
A Real-Time, Multi-Sensor Architecture for fusion of delayed
observations: Application to Vehicle Localisation

C. Tessier, C. Cariou, C. Debain
CEMAGREF

24, avenue des Landais
BP 50085, 63172 Aubière, France
e-mail: cedric.tessier@cemagref.fr

F. Chausse, R. Chapuis
LASMEA - UMR 6602
24, avenue des Landais
63177 Aubìere, France

e-mail: chausse@lasmea.univ-bpclermont.fr

C. Rousset
ECA

Rue des Fr̀eres Lumìere BP 24
83078 Toulon Cedex 09, France

e-mail: cro@eca.fr

Abstract— This paper presents a software framework called
AROCCAM that was developed to design and implement
data fusion applications. This architecture permits to build
applications in a very short time unburdening the user of sensor
communication. Moreover, it manages unsynchronized sensors
and delayed observations in an elegant manner that permits to
the user to fuse those information easily, taking into account
the environment perception date.

In this paper, a fusion methodology for delayed observations
is first presented in order to point the problem of latency
periods in a fusion system. These latency periods are then taking
into account within our embedded architecture needing only a
little effort from user. Finally, benefits of AROCCAM archi-
tecture are demonstrated via a real-time vehicle localisation
experiment carried out with an outdoor robot.

I. I NTRODUCTION

Nowadays, more and more vehicles are equipped with
intelligent systems. These systems have to realize particular
tasks such as: vehicle localisation, automatic guidance, obsta-
cle avoidance, pedestrian detection,. . . . To accomplish their
tasks, they process sensor data. However, it is necessary to
write piece of softwares to communicate with sensors. This
task is tedious and most of all a lack of time. A solution to
this problem is to use an embedded architecture. Such archi-
tectures permit to facilitate the development of algorithms
by managing the communication between those algorithms
and sensors. For instance, they can collect sensor data and
control sensors without blocking algorithm mechanism.

The architecture proposed here has to respect several
requirements:

• management of unsynchronized data and sensors la-
tency,

• recording and replaying of sensor data in real-time,
• engineering requirements: re-usability, integration,

maintenance, processing efficiency
• user requirements: easy of use, programming error

detection.

When a system uses a single sensor, it can only sense a
partial and incomplete part of the environment. By contrast,
a multi-sensor approach is a way to improve environment
perception. It’s necessary to notify that a sensor provides an
observation of the environment at a particular time. Another
sensor provides a similar information at another time. The

difficulty of a multi-sensor system is to fuse sensor data with
different dates.

• In some works [1], [2], [3], sensor data are fused
without taking into account the fact that information
are unsynchronized.

• In other works [4], the data sampling frequency is
increased in order to consider that all information are
synchronized each other. Unfortunately, this assumption
is false since each sensor has a latency time, which can
not be taken into account by this way.

Data fusion systems become more and more used, which
motivated us to design an architecture to answer the problem
of unsynchronized sensor data taking also into account sensor
latency.

This paper is organized as follows. Section II depicts
the works related to embedded architecture, emphasising
assets and drawbacks of each approach. In section III, our
architecture is described by presenting each module and
their objectives. Functionalities that ease the development
of embedded software are also enumerated. Section IV
details the latency periods of observations: where they arise
from? the consequences of fusion of delayed observations.
A solution is suggested to deal with such observations in a
data fusion system. Finally, a typical application involving
our solution is given in the last section: real-time vehicle
localisation.

II. RELATED WORKS

Since several decades, different embedded architectures
have been developed, each answering to requirements of a
particular field of applications. However, all these architec-
tures are agree with the necessity to be divided in several
components.

