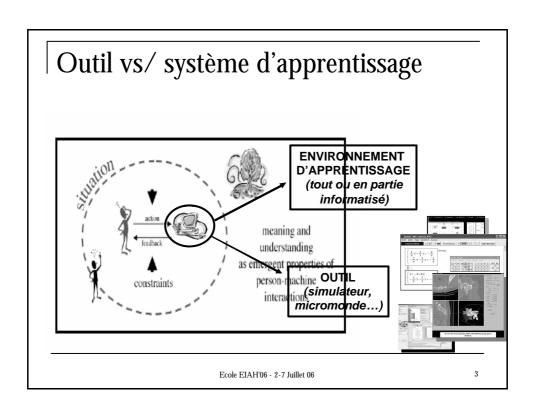


Cours 2 - Fondements ergonomiques et didactiques

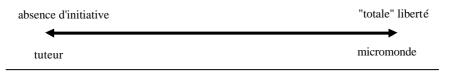
2.4. l'analyse cognitive de l'activité à la représentation informatique pour l'apprentissage

Lucile Vadcard, Vanda Luengo


De l'analyse cognitive de l'activité à la représentation informatique pour l'apprentissage

Lucile Vadcard, Vanda Luengo

Ecole EIAH'06 - 2-7 Juillet 06


Le système d'apprentissage élément du milieu

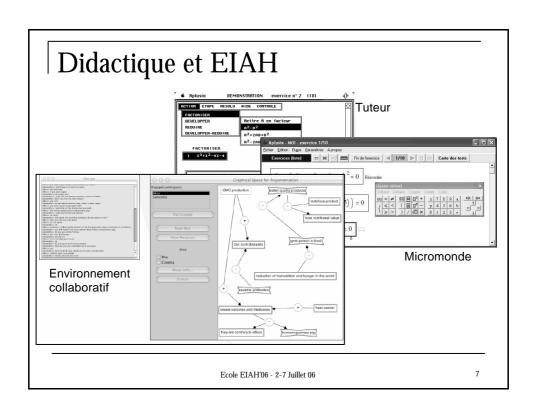
Ecole EIAH'06 - 2-7 Juillet 06

| Quelques hypothèses

- La problématique est de permettre la production d'interactions pertinentes
 - □ La connaissance émerge de l'interaction
 - Les interactions sont sous contraintes
 - □ L'utilisateur perçoit, décide et agit / le système représente, vérifie, et réagit (feedback)

Ecole EIAH'06 - 2-7 Juillet 06

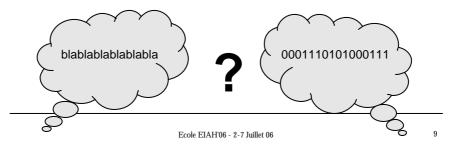
Quelques hypothèses

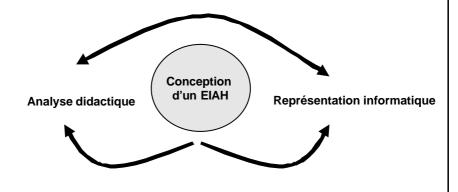

Ecole EIAH'06 - 2-7 Juillet 06

.

Didactique et EIAH

- Une définition :
 - Un Environnement Informatique pour l'Apprentissage Humain est un environnement informatique dont la finalité est de susciter ou d'accompagner un apprentissage
- Des conséquences :
 - □ Il possède une intention didactique.
 - Il faut donc définir et modéliser cette intention pour la conception d'un EIAH
 - Remarque: selon le type d'EIAH, l'intention didactique a différents niveaux d'intégration dans l'outil informatique


Ecole EIAH'06 - 2-7 Juillet 06


Didactique et EIAH

- Un constat :
 - □ Les théories de l'apprentissage (théorie de l'activité, théorie des situations didactiques, théorie de l'étayage Brunerien, « approche » constructiviste, etc.) n'ont pas été élaborées en prenant en compte les spécificités du milieu informatique
- Une difficulté : leur mise en œuvre informatique

