novel ASP based mod-
eling approach to configuration support of a Linux package manage-
ment system.

This work uses the following language constructs of Potassco
(similar constructs are available in DLV):

• constant: lower-case string or number
• variable: upper-case string or
• predicate: predicatename(A1, . . . , An) with each Ai being a

constant or variable
• condition: P : C (with P and C being predicates) generating a set

of ground instances for P corresponding to the existence of ground
instances of C

• (counting) aggregate: L{A1, . . . , An}U (with L being a lower
bound, U an upper bound, and each Ai a predicate possibly gen-
erated by a condition) stating that the number of ground instances
Ai shall be within the bounds

• fact: A0. with A0 being a predicate
• rule: A0:-L1, . . . , Ln. with A0 and Li being predicates or aggre-

gates, Li possibly negated
• constraint: :-L1, . . . , Ln. with Li being predicates or aggregates,

possibly negated

3 Test case generation
Figure 1 shows the main use-case of our approach. To generate test
cases for a specific constraint, one identifies the fragment of the ob-
ject model relevant for the constraint. Using a generic OO-ASP map-
ping, described in the next section, this fragment is translated into an
ASP program capable of enumerating all (up to a given upper bound)
instantiations of the object model i.e. all possible configurations.

Figure 1. Generation of test cases

Since the main purpose of our approach is to detect conceptual
errors, the tester has to reimplement the constraint to be tested in
ASP, based on the requirements describing the constraint. Although
possible, one cannot automatically translate the constraint from the
OO configurator to ASP because an automatic translation would also
translate the errors in the constraint. For the same reason the tester
should be unaware of the implementation of the constraint in the
object-oriented configurator. This process implements a black-box
testing strategy like in traditional software engineering.

The generated ASP code and the ASP definitions for the constraint
are used to compute answer sets that represent positive and negative
test cases. These answer sets are then translated back into an object-
oriented configuration and used in unit tests for the constraint.

3.1 OO-ASP Mapping
To illustrate the approach, a simple example domain for configuring
bicycles (Figure 2) is used. A bicycle has a frame, two wheels and
optional lights. A possible configuration can contain multiple bikes
of different types, wheel sizes, etc. A valid configuration consists of a
collection of correctly configured bicycles as defined by the allowed
domains of the attributes (e.g. type), the given cardinalities of the
associations (e.g. 0..1 for the lights), and two explicit constraints:

• constraintWheelsize disallows wheels of different sizes.
• constraintLights is complexer and requires that city bikes have

lights, that racing bikes do not have lights, that mountain bikes
may only have battery lights, and that the Boolean attribute
hasLights must correspond to the existence of a Lights instance.

The object model is mapped to ASP according to the following
schema:

• Every class C is mapped to two unary predicates
<aspnameC>(X) and <aspnameC>Domain(X). The do-
main predicates are needed to describe the possible instances of a

Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon 22

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Figure 2. UML-diagram for bikeshop example

class - similar to variables to be activated in conditional constraint
satisfaction problems. The maximal number of instances is
defined manually via predicate <aspnameC>MaxInstances(X).
Instances are identified by integers values.

• Every attribute ATTR of class C is mapped to a binary predicate
<aspnameATTR>(X,Y) where X is an integer representing an in-
stance of class X and Y is a possible value of attribute ATTR.

• Every association ASSOC between class C1 and C2 is mapped to
a binary predicate <aspnameASSOC>(X,Y), where X and Y are
integers representing instances of class C1 and C2.

The mapping is controlled by an XML file. It can be used to ignore
irrelevant information, e.g. the attribute type of the frame. The fol-
lowing excerpt shows those parts of the mapping which are needed
for constraintWheelsize.

<classmapping>
<javaname>bikeshop.kb.Bicycle</javaname>
<aspname>bicycle</aspname>
...
<assocmapping>

<javaname>wheels</javaname>
<javaotherclass>bikeshop.kb.Wheel
</javaotherclass>
<aspname>bicycle2wheel</aspname>

</assocmapping>
</classmapping>
<classmapping>

<javaname>bikeshop.kb.Wheel</javaname>
<aspname>wheel</aspname>
<attrmapping>

<javaname>size</javaname>
<aspname>wheelSize</aspname>

</attrmapping>
</classmapping>

By this mapping the Java class Bicycle is mapped to the unary
predicate bicycle, class Wheel to predicate wheel, its attribute size to
the binary predicate wheelSize, and the association between Bicycle
and Wheel to the binary predicate bicycle2wheel.

Example of generated facts (for the listed part of the mapping):

bicycleMaxInstances(1).
bicycleDomain(1).
wheelMaxInstances(3).
wheelDomain(201).

wheelDomain(202).
wheelDomain(203).

Examples of user-defined maximum of instances and of facts gen-
erated by the solver as part of a test case like in Figure 5:

bicycle(1).
bicycle2wheel(1,201).
bicycle2wheel(1,202).
wheel(201).
wheelSize(201,24).
wheel(202).
wheelSize(202,25).

In order to be able to enumerate every possible configuration, the
following additional ASP code is generated:

1. For every class C, the instances up to the given maximal number
are generated by:

0{<aspnameC>(X):<aspnameC>Domain(X)}MAX :-
<aspnameC>MaxInstances(MAX).

Example:

0{bicycle(X):bicycleDomain(X)}MAX :-
bicycleMaxInstances(MAX).

2. For every attribute ATTR of class C and possible values V1..Vn,
one rule is needed to ensure exactly one value:

1{<aspnameATTR>(X,V1),...,
<aspnameATTR>(X,Vn)}1 :- <aspnameC>(X).

Example:

1{wheelSize(X,20),...,wheelSize(X,28)}1 :-
wheel(X).

3. For every association ASSOC between C1 and C2 and cardinality
restrictions L..U, a rule is generated for the lower bound:

<L>{<aspnameASSOC>(X,Y):
<aspnameC2>Domain(Y)} :- <aspnameC1>(X).

The upper bound of the association is checked with a constraint:

:- <aspnameC1>(X), U+1{<aspnameASSOC>(X,Y):
<aspnameC2>Domain(Y)}.

Example (upper bound = lower bound = 2):

2{bicycle2wheel(X,Y):wheelDomain(Y)} :-
bicycle(X).

:- bicycle(X),
3 {bicycle2wheel(X,Y):wheelDomain(Y)}.

4. Especially for big domains, some basic symmetry breaking con-
straints are required to avoid explosion of the number of generated
test cases. Since the instances of a class are interchangeable we
disallow usage of instances with a higher ID unless all instances
with a lower ID are used as well:

:- <aspnameC>Domain(X), <aspnameC>Domain(Y),
X<Y, <aspnameC>(Y), not <aspnameC>(X).

Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon 23

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Example:

:- wheelDomain(W1), wheelDomain(W2),
W1<W2, wheel(W2), not wheel(W1).

With this mapping it is possible to enumerate all configurations
up to the given upper bound of the number of instances (preferring
instances with a lower ID). The mapping is also used to translate
an answer set back into a configuration of the object-oriented con-
figurator. E.g. for the term bicycle(1) an instance of class Bicycle is
created, for bicycle2wheel(1,201) the objects for bicycle with id 1
and the wheel with id 201 are associated, etc.

If the generated program does not have an answer set (unsatisfi-
able) then the object model itself is inconsistent. The UML class dia-
gram in Figure 3 shows an example of an inconsistent object model.

Figure 3. UML-diagram for inconsistent model

For every instance of class A, two instances of B and three in-
stances of C must exist. Since there is a 1-1 association between B
and C this class diagram is inconsistent. In this case the testing sys-
tem reproduces the functionality of an earlier method [8] that uses
integer programming for automatic detection of inconsistencies in
UML class diagrams.

3.2 Test cases for constraints
To test a constraint, the tester needs to implement the constraint in
ASP using the predicates of the generic mapping. With the gener-
ated program code of the preceding section and the manually written
constraint, an ASP solver can find answer sets which satisfy the con-
straint or violate the constraint (counterexamples). By that, we get a
set of test cases (represented as partial configurations) for each con-
straint. This approach is similar to the one supported by Alloy ([14]).

To avoid making the same conceptional errors as the implementer
of the OO constraint, the tester should be unaware of the OO con-
straint code when writing the constraint. The implementer of the ASP
constraint is only given a verbal description of the constraint or the
requirement that should be checked by the constraint.

As an example, take the constraint that the wheels of a bicycle
must have the same size (constraintWheelsize in Section 3.1). Fol-
lowing the convention that ASP constraints specify what is not a
valid configuration, the tester expresses this with the following ASP
code:

constraintWheelsize :-
bicycle(X),

bicycle2wheel(X,W1),
bicycle2wheel(X,W2),
W1!=W2,
wheelSize(W1,S1),
wheelSize(W2,S2),
S1!=S2.

% find positive test case
:- testpositive, constraintWheelsize.
% find negative test case (counterexample)
:- testnegative, not constraintWheelsize.

The two atoms testpositive and testnegative control whether the
solver finds positive or negative test cases for the tested constraint.
In a positive test case the constraint is satisfied, in a negative one it is
violated.

Figure 4 shows a positive test case found by the ASP solver run-
ning the program for constraintWheelsize. In this automatically gen-
erated graphical representation, rectangles represent instances, el-
lipses represent values, and the edges are labeled by the predicates
between the nodes.

Figure 4. Positive test case

Running the same program with the fact testnegative produces the
negative test case in Figure 5, i.e. a counterexample for the constraint.

Figure 5. Negative test case

Each answer set represents one test case and can be translated into
a partial configuration for the object-oriented configurator. All posi-
tive and negative test cases can be used for unit testing the constraint.

Note that the generated partial configurations for positive test
cases might violate other constraints of the domain. For instance,
constraintLights requires that the attribute bicycleHaslights is true,
iff the bicycle has lights. This constraint is violated in the positive
test case of Figure 4.

Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon 24

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

3.3 Unit testing

The whole process of test case generation can easily be integrated
into unit testing. The test cases are added to the unit test suite of
the configurator and used for regression testing. The following code
sequence shows the unit test for constraintWheelsize which first
runs all positive test cases and then all negative ones. The func-
tion generateTestcases executes the ASP solver as described in
the preceding section and returns a list of answer sets. The func-
tion createConfigurationFor creates the partial configuration for
an answer set which can be accessed by getter methods such as
getBicyles.

public void testConstraintWheelsize() {
List<Set<String>> tcs;
tcs = generateTestcases("testpositive");
for (Set<String> answerSet : tcs) {
createConfigurationFor(answerSet);
Bicycle bike = getBicycles().get(0);
IConstraint c =
bike.getConstraint(CONSTRAINTWHEELSIZE);
assertEquals(Boolean.TRUE,c.getVal());

}
tcs = generateTestcases("testnegative");
for (Set<String> answerSet : tcs) {
createConfigurationFor(answerSet);
Bicycle bike = getBicycles().get(0);
IConstraint c =
bike.getConstraint(CONSTRAINTWHEELSIZE);
assertEquals(Boolean.FALSE,c.getVal());

}
}

If an assert fails (i.e. a test case reports a discrepancy) then the
reason for it has still to be found. For example, consider the follow-
ing faulty Java implementation of the constraint. Since it returns true
for the counterexample, we know there is a discrepancy between the
ASP and the OO implementation of the constraint. Looking at the
Java code below it is easy to identify the error. Due to a typing error,
w2 is never referenced.

// in class Bicycle
public boolean constraintWheelsize() {

List wheels = getWheels();
if (wheels.size()!=2) { return false; }
Wheel w1 = wheels().get(0);
Wheel w2 = wheels().get(1);
return w1.getSize()==w1.getSize();

}

In many cases, comparing the two implementations (i.e. static
analysis) is sufficient for identifying an error. If two constraint im-
plementations use different parts of the model this is an indication of
an error. For instance, if one constraint depends on an attribute value
and the other does not then there is a high chance that the first is more
specific than the other.

Note that an OO implementation of the constraint in the configura-
tor is not needed to generate test cases with our approach. Therefore,
this method can also be used for the test-first approach of Test Driven
Development [2].

4 Improving the test cases

Uninformed test case generation as described in the last section cre-
ates many possible configurations. Usually, this leads to a good test
coverage. However, the number of test cases gets too large for prac-
tical use, especially for large-scale configuration.

Therefore, a method is needed to choose test cases which are likely
to detect errors in the implementation. To generate test cases with
specific properties, the tester can add statements describing those
properties to the ASP implementation. For instance, adding

1 { wheelSize(X,Y):Y=24..25 } 1 :- wheel(X).

will only generate test cases where the wheelSize is 24 or 25. Spec-
ifying all relevant test cases manually this way is a tedious task.
The alternative is to use advanced filtering techniques like symmetry
breaking.

4.1 Symmetry breaking

For black-box testing in software engineering, techniques such as
equivalence partitioning and boundary value analysis have been de-
veloped to reduce the number of test cases [16]. These techniques
define equivalence classes for the input data and test only one value
from every equivalence class.

For constraint-based systems a similar effect can be achieved by
defining equivalence classes over the possible configurations by us-
ing symmetry breaking techniques. For instance, in the positive test
cases for constraintWheelsize, the actual value of the wheel size is ir-
relevant as long as the values are all the same (assuming a reasonable
implementation). For negative test cases, at least two different values
are needed, but it does not matter which values are actually chosen.

Detection of the equivalence classes for an ASP program is done
by reducing it to the colored graph automorphism problem [6]. In
this case, the grounded program is represented as a colored graph.
The symmetry breaking tool is searching for such transformations
of the graph (permutation) that map vertices of it to vertices of the
same color. The coloring schema in [6] allows to identify permuta-
tions of graph vertices corresponding to equivalent grounded atoms,
e.g. wheels of different sizes, in a program. The permutations are
used by the preprocessor SBASS5 [6] to generate symmetry break-
ing constraints that introduce a lexicographic order on elements of a
solution space. The symmetry breaking constraints are added to the
grounded program and the result is forwarded to the solver.

Roughly speaking, in the case of wheel sizes, constraints will re-
quire to use wheels of size 20 first, since 20 is lexicographically the
smallest value. Only if it is impossible to find a configuration with
wheels of the size 20, the solver will try the size 21 and so on.

Inclusion of the preprocessing step in the testing tool chain reduces
the number of possible configurations for the bicycle example (with-
out coding the two constraints in ASP) from 1459 to 129. For the
test case generation example for constraintWheelsize as described in
Section 3.2, execution of SBASS reduces the number of positive test
cases from 163 to 13. Although the number of test cases can be re-
duced drastically by symmetry breaking, one still has to ensure that
the coverage of the created test cases is enough to find potential er-
rors.

For instance, consider the case where the knowledge base is mod-
ified by allowing bicycles to have more than two wheels (i.e. tricy-
cles, etc). The following faulty constraint implementation works, if

5 http://potassco.sourceforge.net/labs.html

Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon 25

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

the differences in wheel sizes always occur in the first two wheels. If
symmetry breaking creates only such test configurations, one can no
longer detect the error in the constraint implementation.

// faulty implementation, but works
// if the "first" 2 wheels are of same size
public boolean constraintWheelsize() {

List<Wheel> wheels = getWheels();
for(int i = 0 ; i<wheels.size() ; i++) {
for(int j=i+1 ; j<wheels.size() ; j++) {
if (wheels.get(i).getSize().equals(

wheels.get(j).getSize())) {
return true;

}
}

}
return false;

}

4.2 White box testing
The kind of errors in the implementation often depend on the pro-
gramming language used. A knowledge engineer using a specific
Java framework will make different errors than a knowledge engi-
neer using ASP. Therefore, the generation of test cases cannot be
fully automated without additional information about likely errors.

By looking at the code (white box testing) an experienced devel-
oper can identify suspicious parts of the code which should be tested.
From that, she can derive which properties a test case must have and
can create such test cases manually. For automated test case gener-
ation, it is possible to generate test cases with specific properties by
adding additional constraints to the ASP program similar to the ex-
ample at the beginning of Section 4.

4.3 Maintaining test configurations
By combining all the constraints of the domain, the described ap-
proach can also be used to generate complete and valid test configu-
rations for the object-oriented configurator. The limiting factor here
is that the performance of the generic mapping and the fact that all
constraints of the configurator must be reimplemented in ASP.

Complete test configurations are often used for integration testing,
system tests, etc. A common problem is how to maintain the consis-
tency of the test configurations in case of knowledge base evolution.
Whenever the requirement of a constraint changes, one needs to rec-
oncile those changes with existing legacy test configurations.

Since many tests may depend on the existing test configuration, the
changes in the legacy test configuration should be minimal. An ASP
method for finding reconfigurations with minimal costs is suggested
in [10].

5 Conclusions
We described how to map the object model and configurations of an
object-oriented and constraint-based configurator to and from ASP.
One application of this mapping is the generation of test cases for
the OO configurator. Since the mapping is symmetric it could also
be used to generate test cases for an ASP-based configurator.

The generation of test cases so far has been tried for toy examples
like the bikeshop domain and some small fragments of real world
domains. For the future we plan to evaluate translation of existing

knowledge bases of our real-world configurators (>100 classes) into
ASP. We expect that we have to refine the techniques of Section 4 in
order to get sufficient performance.

The current approach cannot be used for test cases containing a
lot of components. For instance, the bikeshop domain already uses
more than 1GB of memory if the domain size is set to more than 50.
Fortunately, test cases for single constraints usually do not involve
hundreds of components.

REFERENCES
[1] Algirdas A. Avizienis, Software Fault Tolerance, volume 2, chapter

”The Methodology of N-Version Programming”, 22–45, John Wiley &
Sons, 1995.

[2] Beck, Test Driven Development: By Example, Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

[3] Kent Beck. JUnit, 2010.
[4] Kent Beck and Cynthia Andres, Extreme Programming Explained: Em-

brace Change (2nd Edition), Addison-Wesley Professional, 2004.
[5] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski, ‘Answer

set programming at a glance’, Communications of the ACM, 54(12),
92–103, (2011).

[6] Christian Drescher, Oana Tifrea, and Toby Walsh, ‘Symmetry-breaking
answer set solving’, AI Commun., 24(2), 177–194, (2011).

[7] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner, ‘An-
swer set programming: A primer’, in Reasoning Web, pp. 40–110,
(2009).

[8] Andreas Falkner, Ingo Feinerer, Gernot Salzer, and Gottfried Schenner,
‘Solving practical configuration problems using UML’, in Proceedings
of ECAI 2008 Workshop on Configuration Systems, pp. 1–6, (2008).

[9] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca,
‘Unit testing in aspide’, CoRR, (2011).

[10] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(Re)configuration based on model generation’, in LoCoCo, eds.,
Conrad Drescher, Ins Lynce, and Ralf Treinen, volume 65 of EPTCS,
pp. 26–35, (2011).

[11] Martin Gebser, Roland Kaminski, and Torsten Schaub, ‘aspcud: A linux
package configuration tool based on answer set programming’, in Lo-
CoCo, pp. 12–25, (2011).

[12] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub, ‘Conflict-
driven answer set solving: From theory to practice’, Artif. Intell., 187,
52–89, (2012).

[13] Michael Gelfond and Vladimir Lifschitz, ‘The stable model semantics
for logic programming’, in 5th International Conference and Sympo-
sium on Logic Programming, pp. 1070–1080, (1988).

[14] Daniel Jackson, ‘Alloy: A logical modelling language’, in ZB, p. 1,
(2003).

[15] Nikola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello, ‘The DLV system for
knowledge representation and reasoning’, ACM Transactions on Com-
putational Logic (TOCL), 7(3), 499–562, (2006).

[16] Glenford J. Myers and Corey Sandler, The Art of Software Testing, John
Wiley & Sons, 2004.

[17] James Rumbaugh, Ivar Jacobson, and Grady Booch, ‘The unified mod-
eling language reference manual’, in The unified modeling language
reference manual, (2005).

[18] Timo Soininen, Ilkka Niemelä, Juha Tiihonen, and Reijo Sulonen,
‘Representing configuration knowledge with weight constraint rules’,
in 1st International Workshop on Answer Set Programming: Towards
Efficient and Scalable Knowledge, pp. 195–201, (2001).