For instance, the LAAS architecture [5] has three hi-
erarchical levels, having different temporal constraints and
manipulating different data representations. The main asset
of such a decomposition is the realisation of prototype
software applications in a very short time. In the same man-
ner, SCOOT-R [6], [7] the acronym for “Server and Client
Object Oriented for the Real-Time”, offers a framework
for distributing tasks on multi-processing unit architecture.
This software is in charge of communication between each

First National Workshop on Control Architectures of Robots  - April 6,7 2006 - Montpellier



processing unit. This permits to realise time-consuming
applications by distributing tasks on several computers.

Another feature pointed up in the SCOOT-R architecture
is the real-time aspect. It consists in giving the sensor data
to the algorithm as soon as it’s available. In the case of
this architecture, a communication between each components
must be implemented, since it is a distributed application. In
order to solve the problem of communication time in a real-
time software, a real-time network is used. Moreover, the
real-time aspect of the mechanism of SCOOT-R components
obliges each component to work in a very short time not to be
declared as defective. Unfortunately, the determination of the
processing time of sensor data is sometimes not possible. The
upper limit of the processing time can always be evaluated.
In general, vision algorithms like road detection [8] can take
more than100ms per images. This reduce the utilisation
of this architecture to mighty processing unit and to avoid
time-consuming algorithms. In the same manner as SCOOT-
R, RT-MAPS [9], [10], is divided into several components
and date sensor data with an accurate clock as well. In that
particular case, the aim of the dating is to use RT-MAPS
like a numeric videotape recorder. Note that this date is the
reception date of the sensor data. In a first time, it can record
all data in a synchronized dated database. Then, it’s possible
to replay all these data later. The asset of this function is that
it permits to improve an algorithm by testing it on the same
databank or to compare several algorithms. Now, having
compared several architectures for embedded applications,
let’s analyse the main functions of our architecture before
discussing latency problem.

III. AROCCAM

In our architecture called AROCCAM, the acronym for
“Architecture d’ordonnancement de capteurs pour la création
d’algorithmes modulaires”, we pointed up the modular and
simple aspect. As we want an easy to use architecture,
AROCCAM is only divided into three components (Figure
1).

• A driver module is responsible for the communi-
cation with external entities like sensors, softwares,
computers,. . . There is a particular driver module for
a particular communication bus (IEEE, CAN network,
Ethernet network, Serial ports,. . . ).

• A brik module is an application algorithm. Thanks
to a subscription to driver modules, a brik module
receives directly sensor data without having to know
the communication protocol. In general, the user has to
write piece of software only in this area.

• The heart module is the final component. This com-
ponent has not to be modified or adapted by the user.
It is responsible for the communication between driver
modules and brik modules, the threads creation, mem-
ory management, . . .

Moreover, like RT-MAPS, our architecture dates accu-
rately each sensor data gathered. This permits to the user
to replay all the recorded sensor data at the desired speed.
In order to replay exactly the sensor data in the same way

Obstacle
avoidance
brik

Control
brik

Localisation
brik

Brik m
odules

− Threads creation
− Communication between
   drivers and briks
− Memory management

Heart module

CAN Ethernet RS232

Driver modules

IEEE
1394

Fig. 1. AROCCAM Software Architecture.

that they were recorded (order of sensor data reception and
interval time between two sensor data), the date of each
sensor data corresponds to the reception date of the data
by AROCCAM during recording.

After having described components involved in our archi-
tecture and their objectives, let’s now analyse in details the
problem of delayed observations fusion.

IV. A FUSION METHODOLOGY FOR DELAYED

OBSERVATIONS

A. Presentation

The real-time aspect of embedded architectures is a feature
pointed up. This feature consists in giving the sensor data to
the algorithm as soon as it is available. However, as it was
suggested by [11], most of the sensors have a latency time.
Such architectures remain real-time sensor data collecting
softwares but are not real-time environment perception soft-
wares.

As sensor latency time can’t be suppressed, it’s therefore
impossible to realise the real-time architecture last proposed.
It means that the user must take these latenesses into account.
In [12], a solution is suggested to the user. In this paper, we
propose an elegant manner to manage this problem without
making the development of an application algorithm more
complex.