Des choix de conception

Un système de contraintes

Environnements de résolution de problèmes

Ecole EIAH'06 - 2-7 Juillet 06

11

Des choix d'interaction

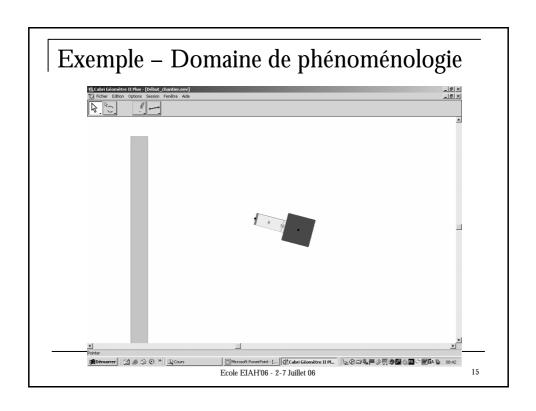
- Limites des systèmes basés sur le principe que la machine détermine a priori les solutions satisfaisantes vis-à-vis du travail de l'utilisateur dans une situation de résolution de problèmes :
 - problèmes de compréhension de la tâche de l'apprenant
 - difficultés sur la communication entre l'apprenant et le système.

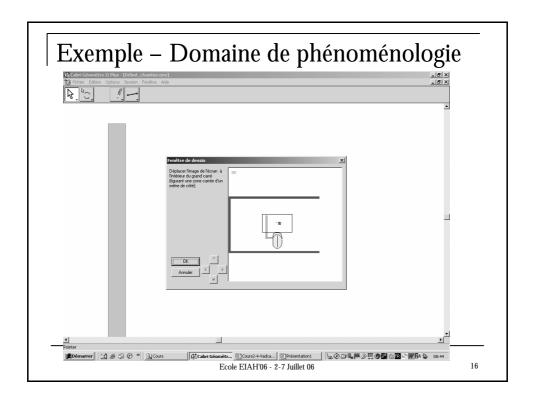
L'ajout d'un point qui n'était prévu ni dans l'énoncé ni dans la solution perturbe l'interaction entre l'élève et la machine

Ecole EIAH'06 - 2-7 Juillet 06

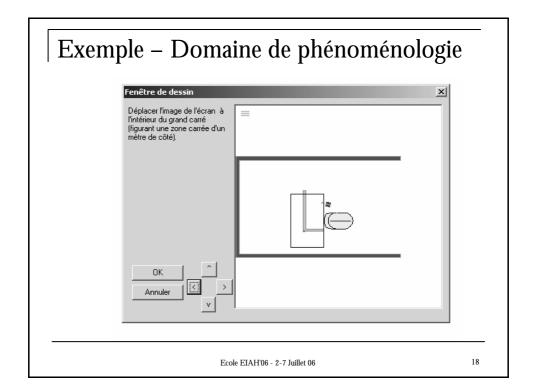
Des choix didactiques

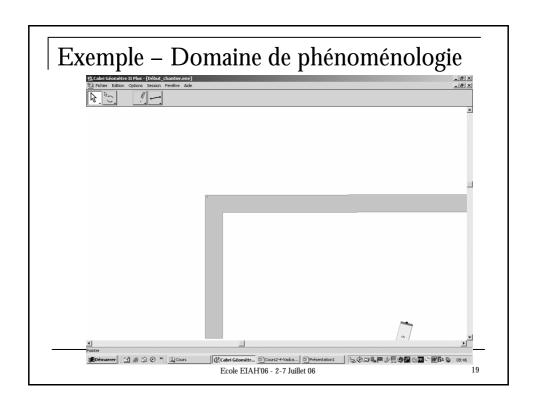
- Système dont la tâche soit centrée sur le suivi du travail de l'apprenant
 - □ Évaluation de la cohérence interne de la solution amenée par l'apprenant (solutions « nouvelles »)
 - □ Dans le cas de contradictions au cours de la résolution, prise en charge d'une négociation de façon à faire évoluer la connaissance.
- Se baser sur analyse didactique de l'objet de connaissance en jeu

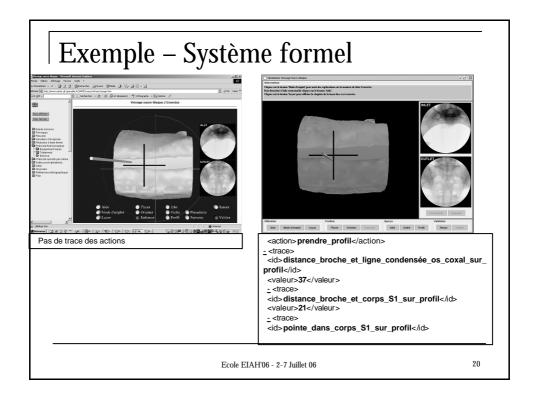

Ecole EIAH'06 - 2-7 Juillet 06


13

Des contraintes informatiques


- Permettre la représentation de l'analyse didactique
 - □ La représentation de l'objet de connaissance :
 - la façon dont l'utilisateur manipulera et construira les objets pour les différentes phases de résolution de problème (domaine de phénoménologie)
 - la représentation interne à la machine (système formel)
 - □ Son organisation dans une situation de résolution de problèmes
- Rester conforme à l'analyse épistémologique
 - □ Permettre l'émergence de la connaissance dans l'interaction