Andreas Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon 26

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Towards Hybrid Techniques for
Efficient Declarative Configuration

Ingo Feinerer1

Abstract. During the last decades configuration has been ex-
tensively employed in a wide range of application domains, im-
plemented by a multitude of techniques like logics, procedural,
object-oriented, or resourced-driven approaches. Especially declara-
tive methods provide the foundation for precise and well-understood
semantics for reasoning tasks and allow for a succinct representa-
tion of the underlying knowledge base. However, a drawback in us-
ing such powerful declarative techniques lies in their computational
complexity. In this paper we present a simple declarative framework
for configuration in Prolog in order to show the advantages of logic-
based techniques but also to identify some challenges for such for-
malisms. We argue for hybrid systems which combine and utilize ef-
ficient techniques from different configuration methodologies under
a unified declarative interface.

1 INTRODUCTION
In the history of configuration research multiple high-level ap-
proaches for the design and solution of configuration tasks have been
presented. Declarative systems have had strong proponents due to
their expressive semantics based on well investigated and understood
logics. Unfortunately the expressive power limits the applicability
due to high computational costs, observable for a broad class of im-
plementations [3]. Related topics like reconfiguration unveil further
interesting but often computational hard topics [6, 2] for declara-
tive formalisms. In this paper we identify some typical challenges
for declarative frameworks and propose a combined hybrid approach
which utilizes techniques from other fields, like integer linear pro-
gramming (ILP), to overcome these. Section 2 presents a simple
declarative framework in order to demonstrate the benefits but also
the challenges (Section 3) of such a system. Section 4 shows three
strategies to deal with the discussed challenges.

2 DECLARATIVE FORMULATION
Object-oriented modeling languages provide a natural formalism for
the design of configuration systems. Historically entity-relationship
diagrams had a strong toehold but during the recent decade class
diagrams in the Unified Modeling Language [8] (UML) have seen
a substantial growth as a domain-specific language for configura-
tion. [5, 1] Consequently we use UML class diagrams as our starting
point and propose a declarative formulation translating its key fea-
tures into a declarative framework. We chose Prolog for this task as
it has an established and well-known semantics and provides several
efficient implementations. The main ideas can be easily transfered to

1 Vienna University of Technology, Austria,
email: Ingo.Feinerer@tuwien.ac.at

other declarative formalisms (e.g. logics or answer-set programming)
as well. The following framework was implemented and tested with
SWI-Prolog but should work equally well in any other dialect with
minor modifications.

C DM1..M2

a1

N1..N2

Figure 1: Specification with two classes, an association with
multiplicities, and the OCL constraint context C inv:
C.allInstances()->size() >= L.

Figure 1 depicts a minimal UML class diagrams as typically
used for configuration purposes. It shows a specification with two
classes C and D and one association a1 relating them. The multi-
plicities restrict the number of valid links; each object of class C
must be connected with at least N1 and with at most N2 objects
of class D. Analogously, each object of class D must have links to
M1..M2 objects of class C. The small arrow at the end of the associ-
ation shows the direction (and not a hierarchy). The constraint in the
Object Constraint Language [9] (OCL) for class C states that C must
be instantiated with at least L objects to obtain a valid configuration.

The concepts of a class and of an association can be directly trans-
lated to

class(CN-L) :- atom(CN), L >= 0.

assoc(CNs, AN-(C,I)>>(D,J)) :-
atom(AN), member(C, CNs), member(D, CNs),
mult(I), mult(J).

where each class has a name (CN) and a lower bound (L). Each as-
sociation has a name (AN) and includes information on the related
classes (C, D) and the multiplicities (I, J). Further the class names
are checked for validity against a predefined list of names (CNs).

Now we can define a specification as a tuple (Cs, As) of
classes Cs and associations As

spec((Cs, As)) :-
maplist(class, Cs), pairs_keys(Cs, CNs),
maplist(assoc(CNs), As).

where maplist() applies a predicate to all arguments of a list and
pairs_keys() provides access to the subterms of Pair-Key struc-
tures.

E.g., instantiating the multiplicities of a1 in Figure 1 withM1 = 1,
M2 = 2, N1 = 3, and N2 = 4 and enforcing a lower bound L of 1
for the number of objects of class C this yields

:- spec(([c-1,d-0], [a1-(c,1..2)>>(d,3..4)]))

Ingo Feinerer 27

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

A configuration can be modeled as a tuple (Os, Ls) consist-
ing of objects Os and of links Ls. Each object is identified by its
name O and its corresponding class C. Each link has a name L and
stores information on the corresponding association A and on the ob-
jects [O,P] it consists of.

is_object(CNs, O-C) :-
atom(O), member(C, CNs).

is_link(As, Os, L-(A,[O,P])) :-
atom(L), member(A-(C,_)>>(D,_), As),
member(O-C, Os), member(P-D, Os).

We call a configuration an instance of a specification if all the
objects and links have a corresponding class and association, respec-
tively.

instance((Os, Ls), (Cs, As)) :-
pairs_keys(Cs, CNs),
maplist(is_object(CNs), Os),
maplist(is_link(As, Os), Ls).

For each object we check its class and for each link we identify a
matching association with compatible participating classes.

In order to handle multiplicities as defined by the UML standard,
we define a predicate gamma() which counts for each association
and a given object the number of different partner objects induced by
the links of a configuration [4]

gamma(I, P, A, N, Ls) :-
reduct(I, Os, P),
findall(Os, member(_-(A,Os), Ls), Bag),
list_to_set(Bag, Set), length(Set, N).

where I denotes the “position” (index) of the partner objects to be
counted for within the given binary or multiary association A, the list
P contains the single object to be fixed (in general this could be any
partial link), and Ls is a list of links to be considered. The result
(count) is unified with N. The reduct() predicate generates a list
of objects (to be used as partial links) such that P is the projection
on all but the I-th component, and findall() collects all such
objects forming a link in Ls. For example

:- gamma(2, [c1], a1, 3,
[l1-(a1, [c1, d1]), l2-(a1, [c1, d2]),
l3-(a1, [c1, d3])]).

fixes a single object c1 (of class C) and counts how many different
objects (of class D corresponding to index 2) can be reached over
association a1 when considering the provided links: three.

Now we have all parts to define the notion of a valid configuration.
We say a configuration satisfies a specification if it is an instance and
both the lower bounds for each class and the multiplicities of each
association are respected.

satisfies((Os, Ls), (Cs, As)) :-
forall(member(C-LB, Cs),

(findall(ON, member(ON-C, Os), ONs),
length(ONs, N), N >= LB)),

forall((member(O-C, Os),
(member(AN-(C,_)>>(_,L..U),As),I=2
;member(AN-(_,L..U)>>(C,_),As),I=1)),

(gamma(I, [O], AN, N, Ls),
between(L, U, N))).

The predicate satisfies() checks whether (Os, Ls) is a valid
configuration for the specification (Cs, As). The first forall()
checks the number of objects for each class against the correspond-
ing lower bound whereas the second forall() checks that each
object O of the configuration is linked to the right number of part-
ner objects as constrained by all participating associations and their
multiplicities. E.g.

:- satisfies(([c1-c, d1-d, d2-d, d3-d],
[l1-(a1,[c1,d1]),l2-(a1,[c1,d2]),
l1-(a1,[c1,d3])]),

([c-1,d-0], [a1-(c,1..2)>>(d,3..4)])).

Although simplistic and minimal this framework allow us to
model reasonable configurations and will serve the purpose of pre-
senting the advantages but also challenges for such a declarative
framework. It can be easily extended to cover multiple aspects which
are necessary for a more complete handling of configurations in
real-world applications (and in fact many features are already im-
plemented in a prototype).

A central advantage we observe in the design phase is the clear and
straightforward formulation of the underlying terminology. Specifi-
cations, configurations, and the notions of instance, validity and sat-
isfiability can be defined with just a few lines of code in parallel
to the formal definitions of the underlying concepts. Prototyping is
rapid and succinct; the visualization of graph structures and configu-
rations is straightforward. For the computation of configurations one
of the main advantages of this declarative formulation is the semi-
automatic search for solutions. Prolog provides efficient algorithms
to explore and backtrack within the search space; further it has opti-
mizations for tail recursion. E.g., with trivial strategies for object and
link creation

:- gen_objects([c-2, d-3],
[c_0-c, c_1-c, d_0-d, d_1-d, d_2-d]).

:- gen_links([a1-1, a2-2],
[a1_0-(a1,_), a2_0-(a2,_), a2_1-(a2,_)]).

we can generate configurations on the fly (we implement the predi-
cate gen_instance() for this purpose) and check if they satisfy
a given specification

gen_model(C, S) :-
gen_instance(C, S), satisfies(C, S).

For a small number of classes and associations this strategy works
very well, is intuitive, and allow us to explore the whole search space
without extra programming.

3 CHALLENGES
For a declarative framework as presented in the previous section chal-
lenges typically arise when the search space is large and/or back-
tracking is expensive. The former is not a drawback of declarative
formulations per se; other formalisms which need to deal with prob-
lem instances with a large solution space will suffer from the same
performance penalties. However, when backtracking is expensive,
i.e., when it takes some computational effort to find out that the cur-
rent unification state will never lead to a valid configuration, there
is often room for improvement. First of all, it depends whether the
computational complexity is inherent to the problem or just induced
by the use of expressive logics or other declarative formalisms. Sec-
ond, there exists a plethora of methods and algorithms in computer
science which are tailored to specific problem classes.

Ingo Feinerer 28

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

3.1 Equations over association chains

C D E1
a1

1..2 2..1
a2

1

1
a3

1

Figure 2: Specification with three classes and the OCL constraint
context C inv: C.allInstances()->size() >= 2.

Consider the specification depicted in Figure 2. There are three
classes C,D, and E, where C has a lower bound of two on the num-
ber of instantiated objects. Each object of class C should be con-
nected via association a1 to one or two objects of class D which in
turn are uniquely associated with an object of class E via a2. Finally
association a3 enforces a one-to-one relationship between objects of
class C and objects of class E.

This poses no severe problem for our declarative implementation
yet. We can find a valid configuration by stepwise incrementing the
number of instantiated objects and the number of desired links and
the satisfies() predicate will filter out all invalid combinations.
However, the situation gets interesting if we add some constraints;
the specification in Figure 2 probably tells not the full story of the
intended semantics. We might want to ensure that each object of
class E which can be reached from an object of class C over inter-
mediary objects of class D via associations a1 and a2 is in fact the
same as linked by a3. This models the concept of a modular com-
pound unit which consists of a set of interconnected subcomponents.

We can formalize such constraints by introducing equations on
association chains. They restrict the links of valid configurations by
imposing limits on valid objects involved. Association chains can be
modeled by classical tuple composition, similar to a join in database
theory. E.g., for Figure 2 we would add the equation a1 ◦ a2 = a3 to
achieve the semantics mentioned before.

c1 d1

d2

e1

c2 d3

d4

e2

(a) A configuration
consisting of two dis-
joint partitions sat-
isfying the equation
a1 ◦ a2 = a3.

c1

d1

d2 e1

c2 d3

d4

e2

(b) A configuration
violating the con-
straint a1 ◦ a2 = a3.

Figure 3: Two satisfying configurations for the specification in Fig-
ure 2, but only the left one adheres to the constraint a1 ◦ a2 = a3.

Figures 3a and 3b both show valid configurations for the specifi-
cation 2 before adding the new constraint on the association chain.
Once we enforce the constraint a1 ◦ a2 = a3 only Figure 3a remains
a satisfying instance; Figure 3b is not valid anymore as the configura-
tion violates the equation since there is a connection from c1 over d4
to e2 which is not reachable via a link of association a3.

This subtle change makes a significant difference in runtime and
backtrack behavior for our declarative formulation. Although the
number of objects and links to be considered is still rather small
(8 and 10, respectively) the number of combinations to be explored
before the equation can be checked is exponential. Backtracking is
therefore very expensive as basically a full configuration needs to be
built before the equation can be checked. We see a major increase in
the runtime (and stopped measuring after 3600 seconds).

3.2 Partial configurations
We would like to use our framework not only for configuration but
also for reconfiguration in order to repair existing configurations. A
main challenge is a fast way to identify parts of an input configura-
tion which cannot be taken as a subcomponent of the overall solution.
This is important to avoid late backtracking where a lot of computa-
tion time has been used for building a variety of alternations which
can never lead to a valid configuration. Clearly, for arbitrary com-
plex input configurations this problem is NP-hard, however for many
basic tasks it is not (e.g., checking whether some links will violate
certain sets of constraints later on).

3.3 Cost functions
Another limiting factor of logic-based formalisms is finite domain
reasoning, especially notable when working with numbers in an in-
teger domain. Configuration tasks often need ways to express how
expensive certain components or connections are. A natural imple-
mentation is to use cost functions which assign costs or other integer
numbers to individual objects in a configuration. The aim is now to
minimize an objective function which takes into account all compo-
nents and their corresponding costs.

4 TOWARDS A HYBRID APPROACH
In the previous section we saw some typical challenges for declara-
tive frameworks. These are by far not the only ones but give a sam-
ple of relevant problems of various kinds. Fortunately, there has been
tremendous progress in configuration research and artificial intelli-
gence in general which triggered specialized algorithms and strate-
gies for specific problems. In order to tackle the outlined challenges
we propose to use specialized algorithms from other formalisms and
to include them in a unified declarative framework. Such a hybrid ap-
proach, taking the best from multiple worlds and combining them in
a consolidated interface, allows us to attack the previously described
challenges towards efficient declarative configuration.

4.1 Integer linear programming
We start out with the observation that backtracking can be very ex-
pensive if the domain of variables is not restricted or bounded to a
specific range. Ideally we would like to compute the exact number
of needed components for a configuration and then our declarative
framework can concentrate on finding appropriate links to connect
the parts. Clearly, this approach cannot always work as some special
constraints on the interconnection of components may enforce addi-
tional objects which are not required by pure associations (and their
multiplicities) in the underlying UML class diagram.

For the computation of the needed number of objects for each class
we use a highly efficient technique based on integer linear program-
ming. [7, 4] The idea is to translate a UML class diagram to a system

Ingo Feinerer 29

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

of inequalities. Its solution indicates whether an instantiation into a
valid configuration is possible at all (satisfiability problem) but more
interestingly in our context gives also the number of objects for each
component. E.g., for the specification in Figure 1 with association a1
and the lower bound on C we obtain

M1 · |D| ≤ N2 · |C| |C| ≥M1 |C| ≥ L
N1 · |C| ≤M2 · |D| |D| ≥ N1

expressing constraints enforced by the multiplicities (left), con-
straints on the minimal number of objects due to the association se-
mantics (middle), and the lower bound constraint on C (right). This
translation is performed for all classes and associations involved in a
specification forming an integer linear program. The objective func-
tion is typically just the minimum over all classes involved.

SWI-Prolog provides support for integer linear programming via
its extension library “simplex” shipped with the standard installa-
tion. We added a set of DCG (definite clause grammar) rules which
generate ILP constraints out of each association:

assoc_constraint(
_AN-(C,M1..M2)>>(D,N1..N2)) -->

constraint([M1*D, -N2*C] =< 0),
constraint([N1*C, -M2*D] =< 0).

Further constraints like lower bounds or the objective function are
added separately forming the whole ILP program.

The native integration of ILP into our declarative framework al-
lows us to rule out a broad range of possibilities which do not need
to be explored any more. This has a significant effect on backtrack-
ing as it cuts the search space into more fine grained areas. With this
technique we can scale our framework to a greater number of objects
and links when dealing with the challenges “equations on association
chains” and “partial configurations”. Costs or weights are an integral
part of ILP and can thus easily be handled with this approach; this
addresses several aspects of the challenge “cost functions”.

4.2 Procedural link generation
So far we have only identified one possible way to efficiently com-
pute the number of necessary components. Still, it might take a long
time to find valid links between these objects (as motivated in the
challenge on association chains). Therefore it seems a promising ap-
proach to optimize the way links are generated. One strategy we
found useful for certain classes of configurations is to “balance” links
between objects as far as possible. This can be seen as a procedural
implementation to form a uniform distribution among the links be-
tween the participating classes of a given association:

seq(J, M, N, [X, Y]) :-
J >= 0, M > 0, N > 0,
X is J mod M,
lcm(M, N, LCM),
Y is (J + floor(J/LCM)) mod N.

The idea of the seq() predicate is to generate a sequence (with J as
the index into it) of tuples [X,Y] for M objects of the first class and
N objects of the second class (for a binary association) which can be
used as links and form a uniform distribution. E.g., for J = 0, . . . , 3
and M = 2 and N = 6 we obtain the tuples (0, 0), (1, 1), (0, 2),
and (1, 3). Consequently we would generate a link from object 0 of
class C to object 0 of class D, from object 1 of class C to object 1 of
class D, and so on.

Such a strategy is especially suited for finding an initial linking for
a whole configuration. This can be both the basis for further investi-
gation regarding the challenge “equations on association chains” or
provide initial solutions for a reconfiguration problem as necessary
for the challenge “partial configurations”.

4.3 Generate and test
Our final suggestion towards hybrid systems is a meta-strategy. Both
previous techniques also fall into this category as special cases.
Declarative systems have a strong standing with their efficient and
native backtracking as it is at the heart of their operation. This prop-
erty is extremely useful for configuration as exploring the solution
space is one of the fundamental aspects in a configuration task. The
main advantage is that almost arbitrary constraints can be added with
minimal changes to the declarative implementation. This allows us
fast prototyping and complex constraint checking. We therefore ar-
gue in favor of such systems and the simple but effective strategy of
“generate and test”. The generation step is either done by more so-
phisticated algorithms implemented by the user in Prolog (as shown
in the previous subsections) or by calls to external tools which are
specialized on a specific tasks. The declarative framework can then
take these parts and combine them into a configuration and test it for
validity.

5 CONCLUSION
Declarative formalisms provide a natural environment for the im-
plementation of configuration systems as it is easy to write succinct
and precise programs with integrated support to explore the solution
space with backtracking. We motivated this by a simple declarative
framework but showed challenges arising from their use. We argue
for hybrid systems which combine specialized techniques from other
fields into a unified declarative interface.

REFERENCES
[1] Andreas Falkner, Ingo Feinerer, Gernot Salzer, and Gottfried Schenner,

‘Computing product configurations via UML and integer linear program-
ming’, Int. Journal of Mass Customisation, 3(4), 351–367, (2010).

[2] Andreas Falkner, Gerhard Friedrich, Alois Haselböck, Anna Ryabokon,
Gottfried Schenner, and Herwig Schreiner, ‘(Re)configuration using an-
swer set programming’, in IJCAI 2011 Configuration Workshop, (2011).

[3] Andreas Falkner, Alois Haselböck, Gottfried Schenner, and Herwig
Schreiner, ‘Modeling and solving technical product configuration prob-
lems’, Artificial Intelligence for Engineering Design, Analysis and Man-
ufacturing, 25, 115–129, (2011).

[4] Ingo Feinerer and Gernot Salzer, ‘Consistency and minimality of UML
class specifications with multiplicities and uniqueness constraints’, in
Proceedings of the 1st IEEE/IFIP International Symposium on Theoret-
ical Aspects of Software Engineering, June 6–8, 2007, Shanghai, China,
pp. 411–420. IEEE Computer Society Press, (2007).

[5] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach, ‘UML as
domain specific language for the construction of knowledge-based con-
figuration systems’, International Journal of Software Engineering and
Knowledge Engineering, 10(4), 449–469, (2000).

[6] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(Re)configuration based on model generation’, in 2nd LoCoCo
Workshop, volume 65 of EPTCS, pp. 26–35, (2011).

[7] Maurizio Lenzerini and Paolo Nobili, ‘On the satisfiability of depen-
dency constraints in entity-relationship schemata’, Information Systems,
15(4), 453–461, (1990).

[8] Object Management Group, Unified Modeling Language 2.4.1, 2011.
[9] Object Management Group, Object Constraint Language 2.3.1, 2012.