In the next section, is described in details the kind of
latency periods that can appear.

B. Observation and latency period

The aim of the software that must be implemented in our
architecture is to realize a particular task. In this section,
we take the example of an accurate real-time positioning
of a car on a digital map [13]. In this case, the vehicle is
equipped with a video camera, oriented in the direction of
the road, aiming at detecting the road. Then this detection
permits to locate the vehicle thanks to a digital map listing
road configurations.

An information that permits to participate to the achieve-
ment of the software task is called herean observation.
It can be a sensor data or the processing result of this
data. These observations are fusioned in the software. Let’s

First National Workshop on Control Architectures of Robots  - April 6,7 2006 - Montpellier



analyse in details the process to obtain an observation (Figure
2) in our example.

ta c

sensor latency communication time

ttpt
Observation

(result)ProcessingCommunicationPerceptionEnvironment

processing time

time
obs

Fig. 2. The latency periods for obtaining an observation.

In general, the process to obtain an observation can be
divided into three steps, each of them requiring a process
time:

• perception. The sensor captures at timeta a perception
of the environment. Modern systems use smart sensors,
i.e. an analog sensor linked to a local controller. The
local controller gets the analog information, performs
the analog to digital conversion, and sends the results
through a digital bus like RS232 or CAN or Firewire. In
the following of this paper, the word sensor will refer to
a smart sensor. The time required by the local controller
to prepare the result corresponds to the sensor latency.

• communication. As explained just above, it consists in
sending the result through a digital bus at timetc.

• processing. At time tp, the embedded architecture, like
AROCCAM, receives the sensor data. As our architec-
ture works in real-time, we consider that the sensor data
is dated as soon it’s available by the computer. However,
this information is not directly useable for the algorithm
task. This last one has to process these data to extract a
worth observation. The time required to treat the sensor
data is the processing time.

In all embedded architectures, dating sensor data accu-
rately, consists in timestamping those data with the datetp
like we do. However, the application algorithm can only
fuse observations with the same date: the perception date.
Sometimes, the data sheet of the sensor or directly the sensor
during the experiment provides the sensor latency. When
there is no information, a temporal calibration of sensors has
to be done. Unfortunately, it’s not always possible to estimate
accurately all these parameters. We suggest to timestamp the
observation with the dateta and include with this date the
dating precision.

C. Consequences of delayed observations fusion

To illustrate the fusion of delayed observations, let’s keep
our example of vehicle localisation. For vehicle localisation
task, the estimated position is valuable only at a specific time.
The robotic community calls this characteristic, the spatio-
temporal localisation. It means that the estimated vehicle po-
sition is function of time. For each result produced by those
systems, a time imprecision induced a spatial imprecision. A
spatial time induced error of10cm is given by an imprecision

of 1.5ms at 250km/h or 15ms at 25km/h. To build an
accurate localisation system, it’s necessary to keep in mind
the observations latency times.

D. Fusion of delayed observations

The aim of the system is to compute a result: the state
vector, and this vector is function of time. In the previous
section, the latency periods for obtaining an observation
have been detailed. The problem here, is the fusion of a
delayed observation with a particular state vector. It means
that an observation received by system has to be used to
update a particular state vector: the one that describes the
system at observation’s date.AROCCAM offers an optimal
estimation of the state vector at any time.

V. EXPERIMENTATION AND RESULTS

The following section describes experimentations that
were carried out to validate our approach. Thus, an outdoor
localisation system was chosen.

A. Description

A terrestrial robot was used for the experiments. This
research platform, of the Research Federation TIMS (Tech-
nologie de l’information, de la mobilité et de la ŝuret́e),
(Figure 3), was initially equipped with an on-board PC
running Linux RTAI. Several sensors was added to it for
the realisation of the system.

The objectives of this system is to locate the vehicle with
2m accuracy using only low-cost sensors.

