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Polynomial arithmetic is a fundamental tool in both computer algebra and complexity theory with applica-
tions in many domains from cryptography to combinatorics. The dense representation of polynomials have
been widely studied in the litterature: in particular following the major breakthrough result in the 60’s by Cooley
and Tuckey on Fast Fourier Transform [2] which makes it possible to multiply dense polynomials in quasi-
linear time. In the sparse representation case much fewer results are known while it is a more efficient way to
represent such mathematical objects, especially in the multivariate setting. For instance, no similar result of
quasi-linear time algorithm exists for the multiplication in this case [9]. Besides, the study of such structured
polynomials is at the core of the algebraic complexity theory defined by Valiant in [11] as an approach for the
P vs NP problem.

The central goal of this thesis is to provide a better understanding of sparse polynomial arithmetic, ranging
from very simple tasks such as multiplication or division to more involved questions about the factorisation of
polynomials given in sparse representation. The proposed approach is to mix mathematical investigations to
provide new algorithms and lower bounds on the problems and practical efficient implementations. The two
facets are interrelated and shall feed each other.

The basics of sparse polynomial arithmetic, such as multiplication, division and gcd computation, are not yet
fully understood [9]. For division or gcd computation, it is not even known whether polynomial time algorithms
exist in general. The role of cyclotomic polynomials in these questions have to be investigated further. One
possible solution is to introduce cyclotomic polynomials in the representation [3]. Another way of enriching
the representation is to use the formalism of arithmetic circuits that originates from algebraic complexity. In
particular, sparse polynomials can be viewed as circuit of depth 2. Allowing more general constant depth
circuits in the representation may be a step towards faster algorithms. The questions raised by this approach
are also of interest for the algebraic complexity community.

Factorisation problems are much more involved than multiplication or division, and generic results might be
even harder to obtain. In particular, the irreducible factorisation of a sparse polynomial may require superpoly-
nomial size. A possible workaround consists in computing only a part of the factorization such as low-degree
factors [8]. We wish to extend this idea to small factors more generally, that is computing those factors that do
not require a large representation. Another avenue worth exploring is the use of constant depth circuits again:
This is deeply connected to structural questions investigated by the algebraic complexity community [5] and
could be a way to overcome the current barriers on sparse polynomial factorisation.

Another promising line of research on the subject would be the definition of deterministic or probabilistic
verification algorithms for sparse polynomial computations, the goal being that verification costs less than the



computation itself. This kind of procedure is of great interest for outsourced computations in the cloud. While it
is known how to probabilistically verify that a dense polynomial product is correct (simply evaluate the operands
and the result at random points and check equality [12, 4, 10]), it is not yet known how to provide similar results
in the sparse case. Indeed, the degree might be exponentially larger than the number of terms and evaluation
is therefore prohibited. In this context, some generic ideas coming from complexity theory on provable circuits
[7] can be investigated, or the use of some linear algebra techniques on a dedicated problem as in [6] can be
explored.

More precisely, the candidate could investigate one of the following tasks as a starting point for the thesis:

+ Certification of sparse multiplication can be handled through the certification of dense modular multipli-
cation. Indeed, the idea is to map the initial problem modulo a smallish dense polynomial and then to
perform the equality test within the dense polynomial setting. There, the remaining problem is to provide
a linear time verification for dense polynomial modular multiplication and provide a satisfying probabilistic
analysis.

» The division of sparse polynomials has been less investigated than multiplication. There, the complexity
result on multiplication is almost optimal in the output size while it is not true for division. One approach
is to find tools from fast multiplication algorithms that are applicable to division.

» An easier variant of gcd computation is when the two input polynomials are assumed cyclotomic free.
There, the open question is whether it exists a polynomial algorithm to solve this problem. One ap-
proach to derive such an algorithm would be to exploit mathematical results on cyclotomic free sparse
polynomials given in [1].
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