Ecole EIAH'06 - 2-7 Juillet 06



Exemple – Domaine de phénoménologie Fenêtre de dessin Déplacer l'image de l'écran à l'Intérieur du grand carrée (ligurant une zone carrée d'un mètre de côté). Ecole EIAH'06 - 2-7 Juillet 06

La notion de cadre épistémologique

- Détermine les caractéristiques de la connaissance dans le système informatique :
 - □ Ensemble des problèmes que le système permet de poser, relativement à la connaissances enjeu de l'apprentissage
 - □ Ensembles des actions envisageables et non envisageables dans le système en fonction des outils disponibles
 - □ Nature des contrôles que l'utilisateur peut avoir sur ses actions, types de validation proposés par le système

Ecole EIAH'06 - 2-7 Juillet 06

21

L'analyse didactique et sa formalisation

Ecole EIAH'06 - 2-7 Juillet 06

Analyse de l'activité

- Activités de l'expert, du formateur, de l'apprenant
 - Documents
 - Observations
 - □ Entretiens d'explicitations
- Mise à jour de différentes formes de connaissances
 - Connaissances révisables, évolutives, non monotones

Ecole EIAH'06 - 2-7 Juillet 06

23

Une problématique de formation professionnelle

- Caractéristiques du compagnonnage:
 - □ Séparation théorie / pratique
 - Situations non didactiques : situations réelles utilisées en partie à des fins d'apprentissage
 - Expert / formateur : double problématique d'efficacité et d'enseignement

Ecole EIAH'06 - 2-7 Juillet 06

Une problématique de formation professionnelle

- Le professionnel n'est pas toujours capable d'exprimer les connaissances qui lui permettent d'agir et de valider ses actions (« le savoir caché dans l'agir », Schön)
- Le novice n'est jamais confronté à une situation problématique qu'il puisse résoudre
- L'enseignement / apprentissage d'une partie des connaissances nécessaires à la réalisation de l'activité n'est pas pris en charge

Ecole EIAH'06 - 2-7 Juillet 06

25

Une problématique de formation professionnelle

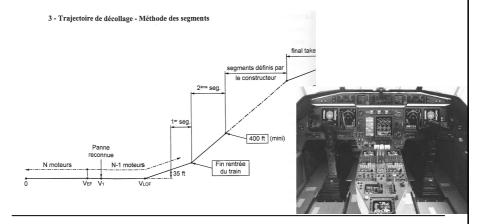
Concevoir des EIAH qui permette de

- ... favoriser l'apprentissage de connaissances empiriques
- ... réduire l'écart entre théorie et pratique
- ... développer une valeur d'usage des connaissances déclaratives