Ingo Feinerer 30

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Unifying Software and Product Configuration:
A Research Roadmap

Arnaud Hubaux1 and Dietmar Jannach2 and Conrad Drescher3 and
Leonardo Murta4 and Tomi Männistö5 and Krzysztof Czarnecki6 and

Patrick Heymans7 and Tien Nguyen8 and Markus Zanker9

Abstract.
For more than 30 years, knowledge-based product configu-

ration systems have been successfully applied in many indus-
trial domains. Correspondingly, a large number of advanced
techniques and algorithms have been developed in academia
and industry to support different aspects of configuration rea-
soning. While traditional research in the field focused on the
configuration of physical artefacts, recognition of the business
value of customizable software products led to the emergence
of software product line engineering. Despite the significant
overlap in research interests, the two fields mainly evolved in
isolation. Only limited attempts were made at combining the
approaches developed in the different fields. In this paper, we
first aim to give an overview of commonalities and differences
between software product line engineering and product config-
uration. We then identify opportunities for cross-fertilization
between these fields and finally develop a research agenda to
combine their respective techniques. Ultimately, this should
lead to a unified configuration approach.

1 Introduction

Customizable products are an integral part of most B2B and
B2C markets. Mass-customization strategies have been ap-
plied to tangible products (e.g., cars and mobile phones) as
well as intangible products like software (e.g., operating sys-
tems and ERPs) and services (e.g., insurance). To this end,
companies use software configurators that provide automated
support to tailor products to the requirements of specific cus-
tomers or market segments.

1 PReCISE Research Center, University of Namur, Belgium,
ahu@info.fundp.ac.be

2 Department of Computer Science, TU Dortmund, Germany,
dietmar.jannach@tu-dortmund.de

3 Computing Laboratory, University of Oxford, UK,
Conrad.Drescher@comlab.ox.ac.uk

4 Fluminense Federal University, Niterói, Brazil,
leomurta@ic.uff.br

5 Aalto University School of Science, Finland,
Tomi.Mannisto@aalto.fi

6 Generative Software Development Lab, University of Waterloo,
Canada, kczarnec@gsd.uwaterloo.ca

7 PReCISE Research Center, University of Namur, Belgium,
phe@info.fundp.ac.be

8 Electrical and Computer Engineering Department, Iowa State
University, USA, tien@iastate.edu

9 Alpen-Adria-Universität Klagenfurt, Austria,
markus.zanker@aau.at

Compared to the long history of computer-supported
configuration of products, research on the configuration of
parametrizable software is rather new. Product configuration
(PC) is the umbrella activity of assembling and customizing
physical artefacts (e.g. technical equipment, cars or muesli)
or services. Historically, PC has been a subfield of artificial
intelligence (AI), focusing on knowledge representation and
reasoning techniques to support configuration. Mostly inde-
pendent of PC, the field of software product line engineer-
ing (SPLE) emerged in the software engineering community.
SPLE deals with the design and implementation of software
components that can be adapted and parametrized accord-
ing to customer requirements and business or technical con-
straints [47]. As in PC approaches, the goal is to save costs
by assembling individualized systems from reusable compo-
nents [41]. Typical application domains for SPLE include em-
bedded systems, device drivers, and operating systems.

Interestingly, research in these two fields has been car-
ried out so far mostly independently. Except in rare cases
(e.g. [28, 5]), researchers in both fields are often unaware of
approaches that have been developed in the other commu-
nity. Further, even though a lot of PC work has focused on
configuring technical equipment, such equipment increasingly
contains software. At the same time, SPLE increasingly tar-
gets software-intensive systems that also include computing
and other types of equipment. Based on these observations,
our hypothesis is that both the PC and SPLE communities
have produced results that are applicable in the other domain.

The remainder of this paper explores further the opportu-
nity for cross-fertilization (Section 2) and proposes a research
roadmap (Section 3) to systematically compare the two do-
mains and foster efforts towards unifying both fields. In par-
ticular, we hope to find innovative approaches to questions
that are largely open in one or the other community such
as the reconfiguration of deployed systems, better interactive
configuration support (e.g., in case of unsatisfiable require-
ments), methods for full lifecycle support and the evolution
of models and knowledge bases. For this last question, we
will also explore how techniques from software configuration
management (CM) can be integrated.

2 Motivation

Questions of knowledge acquisition, knowledge representation
as well as different types of reasoning support have been in-

Arnaud Hubaux and others 31

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

vestigated for many years in PC and SPLE. We highlight
some key results in both fields to show their commonalities
and differences. These preliminary observations motivate our
endeavour to study, compare, and eventually unify research
on configuration. We split the introduction of our motivations
along five dimensions. For each dimension, we also formulate
the research questions whose answers should expose opportu-
nities for cross-fertilization.

2.1 Knowledge acquisition and modelling

Research on PC has used a wide range of knowledge modeling
approaches (based, e.g., on UML [22] or description logic [40]),
involving different types of logics and constraints. While a few
SPLE approaches also used UML to capture aspects of config-
uration knowledge (e.g. [60, 25]), most results build upon the
seminal work on feature-oriented domain analysis (FODA)
initiated in 1990 by Kang et al. [37], which today is converg-
ing with decision models [17]. The cornerstone of FODA are
feature models (FMs), a graphical notation to capture and ex-
press the commonalities and variabilities of a product family.
FMs are menu-like hierarchies of mandatory, optional, and
alternative features, with cross-hierarchy relationships to ex-
press dependencies and incompatibilities. This initial FM no-
tation has been gradually extended to support, for example,
multiple instances [18, 44] or the configuration process [29].

Compared to configuration modelling ontologies used in PC
(e.g., [22] or [53]), the expressiveness of FMs (even extended
ones) appears too limited compared to more complex PC on-
tologies. Examples of advanced PC problems include connect-
ing components via ports (i.e., inferring complex topologies),
finding optimal or at least good configurations, integrating
iteratively new components, and distributing knowledge over
different agents or business entities [32]. Some work exists in
SPLE on component connection and integration (e.g. [5]) and
optimization (e.g. [58]). This motivated the creation of more
expressive languages (e.g., [8]). PC appears to offer a richer
body of work in this area, though.

Opportunities for cross-fertilization: Some authors
have already acknowledged the bond between configuration in
PC and in SPLE through feature-based configuration. Günter
et al. [27] recognize concept hierarchies (similar to FMs) as
a fundamental concept in their survey of knowledge-based
configuration methods. According to Junker’s classification
of known configuration problems [34], feature-based configu-
ration falls in the option selection or shopping list problems.
To systematically identify such synergies, our research agenda
should answer the following questions:

RQ1 What classes of configuration problems exist?
RQ2 How are these problems modelled?

2.2 Automated reasoning

Generally, with respect to modeling and knowledge represen-
tation, the AI-rooted PC community is usually interested in
“executable” models that can be directly translated into a
representation processable by a reasoning engine. The for-
mal basis of most knowledge modelling languages lays the
foundation for advanced configuration reasoning techniques
(e.g., checking for consistency of configurations, completing

partial configurations, or supporting interactive configuration
processes). In contrast, the SPLE community only started re-
cently to develop a formal foundation of FMs (e.g. [9, 49])
and their analyses (e.g. [5, 43, 33, 59]). Based on precise
formal problem characterizations, additional automations for
SPLE become feasible. An example is the automated analysis
of FMs; see [10] for an overview. Furthermore, Benavides et
al. [11] propose to translate FMs into a Constraint Satisfac-
tion Problem (CSP) and apply Reiter’s model-based diagno-
sis (MBD) approach to detect problems in the models. Xiong
et al. [59] combine MBD and Satisfiability Modulo Theory
(SMT) solvers to generate range fixes in software configura-
tion. Mendonca et al. [43] report on experiments with a SAT-
encoding of FMs. Finally, Bagheri et al. [7], support hard and
soft requirements in the configuration process.

The SPLE community sometimes reinvents techniques
which have been developed previously in PC. Encoding config-
uration problems in some logic or as CSPs has a long history
in the AI community [34]. The PC community was also the
first to apply SAT solvers to configuration problems [51]. New
CSP representations such as Dynamic, Composite or Genera-
tive CSPs [45, 48, 54, 32] as well as logics [26, 4] were partially
inspired by the challenges observed in PC. This latter pool of
techniques addresses the problem of conditionally including
multiple instances of a certain component type. The PC com-
munity was also first to use MBD for configuration, e.g., for
detecting problems in configuration knowledge bases [23]. Re-
garding soft constraints and preferences, there is abundant lit-
erature in constraint programming (e.g. [36, 46]). Finally, bi-
nary decision diagrams (BDDs) have also been used for build-
ing fast interactive configurators (trading time vs space from
a complexity point of view) [3]. That latter approach has been
explored in SPLE as well (e.g. [42]), but it turned intractable
on large FMs.

Opportunities for cross-fertilization: In contrast to
physical components, software components are represented
completely as computer artifacts. While physical components
need to be specified explicitly in the computer to check cross-
component compatibility, software configuration can analyze
variability models and the actual configurable artifacts at the
same time. This opens up new possibilities for configuration,
where the compatibility of components can be checked on
the fly during configuration without going back to the de-
sign phase and modifying configuration knowledge. To iden-
tify overlaps and differences between SPLE and PC, we in-
clude the questions:

RQ3 What automated tasks are supported (e.g., completion,
repair, and optimization of configurations)?

RQ4 How are these automated tasks implemented?

2.3 Complexity

The computational complexity is an indicator of the amount
of resources needed to solve a given problem. In PC, reason-
ing is usually achieved by encoding the problem in formalisms
such as CSP, SAT, answer set programming or description
logics, all of which are being supported by mature reason-
ers. Both SAT and CSP are well-known to be NP complete
[15, 38]. Some extensions of CSPs (dynamic, composite) poly-
nomially reduce to classical CSP [56] whereas the decidability

Arnaud Hubaux and others 32

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

of Generative CSP has yet to be established. Ground answer
set programs are NP complete (Σp2 complete in the case of op-
timization); if programs contain uninstantiated variables we
obtain NEXPTIME completeness [50, 19]. Description log-
ics are typically decidable fragments of first order logic [6];
the DLs used in PC range from polynomial over PSPACE
complete to undecidable [35, 40, 12]. Let us emphasize that
the aforementioned complexity results are only upper bounds:
Precise complexity results for classes of configuration prob-
lems are still too rare (e.g., [52]).

The same symptom can be observed in SPLE where only a
tiny fraction of the papers study complexity aspects (e.g. [49]).
While some experimental results exist, e.g., [43], theoretical
results are largely missing.

Opportunities for cross-fertilization. Although to a
different extent, both PC and SPLE do not fully cover ques-
tions related to the complexity of the automated tasks they
support for different classes of configuration problems. To fol-
low up on RQ1 and RQ3, we propose these new questions
that study their complexities:

RQ5 What is the complexity of automated tasks for relevant
classes of configuration problems?

RQ6 What reasoning frameworks can be used to build scal-
able tools for each class of configuration problems?

2.4 Life cycle coverage

SPLE suffers from a certain lack of homogeneity across the
modelling artefacts used throughout the engineering life cy-
cle. From requirements engineering down to code generation,
a myriad of alternative techniques exist which are used and
combined differently depending on the application domain
and project context. Therefore, there is no standard view
on how they should be integrated. As for PC, configuration
tasks can range from bill-of-material configuration over ce-
ment factory design to t-shirt customization. These tasks call
for very different methods and techniques whose applications
have been insufficiently studied. Additionally, the creation of
feedback loops from productive use back to variability de-
sign decisions is rather explored in the more business- or
management-centric literature without transfer to PC.

Configurator engineering is a more mature discipline in PC
than in SPLE, aiming at the co-design of the configurator and
the configurable artefact. According to Hvam et al. [30], the
creation, implementation and operation of a configurator is
a seven-phase procedure. The first phase identifies the prod-
uct specification process, used for analyzing customer needs,
creating a customized product, and prescribing other related
activities, such as purchasing, delivery, servicing, and recy-
cling. The specification process also defines the configuration
system that supports the activities composing it. The sec-
ond phase deals with the definition of the product portfolio.
Phases three to six deal with the modelling and implementa-
tion of the configuration system. The seventh phase focuses
on maintenance.

Finally, the commercial side of configuration is also impor-
tant. PC has to deal typically with sales, consumer goods,
and engineers, wheras SPLE is more geared towards software
engineers and other technical experts. Although stakeholder
profiles vary from one case to the other, some configuration
tasks overlap and techniques could be shared.

Opportunities for cross-fertilization. To better pin-
point overlaps, we split the problem into three questions:

RQ7 What are the configuration tasks?
RQ8 How is a configurable product engineered?
RQ9 How is a configurator engineered?

2.5 Knowledge evolution

The main concern of the software configuration management
(CM) discipline is controlling and tracking the evolution of
products in response to changes. To do so, it introduces the
concept of versions that represent instances of products and
its parts over time. In CM, there are two main types of
versions [14]: revisions and variants. Revisions are versions
that supersede other versions due to bug fixes or addition of
new functionalities. Variants are versions intended to coexist
through time to satisfy different user or platform needs. Vari-
ants are well known in the PC and SPLE fields. However, the
management of revisions and the interaction of both is still
a weakness of PC and SPLE, especially when the product
and its parts evolve frequently. The need to deploy change
management techniques in SPLE is recognized [13, 47], and
some researchers have started working in this direction (e.g.
[2, 57]). Although promising, these results are still incomplete,
and need to be extended and consolidated.

Problems related to the evolution of the configuration
knowledge and system (e.g. knowledge base, database, and
product instances) are also known in PC [21]. PC research
has addressed some of these evolution-related aspects in the
context of reconfiguration problems (e.g. [55, 24]), which con-
sist in changing an already existing or deployed configuration
to accommodate new or changed customer requirements or
constraints in the knowledge base. Männistö et al. [39] dis-
cuss the issue of the evolution of configuration knowledge and
instances, proposing a framework to address it. The key idea
is to accept the independence of these evolutions, capture the
evolution in the models, and then do reconfiguration. Prob-
lems similar to reconfiguration have been addressed in the
software domain: given a component-based software installa-
tion (e.g. Linux, Eclipse), the component dependencies and
an (un-)install request, compute a best new installation [1].

Another practical challenge both in PC and SPLE is the
constantly growing number of components that can be part
of a configuration, be they semi-conductors, switches, or soft-
ware plug-ins. The corresponding knowledge bases soon be-
come hard to manage because they describe how older compo-
nents have to be replaced by newer ones or which component
versions are compatible.

In CM, some have tried to provide a unified model for soft-
ware CM and product data management (e.g. [20, 16]). Those
models stop at the conceptual level without providing opera-
tional solutions, however.

Opportunities for cross-fertilization. Since the 1970s,
research in CM focused on change management. Mature so-
lutions are now available and could be applicable to PC. Fur-
thermore, researchers in SPLE and PC could join forces to de-
velop scalable techniques to address the explosion of the num-
ber of components and their evolution. Those results could
then be contributed back to CM. The resulting questions are:

RQ10 How can CM techniques be applied to PC and SPLE?

Arnaud Hubaux and others 33

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

RQ11 How to scale up with growing revision knowledge?

3 Research Roadmap

The first step of our project was the composition of an hetero-
geneous panel of experts from the different communities and
the creation of a knowledge exchange portal. Once populated
with our initial results, our intention is to open this shared
portal to a wider community and invite collaborations. Our
research roadmap has five phases.

1. Literature survey. The first phase focuses on a litera-
ture survey that should answer RQ1-9. The part of the
survey related to RQ1-4 is already underway. The body
of knowledge gathered during this initial phase will be the
foundation upon which the panel will start its unification
endeavour.

2. Domain understanding and classification. The sec-
ond phase paves the road toward a unified theory of config-
uration. Its objective is to analyze the material collected in
the first phase, to classify the application domains, study
their differences and commonalities, and to identify the pos-
sible bridges between these domains.

3. Unified theory definition. The foundation for this the-
ory will be a mathematical model of the classes of con-
figuration problems and their properties. These classes of
configuration problems will be characterized by the expres-
siveness needed to solve the problems. Analogous to the
classification of description logics [6], this will enable the
study of the theoretical complexity of the associated com-
putational problems. Problem frames [31] could be used as
the macro-structure for this classification.

4. Unified theory operationalization. Upon this defini-
tion, we will build two layers: modelling languages and rea-
soning techniques. In the modelling layer, we will first sort
existing languages according to the configuration problems
they address. We will then work toward their unification,
possibly by mapping into a common core language. The
reasoning layer will gather the configuration tasks (e.g.,
consistency check, repair, and completion) identified in the
previous phases. For each task and a class of configuration
problems captured by a language, we will study alterna-
tive reasoning techniques and assess their applicability (see
next phase). Finally, we will investigate how version man-
agement techniques from CM can be adapted to support
configuration evolution. Based on these elements, we will
answer RQ6, 10 and 11.

5. Unified theory validation. Configuration can be ap-
plied in a myriad of application domains to support many
different usage scenarios. Each situation will need its own
benchmarks and analyses. The objective of the panel will
be to validate the results of the theory operationalization
on a few industry-size models. In particular, it will seek
to better understand the respective merits and limitations
of the various reasoning techniques. Benchmarks will be
needed to assess their applicability and tractability on var-
ious classes of problems. This pilot validation will be a first
step in setting up a framework in which parallel efforts of
the community could commence.

This roadmap is not intended to be executed in a waterfall
fashion: we expect several iterations through phases 2-5.

4 Conclusion

Configuration, both of software and other types of products,
continues to be a timely business strategy as customers consis-
tently strive for affordable tailor-made products. Yet, research
in product and software configuration progresses on different
and rarely intersecting paths. This paper (1) motivated the
need for bridging the current gap between these two domains,
and (2) presented a roadmap to build such a bridge and set
cross-fertilization in motion.

Our initial observations show that the contribution of the
research in product configuration to software product config-
uration is rather glaring. The inverse is, however, less obvi-
ous. As possible contributions, we see methodological aspects
as well as modelling techniques. Once laid upon more for-
mal foundations, some of these models could further improve
product configuration.

Finally, the evolution problem is still under-explored in
both software and product configuration. They both have a
lot to gain from the techniques promoted in configuration
management. Conversely, the formal treatment of configura-
tion problems and automated reasoning could enhance exist-
ing work in configuration management.

REFERENCES

[1] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli, ‘De-
pendency solving: a separate concern in component evolution
management’, Systems and Software, (2012). To appear.

[2] M. Anastasopoulos, D. Muthig, T. H. B. de Oliveira, E. S.
Almeida, and S. R. de Lemos Meira, ‘Evolving a software
product line reuse infrastructure: A configuration manage-
ment solution’, in Proc. VaMoS’09, Sevilla, (2009).

[3] H. R. Andersen, T. Hadzic, and D. Pisinger, ‘Interactive cost
configuration over decision diagrams’, Artificial Intelligence
Research (JAIR), 37, 99–139, (2010).

[4] M. Aschinger, C. Drescher, and H. Vollmer, ‘LoCo - A Logic
for Configuration Problems’, in Proceedings of the 20th Eu-
ropean Conference on Artificial Intelligence (ECAI), Mont-
pellier, France, (2012).

[5] T. Asikainen, T. Soininen, and T. Männistö, ‘A Koala-based
approach for modelling and deploying configurable software
product families’, in Porc PLE’03, Springer LNCS 3014, pp.
225–249, (2003).

[6] The Description Logic Handbook: Theory, Implementation,
and Applications, eds., F. Baader, D. Calvanese, D. L.
McGuinness, D. Nardi, and P. F. Patel-Schneider, Cambridge
University Press, 2003.

[7] E. Bagheri, T. Di Noia, A. Ragone, and D. Gasevic, ‘Con-
figuring software product line feature models based on stake-
holders’ soft and hard requirements’, in SPLC’10, pp. 16–31,
(2010).

[8] K. Bak, K. Czarnecki, and Andrzej W., ‘Feature and meta-
models in clafer: Mixed, specialized, and coupled’, in Proc.
SLE’10, pp. 102–122, Eindhoven, The Netherlands, (2010).
Springer-Verlag.

[9] D. Batory, ‘Feature models, grammars, and propositional for-
mulas’, in SPLC’05, pp. 7–20, Rennes, France, (2005).

[10] D. Benavides, S. Segura, and A. Ruiz-Cortes, ‘Automated
analysis of feature models 20 years later: a literature review’,
Information Systems, 35(6), 615 – 636, (2010).

[11] D. Benavides, P. Trinidad, and Ruiz-Cortez A., ‘Automated
reasoning on feature models’, in Proc. CAiSE’05, pp. 491–
503, Porto, Portugal, (2005). Springer.