Gyrometer

Doppler radar

Low−cost GPS

Magnetometer

Fig. 3. The “RobucarTT” with its sensors

1) Sensors:Sensors used in this system are presented in
Table I. The GPS system and the magnetometer permits to
initialize the system: vehicle position and orientation. Then,
two proprioceptive sensors: a Doppler radar and a gyrometer,
and the GPS are used to locate the vehicle. A particle filter
is employed to estimate the vehicle position.

Table I lists not only sensors but also their latency period
and their acquisition frequency. These latency periods take
into account the latency period of the sensor and also the

First National Workshop on Control Architectures of Robots  - April 6,7 2006 - Montpellier



TABLE I

PROBABILITY VALUES FOR PERCEPTIVE TRIPLETS

sensor latency period acquisition frequency
magnetometer 5ms 16Hz
low-cost GPS 6− 100ms? 10Hz
Doppler radar - 10− 77Hz

gyrometer - 20Hz

?: supplied directly by the sensor.

communication time on the bus that links the sensor to
the computer. We can also notice that all these sensors
are not synchronized since they are affected by different
latency period and different acquisition frequency. The use
of AROCCAM seems to be necessary.

2) Vehicle progress model:In this part, we focus on small
displacements. Assuming the flatness of the environment
where the robot is running, position and attitude of the
vehicle are resumed to the position of the vehicle in the
2D plane (Oxy) defined byx(t) and y(t) and orientation
of the car with respect to the (Ox) axis given by θ(t).
Measurements from the vehicle are the average speedV (t)
given by the Doppler radar and angular speedω(t) given by
the gyrometer.

Figure 4 shows the vehicle state (position and orientation)
at two particular moments:tk and tk+1.

O

x

y
ICC

R

d

yk+1

ky

x k x k+1

M

M

k

k+1

∆

∆

θ

θ

α

k

k+1

d

θ

Fig. 4. Small displacement between two successive positions.

Relation between vehicle displacement∆d and average
speedV is given by: ∆d ≈ d = Te · V whereTe is the
sampling period. In the same way, relation between vehicle
rotation∆θ and angular speedω is given by:∆θ = Te · ω.

Thus, the vehicle progress model is: xk+1 = xk + ∆d · cos(θk + ∆θ/2)
yk+1 = yk + ∆d · sin(θk + ∆θ/2)
θk+1 = θk + ∆θ

(1)

3) Why use AROCCAM:It’s necessary to use the AROC-
CAM architecture in this system since:
• sensors are unsynchronized:equation (1) supposed

that the two proprioceptive sensors supply synchronized
observations.

• sensors have a latency period.
An elegant solution to solve these difficulties is to use the

architecture suggested in this paper.

B. Experimentation results

The scenario used to validate our architecture is presented
in figure 5. As we can see, the trajectory is complex and
contains several curves. This path have been obtained by
a manual run. During the experiment, successive absolute
positions giving by a GPS RTK (THALES Navigation) with
2cm accuracy, are recorded. The position estimated by our
method is compared each time with the GPS-RTK reference
trajectory by computing the difference (error) between them.

End
Begin

Fig. 5. Trajectory realised in the experiment.

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Time (s)

Er
ro

r (
m

)

with AROCCAM
without AROCCAM

Fig. 6. Localisation error with two architectures.

On the following figure (figure 6), the localisation error is
depicted for two experimentations:

• In red line: localisation error with the use of AROC-
CAM, taking into account the latency periods.

• In blue line: localisation error with a classical embedded
architecture.

We can notice that, as expected, latency periods affect the
localisation system results. In our example, a maximal error
of 20cm is added to the system when a classical architecture
is used. These results permit to show the benefit given by
our approach.

First National Workshop on Control Architectures of Robots  - April 6,7 2006 - Montpellier



VI. CONCLUSION

This paper has proposed an embedded architecture for
the fusion of delayed observations. A fusion methodology
has first been designed. First a description of the latency
periods from the sensor to the data fused in the algorithm has
been presented. The consequences of delayed observations
fusion have been explained though the example of the vehicle
localisation and a method has been suggested by the use of
AROCCAM. Finally, a vehicle localisation application has
been proposed to illustrate our architecture.