Ecole EIAH'06 - 2-7 Juillet 06

Exemple : description de deux activités

■ Chirurgiens – vissage percutané de la hanche



Ecole EIAH'06 - 2-7 Juillet 06

27

Exemple : description de deux activités

Pilotes – calcul des limitations au décollage

Ecole EIAH'06 - 2-7 Juillet 06

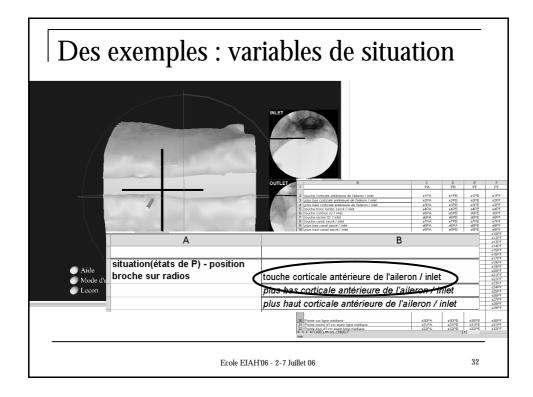
Un modèle d'analyse

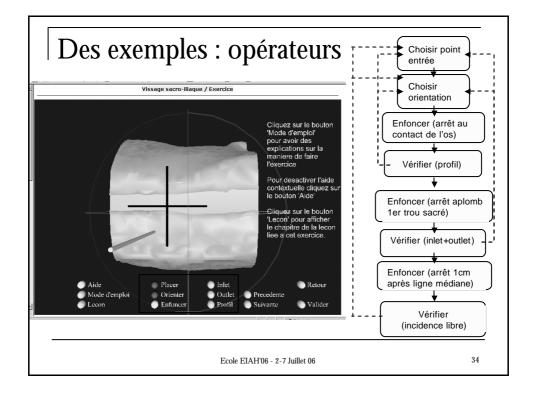
- Permet de décrire l'activité de résolution de problème
 - □ P: le problème, ou la classe des problèmes
 - □ R: les opérateurs, ou actions possibles
 - S: les contrôles exercés sur l'action
 - L: les registres de représentation en jeu
 - ⇒ S(R(P))=Vrai ou Faux

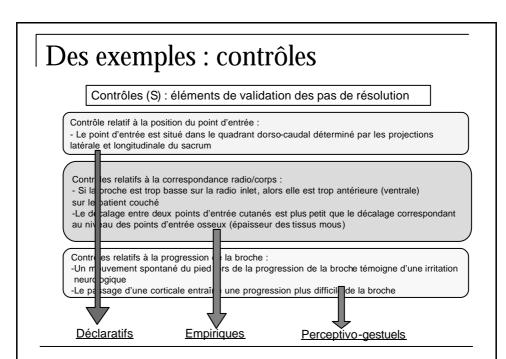
Ecole EIAH'06 - 2-7 Juillet 06

29

Des exemples : variables didactiques


Lon longue	gueur courte	Pro aucun	longem d'arrêt		te	Etal		М	N	0	P
longu						Etal		М	N	0	Р
longu											
	Courte	aucun		ànc nàh			kistence			Limitatif	
· V			u unct	ucyayc	SCUIC	mounice	CUITAIIIIIEE		proche	éloigné	
v											
V											
		Х			χ						
Λ.		Λ			Λ						
i	Х	χ			χ			×		×	
	Λ.	Λ			Λ.			X	X	_ ^	X
	Х	Χ			χ			X		X	
	χ		χ		χ						
: Х		χ			χ						
: Х		Χ			Χ						
χ		χ			χ						
	Х	Х	Х Х	Х	Х	X X X	X X X	X X X	X X X	X X X	X X X

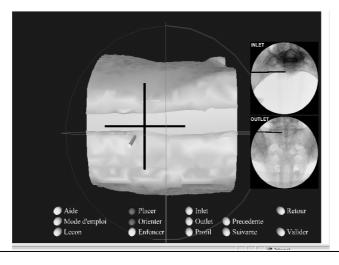

Ecole EIAH'06 - 2-7 Juillet 06


Des exemples : variables didactiques

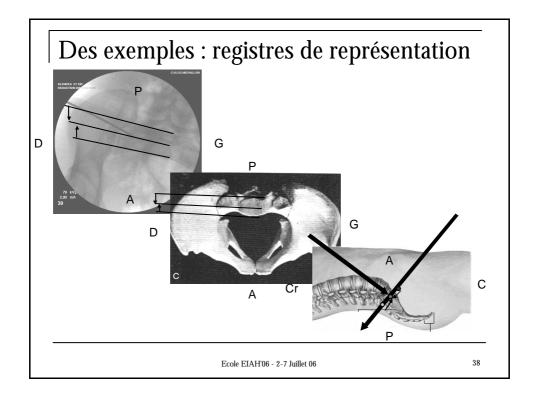
	A	В	С	D	E	F	G	Н	1
1	VD	type de	qualité os			repères cutanés			
2		fracture sacrum	disjonction pure	dense	normal	peu dense	projection sacrum	aile iliaque/fémur	zones critiques
3	PA		X		Х		X		
4	PB	X			Х		X		
5	PC	X			Х		X		
6	PD		X		Х		X		
7	PE	X				X	X		
8	PF		X			X	X		
9									
10									