[12] M. Buchheit, R. Klein, and W. Nutt, ‘Constructive Problem
Solving: A Model Construction Approach towards Configura-
tion’, Technical Report TM-95-01, DFKI, (1995).

[13] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns, Addison-Wesley, 2001.

Arnaud Hubaux and others 34

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

[14] R. Conradi and B. Westfechtel, ‘Version models for software
configuration management’, ACM Computing Surveys, 30,
232–282, (June 1998).

[15] S. A. Cook, ‘The complexity of theorem-proving procedures’,
in Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, (1971).

[16] I. Crnkovic, U. Asklund, and A. P. Dahlqvist, Implementing
and integrating product data management and software con-
figuration management, Artech House Publishers, 2003.

[17] K. Czarnecki, P. Grunbacher, R. Rabiser, K. Schmid, and
A. Wasowski, ‘Cool features and tough decisions: Two decades
of variability modeling’, in Proc. VaMoS’12, Leipzig, Ger-
many, (2012). ACM Press.

[18] K. Czarnecki, S. Helsen, and U. W. Eisenecker, ‘Staged con-
figuration through specialization and multi-level configura-
tion of feature models’, Software Process: Improvement and
Practice, 10(2), 143–169, (2005).

[19] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, ‘Com-
plexity and expressive power of logic programming’, ACM
Computing Surveys, 33(3), 374–425, (2001).

[20] J. Estublier, J.-M. Favre, and P. Morat, ‘Toward scm / pdm
integration?’, in Proc. SCM’98, pp. 75–94, London, UK, UK,
(1998). Springer-Verlag.

[21] A. Falkner and A. Haselböck, ‘Challenges of knowledge evolu-
tion in practice’, in ECAI 2010 IKBET Wks, pp. 1–5, (2010).

[22] A. Felfernig, G. Friedrich, and D. Jannach, ‘UML as domain
specific language for the construction of knowledge-based con-
figuration systems’, in Proc. SEKE 99, pp. 337–345, Kaiser-
slautern, Germany, (1999).

[23] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumpt-
ner, ‘Consistency-based diagnosis of configuration knowledge
bases’, Artificial Intelligence, 152, 213–234, (2004).

[24] G. Friedrich, A. Ryabokon, A. Falkner, A. Haselböck,
G. Schenner, and H. Schreiner, ‘(Re)configuration based on
model generation’, in Proc. LoCoCo Workshop, EPTCS, pp.
26–35, (2011).

[25] H. Gomaa and M. Eonsuk Shin, ‘Multiple-view modelling
and meta-modelling of software product lines’, IET Software,
2(2), 94–122, (2008).

[26] G. Gottlob, G. Greco, and T. Mancini, ‘Conditional Con-
straint Satisfaction: Logical Foundations and Complexity’, in
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India, (2007).

[27] A. Günter and C. Kühn, ‘Knowledge-based configuration:
Survey and future directions’, in Proc. XPS’99, pp. 47–66,
London, (1999).

[28] L. Hotz, K. Wolter, and T. Krebs, Configuration in Industrial
Product Families: The ConIPF Methodology, IOS Press, Inc.,
2006.

[29] A. Hubaux, A. Classen, and P. Heymans, ‘Formal modelling of
feature configuration workflow’, in Proc. SPLC’09, pp. 221–
230, San Francisco, (2009).

[30] L. Hvam, N. Henrik Mortensen, and J. Riis, Product Cus-
tomization, Springer-Verlag Berlin Heidelberg, 2008.

[31] M. Jackson, Problem frames: analyzing and structuring soft-
ware development problems, Addison-Wesley, 2001.

[32] D. Jannach and M. Zanker, ‘Modeling
and solving distributed configuration prob-
lems: A CSP-based approach’, IEEE TKDE,
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.236.

[33] M. Janota, ‘Do SAT solvers make good configurators?’, in
Proc. ASPL’08, pp. 191–195, Limerick, Ireland, (2008).

[34] U. Junker, Handbook of Constraint Programming, chapter
Configuration, 837–873, Elsevier, 2006.

[35] U. Junker and D. Mailharro, ‘The logic of ILOG
(J)Configurator: Combining constraint programming with a
description logic’, in Proc. IJCAI-03 Configuration Work-
shop, (2003).

[36] U. Junker and D. Mailharro, ‘Preference programming: Ad-
vanced problem solving for configuration’, AIEDAM, 17(1),
13–29, (2003).

[37] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, ‘Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study’, Technical report, SEI, CMU, (1990).

[38] A. K. Mackworth, ‘Consistency in networks of relations’, Ar-
tificial Intelligence, 8, 99–118, (1977).

[39] T. Männistö, A Conceptual Modelling Approach to Product
Families and Their Evolution, Ph.D. dissertation, Helsinki
University of Technology, Finland, 2000.

[40] D. L. McGuinness and J. R. Wright, ‘Conceptual modelling
for configuration: A description logic-based approach’, Artif.
Intell. Eng. Des. Anal. Manuf., 12(4), 333–344, (1998).

[41] M. D. McIlroy, ‘Mass produced software components’, in
Proc. Software Engineering Concepts and Techniques, pp.
138–150. NATO Science Committee, (1968).

[42] M. Mendonça, Efficient Reasoning Techniques for Large Scale
Feature Models, Ph.D. dissertation, U Waterloo, 2009.

[43] M. Mendonça, A. Wasowski, and K. Czarnecki, ‘SAT-based
analysis of feature models is easy’, in Proc. SPLC’09, pp.
231–240, San Francisco, (2009). Carnegie Mellon University.

[44] R. Michel, A. Classen, A. Hubaux, and Q. Boucher, ‘A for-
mal semantics for feature cardinalities in feature diagrams’,
in Proc. Wks. VaMoS’11, pp. 82–89, Namur, BE, (2011).

[45] S. Mittal and B. Falkenhainer, ‘Dynamic constraint satisfac-
tion problems’, in AAAI’90, pp. 25–32, Boston, (1990).

[46] M. Pasanen, Warnings and Pre-selection Packages in a
Weight Constraint Rule Based Configurator, Master’s thesis,
Helsinki University of Technology, Department of Computer
Science and Engineering, Finland, 2003.

[47] K. Pohl, G. Böckle, and F. J. van der Linden, Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques, Springer, 2005.

[48] D. Sabin and E. C. Freuder, ‘Configuration as Composite
Constraint Satisfaction’, in Proceedings of the Artificial In-
telligence and Manufacturing Research Planning Workshop
(AIMRP), Albuquerque, New Mexico, (1996).

[49] P-Y. Schobbens, P. Heymans, J-C. Trigaux, and Yves Bon-
temps, ‘Generic semantics of feature diagrams’, Comput.
Netw., 51(2), 456–479, (2007).

[50] P. Simons, I. Niemelä, and T. Soininen, ‘Extending and imple-
menting the stable model semantics’, Artificial Intelligence,
138(1–2), 181–234, (2002).

[51] C. Sinz, A. Kaiser, and W. Küchlin, ‘SAT-based consistency
checking of automotive electronic product data’, in ECAI
Workshop, (2000).

[52] T. Soininen, An Approach to Knowledge Representation and
Reasoning for Product Configuration Tasks, Ph.D. disserta-
tion, 2000.

[53] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘To-
wards a general ontology of configuration’, AIEDAM, 12,
357–372, (1998).

[54] M. Stumptner, A. Haselböck, and G. Friedrich, ‘Generative
Constraint-based Configuration of Large Technical Systems’,
AI EDAM, 12(4), 307–320, (1998).

[55] M. Stumptner and F. Wotawa, ‘Model-based reconfiguration’,
in Proc. AID’98, pp. 45–64, (1998).

[56] E. Thorstensen, ‘Capturing Configuration’, in Doctoral Pro-
gram at the 16th International Conference on Principles
and Practice of Constraint Programming (CP), St. Andrews,
Scotland, (2010).

[57] T. Thum, D. Batory, and C. Kastner, ‘Reasoning about edits
to feature models’, in Proc. ICSE’09, pp. 254–264, Washing-
ton, DC, USA, (2009). IEEE Computer Society.

[58] T. T. Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Hey-
mans, ‘Relating requirements and feature configurations: A
systematic approach’, in Proc. SPLC’09, pp. 201–210, San
Francisco, CA, USA, (2009). ACM Press.

[59] Y. Xiong, A. Hubaux, and K. Czarnecki, ‘Generating range
fixes for software configuration’, in Proc. ICSE’12, Zurich,
Switzerland, (2012). IEEE Computer Society.

[60] T. Ziadi, L. Helouet, and J.-M. Jezequel, ‘Towards a UML
profile for software product lines’, in Software Product-Family
Engineering, Springer LNCS 3014, 129–139, (2004).

Arnaud Hubaux and others 35

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

An Improved Constraint Ordering Heuristics for
Compiling Configuration Problems

Benjamin Matthes and Christoph Zengler and Wolfgang Küchlin1

Abstract. This paper is a case study on generating BDDs (binary
decision diagrams) for propositional encodings of industrial configu-
ration problems. As a testbed we use product configuration formulas
arising in the automotive industry. Our main contribution is the in-
troduction of a new improved constraint ordering heuristics incorpo-
rating structure-specific knowledge of the problem at hand. With the
help of this constraint ordering, we were able to compile all formu-
las of our testbed to BDDs which was not possible with an arbitrary
constraint order.

1 INTRODUCTION

Since the early 80s, product configuration systems have been among
the most prominent and successful applications of AI methods in
practice [15]. As a result computer aided configuration systems have
been used in managing complex software, hardware or network set-
tings. Another application area of these configuration systems is the
automotive industry. Here they helped to realize the transition from
the mass production paradigm to present-day mass customization.

Besides CSP encodings [1] also propositional encodings [10] of
configuration problems proved to be a viable alternative in the auto-
motive industry. Specific queries to the configuration base can then
be answered by a decision procedure for propositional logic, e.g.
in many cases SAT solvers. Although modern SAT solvers prove
to be very efficient in answering such queries, there are two major
drawbacks: (1) Since decidability of a propositional formula is NP-
hard, SAT solvers cannot guarantee certain runtime requirements re-
quired in online configuration applications; (2) there are some types
of queries that cannot be handled by a SAT solver efficiently, e.g.
restriction, model enumeration, or model counting. One approach to
circumvent these limitations is the use of knowledge compilation.

The basic idea of knowledge compilation is to distinguish two
phases: (1) an offline phase in which a given formula is compiled into
the respective compilation format and (2) an online phase in which
we query the compilation. Usually the offline phase is still NP-hard,
but once compiled, there are a number of interesting polynomial time
operations on the compilation. Well-known knowledge compilation
formats for propositional logic are e.g. BDDs [3] or DNNFs [5].

For this paper we chose BDD as compilation format. Its use in
configuration problems is well-studied [7, 11]. Hadzic et al. [7] fo-
cus on minimizing the final BDD for shorter response times; Nar-
odytska et al. [11] try to establish a good static variable ordering
for BDD compilation of configuration problems. They also present
a constraint ordering based on the constraint graph. In contrast, in

1 Symbolic Computation Group, WSI Informatics, Universität Tübingen,
Germany, email: [matthesb, zengler, kuechlin]@informatik.uni-
tuebingen.de

this paper we present an ordering of the constraints based on some
structure knowledge of the problem which is not always deducible
from the constraint graph. In most cases our test instances could only
be compiled into BDDs with this new constraint ordering. With an
arbitrary ordering we exceeded space or time limits.

In section 2 we will introduce propositional configuration prob-
lems and present the reader an overview of binary decision diagrams
and some important properties. Section 3 shortly describes our test
instances from the automotive industry. Our main contribution lies in
section 4. We present an ordering of the constraints of the configura-
tion problem with the help of which we could compile all formulas
to BDDs.

2 PRELIMINARIES
2.1 Configuration problems
2.1.1 Propositional configuration problems

We use the definition of a configuration problem as given in [7, Def-
inition 1]: a configuration problem is a triple (V, D,Ψ) where V is
a set of variables x1, x2, . . . , xn, D is a set of their finite domains
D1, D2, . . . , Dn and Ψ = {ψ1, ψ2, . . . , ψm} is a set of proposi-
tional formulas (constraints) over atomic propositions xi = v where
v ∈ Di, specifying conditions that the variable assignments have to
satisfy. A valid configuration is an assignment α with dom(α) = V
such that α |= ∧ψ∈Ψ ψ, i.e. all constraints hold.

In this paper we consider the special case where we have only
propositional variables in V and hence Di = {1, 0} for all 1 ≤ i ≤
n. The setO is the finite set of all configuration options for a product.
Each variable xo ∈ V represents a configuration option o ∈ O. The
variable xo is assigned to 1 if the option o is chosen, otherwise it is
assigned to 0. Following this course, the resulting formulas ψ ∈ Ψ
are propositional formulas and henceϕ =

∧
ψ∈Ψ ψ is a propositional

formula describing all valid configurations. We will also refer to ϕ
as product overview formula (POF) [10].

Remark. The restriction of the variables x ∈ V to propositional
variables does not limit the expressiveness of our problem descrip-
tion. Since the domains Di are finite and we only allow atomic
propositions of the form x = v, we can use a reduction [4] from
equality logic to propositional logic.

2.1.2 Structure of configuration problems

In many application domains (including the automative product con-
figuration), we can divide the set of constraints Ψ in three parts:

Unit Constraints ΨU constraints concerning only a single variable.
These constraints enforce or forbid the selection of a single option.

Benjamin Matthes, Christoph Zengler, and Wolfgang Küchlin 36

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Cardinality Constraints ΨCC Constraints enforcing the selection
of a certain number of options. In most cases the selection of ex-
actly one option or at most one option is enforced.

Dependencies ΨD Constraints describing the dependencies be-
tween two or more options. These constraints are used to describe
complex domain specific configuration knowledge.

Example. In the automotive industry we have the following exam-
ples for the aforementioned constraint sets:

• ΨU : Necessary or forbidden options in a production series of cars.
E.g. ’EPS must be chosen in this series’ or ’automatic transmis-
sion is not available for this series’.

• ΨCC : Enforcement that only one option from a certain option-
family can be chosen at the same time. E.g. ’only one steering
wheel in a car’, or ’at most one navigation system’.

• ΨD: Description of complex dependencies in a car. E.g. ’naviga-
tion system enforces also board computer and forbids radio’.

2.2 Ordered binary decision diagrams

A binary decision diagram [3] is a directed acyclic graph which rep-
resents a propositional formula. Each inner node is labeled with a
propositional variable and has two outgoing edges for negative and
positive assignment of the respective variable. The leaves are labeled
with 1 and 0 representing true and false. An assignment is repre-
sented by a path from the root node to a leaf and its evaluation is
the respective value of the leaf. Therefore all paths to a 1-leaf are
valid models for the formula. Ordered reduced BDDs (ROBDDs) are
a subset with additional restrictions for the BDDs. Ordering guaran-
tees the same variable ordering on all paths through the BDD; Reduc-
tion guarantees that equivalent subtrees of the BDD are compactified
and redundant nodes are deleted. A ROBDD is a canonical represen-
tation of a propositional formula wrt. to a variable ordering, meaning
the ROBDD of a formula is unique. From now on we will refer to
ROBDDs simply as BDDs. Figure 1 presents the BDD for the for-
mula (x1 ↔ x2) ∨ x3 with the variable ordering x1 < x2 < x3.
Solid edges represent the positive assignment, dashed edges the neg-
ative assignment.

x1

x2 x2

x3

1 0

Figure 1. BDD for (x1 ↔ x2) ∨ x3 with ordering x1 < x2 < x3

Once compiled, BDDs allow a large number of polynomial time
operations on the represented formula. Among them are: satisfiabil-
ity, general entailment, restriction or equivalence. Since satisfiability
is a polynomial time operation on BDDs, it is obvious, that it is NP-
hard to transform a given Boolean formula into a BDD. The size
(number of nodes) of a BDD is strongly dependent on the variable
ordering. There are many examples where bad orderings produce ex-
ponential size BDDs, whereas a good ordering produces a linear size
BDD. So finding a good variable ordering is a crucial task in the

compilation phase. Finding an optimal variable ordering is an NP-
complete problem [2]. Different reordering heuristics for BDDs will
be reviewed in section 2.2.1.

Since our input formulas are in CNF, the usual procedure of com-
piling the BDD is to generate BDDs for each clause and conjoin
them. Here, the order in which the clauses are conjoined plays an
important role. We will discuss the impact of this clause/constraint
ordering in section 2.2.2.

2.2.1 Reordering heuristics

As already mentioned, finding the optimal variable order for a BDD
is NP-complete. Modern BDD compilers use different heuristics to
find a good variable ordering while compiling. We will present some
of these heuristics which proved to be of interest for our real world
applications.

The sifting algorithm by Rudell [14] is the foundation of various
reordering heuristics. It is based on finding an optimum for each vari-
able assuming all other variables remain fixed. Each variable is con-
sidered in sequence, beginning with the variable with most occur-
rences. The currently selected variable is sifted (moved) sequentially
to both ends of the variable ordering and is finally fixed to the opti-
mum position wrt. the size of the BDD. All variable movement can
be done by a series of adjacent variable swaps. Swapping a variable
with its direct predecessor or successor does not affect levels other
than those of these two variables and therefore depends only propor-
tionally on the size of the respective levels. This sifting process is
repeated for each variable, in order of their occurrences. It is notable
that the BDD size can increase heavily during sifting.

The sifting algorithm can be extended to a symmetric sifting [13],
where symmetric variables (variables, that can be interchanged with-
out changing the Boolean function) are kept close together. Sym-
metric sifting again can be generalized to group sifting [12]. Here,
symmetry situations that go beyond the symmetry of two variables
can be treated specially.

A different approach was suggested by Fujita et al. [6] and Ishiura
et al. [8]. Instead of searching the optimal position of a variable in the
whole variable ordering, the search space is restricted to a small win-
dow. Each variable is considered in sequence and permuted inside a
window of size k. If xi is considered and window size is 3, xi, xi+1

and xi+2 have to be permuted. All k! possibilities of arranging vari-
ables are exhaustively searched. After testing all permutations, the
best one wrt. BDD size is used. The process is repeated for each vari-
able. Due to the rapid growth of the faculty function, this approach is
only practical for window sizes up to 5. Generally it performs better
than sifting, but may not be able to overcome local minima.

For further comparison two random based algorithms have been
used. The random variant randomly selects pairs of variables and
transposes them with adjacent swaps. The best position wrt. BDD
size is used. This step is repeated n times for n variables. The ran-
dom pivot takes the same approach but requires that the first variable
selected has a smaller index than a pivot element. This pivot element
is the variable with most nodes in the BDD. Accordingly the second
selected variable has to have a larger index than the pivot element.

2.2.2 Clause orderings

Given a CNF as input formula for the BDD compilation, the order in
which clauses are added to the BDD is crucial. Consider a formula
ψ∧x∧¬x where ψ is an arbitrary satisfiable CNF. If first all clauses
of ψ are added to the BDD, the resulting BDD can be of large size

2

Benjamin Matthes, Christoph Zengler, and Wolfgang Küchlin 37

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

(depending on ψ). If then at the end x and ¬x are added, the formula
turns unsatisfiable and the BDD degenerates to the 0-leaf. If on the
other hand x and ¬x are added to the BDD as first two clauses, all
other clauses will have no more impact on the BDD. Obviously the
second approach would perform much better in this case for a large
ψ. In general we can not determine such a ’good’ clause ordering
but in our application we have specific structure knowledge which
we can utilize. Since clauses in our application stem from various
constraints, we will refer to this also as constraint ordering.

3 TEST CASES

As a testbed we used product configuration formulas for a series of
cars of a major German car manufacturer. The series consists of 25
different car models, each with about 300 customer-selectable op-
tions inO and between 300 and 400 constraints in Ψ. Looking at the
distinction in section 2.1.2 we have the following numbers:

• between 20 and 30 unit constraints in ΨU

• between 40 and 60 cardinality constrains in ΨCC

• about 300 dependencies in ΨD

The corresponding CNF translations of these formulas range be-
tween 200 and 350 variables and 500 and 3000 clauses.