Even though the AROCCAM architecture allows to reduce
errors in fusion of unsynchronized information, our aim here
is to draw conclusions not from the demonstration but from
the process of building embedded applications. We think
that the AROCCAM architecture offers an elegant and easy
manner to build fusion algorithm. The benefit was really
substantial: during all the programming and debugging pro-
cess, we never had problem with thread communication, real-
time multithread management, transmission of data between
different system,. . . All these aspects were dealt with by our
software architecture.

Moreover several other applications were developed under
AROCCAM with no difficulties and good results.

REFERENCES

[1] Gianluca Ippoliti, Leopoldo Jetto, Alessia La Manna, and Sauro
Longhi. Improving the robustness properties of robot localization
procedures with respect to environment features uncertainties. InInter-
national Conference on Robotics and Automation (ICRA), Barcelona,
Spain, April 2005.

[2] C. Kwok, D. Fox, and M. Meila. Real-time particle filters.IEEE,
Sequential State Estimation, 92(2), 2004.

[3] David Filliat. Cartographie et estimation globale de la position pour
un robot mobile autonome. PhD thesis, LIP6/AnimatLab, Université
Pierre et Marie Curie, Paris, France, December 2001. Spécialit́e
Informatique.

[4] Marc-Michael Meinecke and Marian-Andrzej Obojski. Potentials and
limitations of pre-crash systems for pedestrian protection. InInter-
national Workshop on Intelligent Transportation, Hamburg/Germany,
March 15-16 2005.

[5] Rachid Alami, Raja Chatila, Sara Fleury, Matthieu Herrb, Felix
Ingrand, Maher Khatib, Benoit Morisset, Philippe Moutarlier, and
Thierry Siḿeon. Around the lab in 40 days... InIEEE International
Conference on Robotics and Automation, San Francisco, USA, 2000.

[6] Khaled Chaaban, Paul Crubillé, and Mohamed Shawky.Computer
Science, chapter Real-Time Framework for Distributed Embedded
Systems, pages 96–107. Springer-Verlag GmbH, 2004.

[7] Khaled Chaaban, Paul Crubillé, and Mohamed Shawky. Real-time
embedded architecture for intelligents vehicles. InProceeding of the
5th Real-time Linux workshop, Valencia, Spain, November 2003.

[8] P. Jeong and S. Nedevschi. Efficient and robust classification method
using combined feature vector for lane detection.Ieee transactions on
circuits and systems for video technology, 15(4):528–537, 2005.

[9] Iyad Abuhadrous, Fawzi Nashashibi, and Claude Laurgeau. Multi-
sensor fusion (gps, imu, odometers) for precise land vehicle locali-
sation using rtmaps. In11th International Conference on Advanced
Robotics ICAR, 2003.

[10] Fawzi Nashashibi. Rtm@ps: a framework for prototyping automatic
multisensor applications. InIEEE Intelligent Vehicles Symposium,
October 3-5 2000.

[11] Mikael Kais, Laurent Bouraoui, Steeve Morin, Arnaud Porterie, and
Michel Parent. A collaborative perception framework for intelligent
transportation system applications. InIntelligent Transportation Sys-
tems Conference ITSC, Vienna, Austria, September 13-16 2005.

[12] Iyad Abuhadrous. Syst́eme embarqúe temps ŕeel de localisation et
de mod́elisation 3D par fusion multi-capteur. PhD thesis, Ecole des
Mines de Paris, january 2005.

[13] Jean Laneurit, Roland Chapuis, and Fréd́eric Chausse. Accurate
vehicle positioning on a numerical map.International Journal of
Control, Automation, and Systems, 3(1):15–31, March 2005.

First National Workshop on Control Architectures of Robots  - April 6,7 2006 - Montpellier