Ecole EIAH'06 - 2-7 Juillet 06

Ecole EIAH'06 - 2-7 Juillet 06

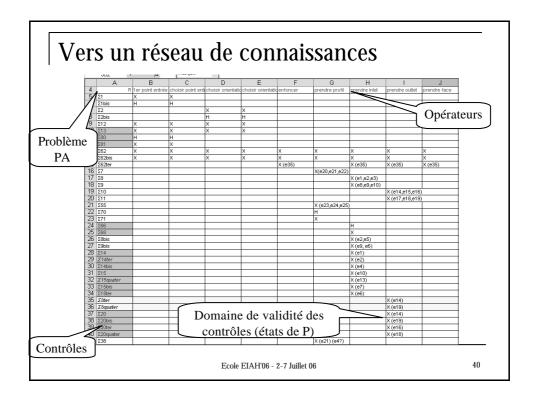

35

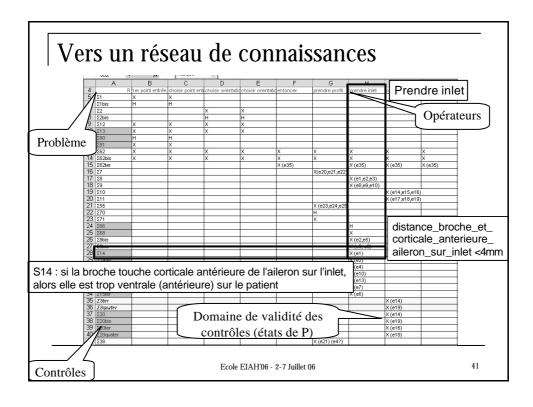
Des exemples : contrôles


	B36	-	f‰ ma:	squer •								
	Α	В	С	D	Е	F	G	Н	I	J	K	_
20	RLP1	P0	déterminer la	masse limite	piste correspo	ondant à l'altitu	ide et à la tem	pérature du jo	ur, au braqua	ge de volet cho	isi, à la long	ueu
21	RLP2	P0	S'il y a du ver	nt arrière appli	iquer un décre	ment à la mas	se limite piste					
22	RLP3	P0	Si la piste es	t contaminée	appliquer un d	écrement à la	masse limite p	oiste				
23		P0										
24	RLS1	P0	déterminer la	masse limite	segment corre	espondant à l'a	altitude et à la	température d	lu jour, au bra	quage de volet	choisi, aux s	systi
25												
26	RLO1	P0	Déterminer la	pente requis	e pour passer	au dessus de	l'obstacle ave	c une marge c	de 35ft			
27	RLO2	P0	Déterminer la	masse maxi	male pour laqu	elle la perform	nance monomi	oteur deuxièm	e segment de	l'avion corres	pondant à l'a	iltitu
28												
29	RL1	P0	La masse de	l'avion sera le	e minimum des	masses limit	es piste, segn	nents et obstac	cle et de la m	asse prévue au	décollage	
30											_	
31	RV1	P0	Déterminer le	s vitesses de	décollage en	fonction de la	masse déterm	ninée et du bra	iquage de vol	.et		
32	RV2	P0	Si la piste es	t mouillée, ar	pliquer un déc	rément sur v1						
33	RV3	P0	Si on apllique	une poussée	flex, applique	r un incrément	aux vitesses	de décollage				
34								_				
35												

Ecole EIAH'06 - 2-7 Juillet 06

Des exemples : registres de représentation


Ecole EIAH'06 - 2-7 Juillet 06



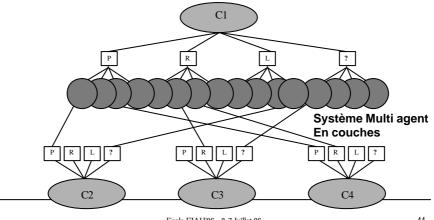
Des définitions

- Problème
 - Caractérisé par l'ensemble et la valeur de ses variables didactiques
- Variable didactique
 - Caractéristique du problème qui, si on la change, modifie la façon de résoudre le problème
- Variable de situation
 - Description de l'état du problème à un instant t de la résolution
- Opérateur
 - Action effectuée en vue de la résolution du problème
- Contrôle
 - Élément de validation des différents états du problème au cours de sa résolution
- Registre de représentation