We distinguish two different flavors of formulas: the first set rep-
resents a restriction of the formula to technical aspects, meaning only
options are considered, which are really choosable by the customer;
the second set models the full configuration space including some
steering codes in the set of options which are used to guide certain
processes during the manufacturing of the car. Table 1 presents an
overview over all instances.

Table 1. Automotive product configuration instances

technical full configuration space
variables # clauses # variables # clauses

IA1 270 979 352 2796
IA2 262 895 344 2712
IA3 268 942 350 2759
IA4 262 898 344 2715
IB1 242 704 322 2519
IB2 236 667 316 2482
IC1 251 768 331 2583
IC2 242 704 322 2519
IC3 220 594 240 638
IC4 267 952 349 2769
IC5 257 853 339 2670
ID1 246 760 325 2575
ID2 237 696 317 2511
ID3 216 597 236 641
ID4 246 765 326 2580
ID5 238 669 318 2514
ID6 216 597 236 641
IE1 240 700 319 2514
IE2 236 662 315 2476
IE3 247 745 327 2560
IE4 241 695 321 2510
IE5 246 736 326 2551
IE6 241 697 321 2512
IE7 267 946 349 2763
IE8 257 859 339 2676

4 RESULTS
A framework for automated testing and evaluating of both static and
dynamic variable orderings has been implemented. We used CUDD 2

as a foundation of our implementation. The framework can han-
dle Dimacs CNF files and produces BDDs with different reordering
heuristics and also a static variable ordering. It then evaluates the
resulting BDDs wrt. compilation time and BDD size and generates
comparison graphs for the different heuristics.

For the static variable ordering we solved the formula with a state-
of-the-art SAT solver and used its assignment stack as ordering.

4.1 The impact of the constraint ordering
As mentioned in section 2.2.2 the clause/constraint ordering can play
an important role in the compilation phase. In the first tests most of
our instances could not be compiled into BDDs with an arbitrary
constraint ordering. We can observe this effect in the first diagram of
figure 2 for a test instance (IB2). Without structuring the constraints,
we reached > 50 million internal nodes after adding 100 clauses.
Due to memory restrictions (4 GB) we could not add more than 200
clauses.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 20

 40

 60

 80

 100

 120

n
o
d
e
s

clauses

a) arbitrary clause ordering

 0

 200000

 400000

 600000

 0 100

 200

 300

 400

 500

 600

 700

n
o
d
e
s

clauses

b) structured clause ordering

Figure 2. Impact of clause orderings (IB2)

To bypass this problem, we grouped our set of constraints accord-
ing to section 2.1.2 in ΨU , ΨCC and ΨD and used the constraint
ordering ΨU < ΨCC < ΨD , meaning first we add all the unit con-
straints, then we add all the cardinality constraints, and at last we
add the dependencies. We will now take a closer look at the resulting
BDD.

The conjoin of all the constraints in ΨU represents exactly one
satisfying assignment. Therefore the resulting BDD is—independent
of the variable ordering—a chain of n nodes for n constraints in ΨU .
For each variable representing a necessary option, the negative edge
goes to the 0-leaf and the positive edge goes to the next variable, and

2 ftp://vlsi.colorado.edu/pub/cudd-2.5.0.tar.gz

3

Benjamin Matthes, Christoph Zengler, and Wolfgang Küchlin 38

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

vice versa for each variable representing a forbidden option. Figure 3
illustrates the BDD after adding all unit constraints for necessary op-
tions n1, . . . , nk and forbidden options f1, . . . , fl.

n1

. . .

nk

f1

. . .

fl1

0

Figure 3. BDD after adding all unit constraints

Next we add all the cardinality constraints. In our context we only
have to deal with ’exactly one’ and ’at most one’ constraints. The
propositional translation of ’at most one option of x1, . . . , xn is cho-
sen’ is ∧

i∈{1,...,n}

∧

j∈{i+1,...,n}
(¬xi ∨ ¬xj). (1)

For the encoding of ’exactly one variable of x1, . . . , xn is chosen’
we simply conjoin

(∨
i∈{1,...,n} xi

)
to (1). The resulting BDD has

(independent of the variable ordering) 2n − 1 nodes for an ’exactly
one of n’ constraint and 2n − 2 nodes for an ’at most one of n’
constraint. Figure 4 illustrates such a BDD for an ’exactly one of
x1, . . . , xn’ constraint. In our application domain all constraints in
ΨCC have disjoint variable sets (an option can only belong to one
option-family). Therefore compiling all cardinality constraints to a
BDD results in a chain of sub-BDDs as represented in figure 4. If
one of the options in a cardinality constraint was also present in the
unit constraints, the reduction property of the BDD guarantees im-
mediate simplification. After adding the cardinality constraints and
the unit constraints, the BDD size is still linear in the number of unit
constraints and cardinality constraints and their respective variables.

x1

x2 x2

.

xn xn

1

0

Figure 4. BDD for an ’exactly one’ constraint

As a last step, the dependencies between the options ΨD are con-
joined to the BDD. This step can enlarge the BDD significantly (ex-
ponential size in the worst-case). But our experiments show, that the

knowledge already present due to the translation of the unit con-
straints and the cardinality constraints helps to a great extent to sim-
plify the remaining constraints.

In the second diagram of figure 2 we can observe this effect:
Adding the clauses representing unit and cardinality constraints (the
first 500 clauses) goes smoothly and the resulting BDD is very small.
First on adding the dependencies, the BDD size grows faster. But
taking into account that we could not compile over 200 clauses with
an arbitrary constraint ordering, this is a large improvement. With
the help of this new constraint ordering, we were able for the first
time, to compile all our industrial instances into BDDs with under
two minutes per instance (most of them taking only a few seconds to
compile).

4.2 Comparison of the reordering heuristics

We compared all reordering heuristics wrt. compilation time (exe-
cution time in user mode) and BDD size (total number of nodes).
Our test system was a 64-Bit Linux running on an AMD Athlon 64
X2 Dual Core 4600+ with 4 GB of RAM. For each instance all 16
heuristics were tested. The results are denoted as follows:

• var: static variable ordering (assignment stack of SAT solver)
• none: ascending variable order x1 . . . xn
• sifting: basic sifting algorithm
• symsift: symmetric sifting
• gsift: group sifting
• windowX: window permutation with window size X
• random: random selection algorithm
• rpivot: random selection with pivot element

A ‘-c’ identifies the convergent variant of a heuristics, which means
it is applied until no further improvement can be observed.

Figure 5 presents an evaluation for one test instance as automati-
cally produced by our tool. Here you can observe a typical pattern we
identified: the static variable ordering often has a short compilation
time, but produces large BDDs. The windowing algorithms perform
better than the sifting-based algorithms in most cases. The sifting
algorithms yield by far the smallest BDDs.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 20 40 60 80 100 120 140 160 180 200

n
o

d
e

s

time [sec]

var
random

rpivot
sifting

sifting-c
symsift

symsift-c
gsift

gsift-c
window2
window3
window4

window2-c
window3-c
window4-c

none

Figure 5. Heuristics comparison for ID5 (full configuration space)

4

Benjamin Matthes, Christoph Zengler, and Wolfgang Küchlin 39

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Table 2 presents an overview what algorithm yielded the smallest
BDD size for each test instance and what algorithm had the best com-
pilation time. Times are noted in seconds. The table presents only
instances of the full configuration space. The instances reduced to
technical aspects showed similar results and are omitted here.

Table 2. Comparison of reordering algorithms (full configuration space)

nodes winner time (in s) winner
IA1 6133 gsift-c 36.41 none
IA2 3837 symsift-c 62.2 symsift
IA3 1974 symsift-c 28.3 window3-c
IA4 12016 gsift-c 48.61 window3-c
IB1 1820 gsift-c 3.37 var
IB2 2878 gsift-c 1.03 var
IC1 2539 symsift 7.6 window3-c
IC2 1411 gsift-c 8.17 var
IC3 844 symsift 0.99 var
IC4 4229 symsift-c 45.46 window3-c
IC5 2883 symsift-c 33.35 gsift
ID1 1781 symsift-c 18.18 window3-c
ID2 2702 gsift-c 10.87 var
ID3 1345 symsift-c 0.58 var
ID4 1343 symsift-c 3.54 var
ID5 2407 gsift 9.01 var
ID6 1345 symsift-c 0.6 var
IE1 1165 gsift-c 2.59 var
IE2 1313 symsift 0.93 var
IE3 3587 sifting-c 13.15 window3-c
IE4 2029 gsift 3.08 var
IE5 1853 symsift-c 10.89 var
IE6 1898 symsift-c 6.15 var
IE7 2308 symsift-c 37.91 window3-c
IE8 2233 gsift-c 34.66 window3-c

These results are summarized in table 33. Here we show how many
times (out of 50 instances—full and technical configuration space)
each algorithm yielded the best result wrt. to size and time respec-
tively. The aforementioned observations are justified: a static vari-
able ordering or reordering algorithms based on windowing (espe-
cially with window size 3) have often the best compilation times at
the expense of large BDD sizes. The various reorderings based on
sifting, especially the convergent symmetric sifting variant, produce
the smallest BDDs. Since performance in the offline phase is not too
critical in knowledge compilation, sifting seems to be a viable choice
for a reordering heuristics for our test instances in order to compile
small BDDs with good query times.

5 CONCLUSION
In this paper we introduced a new constraint ordering for BDD com-
pilation of industrial configuration instances. This constraint order-
ing uses structure-specific knowledge of the constraints at hand in or-
der to optimize compilation time. With this ordering we were able for
the first time to compile all configuration instances of our testbed—
product configuration data of a major German car manufacturer—
into BDDs. Most of these BDDs could be compiled in a few seconds
and have surprisingly small representations (850 - 12.000 nodes).
These results look very promising. There are some interesting ques-
tions like counting all constructible variants of a single car [9] or enu-
merating a certain number of cars with special features, that could be
solved efficiently once we have a BDD representation.
3 Complete benchmark results can be found at http://
www-sr.informatik.uni-tuebingen.de/research/
confws2012-results.pdf

Table 3. Summary of the winning heuristics

smallest size # best time
var 0 26
random 0 0
randompivot 0 0
sifting 4 1
sifting-c 2 0
symsift 11 3
symsift-c 21 0
gsift 2 2
gsift-c 10 0
window2 0 0
window3 0 0
window4 0 0
window2-c 0 0
window3-c 0 15
window4-c 0 1
none 0 2

REFERENCES
[1] Jean Marc Astesana, Yves Bossu, Laurent Cosserat, and Helene

Fargier, ‘Constraint-based modeling and exploitation of a vehicle range
at renault’s: Requirement analysis and complexity study’, in Proceed-
ings of the 13th Workshop on Configuration, pp. 33–39, (2010).

[2] Beate Bollig and Ingo Wegener, ‘Improving the variable ordering of
OBDDs is NP-complete’, IEEE Transactions on Computers, 45(9),
993–1002, (1996).

[3] Randal E. Bryant, ‘Graph-based algorithms for boolean function ma-
nipulation’, IEEE Transactions on Computers, 35(8), 677–691, (1986).

[4] Randal E. Bryant and Miroslav N. Velev, ‘Boolean satisfiability with
transitivity constraints’, in Proceedings of the CAD 2000, volume 1855
of Lecture Notes in Computer Science, 85–98, Springer, Berlin, Heidel-
berg, Germany, (2000).

[5] Adnan Darwiche, ‘Decomposable negation normal form’, Journal of
the ACM, 48(4), 608–647, (2001).

[6] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda, ‘On variable
ordering of binary decision diagrams for the application of multi-level
logic synthesis’, in Proceedings of the European Conference on Design
Automation, 50–54, IEEE Computer Society, (1991).

[7] Tarik Hadzic, Subbarayan Sathiamoorthy, Rune M. Jensen, Henrik R.
Andersen, Jesper Møller, and Henrik Hulgaard, ‘Fast backtrack free
product configuration using precompiled solution space representa-
tions’, in Proceedings of the PETO 2004, (2004).

[8] Nagisa Ishiura, Hiroshi Sawada, and Shuzo Yajima, ‘Minimization of
binary decision diagrams based on exchanges of variables’, in Proceed-
ings of the ICCAD 1991, 472–475, IEEE Computer Society, (1991).

[9] Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin, ‘Model
counting in product configuration’, in Proceedings of LoCoCo 2010,
volume 29, 44–53, EPTCS, (2010).

[10] Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency assertions
for automotive product data management’, Journal of Automated Rea-
soning, 24(1-2), 145–163, (2000).

[11] Nina Narodytska and Toby Walsh, ‘Constraint and variable ordering
heuristics for compiling configuration problems’, in Proceedings of the
20th International Joint Conference on Artifical Intelligence, IJCAI’07,
149–154, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
(2007).

[12] Shipra Panda and Fabio Somenzi, ‘Who are the variables in your neigh-
bourhood’, in Proceedings of the ICCAD 1995, 74–77, IEEE Com-
pututer Society, (1995).

[13] Shipra Panda, Fabio Somenzi, and Barbard F Plessier, ‘Symmetry
detection and dynamic variable ordering of decision diagrams’, in
Proceedings of the ICCAD 1994, 628–631, IEEE Computer Society,
(1994).

[14] Richard Rudell, ‘Dynamic variable ordering for ordered binary decision
diagrams’, in Proceedings of the ICCAD 1993, 42–47, IEEE Computer
Society, (1993).

[15] Daniel Sabin and Rainer Weigel, ‘Product configuration frameworks-a
survey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

5

Benjamin Matthes, Christoph Zengler, and Wolfgang Küchlin 40

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Concurrent configuration and planning problems:

Some optimization experimental results
 Paul Pitiot1, Michel Aldanondo1, Elise Vareilles1, Paul Gaborit1

Abstract.1 This communication deals with mass customization
and the association of the product configuration task with the
planning of its production process while trying to minimize cost
and cycle time. We consider a two steps approach that first permit
to interactively (with the customer) achieve a first product
configuration and first process plan (thanks to non-negotiable
requirements) and then optimize both of them (with remaining
negotiable requirements). The communication concerns the second
optimization step. Our goal is to evaluate a recent evolutionary
algorithm (EA). As both problems are considered as constraints
satisfaction problems, the optimization problem is constrained.
Therefore the considered EA was selected and adapted to fit the
problem. The experimentations will compare the EA with a
conventional branch and bound according to the problem size and
the density of constraints. The hypervolume metric is used for
comparison..

1 INTRODUCTION

This paper deals with mass customization and more accurately with
aiding the two activities, product configuration and production
planning, achieved in a concurrent way. According to the
preferences of each customer, the customer requirements
(concerning either the product or its production) can be either non-
negotiable or negotiable. This situation allows considering a two-
step process that aims to associate the two conflicting expectations,
interactivity and optimality. The first interactive step, that
sequentially processes each non-negotiable requirement,
corresponds with a first configuration and planning process that
reduces the solution space. This process is present in many
commercial web sites using configuration techniques like
automotive industry for example. Then, a second process optimizes
the solution with respect to the remaining negotiable requirements.
As the solution space can quickly become very large, the
optimization problem can become hard. Thus, this behavior is not
frequent in commercial web sites. Meanwhile some scientific
works have been published on this subject (see for example [1] or
[2]) and the focus of this article is on the optimization problem. In
some previous conferences we proposed an interesting adapted
evolutionary algorithm for this problem [3]. However, the
presentation was rather descriptive and experimentations were not
significant. Therefore, the goal of this paper is to compare this

1 Toulouse University - Mines Albi, CGI lab, Albi, France
 email: somename@mines-albi.fr

algorithm with a classical branch and bound. This initial section
introduces the problem and the organization of the paper.

1.1 Concurrent configuration and planning
processes as a CSP

Deriving the definition of a specific or customized product
(through a set of properties, sub-assemblies or bill of materials,
etc…) from a generic product or a product family, while taking
into account specific customer requirements, can define product
configuration [4]. In a similar way, deriving a specific production
plan (operations, resources to be used, etc...) from some kind of
generic process plan while respecting product characteristics and
customer requirements, can define production planning [5]. As
many configuration and planning studies (see for example [6] or
[5]) have shown that each problem could be successfully
considered as a constraint satisfaction problem (CSP), we have
proposed to associate them in a single CSP in order to process
them concurrently.
This concurrent process and the supporting constraint framework
present three main interests. First they allow considering constraint
that links configuration and planning in both directions (for
example: a luxury product finish requires additional manufacturing
time or a given assembly duration forbids the use of a particular
kind of component). Secondly they allow processing in any order
product and planning requirements, and therefore avoid the
traditional sequence: configure product then plan its production [7].
Thirdly, CSP fit very well on one side, interactive process thanks to
constraint filtering techniques, and on the other side, optimization
thanks to various problem-solving techniques. However, we
assume infinite capacity planning and consider that production is
launched according to each customer order and production capacity
is adapted accordingly.
In order to illustrate the addressed problem we consider a very
simple example dealing with the configuration and planning of a
small plane. The constraint model is shown in figure 1. The plane
is defined by two product variables: number of seats (Seats,
possible values 4 or 6) and flight range (Range, possible values 600
or 900 kms). A constraint Cc1 forbids a plane with 4 seats and a
range of 600 kms. The production process contains two operations:
sourcing and assembling. (noted Sourc and Assem). Each operation
is described by two process variables: resource and duration: for
sourcing, the resource (R-Sourc, possible resources “Fast-S” and
“Slow-S”) and duration (D-Sourc, possible values 2, 3, 4, 6 weeks),
for assembling, the resource (R-Assem, possible resources “Quic-
A” and “Norm-A”) and duration (D-Assem, possible values 4, 5, 6,
7 weeks). Two constraints linking product and process variables

Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit 41

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

modulate configuration and planning possibilities: one linking seats
with sourcing, Cp1 (Seat, R-Sourc, D-Sourc), and a second one
linking range with the assembling, Cp2 (Range, R-Assem, D-
Assem). The allowed combinations of each constraint are shown in
the 3 tables of figure 1. Without taking constraints into account,
this model shows a combinatory of 4 for the product (2x2) and 64
for the production process (2x4) x (2x4) providing a combinatory
of 256 (4 x 64) for the whole problem. Considering constraints lead
to 12 solutions for both product and production process.

Figure 1 Concurrent configuration and planning CSP model

1.2 Optimizing configuration and planning
concurrently

Given previous problem, various criteria can characterize a
solution: on the product configuration side, performance and
product cost, and on the production planning side, cycle time and
process cost. In this paper we only consider cycle time and cost.
The cycle time matches the ending date of the last production
operation of the configured product. Cost is the sum of the product
cost and process cost. We are consequently dealing with a multi-
criteria optimization problem. As these criteria are in conflict, it is
better for decision aiding to offer the customer a set of possible
compromises in the form of Pareto Front.

Figure 2 Concurrent configuration and planning model to optimize

In order to complete our example, we add a cost and cycle time
criteria as represented in figure 2. For cost, each product variable
and each process operation is associated with a cost parameter and
a relevant cost constraint: (C-Seats, Cs1), (C-Range, Cs2), (C-
Sourc, Cs3) and (C-Assem, cs4) detailed in the tables of figure 2.
The total cost is obtained with a numerical constraint and the cycle
time, sum of the two operation durations, is also obtained with a
numerical constraint as follow:
Total cost = C-Seats + C-Range + C-Sourc + C-Assem.
Cycle time = D-Sourc + D-Assem

The twelve previous solutions are shown on the figure 3 with the
Pareto front gathering the optimal ones. In this figure, all solutions
are present. When non-negotiable requirements are processed
during interactive configuration and planning, some of these
solutions will be removed. Once all these requirements are
processed, the identification of the Pareto front can be launched in
order to propose the customer a set of optimal solutions.

Figure 3 Optimal solutions on the Pareto Front

A strong specificity of this kind of problems is that the solution
space is large. It is reported in [8] that a configuration solution
space of more than 1.4* 1012 is required for a car configuration
problem. When planning is added, the combinatorial structure can
become huge. Specificity lies in the fact that the shape of the
solution space is not continuous and in most cases shows many
singularities. Furthermore, the multi-criteria aspect and the need
for Pareto optimal results are also strong problem expectations.
These points explain why most of the articles published on this
subject (as for example [9]) consider genetic or evolutionary
approaches to deal with this problem. However classic
evolutionary algorithms have to be adapted in order to take into
account the constraints of the problem as explained in [10]. Among
these adaptations, the one we have proposed in [3] is an
evolutionary algorithm with a specific constrained evolutionary
operators and our goal is to compare it with a classical branch and
bound approach.

