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Functional genomics

Microarray and SAGE data analysis

Thousands of gene expression levels are studied
simultaneously

Need for tools to analyse the expression data
of several thousands of genes

Translate the results into meaningful
e biological knowledge
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Clustering of microarray data

Organize the genes into meaningful
groups: exhibiting similar patterns of
expression level

Genes with similar expression profiles:
- have similar biological function

- are freguently co-regulated
- contribute to a common pathway
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Microarray data analysis steps

Pre-processing : Filtering and
normalization

Clustering: Algorithm selection and
application

Cluster validation: Statistical and biological
validation
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Clustering

Aim
To divide samples into homogeneous groups
@ (clusters) based on a their similarities.

separation between clusters as well as intra-

A clustering algorithm must guarantee good
@ cluster homogeneity

Bioinformatics for Africa, Nairobi
2007




Cluster |
Clustet 2

Cluster 3




Clustering algorithms

Hierarchical clustering
K-means clustering

Self Organising maps
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Hierarchical clustering
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Hierarchical clustering (2)

= Analysis of expression profile of macrophage infected
with different Leishmania species (Chaussabel and al.,
2003)

= Analysis of expression profile macrophage exposed to
bacterial pathogens ( Nau and al., 2002)

Do not reguire many parameters
Easy to apply
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Limits

& Difficulty to delimitate the cluster boundaries

< Analysis Is based on visual inspection of the
hierarchical tree

& No formal rules
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Self Organizing Maps (SOM)

One of the most commonly used artificial neural
network

The reduction of the complexity of the data space

Very useful and robust approach to the clustering
of large amount of data
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Self Organizing Maps (SOM)

¢ Finding clusters, from the SOM grid is still a crucial
task to tackle

& Difficulty to decide about the number of the grid
units

< Similar neurons need to be grouped
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Proposed solutions

Start with a large grid to obtain
homogenous clusters

Gradually decrease the number of clusters
by grouping similar units

Introduce statistical indexes to to better
understand data characteristics
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Development of Multi-SOM

Based on

Self Organizing Maps

Data is first clustered by SOM
SOM gric

Build an

IS then clustered
nierarchy of SOM grids

Each gric

aims to group similar units

within the previous one

Integrate the use of validity indices
guide the cluster delimitation
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Validation on labeled data

Labeled data sets

m [ris data set
s Pima Indians for diabetes

The application of Multi-SOM:
s Identification of the correct number of classes

= A better performance was obtained (Smaller error
values)

s Better classification
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Cluster validation

Statistical validation :

a Based on the gene expression levels
0 Assess the cluster separation

a Assess the distribution of different samples
among clusters
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Cluster validation (2)

Biological validation:

a Visualisation tools to understand gene
functions within a cluster

0 Based on the use of Gene Ontology

Bioinformatics for Africa, Nairobi
2007




1720 transcripts hybridised on
Affymetrix HGU133A (22,000 transcrits)

y

1030 probes representing 978 non
redundant over expressed genes

l

8 Clusters potentiaily regulated having

similar gene expression profiles

|

Cluster validation

P i N

Biological validation:
GO

Statistical validation:
PCA
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Principal Component Analysis
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Biological Validation

GOTM

Onto Express

GoSurfer

Fatigo




Biological Process
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Perspectives

Diseases gene

Host @

Pathogens

Influence on gene expression
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Thank you!!
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UNSUPERVISED LEARNING
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} Lbata preprocessing
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K-means clustering

A partitionning algorithm
Very Simple

& Requires the cluster number to be initially fixed
&Depends heavily on the initialization step

Bioinformatics for Africa, Nairobi
2007




Statistical validation

Carried out using Principal Component Analysis
(PCA)

A first PCA Showed a good separation between
clusters

A second one showed a good separation
between genes over-expressed in CSS, NHS

Keratinocytes and Fibroblasts were merged in
the same cluster
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Microarray data analysis steps

Microarray data

Clustering by Multi-SOM

Statistical Biological validation:
validation: PCA Gene Ontology tools
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