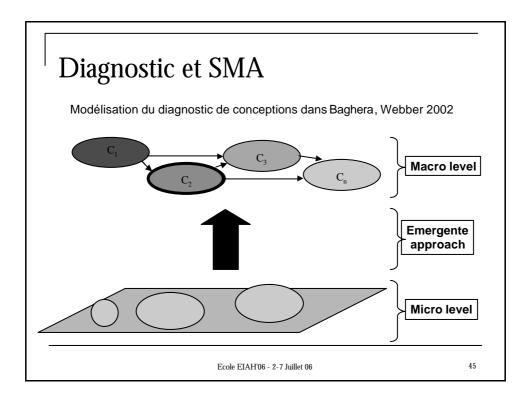
Ecole EIAH'06 - 2-7 Juillet 06

La représentation informatique

L'enjeu de la représentation informatique


- Choisir la représentation adéquate, en fonction de la nature des apprentissages visés et des connaissances manipulées
 - Pouvoir traiter les connaissances qui vont évoluer
- Un même modèle des représentations différentes
 - Exemple du diagnostic :
 - Système multi-agents (Baghera, Weber 2002)
 - Système à base de règles (KOODS Knowledge Oriented Operative Diagram, Ploix et al. 2004)
 - Réseaux bayésiens (TELEOS, Vu Minh 2006)

Ecole EIAH'06 - 2-7 Juillet 06


43

Diagnostic et SMA

Modélisation du diagnostic de conceptions dans Baghera, Webber 2002

Ecole EIAH'06 - 2-7 Juillet 06

Diagnostic et ensemble de règles logiques

- KOOD : Knowledge Oriented Operative Diagram - Ploix et al 2004
- Expressions logiques sous forme de relations et opérations.
 - Les relations représentent des relations de cause à effet entre faits.
 - □ Les **opérations** vont associer des *relations*, ayant des valeurs particulières de faits, à des *aptitudes*.

Ecole EIAH'06 - 2-7 Juillet 06

Diagnostic et ensemble de règles logiques

■ Ex: Soit l'opération associée à l'aptitude « choisir le point d'entrée ». L'opération est réussie si la relation suivante est satisfaite:

« si le repère cutané est la projection du sacrum, choisir le quadrant dorso-cranial. »

L'opération se présentera sous la forme:

Oi : {[repère*]='projection sacrum', [quadrant choisi*]='dorso-cranial'} **SI** <savoir choisir le point d'entrée>

Ecole EIAH'06 - 2-7 Juillet 06

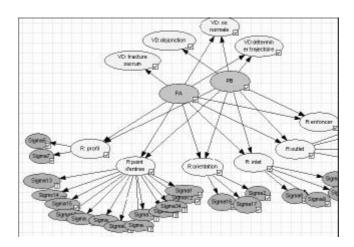
47

Diagnostic et ensemble de règles logiques

Conception	Contrôles associés	Opérations	Aptitudes	Indices (observables) associées
	S66: Si la l ésion est une fracture du sacrum, alors la vis	[lésion] = sacrum ET [position_vis] = horizontale	Savoir placer la vis dans le cas d'une fracture	[lésion] [position_vis]
C4 :	doit être positionnée de manière horizontale dans le	[bouton radio inlet] = cliqué	Savoir prendre radio inlet	[bouton radio inlet]
de la vis dans le cas	plan transversal [visible sur inlet]	[énonc é] = affiché	Savoir interpréter l'énoncé	[énonc é]
d'une fracture	S70 : Si la broche est bien positionnée, alors elle doit être réduite à	[position_broche] = ok ET [aspect_profil] = point	Savoir placer la vis dans le cas d'une fracture	[position_broche] [aspect_profil]
	un point sur le profil [pour fracture]			