In the following section we characterize the optimization problem
and briefly recall the optimization techniques. Then
experimentation results are presented and discussed in the last
section.

Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit 42

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

2 OPTIMIZATION PROBLEM AND
OPTIMIZATION TECHNIQUES

2.1 Optimization problem

The problem of figure 2 is generalized as the one shown in figure
4. The optimization problem is defined by the quadruplet <V, D, C,
f > where V is the set of decision variables, D the set of domains
linked to the variables of V, C the set of constraints on variables of
V and f the multi-valuated fitness function. Here, the aim is to
minimize both cost and cycle time. The set V gathers: the product
descriptive variables and the resource variables. The set C gathers
constraints (Cc and Cp). Cost variables and operation durations are
deduced from the variables of the set V thanks to the remaining
constraints.

Figure 4 Constrained optimization problem

Experimentations will consider different problem sizes: different
numbers of product variables, different number of production
operations and different number of possible values for these
variables. Different constraint densities (percentage of excluded
combinations of values) will be also considered.

2.2 Optimization techniques

The proposed evolutionary algorithm is based on SPEA2 [11] with
an added constraints filtering process that avoids infeasible
individuals (or solutions) in the archive. This provides the six steps
following approach:
1. Initialization of individual set that respect the constraints

(thanks to filtering),
2. Fitness assignment (balance of Pareto dominance and solution

density)
3. Individuals selection and archive update
4. Stopping criterion test
5. Individuals selection for crossover and mutation operators

(binary tournaments)
6. Individuals crossover and mutation that respect constraints

(thanks to filtering)
7. Return to step 2.

For initialization, crossover and mutation operators, each time an
individual is created or modified, every gene (decision variable of
V) is randomly instantiated into its current domain. To avoid the
generation of unfeasible individuals, the domain of every

remaining gene is updated by constraint filtering. As filtering is not
full proof, inconsistent individuals can be generated. In this case a
limited backtrack process is launched to solve the problem. For full
details please see [3].

The key idea of the Branch and Bound algorithm is to explore a
search tree but using a cutting procedure that stops exploration of a
branch when a better branch has already been found. The first tool
is a splitting procedure that corresponds to the selection of one
variable of the problem and to the instantiation of this variable with
each possible value. The second tool is a node-bound evaluation
procedure. The filtering process is used to achieve this task with a
partial instantiation and is able to evaluate if the partial
instantiation is consistent with the constraints of the problem, and,
if this is the case, to provide the lower bound of each criterion
cycle time and cost. When the search reaches a leaf of the search
tree, or complete instantiation, the filtering system gives the exact
evaluation of the solution. Thus, the values of leaf solutions can be
used to compute the current Pareto front and then to cut remaining
unexplored branches that are dominated by any aspect of the Pareto
front solution (e.g. the upper bounds of the leaf solution dominate
the minimal bounds of the branch to cut).

3 EXPERIMENTATIONS

The optimization algorithms were implemented in C++
programming language and interacted with a filtering system coded
in Perl language. All tests were done using a laptop computer
powered by an Intel core i5 CPU (2.27 Ghz, only one CPU core is
used) and using 2.8 Go of ram. These tests compared the behavior
of our constrained EA algorithm with the exact branch-and-bound
algorithm.

3.1 First experimentation: problem size and
constraint densities

An initial first model, named "full model" is considered. It can be
consulted and interactively used at http://cofiade.enstimac.fr/cgi-
bin/cofiade.pl select model ‘Aircraft-CSP-EA-10’. It gathers five
product variables with a domain size between 4 and 6, six
production operations with a number of possible resources between
3 and 25. Without constraints consideration, the solution space of
the product model is 5,184, and the planning model is 96,000. The
size of the global problem model is 497,664,000. A second model,
named “small model”, has been derived from the previous one with
the suppression of a high combinatory task and a reduction of one
domain size. This reduces the planning problem size to 12,000 and
global model 6,220,800.

In order to evaluate the impact of constraints density, two versions
of each model were produced: one with a "weak density" of
constraints (20% of possible combinations are excluded in each
constraint Cc and Cp) and the other with a "high density" of
constraints (50% excluded). These values are frequently met in
industrial configuration situations. This provides four models
characteristics in table 1.

Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit 43

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Table. 1 Problems characteristics

For the small models, evolutionary settings are tuned to: population
size: 50; archive size: 40; Pmut: 0.4; Pcross: 0.8. The ending criterion
used is a time limit of half an hour. For the full models, we adapt
settings for a wider search: population size: 150; archive size: 100;
Pmut: 0.4; Pcross: 0.8. The ending criterion used is a time required by
the BB algorithm. In order to analyze the two optimization
approaches, we compare the hypervolume evolution during
optimization process. Hypervolum metric has been defined in [12].
It measures the hypervolume of space dominated by a set of
solutions and is illustrated in Figure 5.

Figure 5 Hypervolume linked to a Pareto front

In our two criteria case, it is the upper right area of figure 5. It thus
allows evaluation of both convergence and diversity properties
because the fittest and most diversified set of solutions is the one
that maximizes the hypervolume.

Results are presented in figure 6 where EA curves are average
results for 30 executions. Both algorithms start with a lapse of time
where performance is null. For the BB algorithm, this corresponds
to the time needed to reach a first leaf on the search tree, while for
the EA; it corresponds to the time consumed to constitute the initial
population.

For the small models (first two curves), the BB algorithm reaches
the optimal Pareto front much faster compared with EA
performance. On the other hand, the EA is logically better than the
BB algorithm on the full model. For example, on the low-
constrained model, the BB algorithm took 20 times longer to reach
a good set of solutions (less than 0.5% of the optimal
hypervolume).

The impact of constraints density could also be discussed. As it can
be seen, the BB algorithm performance is improved when the
density of constraints is high. This is because the filtering allows
more branches to be cut on the search tree, in such way that the
algorithm reaches leaf solutions and, consequently, optimal
solutions more quickly. The EA performance moves in the
opposite way. The more the model is constrained, the more the
random crossover operation will have to backtrack to find feasible
solutions, and thus the time needed by the algorithm will be
consequent.

Solution quantity Without constraints Low density High density
Small model 6 220 800 595 000 153 000
Full model 497 664 000 47 600 000 12 288 000

Figure 6 First experimentation results

Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit 44

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

3.2 Experimentations on problem size

In order to try to identify the problem size where EA is more
suitable than BB, we have modified the low constrained model as
follows. We consider now a model gathering six product variables
and six production operations with three possible values for each,
and sequentially add either a product variable and or an operation.
The range of study is between 12 and 16 decision variables with
three possible values for each. Relevant solution spaces without
constraint vary between 1.6*106 and 43*106.

The results are shown in the left part figure 7. The vertical axis
corresponds with the computation time and the horizontal one with
the number of decision variables. For BB curves, it shows the time
to reach the optimal solution. For the EA curve it shows the time
required for nine EA runs over ten to reach the optimal solution.
Order of magnitude are close for both around 13 or 14 variables
corresponding with a solution space around 2*106 to 5*106
comparable with our previous small model size.

As we already mention, industrial models are frequently larger than
that. We therefore try our EA approach with a low constrained
model with 30 variables and a solution space around 1016. The
stopping criterion is "2 hours without improvement". The right part

of Figure 7 shows that the optimization process has stopped after
48 hours. It can be noticed that 90% of the final score was obtained
after 3 hours and 99% in 10 hours. This allows underlining the
good performance of our approach when facing large low
constrained problems. Of course the idea is to use BB, if the first
interactive configuration step has led to a rather small problem, less
than 13 or 14 variables in our case, and EA otherwise.

Finally we also try to break optimization in two steps. The idea is:
(i) compute quickly a low quality Pareto, (ii) select the area that
interest the customer (iii) compute a Pareto on the restricted area.
The restricted area is obtained by constraining the two criteria total
cost and cycle time (or interesting area) and filtering these
reductions on the whole problem. The search space is greatly
reduced and the second optimization much faster. This is shown in
figure 8 where the left part shows the single step process with 10
and 60 minutes Pareto and the right part shows the restricted area
with the two previous curve and the one corresponding with a 10
minutes Pareto launched on the restricted area. It shows that the
sequence of two optimization steps of 10 minutes provide a result
equivalent to a 60 minutes optimization process.

Figure 7 Experimentation results dealing with problem size

Figure 8 Experimentations with a two steps optimization process

Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit 45

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

4 CONCLUSIONS

The goal of this communication was to propose a first evaluation of
an adapted evolutionary algorithm that deals with concurrent
product configuration and production planning. The problem was
recalled and the two optimization approaches (Evolutionary
algorithm and branch and bound) where briefly presented. Various
experimentations have been presented. A first result is that: (i) the
proposed EA works fine when the size of the problem gets large
compare to the BB, (ii) when problem tends to be more constrained
the tendency goes to the opposite. When problem is low
constrained (90% of excluded solutions) with 13-14 decision
variables with 3 values each, they perform equally. When the
problem gets larger, BB cannot be considered and EA can provide
good quality results for the same problem with up to 30 variables
(around 1016 solutions - 90% rejected). Finally some ideas about a
two steps optimization process have shown that the proposed
approach is quite promising for large problems. These are first
experimentation results and we are now working on comparing our
proposed EA with some penalty function approaches.

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments, which
helped improve this paper considerably.

REFERENCES

[1] Hong G., Hu L., Xue D., Tu Y, Xiong L,. Identification of the
optimal product configuration and parameters based on individual
customer requirements on performance and costs in one-of-a-kind
production. Int. J. of Production Research, 46(12) 3297-3326 (2008)

[2] Aldanondo M., Vareilles E., Configuration for mass customization:
how to extend product configuration towards requirements and
process configuration, Journal of Intelligent Manufacturing, vol. 19
n° 5, p. 521-535A (2008)

[3] Pitiot P., Aldanondo M., Djefel M., Vareilles E., Gaborit P., Coudert
T., Using constraints filtering and evolutionary algorithms for
interactive configuration and planning. IEEE press, IEEM 2010,
p.1921-1925, Macao China (2010)

[4] Mittal S., Frayman F., Towards a generic model of configuration
tasks, proc of IJCAI, p. 1395-1401(1989)

[5] Barták R., Salido M., Rossi F., Constraint satisfaction techniques in
planning and scheduling, in: Journal of Intelligent Manufacturing,
vol. 21, n°1, p. 5-15 (2010)

[6] Junker U., Handbook of Constraint Programming, Elsevier, chap. 24,
p. 835-875 (2006)

[7] Aldanondo M., Vareilles E., Djefel M.. Towards an association of
product configuration with production planning, Int. J. of Mass
Customisation, vol.3 n°4, p. 316-332 (2010)

[8] Amilhastre J., Fargier H., Marquis P., Consistency restoration and
explanations in dynamic csps - application to configuration, in:
Artificial Intelligence, vol.135, p. 199-234 (2002)

[9] Li L., Chen L., Huang Z., Zhong Y., Product configuration
optimization using a multiobjective GA, I.J. of Adv. Manufacturing
Technology, vol. 30, p. 20-29 (2006)

[10] Coello Coello C., Theoretical and numerical constraint-handling
techniques used with EAs : A survey of the state of art, Computer

Methods in Applied Mechanics and Engineering, vol. 191, n°11-12,
p. 1245-1287 (2002)

[11] Zitzler E., Laumanns M., Thiele L., SPEA2: Improving the Strength
Pareto Evolutionary Algorithm, Technical Report 103, Swiss Fed.
Inst. of Technology (ETH), Zurich (2001)

[12] Zitzler E., Thiele L., Multiobjective Optimization Using Evolutionary
Algorithms - A Case Study, 5th Conf. Parallel Problem Solving from
Nature, Springer, p. 292-301 (1998)

Paul Pitiot, Michel Aldanondo, Elise Vareilles, and Paul Gaborit 46

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Sales Configurator Capabilities to Prevent Product
Variety from Backfiring

Alessio Trentin and Elisa Perin and Cipriano Forza1

Abstract.1 Firms offering high product variety and customization
can paradoxically experience a loss of sales because customers feel
overwhelmed by the number of product configurations offered.
Sales configurators may be a solution for avoiding this paradox,
but relatively few studies have focused on the characteristics they
should have in order to overcome this problem. Furthermore,
empirical investigation on the effectiveness of the
recommendations made by these studies has been hindered by the
lack of psychometrically sound measurement items and scales.
This paper conceptualizes, develops and validates five capabilities
that sales configurators should deploy in order to avoid the product
variety paradox: namely, focused navigation, flexible navigation,
easy comparison, benefit-cost communication, and user-friendly
product-space description capabilities. The measurement
instrument is hoped to support advancements in both research and
practice.

1 INTRODUCTION

Many firms in diverse industries are increasing the product variety
and customization offered to their customers [1-3]. By giving
customers exactly what they want, or at least something closer to
their ideal product solutions, companies expect to gain higher
market shares and/or to be able to charge higher prices [4, 5],
thereby increasing revenues.

There is a risk, however, that a strategy of product proliferation
and customization backfires, leading to lower rather than greater
revenues, as increasingly suggested in literature [5-11]. Potential
customers, for example, may feel so confused and overwhelmed by
the number of product configurations offered by a company that
they choose not to make a choice at all [6] and the company loses
potential sales. Firms offering product variety and customization
may therefore experience what has been termed the “product
variety paradox” [12]: offering more product variety and
customization in an attempt to increase sales paradoxically results
in a loss of sales.

An important role in alleviating the risk of experiencing this
paradox can be played by sales configurators [12-14]. A sales
configurator is a subtype of software-based expert systems (or
knowledge-based systems) with a focus on the translation of each
customer’s idiosyncratic needs into complete and valid sales
specifications of the product solution that best fits those needs
within a company’s product offer [15, 16]. The fundamental
functions of a sales configurator include presenting a company’s
product space, meant as the set of product solutions that a firm
offers [17], and guiding customers in the generation or selection of

1 Department of Management and Engineering, University of Padova,

Padova, Italy, email: cipriano.forza@unipd.it

a product variant within that space, thus preventing inconsistent or
unfeasible product characteristics from being defined [14, 18].
Additional functionalities of a sales configurator may include
providing real-time information on price and/or delivery terms of a
product variant, making quotations [19, 20] and recommending a
product solution that can be further altered [13]. Sales
configurators may be stand-alone applications or modules of other
applications, known as product configurators, which support both
sales specifications and the creation of product data necessary to
build the product variant requested by the customer, such as bill of
materials, production sequence, etc. [21].

Many studies on sales configurators and, more generally, on
product configurators have investigated technical or application
development issues, such as the modeling of configuration
knowledge or the algorithms to make configurators faster and more
accurate [e.g., 22, 23-28]. Many other studies have provided
detailed accounts of the introduction and use of a configurator in a
single company, focusing mainly on implementation challenges
and operational performance outcomes from the company
perspective [e.g., 19, 20, 29, 30-32]. In this vein, large-scale
hypothesis-testing studies on the effects of product configurator
use on a firm’s operational performance have recently appeared as
well [33, 34].

Instead, less attention has been given in literature to which
characteristics of sales configurators reduce the effort involved in
the specification process and drive users’ satisfaction with this
process [14], thereby alleviating the risk that companies experience
the product variety paradox [12]. In particular, the empirical study
of how sales configurators should be designed to ease the customer
decision process and to increase configuration process-related
value for the customer is still in its infancy [14, 35]. To help
narrow this research gap, the present paper conceptualizes,
develops and validates five sales configurator capabilities that are
expected to motivate and facilitate further empirical investigation
in the field.

2 BACKGROUND

Literature has suggested several mechanisms that can explain the
product variety paradox [11]. In particular, four inter-related
mechanisms link product variety and customization to the
difficulty experienced by potential customers in configuring the
product solutions that best fit their needs within a company’s
product space. Difficulty in the decision process may become a
criterion for the potential customer’s evaluation of the decision
outcome itself [9, 11, 36, 37], leading to lower satisfaction with the

Alessio Trentin, Elisa Perin, and Cipriano Forza 47

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

configured products and, eventually, reduced willingness to make a
purchase [9, 11].

A first explanation for the product variety paradox relies on
choice complexity, defined as the amount of information
processing necessary to make a decision [9]. As product variety
and customization increase, so too does choice complexity, since
more alternatives have to be processed in order for a potential
customer to make a decision based on rational optimization. The
amount of information processing is a widely acknowledged source
of decision difficulty [38]. If potential customers are provided with
“too much” information at a given time, such that it exceeds their
processing limits, information overload occurs [39]. Information
overload, in turn, may lead potential customers to choose from
competing brands that do not require such cognitive effort [5] thus
reducing the company’s revenues.

A related explanation for the product variety paradox relies on
anticipation of post-decisional regret, which is a cognitively
determined negative emotion that individuals experience when
realizing or imagining that their present situation would have been
better, had they acted differently [40]. When choice complexity
becomes excessive, potential customers may become unable to
invest the requisite time and effort in seeking the best option for
them, thus basing their decision on heuristics which reduce
information processing demands by ignoring potentially relevant
information [38, 41, 42]. Furthermore, potential customers may
have uncertain preferences because of poorly developed
preferences or poor insight into their preferences [42-44]. When
potential customers are unable to engage in rational optimization
and/or have uncertain preferences, they may anticipate the
possibility of post-decisional regret, due to poor fit between the
selected product configuration and their preferences [7, 8, 45], and
try to minimize this possibility during the decision process [8, 45].
This goal makes their decision processes more difficult [7] and
may lead them to delay their purchase decisions [7, 45] or to prefer
a standard product to a customized one [8].

A third related explanation for the product variety paradox relies
on responsibility felt by potential customers for making a good
decision. As product variety and customization increase, potential
customers feel more responsible for their choices, given the greater
opportunity of finding the very best option for them [7, 11]. These
enhanced feelings of responsibility promote anticipated regret, as
subjectively important decisions, for which individuals feel more
responsible, will result in more intense post-decisional regret when
things go awry [40, 45]. By amplifying anticipated regret and the
resulting decision difficulty, responsibility for making a good
decision magnifies the negative impact of choice complexity on
customers’ willingness to make a purchase.

Finally, a fourth mechanism relating product variety and
customization to decision difficulty relies on conflict between
product attributes that are highly valued by potential customers [5,
9, 38, 46]. To increase product variety and customization,
companies need to broaden the range of product attributes on
which they allow their potential customers to make a choice [47].
As the number of product-differentiation attributes increases, so
too does the likelihood that potential customers have to face trade-
offs among attractive attributes. This happens because offering all
the possible combinations of all the different levels of the various
product-differentiation attributes may be economically unfeasible,
owing to insufficient manufacturing process flexibility and limited
product modularity [48]. Explicit trade-offs among attractive
attributes not only increase the cognitive effort required of

potential customers to process all of the available information [5],
but also cause potential customers to experience negative emotions
such as anticipated regret [5]. This happens because trade-off
resolution involves consideration of potential unwanted
consequences and threatens one’s reputation of self-esteem as a
decision maker [49]. These negative emotions are another
mechanism that increase subjective experience of choice task
difficulty [9] and decreased satisfaction with the chosen product
[11], thus explaining the product variety paradox.

3 CONSTRUCT DEVELOPMENT

In the following subsections, we propose five sales configurator
capabilities that help companies avoid the product variety paradox
by hindering operation of at least one of the mechanisms outlined
in the previous section. These capabilities were identified based on
a comprehensive literature review and the authors' experience in
the design and implementation of product configurators.

3.1 Focused navigation capability

We define focused navigation capability as the ability to quickly
focus a potential customer’s search on a product space subset that
contains the product configuration that best matches his/her
idiosyncratic needs. A fundamental way of improving focused
navigation capability is to allow potential customers to sequence
their choices on product-differentiation attributes from the least
uncertain choice to the most uncertain one [12]. This is because, in
relation to the attribute being considered, a customer’s preferences
may be more or less uncertain [43] and preference uncertainty is an
antecedent of anticipated regret [8, 50]. If the customer’s early
choices are those for which his/her preferences are best developed,
then he/she is enabled to narrow down the search more quickly, as
anticipated regret associated with those choices is lower.
Noteworthy, a prerequisite for this way of structuring the
customer-company interaction is the by-attribute presentation of
the company’s product space, meaning that the customer is asked
which value he/she prefers for each product-differentiation
attribute instead of being required to choose from among a set of
fully-specified product configurations, as happens with the by-
alternative presentation [6]. Another option to enhance focused
navigation capability is to provide one or more starting points, that
is, initial product configurations close to the customer’s ideal
solution and that may be further altered [13]. Starting points can be
recommended with little or no effort on the customer’s part, based
on his/her past purchases and/or customer input concerning simple
demographics, intended product usage and his/her best developed
preferences [26, 51]. Noteworthy, this solution requires
complementing the by-attribute presentation of the product space
with the by-alternative presentation.

Focused navigation capability helps avoid the product variety
paradox by reducing choice complexity and by mitigating
anticipated regret. A sales configurator with this capability does
not force potential customers to go through and evaluate a number
of product options that they regard as certainly inappropriate for
themselves. Therefore, this capability reduces the amount of
information processing necessary to make a decision without
potential customers experiencing anticipated regret [8, 40, 45, 50].
Furthermore, by quickly reducing the size of the search problem,
this capability enables potential customers to invest more time and

Alessio Trentin, Elisa Perin, and Cipriano Forza 48

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

effort in exploring the product options for which their preferences
are less certain. Potential customers can learn more about both
these options and the value they would derive from them,
especially when focused navigation capability is complemented
with the capabilities discussed in the subsequent sections. In
addition, a potential customer can rely on more time-consuming,
compensatory decision strategies for the resolution of between-
attribute conflicts [42], thus being more confident that the chosen
solution is the one that best fits his/her needs within the company’s
product space. Reduced uncertainty on the superior fit of the
selected product configuration with the customer’s preferences, in
turn, translates into less anticipated regret [45].

3.2 Benefit-cost communication capability

We define benefit-cost communication capability as the ability to
effectively communicate the consequences of the available choice
options both in terms of what the customer gets (benefits) and in
terms of what the customer gives (monetary and nonmonetary
costs). A fundamental way of improving benefit-cost
communication capability is to explain what potential needs a
given choice option contributes to fulfill and to what extent it does
so [12]. This is especially important when choice options involve
design parameters of the product, such as specifications of product
components, because potential customers are often unable to relate
design parameters to satisfaction of user needs [13]. Besides the
benefits, it is also important to communicate monetary and
nonmonetary costs of each option, for example by displaying the
prices of the individual product components from among which
potential customers can choose or by warning potential customers
that certain options imply longer delivery lead-times [12].

Benefit-cost communication capability helps avoid the product
variety paradox by mitigating anticipated regret. During the sales
configuration process, potential customers seek to anticipate the
value they will perceive from consumption of the product being
configured [54]. Perceived product value is defined as the
customer’s “overall assessment of the utility of a product based on
perceptions of what is received and what is given” [55: 14]. By
delivering clear pre-purchase feedback on the effects of the
available choice options, a sales configurator with high benefit-cost
communication capability fosters potential customers’ learning
about the value they would derive from these options [56, 57]. This
learning process makes a potential customer more confident that
the product configuration he/she has selected is the one that best
fits his/her needs within the company’s product space. Reduced
uncertainty on the superior fit of the chosen product configuration
with the customer’s preferences, in turn, translates into less
anticipated regret [45], thus lowering choice task difficulty [7].

At the same time, however, higher benefit-cost communication
capability may lead to greater choice complexity, with negative
effects on decision difficulty. For instance, individual pricing of the
available choice options may make cost-benefit trade-offs more
salient and, hence, may increase information processing demands
[58]. To fully realize the potential advantages of benefit-cost
communication capability, therefore, this capability needs to be
complemented with the focused navigation one, which lowers
choice complexity by quickly reducing the size of the search
problem for potential customers. As a result, the learning process
enabled by benefit-cost communication capability focuses only on
those choice options for which potential customers’ preferences are

less certain and, thus, the possible negative effects of this
capability on choice complexity are mitigated.

3.3 Flexible navigation capability

We define flexible navigation capability as the ability to minimize
the effort required of a potential customer to modify a product
configuration that he/she has previously created or is currently
creating. A fundamental way of improving flexible navigation
capability is to allow sales configurator users to change the choice
made at any previous step of the configuration process without
having to start it over again [13]. Furthermore, after changing the
choice made at a given step, potential customers should not be
required to go through all the subsequent steps up to the current
one. Instead, they should be asked to revise only those choices, if
any, that are no longer valid because of the change they have just
made [59]. Another option to enhance flexible navigation
capability is to allow potential customers engaged in configuring
their products to bookmark their works [13],to immediately recover
a previous configuration in the case that they decide to reject the
newly-created one.

Flexible navigation capability helps avoid the product variety
paradox by mitigating anticipated regret. A sales configurator with
this capability enables potential customers to quickly make and
undo changes to previously created product configurations.
Consequently, the number of product solutions a potential
customer can explore in the time span he/she is willing to devote to
the sales configuration task is larger. Stated otherwise, potential
customers can conduct more trial-and-error tests to evaluate the
effects of initial choices made and to improve upon them. Trial-
and-error experimentation promotes potential customers’ learning
about the value they would derive from the product being
configured [56, 57], especially when flexible navigation capability
is complemented with the benefit-cost communication one as well
as those discussed in the subsequent sections. This learning process
makes potential customers more confident that the product
configuration they have selected is the one that best fits their needs
within the company’s product space. This, in turn, translates into
less anticipated regret for the customer [45].

3.4 Easy comparison capability

We define easy comparison capability as the ability to minimize
the effort required of a potential customer to compare previously
created product configurations. A fundamental way of improving
easy comparison capability is to allow potential customers to save
a product configuration they have just created and, then, to
compare previously saved configurations side-by-side in the same
screen [13]. The advantages of providing an overview of previous
configurations can be enhanced by highlighting commonalities and
differences among them, especially if the sales configuration
process involves many choices. In this manner, a potential
customer can immediately understand, for example, which
configuration choices have caused the price or weight difference
between two configurations he/she is comparing. Another solution
to enhance easy comparison capability is to rank-order previously
created configurations in terms of fit to the customer’s preferences
or profile [43]. This can be accomplished with little or no effort on
the customer’s part, based on his/her past purchases and/or

Alessio Trentin, Elisa Perin, and Cipriano Forza 49

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

customer input concerning simple demographics, intended product
usage and his/her best developed preferences [26, 51].

Easy comparison capability helps avoid the product variety
paradox by reducing choice complexity and by mitigating
anticipated regret. A sales configurator with this capability fosters
potential customers’ learning about the value they would derive
from consumption of the product being configured. This happens
because, in assessing the value of a particular product solution,
customers tend to rely on comparisons with other alternatives that
are currently available or that have been encountered in the past
[43, 60]. In particular, the possibility of easily comparing complete
product configurations is of greatest assistance when global
performance characteristics, which arise from the physical
properties of most if not all of the product components [48], are
important to potential customers. In brief, easy comparison
capability gives potential customers practice at evaluating
alternative configurations and provides anchors for the evaluative
process [6]. Consequently, potential customers improve their
confidence that the configuration they have eventually selected is
the one that best fits their needs within the company’s product
space. In turn, reduced uncertainty on the superior fit of the chosen
product configuration with the customer’s preferences translates
into less anticipated regret [45]. A sales configurator with high
easy comparison capability also alleviates choice complexity, by
reducing information processing necessary to make comparisons.
Potential customers do not need to rely on their limited working
memory to recover configurations they have previously created.
Moreover, potential customers do not need to rely on their limited
computational abilities to decompose the configurations they want
to compare to find out similarities and differences among them.

3.5 User-friendly product-space description
capability

We define user-friendly product-space description capability as the
ability to adapt the product space description to the needs and
abilities of different potential customers, as well as to different
contexts of use. One way of improving user-friendly product-space
description capability is to employ content adaptation techniques
[cf. 61] to provide optional detailed information pertaining to the
available choice options. In this manner, potential customers with
higher involvement for the product, who are more interested in
acquiring product information [62], are allowed to learn more
about the choice options for which their preferences are less
developed. Conversely, customers with lower involvement, who
feel less responsible for making a good decision [45], are not
forced to process product information they are not interested in. In
this respect, a promising approach is to design multimedia-based
interfaces that enable potential customers to retrieve rich
information and explanations about specific product parts/features
without breaking the continuity of their product evaluation
processes [63]. Another option to enhance user-friendly product-
space description capability is to adapt information content
presented to potential customers according to their prior knowledge
about the product [13, 52]. Particularly, novice customers should
be allowed to use a needs-based interface, where the available
choice options involve desired product performance and functions,
while expert customers should be enabled to employ a parameter-
based interface, where the available choice options include design
parameters such as specifications of product components [12, 64].

User-friendly product-space description capability helps avoid
the product variety paradox by reducing choice complexity and by
mitigating anticipated regret. A sales configurator deploying this
capability provides potential customers with the information
content they value most according to their individual
characteristics or usage contexts and does not bother users with
communications they do not need [52]. In addition, a sales
configurator with this capability augments or switches modalities
of presentation of the same information content in such a way that
each individual user’s information processing is enhanced [67]. By
tailoring both information content and information format, this
capability reduces information overload and eases the customer
decision process [68-70]. In particular, this capability allows for
aligning the way in which the product space is presented to a
potential customer with the way in which he/she is able or willing
to express his/her requirements [56, 57]. As potential customers
interact with a sales configurator in their customary language, they
become able to assess the fit of the configured product with their
needs more easily and in less time [71]. This means that, once a
potential customer has selected his/her most preferred product
configuration, he/she is more confident that the chosen solution is
the one that best fits his/her needs within the company’s product
space. Reduced uncertainty on the superior fit of the selected
product configuration with the customer’s preferences, in turn,
translates into less anticipated regret [45].

4 MEASURES DEVELOPMENT AND
VALIDATION

We adopted a comprehensive, multi-step approach for the
development, refinement and validation of the sales configurator
capabilities measures. First, we generated a list of items based on
both the relevant literature and subject matter experts’ advice in
order to ensure content validity of our instrument. Then, these
items were reviewed by a focus group and through a field pretest,
to reduce redundancy and ambiguity. Subsequently, we assessed
and improved the reliability and the validity of the instrument by
means of a Q-sort procedure. Finally, the resulting questionnaire
(items are listed in Appendix A) was used to validate our measures,
using large-scale data to assess the quality of the measures
following the guidelines of O'Leary-Kelly and Vokurka [72].

4.1 Instrument development and refinement

The items for the five sales configurator capabilities were
generated based upon the relevant literature, the authors’
experience in industry, and extensive interviews with practitioners
involved with the development and use of sales configurators. All
the items were measured by means of a 7-point Likert scale. We
used only positive statements, as negatively worded questions with
an agree-disagree response format are often cognitively complex
[73] and may be a source of method bias [74].

Then, the items were reviewed by a focus group of six people
with different experiences and perceptions relative to sales
configuration, who were questioned about the appropriateness and
completeness of the instrument. Moreover, to replicate as closely
as possible data collection procedures to be used in our large-scale
study, we pretested the instrument with 20 engineering students
from our university, who were asked to comment on any problems
encountered while responding, such as interpretation difficulties,

Alessio Trentin, Elisa Perin, and Cipriano Forza 50

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

faulty instructions, typos, item redundancies, etc. Based on the
feedback from the focus group and field pretesting, redundant and
ambiguous items were either modified or eliminated. Finally, the
resulting instrument was evaluated through a Q-sort procedure for
establishing tentative indications of construct validity and
reliability [75]. Each of ten practitioners who are experienced in
developing or using sales configurators was given a questionnaire
containing short descriptions of the proposed capabilities, together
with a randomized list of the items. Subsequently, these expert
judges were asked to assign each item to one or none of the defined
capabilities. All the items were placed in the target construct by at
least 75% of the judges and, therefore, were retained for our large-
scale study [54].

4.2 Sample and data collection

Each of the proposed sales configurator capabilities indicates a
fundamental benefit that potential customers should experience
during the sales configuration process if the product variety
paradox is to be avoided. Consistent with the capability perspective
of routines, which sees routines as a “black box” [76], we do not
focus on how such benefits are delivered, but rather on their
purpose or motivation. Accordingly, to measure the proposed sales
configurator capabilities, we needed to collect data on sales
configurations experiences made by potential customers using sales
configurators. Specifically, data for our large-scale study were
gathered on a sample of 630 sales configuration experiences made
by 63 engineering students at the authors’ university (age range:
24-27; 29% females) using Web-based sales configurators for
consumer goods. As a result, our data are biased in favor of young,
male, and fairly adept persons who are familiar with the Internet.
At the same time, however, young people adept at using Internet
also represent the majority of business-to-consumer sales
configurator users [35, 78].

The Web-based sales configurators used in the study largely
varied in the graphical solutions deployed, in the complexity and
length of the configuration process, and also in the size of the
configuration space. They ranged from shoes configurators, where
the customer could personalize simple product attributes (such as
the colors of various parts of the product) with virtually no
constrains, to cars configurators, where the customer had to choose
among a set of predefined options with complex compatibility rules
among them. Such differences in the selected sales configurators
increased the variance of the sales configurators capabilities
observed in our sample.

Each participant was pre-assigned 10 of these Web-based sales
configurators. We assigned these configurators ensuring variance
in the sales configurators capabilities to which each participant was
exposed. Further, we ensured variance in the involvement of each
participant in the products he/she had to configure, avoiding the
assignment of products not of interest to him/her at all. Participants
were then asked to configure a product on all these websites,
according to their individual needs, and to fill out a questionnaire
to rate the capabilities of each configurator.

4.3 Instrument validation

We decided to control for possible effects of participants’
characteristics before assessing the psychometric properties of our
measurement scales. Consequently, consistent with prior studies

[79], we regressed our 17 indicators on 63 dummies representing
the participants in our study and used the standardized residuals
from this linear, ordinary least square regression model as our data
in all the subsequent analyses.

Confirmatory factor analysis (CFA) was employed to assess
unidimensionality, convergent validity, discriminant validity, and
reliability of our measurement scales. In particular, we used
LISREL 8.80 to conduct the analysis, with maximum likelihood
estimation of the parameters in the model (factor loadings of the
measurement items on their respective latent constructs,
measurement errors, variance and covariance of the latent
constructs). We estimated an a priori measurement model where
the empirical indicators were restricted to load on the latent factor
they were intended to measure. This model showed good fit indices
(RMSEA (90% CI)= 0.047 (0.040; 0.054), χ2/df (df) = 2.39 (109),
CFI=0.991, NFI=0.984), meaning that our hypothesized factor
structure reproduced the sample data well. Inspection of the
standardized factor loadings further indicated that each of them
was in its anticipated direction (i.e., positive correspondences
between latent constructs and their posited indicators), was greater
than 0.50, and was statistically significant at p<0.001. Altogether,
these results suggested unidimensionality and good convergent
validity of our measurement scales [80-83]. Unidimensionality
implies that a set of empirical indicators reflect one, as opposed to
more than one, underlying latent factor. Convergent validity
ensures that the multiple items used as indicators of a construct
significantly converge, or covary. Discriminant validity, which
measures the extent to which the individual items of a construct are
unique and do not measure other constructs, was tested using [84]’s
procedure. For each latent construct, the square root of the average
variance extracted (AVE) exceeded the correlation with all the
other latent variables, thereby suggesting that our measurement
scales represent distinct latent variables [84]. Reliability of a
measurement scale, in turn, is established when the variance
captured by the underlying latent factor is significantly larger than
that captured by the error components. This was assessed using
both AVE and the Werts, Linn, and Joreskog (WLJ) composite
reliability method [85]. All the WLJ composite reliabilty values
were greater than 0.70 and all the AVE scores exceeded 0.50,
indicating that a large amount of the variance is captured by each
latent construct rather than due to measurement error [84, 86].

Finally, we examined the predictive validity of our constructs
by determining whether they exhibit relationships with other
constructs in accordance with theory [87]. Our proposed sales
configurator capabilities are posited to help firms avoid the risk
that offering more product variety and customization to increase
sales, paradoxically results in a loss of sales. Accordingly, these
capabilities are hypothesized to positively influence both choice
satisfaction (measured as in [9]) and purchase intention (measured
following [88]). The structural model testing the hypotheses that
the proposed sales configurator capabilities positively influence
both choice satisfaction and purchase intention, showed a good fit
to the data: RMSEA (90% CI) = 0.0432 (0.0372; 0.0493), χ2/df
(df) = 2.18 (169), CFI=0.993, NFI=0.987. All the path coefficients
are positive and statistically significant, indicating that each of the
five sales configurator capabilities has a significant positive effect
on both choice satisfaction and purchase intention and thus
establishing the predictive validity of our constructs.

5 CONCLUSION

Alessio Trentin, Elisa Perin, and Cipriano Forza 51

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Drawing upon prior research concerning sales configurators and
the customer decision process, the present paper conceptualizes
five capabilities that sales configurators should deploy in order to
help avoid the product variety paradox: namely, focused
navigation, flexible navigation, easy comparison, benefit-cost
communication, and user-friendly product-space description
capabilities. Overall, these capabilities support personalization of
the sales configuration experience according to each individual
user’s characteristics and context of usage. Benefit-cost
communication capability combined with user-friendly product-
space description capability supports personalization on the content
and presentation levels [cf. 89], while focused navigation, flexible
navigation, and easy comparison capabilities support
personalization on the interaction level [cf. 89]. Personalization of
the sales configuration experience is essential to build successful
sales configurators, which improve fit between selected product
configuration and customer needs while limiting search effort [cf.
89, 90]. The ultimate goal would be to simulate the adaptive and
heuristic behavior that makes salespeople effective and aids in
improving both the shopping experience and the final product
choice [91, 92].

Another contribution of this study is the development and
validation of an instrument to measure the proposed set of
capabilities. The instrument was rigorously tested for content
validity, unidimensionality, convergent validity, discriminant
validity, predictive validity, and reliability. In particular, we found
that each of the proposed capabilities significantly predicts both
choice satisfaction and purchase intention, in accord with the
theoretical argument that these capabilities help avoid the product
variety paradox. Admittedly, our large-scale validation study
involved hypothetical rather than real purchase experiences, only
focused on sales configurators for consumer goods, and used
students as subjects for research. Therefore, future studies should
strengthen the proposed instrument through a series of refinements
and tests across different populations and settings, including truly
representative samples of potential customers, sales configurators
for industrial goods, etc. In business-to-business contexts, for
instance, the set of relevant sales configurator capabilities for
avoiding the product variety paradox should be reconsidered. For
technical and complex products, such as machinery, it may happen
that all configurator users are experts with deep knowledge of the
specific product. In such a context, user-friendly product-space
description capability might be less relevant.

Though conscious that development of a measurement
instrument is an ongoing process [93], we believe our instrument
will be a useful diagnostic and benchmarking tool for companies
seeking to assess their sales configurators to identify areas of
improvement in order to ease the customer decision process and to
increase his/her process-related value. This would help companies
reduce the risk of developing high product and processes internal
competences but still experiencing a loss of sales because
customers feel confused and overwhelmed by the number of
product configurations they are offered.

Further, we believe the instrument developed in this paper will
be of use to researchers not only as a basis for refinement and
extension, but also directly. Future studies could develop and test
hypotheses linking the proposed capabilities to the various
dimensions of the value of customization that have been discussed
in literature [35, 54, 78]. In particular, further research is needed to
empirically investigate complementarities among the proposed
capabilities, meaning that the effects of one capability on the

customer perceived value of customization is reinforced by another
capability, as our paper suggests.

ACKNOWLEDGEMENTS

We acknowledge the financial support of the University of Padova,
Project ID CPDA109359.

APPENDIX A

Benefit-cost communication capability: (1) Thanks to this system, I
understood how the various choice options influence the value that
this product has for me. (2)Thanks to this system, I realized the
advantages and drawbacks of each of the options I had to choose
from. (3) This system made me exactly understand what value the
product I was configuring had for me.

Easy comparison capability: (1) The system enables easy
comparison of product configurations previously created by the
user. (2) The system lets you easily understand what previously
created configurations have in common. (3) The system enables
side-by-side comparison of the details of previously saved
configurations. (4) The systems lets you easily understand the
differences between previously created configurations.