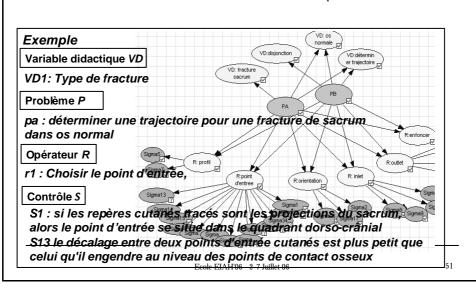
Ecole EIAH'06 - 2-7 Juillet 06

Diagnostic et RB

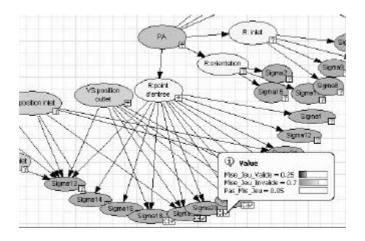

- Les Réseaux Bayésiens permettent de :
 - Représenter des connaissances,
 - Calculer des probabilités conditionnelles.
- Description :
 - Graphe (constitué de nœuds et d'arcs) associé à un ensemble de tables de probabilités de nœuds (TPN).
 - Les nœuds représentent des variables, et les arcs des relations de cause à effet entre variables
 - Les relations ne sont pas déterministes mais probabilistes: l'observation d'une ou de plusieurs causes n'entraîne pas systématiquement l'effet ou les effets qui en dépendent, mais modifie seulement la probabilité de les observer.
- Conséquences :
 - Relations de dépendance et de causalité entre Problème, Contrôles et Opérateurs
 - Un problème P est résolu si les opérateurs R associés sont appliqués d'une manière valide. Un opérateur R est appliqué d'une manière valide si les contrôles S associés et utilisés lors de la résolution de problème P sont valides.

Ecole EIAH'06 - 2-7 Juillet 06

49


50

Diagnostic et RB



Ecole EIAH'06 - 2-7 Juillet 06

Utiliser les réseaux bayésiens pour représenter la connaissance sous forme d'éléments autonomes et les lier par des relations de causalité et de dépendance.

Diagnostic et RB

Ecole EIAH'06 - 2-7 Juillet 06

En bref

- Baghera (SMA) :
 - Place l'utilisateur dans des possibilités déterminées a priori mais sans règles déterminées
 - Evolutif
- Teleos (KOODS)
 - Place l'utilisateur dans des possibilités déterminées a priori
 - □ Peu évolutif
- Teleos (RB)
 - Modèle évolutif
 - Probabiliste

Ecole EIAH'06 - 2-7 Juillet 06

53

En bref

■ Baghera (SMA) :

Domaines déclaratifs, bien explorés par la didactique

■ Teleos (KOODS)

Domaines déclaratifs, décrits par des règles

■ Teleos (RB)

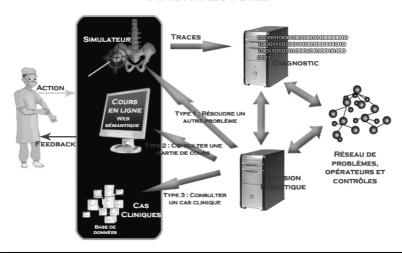
Domaines de connaissances évolutifs, non complètement décrits

Ecole EIAH'06 - 2-7 Juillet 06

Conclusion

Ecole EIAH'06 - 2-7 Juillet 06

5.5


Conclusion

- Fidélité épistémique vis-à-vis de la situation d'apprentissage
 - □ Reproduire le problème et non le réel
 - Les choix de conception guident la conceptualisation
- Séparation outil / environnement d'apprentissage
 - □ Séparation n'est pas Indépendance
 - □ Souplesse d'évolution et de compatibilité

Ecole EIAH'06 - 2-7 Juillet 06

Un exemple

ARCHITECTURE

Ecole EIAH'06 - 2-7 Juillet 06

57

Références principales

- Brousseau G, La théorie des situations didactiques, Grenoble, La Pensée Sauvage Editions, 1998.
- Balacheff N., Conception, propriété du système sujet/milieu, Actes de la VIIème école d'été de didactique des mathématiques, Noirfalise R., Perrin-Glorian M.-J. (Eds), Clermont-Ferrand : IREM de Clermont-Ferrand, p. 215-229, 1995
- Luengo V., Vadcard L., Dubois M., Mufti-Alchawafa D. (2006), TELEOS de l'analyse de l'activité professionnelle à la formalisation des connaissances pour un environnement d'apprentissage, 17èmes Journées Francophones d'Ingénierie des Connaissances, 28-30 juin 2006, Nantes
- Diagnostic :
 - Webber C., Pesty S. and Balacheff N. (2002), A multi-agent and emergent approach to learner modelling. In F. van Harmelen (ed.), Proceedings of ECAI 2002, Amsterdam, IOS Press
 - Ploix S., Desinde M., Michau F. (2004), Assessment and diagnosis for virtual reality training, In: CALIE04, International Conference on Computer Aided Learning in Engineering education, Grenoble: 16-18 février 2004.
 - Vu Minh C., Luengo V, Vadcard L. (2006), A Bayesian Network Based Approach for Student Diagnosis in Complex and Ill-structured Domains, Conférence TICE 2006, 25-27 Octobre 2006, Toulouse