User-friendly product-space description capability: (1) The
system gives an adequate presentation of the choice options for
when you are in a hurry, as well as when you have enough time to
go into the details. (2) The product features are adequately
presented for the user who just wants to find out about them, as
well as for the user who wants to go into specific details. (3) The
choice options are adequately presented for both the expert and
inexpert user of the product.

Flexible navigation capability: (1) The system enables you to
change some of the choices you have previously made during the
configuration process without having to start it over again. (2) With
this system, it takes very little effort to modify the choices you
have previously made during the configuration process. (3) Once
you have completed the configuration process, this system enables
you to quickly change any choice made during that process.

Focused navigation capability: (1) The system made me
immediately understand which way to go to find what I needed. (2)
The system enabled me to quickly eliminate from further
consideration everything that was not interesting to me at all. (3)
The system immediately led me to what was more interesting to
me. (4) This system quickly leads the user to those solutions that
best meet his/her requirements.

REFERENCES

[1] B.J.II Pine, Mass Customization: the New Frontier in Business
Competition, Harvard Business School Press, Boston, MA, 1993.

[2] L.F. Scavarda, A.Reichhart, S.Hamacher, and M. Holweg, 'Managing
product variety in emerging markets', International Journal of
Operations & Production Management, 30, 205-224, (2010).

[3] M. Bils and P.J. Klenow, ‘'The acceleration in variety growth', The
American Economic Review, 91, 274-280, (2001).

[4] S. Kekre and K. Srinivasan, 'Broader product line: a necessity to
achieve success?', Management Science, 36, 1216-1231, (1990).

[5] J.T. Gourville and D. Soman, 'Overchoice and assortment type: when
and why variety backfires', Marketing Science, 24, 382-395, (2005).

[6] C. Huffman and B.E. Kahn, 'Variety for sale: mass customization or
mass confusion?', Journal of Retailing, 74, 491-513, (1998).

Alessio Trentin, Elisa Perin, and Cipriano Forza 52

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

[7] S.S. Iyengar and M.R. Lepper, 'When choice is demotivating: can one
desire too much of a good thing?', Journal of Personality and Social
Psychology, 79, 995-1006, (2000).

[8] N. Syam, P. Krishnamurthy, and J.D. Hess, 'That's what i thought i
wanted? Miswanting and regret for a standard good in a mass-
customized world', Marketing Science, 27, 379-397, (2008).

[9] A. Valenzuela, R. Dhar, and F. Zettelmeyer, 'Contingent response to
self-customization procedures: implications for decision satisfaction
and choice', Journal of Marketing Research, 46, 754-763, (2009).

[10] X. Wan, P.T. Evers, and M.E. Dresner, 'Too much of a good thing:
the impact of product variety on operations and sales performance',
Journal of Operations Management, 30, 316-324, (2012).

[11] K. Diehl and C. Poynor, 'Great expectations?! Assortment size,
expectations, and satisfaction', Journal of Marketing Research, 47,
312-322, (2010).

[12] F. Salvador and C. Forza, 'Principles for efficient and effective sales
configuration design', International Journal of Mass Customisation,
2, 114-127, (2007).

[13] T. Randall, C. Terwiesch, and K.T. Ulrich, 'Principles for user design
of customized products', California Management Review, 47, 68-85,
(2005).

[14] M. Heiskala, J. Tiihonen, K.-S. Paloheimo, and T. Soininen, Mass
customization with configurable products and configurators: a
review of benefits and challenges, 1-32, in: Mass Customization
Information Systems in Business, T. Blecker, G. Friedrich (Eds.), IGI
Global, London, UK, 2007.

[15] C. Forza and F. Salvador, 'Application support to product variety
management', International Journal of Production Research, 46,
817-836, (2008).

[16] A. Haug, L. Hvam, and N.H. Mortensen, 'Definition and evaluation
of product configurator development strategies', Computers in
Industry, (in press).

[17] M.M. Tseng and T.F. Piller, The Customer Centric Enterprise:
Advances in Mass Customization and Personalization, Springer
Verlag, Berlin, Germany, 2003.

[18] N. Franke and F.T. Piller, 'Key research issues in user interaction
with user toolkits in a mass customization system', International
Journal of Technology Management, 26, 578-599, (2003).

[19] J. Vanwelkenhuysen, 'The tender support system', Knowledge-based
systems, 11, 363-372, (1998).

[20] L. Hvam, S. Pape, and M.K. Nielsen, 'Improving the quotation
process with product configuration', Computers in Industry, 57, 607-
621, (2006).

[21] C. Forza and F. Salvador, Product Information Management for
Mass Customization, Palgrave Macmillan, London, UK, 2007.

[22] S.M. Fohn, J.S. Liau, A.R. Greef, R.E. Young, and P.J. O'Grady,
'Configuring computer systems through constraint-based modeling
and interactive constraint satisfaction', Computers in Industry, 27, 3-
21, (1995).

[23] T. Soininen, J. Tiihonen, T. Männistö, R. Sulonen 'Towards a general
ontology of configuration', Artificial Intelligence for Engineering,
Design, Analysis and Manufacturing, 12, 357-372, (1998).

[24] A. Felfernig, G. Friedrich, and D. Jannach, 'Conceptual modeling for
configuration of mass-customizable products', Artificial Intelligence
in Engineering, 15, 165-176, (2001).

[25] S.K. Ong, Q. Lin, and A.Y.C. Nee, 'Web-based configuration design
system for product customization', International Journal of
Production Research, 44, 351-382, (2006).

[26] X. Luo, Y. Tu, J. Tang, and C.K. Kwong, 'Optimizing customer's
selection for configurable product in B2C e-commerce application',
Computers in Industry, 59, 767-776, (2008).

[27] P.T. Helo, Q.L. Xu, S.J. Kyllönen, and R.J. Jiao, 'Integrated vehicle
configuration system-Connecting the domains of mass
customization', Computers in Industry, 61, 44-52, (2010).

[28] G. Hong, D. Xue, and Y. Tu, 'Rapid identification of the optimal
product configuration and its parameters based on customer-centric

modeling for one-of-a-kind production', Computers in Industry, 61,
270-279, (2010).

[29] J.R. Wright, E.S. Weixelbaum, G.T. Vesonder, K.E. Brown, S.R.
Palmer, J.I. Berman, and H.H. Moore, 'A knowledge-based
configurator that supports sales, engineering, and manufacturing at
AT&T network systems', AI Magazine, 14, 69-80, (1993).

[30] L. Hvam, 'Mass customisation in the electronics industry: based on
modular products and product configuration', International Journal
of Mass Customisation, 1, 410-426, (2006).

[31] C. Forza and F. Salvador, 'Managing for variety in the order
acquisition and fulfilment process: the contribution of product
configuration systems', International Journal of Production
Economics, 76, 87-98, (2002).

[32] C. Forza and F. Salvador, 'Product configuration and inter-firm co-
ordination: an innovative solution from a small manufacturing
enterprise', Computers in Industry, 49, 37-46, (2002).

[33] A. Trentin, E. Perin, and C. Forza, 'Overcoming the customization-
responsiveness squeeze by using product configurators: beyond
anecdotal evidence', Computers in Industry, 62, 260-268, (2011).

[34] A. Trentin, E. Perin, C. Forza, “Organisation design strategies for
mass customisation: an information-processing-view perspective”,
International Journal of Production Research, forthcoming.

[35] N. Franke and M. Schreier, 'Why customers value mass-customized
products: the importance of process effort and enjoyment', Journal of
Product Innovation Management, 27, 1020-1031, (2010).

[36] G.J. Fitzsimons, 'Consumer response to stockouts', Journal of
Consumer Research, 27, 249-266, (2000).

[37] N. Novemsky, R. Dhar, N. Schwarz, I. Simonson, 'Preference fluency
in choice', Journal of Marketing Research, 44, 347-356, (2007).

[38] S. Chatterjee and T.B. Haeth, 'Conflict and loss aversion in
multiattribute choice: the effects of trade-off size and reference
dependence on decision difficulty', Organizational Behavior and
Human Decision Processes, 67, 144-155, (1996).

[39] N.K. Malhotra, 'Information load and consumer decision making',
Journal of Consumer Research, 8, 419-430, (1982).

[40] M. Zeelemberg, W.W. van Dijk, and A.S.R. Manstead,
'Reconsidering the relation between regret and responsibility',
Organizational Behavior and Human Decision Processes, 74, 254-
272, (1998).

[41] J.W. Payne, J.R. Bettman, and E.J. Johnson, 'Adaptive strategy
selection in decision making', Journal of Experimental Psychology:
Learning, Memory, and Cognition, 14, 534-552, (1988).

[42] J.R. Bettman, M.F. Luce, and J.W. Payne, 'Constructive consumer
choice processes', Journal of Consumer Research, 25, 187-217,
(1998).

[43] I. Simonson, 'Determinants of customers' responses to customized
offers: conceptual framework and research propositions', Journal of
Marketing, 69, 32-45, (2005).

[44] I. Simonson, 'Regarding inherent preferences', Journal of Consumer
Psychology, 18, 191-196, (2008).

[45] M. Zeelemberg, 'Anticipated regret, expected feedback and
behavioral decision making', Journal of Behavioral Decision Making,
12, 93-106, (1999).

[46] R. Dhar, 'Consumer preference for a no-choice option', Journal of
Consumer Research, 24, 215-231, (1997).

[47] F. Salvador, C. Forza, and M. Rungtusanatham, 'Modularity, product
variety, production volume, and component sourcing: theorizing
beyond generic prescriptions', Journal of Operations Management,
20, 549-575, (2002).

[48] K. Ulrich, 'The role of product architecture in the manufacturing
firm', Research Policy, 24, 419-440, (1995).

[49] M.F. Luce, 'Choosing to avoid: coping with negatively emotion-laden
consumer decisions', Journal of Consumer Research, 24, 409-433,
(1998).

[50] J. Nasiry and I. Popescu, 'Advance selling when consumers regret',
Management Science, (in press).

Alessio Trentin, Elisa Perin, and Cipriano Forza 53

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

[51] A. De Bruyn, J.C. Liechty, E.K.R.E. Huizingh, and G.L. Lilien,
'Offering onlinerecommendations with minimum customer input
through conjoint-based decision aids', Marketing Science, 27, 443-
460, (2008).

[52] S. Spiekermann and C. Parashiv, 'Motivating human-agent
interaction: transferring insights from behavioral marketing to
interface design', Electronic Commerce Research, 2, 255-285,
(2002).

[53] A.G. Sutcliffe, S. Kurniawan, and J.-E. Shin, 'A method and advisor
tool for multimedia user interface design', International Journal of
Human-Computer Studies, 64, 375-392, (2006).

[54] A. Merle, J.-L. Chandon, E. Roux, and F. Alizon, 'Perceived value of
the mass-customized product and mass customization experience for
individual consumers', Production and Operations Management, 19,
503-514, (2010).

[55] V. Zeithaml, 'Consumer perceptions of price, quality, and value: a
means-end model and synthesis of evidence', Journal of Marketing,
52, 2-22, (1988).

[56] E. von Hippel, 'PERSPECTIVE: User toolkits for innovation',
Journal of Product Innovation Management, 18, 247-257, (2001).

[57] E. von Hippel and R. Katz, 'Shifting innovation to users via toolkits',
Management Science, 48, 821-833, (2002).

[58] B.G.C. Dellaert and S. Stremersch, 'Marketing mass-customized
products: striking a balance between utility and complexity', Journal
of Marketing Research, 42, 219-227, (2005).

[59] B. Yu and J. Skovgaard, 'A configuration tool to increase product
competitiveness', IEEE Intelligent Systems, 13, 34-41, (1998).

[60] I. Simonson and A. Tversky, 'Choice in contexts: tradeoff contrasts
and extremeness aversion', Journal of Marketing Research, 29, 281-
295, (1992).

[61] A. Kobsa, J. Koenemann, and W. Pohl, 'Personalised hypermedia
presentation techniques for improving online customer relationships',
The Knowledge Engineering Review, 16, 111-155, (2001).

[62] J.L. Zaichkowsky, 'Measuring the involvement construct', Journal of
Consumer Research, 12, 341-352, (1985).

[63] Z. Jiang, W. Wang, and I. Benbasat, 'Multimedia-based interactive
advising technology for online consumer decision support',
Communications of the ACM, 48, 93-98, (2005).

[64] T. Randall, C. Terwiesch, and K.T. Ulrich, 'Principles for user design
of customized products', California Management Review, 47, 68-85,
(2005).

[65] J.H. Gerlach and F.-Y. Kuo, 'Understanding human-computer
interaction for information systems design', MIS Quarterly, 15, 527-
549, (1991).

[66] L.M. Reeves, J.Lai, J.A.Larson, S.Oviatt, T.S. Balaji, S. Buisine, P.
Collings, P. Cohen, B. Kraal, J.-C. Martin, M. McTear, T. Raman,
K.M. Stanney, H. Su, and Q.-Y. Wang, 'Guidelines for multimodal
user interface design', Communications of the ACM, 47, 57-59,
(2004).

[67] K. Stanney, S. Samman, L. Reeves, K. Hale, W. Buff, C. Bowers, B.
Goldiez, D. Nicholson, and S. Lackey, 'A paradigm shift in
interactive computing: deriving multimodal design principles from
behavioral and neurological foundations', International Journal of
Human-Computer Interaction, 17, 229-257, (2004).

[68] A. Ansari and C.F. Mela, 'E-customization', Journal of Marketing
Research, 40, 131-145, (2003).

[69] T.-P. Liang, H.-J. Lai, and Y.-C. Ku, 'Personalized content
recommendation and user satisfaction: theoretical synthesis and
empirical findings', Journal of Management Information Systems, 23,
45-70, (2006-7).

[70] H. Berghel, 'Cyberspace 2000: Dealing with information overload',
Communications of the ACM, 40, 19–24, (1997).

[71] T. Randall, C. Terwiesch, and K.T. Ulrich, 'User design of
customized products', Marketing Science, 26, 268-280, (2007).

[72] S. W. O'Leary-Kelly, J. R. Vokurka, “The empirical assessment of
construct validity”, Journal of Operations Management, 16, 387-405,
(1998).

[73] F.J. Fowler, Survey Research Methods, Sage Publications, Newbury
Park, CA, 1993.

[74] H.W. Marsh, 'Positive and negative global self-esteem: a
substantively meaningful distinction or artifactors?' Journal of
Personality and Social Psychology, 70, 810-819, (1996).

[75] J.K. Stratman and A.V. Roth, 'Enterprise Resource Planning (ERP)
competence constructs: two-stage multi-item scale development and
validation', Decision Sciences, 33, 601-628, (2002).

[76] A. Parmigiani and J. Howard-Grenville, 'Routines revisited:
exploring the capabilities and practice perspectives', The Academy of
Management Annals, 5, 413-453, (2011).

[77] L. D'Adderio, 'Configuring software, reconfiguring memories: the
influence of integrated systems on the reproduction of knowledge and
routines', Industrial and Corporate Change, 12, 321-350, (2003).

[78] N. Franke and M. Schreier, 'Product uniqueness as a driver of
customer utility in mass customization', Marketing Letters, 19, 93-
107, (2008).

[79] G.J. Liu, R. Shah, and R.G. Schroeder, 'Linking work design to mass
customization: a sociotechnical systems perspective', Decision
Sciences, 37, 519-545, (2006).

[80] D.W. Gerbing and J.C. Anderson, 'An updated paradigm for scale
development incorporating unidimensionality and its assessment',
Journal of Marketing Research, 25, 186-192, (1988).

[81] J.C. Anderson and D.W. Gerbing, 'Structural equation modeling in
practice: a review and recommended two-step approach',
Psychological Bulletin, 103, 411-423, (1988).

[82] L. Menor and A.V. Roth, 'New service development competence in
retail banking: Construct development and measurement validation',
Journal of Operations Management, 25, 825–846, (2007).

[83] J.F.J. Hair, R.E. Anderson, and R.L. Tatham, Multivariate Data
Analysis, Macmillan Publishing Company, New York, 1992.

[84] C. Fornell and D.F. Larcker, 'Evaluating structural equation models
with unobservable variables and measurement error', Journal of
Marketing Research, 18, 39-50, (1981).

[85] C.E. Werts, R.L. Linn, and K.G. Jöreskog, 'Intraclass reliability
estimates: testing structural assumptions', Educational &
Psychological Measurement, 34, 25-33, (1974).

[86] S.W. O'Leary-Kelly and R. J. Vokurka, 'The empirical assessment of
construct validity', Journal of Operations Management, 16, 387-405,
(1998).

[87] S. Li, S.S. Rao, T.S. Ragu-Nathan, and B. Ragu-Nathan,
'Development and validation of a measurement instrument for
studying supply chain management practices', Journal of Operations
Management, 23, 618-641, (2005).

[88] A.E. Schlosser, T.B. White, and S.M. Lloyd, 'Converting Web site
visitors into buyers: how Web site investment increases consumer
trusting beliefs and online purchase intentions', Journal of Marketing,
70, 133-148, (2006).

[89] G. Kreutler and D. Jannach, Personalized needs acquisition in Web-
based configuration systems, 293-302, in: Mass Customization,
Concepts - Tools - Realization, Proceedings of the International Mass
Customization Meeting 2005 (IMCM'05), T. Blecker, G. Friedrich
(Eds.), GITO-Verlag, Berlin, Germany, 2005.

[90] D. Jannach, A. Felfernig, G. Kreutler, M. Zanker, and G. Friedrich,
Research issues in knowledge-based configuration, 221-236, in:
Mass customization information systems in business, T. Blecker, G.
Friedrich (Eds.), IGI Global, London, UK, 2007.

[91] D. Jannach and G. Kreutler, 'Rapid development of knowledge-based
conversational recommender applications with advisor suite', Journal
of Web Engineering, 6, 165-192, (2007).

[92] A.V. Lukas, G. Lukas, D.L. Klencke, and C. Nass, System and
method for optimizing a product configuration, Patent Number US
7,505,921 B1, Finali Corporation, Westminster, CO (US), US, 2009.

[93] R.L. Hensley, 'A review of operations management studies using
scale development techniques', Journal of Operations Management,
17, 343-358, (1999).

Alessio Trentin, Elisa Perin, and Cipriano Forza 54

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

Author Index

A
Aldanondo, Michel . 41

B
Becker, Caroline . 1
Brinkop, Axel . 8

C
Czarnecki, Krzysztof. .31

D
Drescher, Conrad . 31

F
Fabian, David . 15
Falkner, Andreas . 21
Fargier, Hélène . 1
Feinerer, Ingo . 27
Forza, Cipriano . 47
Friedrich, Gerhard . 21

G
Gaborit, Paul . 41

H
Heymans, Patrick . 31
Hubaux, Arnaud . 31

J
Jannach, Dietmar . 31

K
Küchlin, Wolfgang . 36
Krebs, Thorsten . 8

M
Mař́ık, Radek. .15
Mannisto, Tomi . 31
Matthes, Benjamin . 36
Murta, Leonardo . 31

N
Nguyen, Tien . 31

O
Oberhuber, Tomáš. .15

P
Perin, Elisa .47
Pitiot, Paul. .41

R
Ryabokon, Anna . 21

S
Schenner, Gottfried .21
Schlee, Hartmut . 8

T
Trentin, Alessio. .47

V
Vareilles, Elise . 41

Z
Zanker, Markus . 31
Zengler, Christoph. .36

Wolfgang Mayer and Patrick Albert, Editors.
Proceedings of the Workshop on Configuration at ECAI 2012 (ConfWS’12),
August 27, 2012, Montpellier, France.

	Foreword
	Workshop Organization
	Contents
	Maintaining alternative values in constraint-based configuration
	K-Model – Structured Design of Configuration Models
	Towards a Formalism of Configuration Properties Propagation
	Testing Object-Oriented Configurators With ASP
	Towards Hybrid Techniques for Efficient Declarative Configuration
	Unifying Software, Product Configuration: A Research Roadmap
	An Improved Constraint Ordering Heuristics for Compiling Configuration Problems
	Concurrent configuration and planning problems: Some optimization experimental results
	Sales configurator capabilities to prevent product variety from backfiring
	Author Index

