
Pleading for open modular architectures
Aurélien Godin, Olivier Evain
French Department of Defence

Angers Technical Centre / Vetronics & Robotics Group
{aurelien.godin,olivier.evain}@dga.defense.gouv.fr

Abstract— Since first researches in the field of robotics archi-
tectures, many advances have been achieved. Nowadays softwares
offer modular functionalities, which interests will be reminded
in section I, and actually satisfy most of the needs, as shownin
section II. However, none of the mentioned approaches managed
to spread widely or succeeded in gathering works developed
by the very numerous robotics actors, not even those that can
already be considered mature. We argue here that the port of
these works from an architecture to another is a major difficulty
and that only an effort towards standardisation can help to
overcome this drawback.

I. REASONS FOR DEFENDING MODULAR OPEN DESIGNS

We here define the architecture as the structured
organisation of components (or “framework”), embedded on a
system, that enables their simultaneous and correct execution,
by offering the basic services needed for all of them. In this
paper, we will more specifically consider software aspects.
Modularity will be defined as the ability, for this software,
to receive new components that were not included in the
original release, thus enabling,a posteriori, to extend its
functionalities. It will be moreover “open” if interfaces for
writing these modules are public, so that a person different
from the developper that originally implemented the code
can produce some. For instance, Linux is such a system, in
which hardware drivers can easily be added by third parties.
And so is Windows: these two characteristics are effectively
not contradictory with commercial or property policies and
do not mean that the original sources must be unveiled.

Recent articles on architectures often insist on their mod-
ularity. This must not only be considered a “commercial”
announce but, indeed, softwares that satisfy this property
offer many interests. First of all, as they are able to receive
all sorts of modules, provided that the latter respect the
defined interfaces, they can potentially attract many robotic
actors and their adoption is eased. The direct corollary of
wide-spread architectures is to provide this users community
with a common framework, enhancing the possibilities of
sharing and exchanging competencies. As a matter of fact,
it also enables to validate concurrent approaches in the same
conditions/environment for more relevant comparison results.

Besides, modularity permits to focus one’s development
only on particular aspects, while working algorithms can be
re-used. Hence, there is no need anymore, when conducting
a specific research, to redevelop an entire system to test it,
but one can take benefit of an already existing complete

framework, in which to integrate and evaluate one’s own work.

But interests are not limited to these ones. Indeed, the
vehicle (more generally the platform) in which the modular
framework will be embedded will allow a fast integration
of different modules or their easy replacement. This is par-
ticularly interesting for all users. Laboratories take benefit
from the flexibility of such structures, manufacturers can
easily provide updates or new functionalities to their clients.
Finally, end-users, such as the Department of Defence, can
both take advantage of such open-targets to support their
research programmes and, depending of the mission needs, to
get reconfigurable operational systems. Recently, the French
Ground Army confirmed that the MiniRoC concepts of ground
robots, see [10], presenting such modular characteristics, was
of great interest as they would allow soldiers to only take with
them the absolutely necessary modules related to their actual
task.

By extension, if on the one hand open architectures compel
to conform to given software interfaces, on the other hand they
make no assumptions as regarding to the underlying hardware.
Such frameworks are, ideally, completely independent from
platforms, processors or electronics. Said another way, they
offer the possibility to evolve as technologies progress : it
remains up-to-date. For end-users essentially, it is a guarantee
of durability and, consequently, it requires to train maintainers
only for one type of software. This durability is however
achievable only by ensuring backward compatibility, so that
modules running on older versions of the software can be
executed in latest releases.

For the sake of exhaustivity, the same arguments that
talk in favour of modular architectures on a single robot
also are valid when tackling the multi-robots context, as
it will help to gather an un-predefined number of agents
within a collaborating team. This property is then known as
extensibility or scalability.

Thus, from the above discussion, the main requirements for
an architecture to be modular can be summarised as:

• permit normalized data exchange through the definition
of public interfaces and common communication mech-
anisms;

• enable extensibility by making no assumptions on under-
lying platform or candidate peripheral hardware;

• be flexible by making no assumptions on missions that

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



will be given to the robot, since new ones will irremedi-
ably be imagined during system’s life.

As will be discussed in section II, many architectures
developed for about twenty years satisfy these characteritics.
Besides, whereas the framework nature - reactive, deliberative
or hybrid - is often a central concern, we will note here that
modularity is independent from this issue, and that it can be
ensured in all cases.

II. PREVIOUS WORK

A. Evolution in architectures conception

In the second half of the 80s’, Brooks introduced an
architecture that can maybe be considered the first modular
one, [7]. Contrary to common software structures at that time,
which often used sequencial treatments to achieve an action,
an organisation based on layers is proposed. Each layer can
operate in parallel and corresponds to a particular task to be ac-
complished, see figure 1. Nowadays designs have inherited this
point of view as modules often implement specific behaviours.
However, in Brooks’ system, layers interactions are based on
the subsumption principle (upper layers can block and replace
outputs of lower ones) and not on a real standardized data
exchange. This may bring to a complex links organisation.

Enhanced exchange schemes are present in most follow-
ing works. Modules become real “independent computational
units”, executing concurrently and that can use given com-
munication services, imposed by the architecture, to exchange
information. Compared to the subsumption architecture, the
level of competence (i.e., the priority of the module) is not
fixed a priori since all the blocks are considered equal. The
choice for the appropriate output can be made, depending on
the implementation, by a global referee or another module
written by the system designer. DAMN, [18], is a remarkable

Fig. 1. Whereas traditional approaches presented a sequential organisation
(above schema), Brooks proposed a structure where layers, often correspond-
ing to a given level of competence, can execute in parallel and influence the
global robot behaviour by subsuming outputs of lower ones. Figures are taken
from [7].

example of the first category. Each block, called “behaviour”
in the sense of Brooks’, issues votes in favour of a specific
possible action that are then collected by an arbiter (figure2).
The final effective command is, schematically, a weighted sum
of these votes.

Fig. 2. The DAMN architecture as described in [18].

Another famous approach is the one developed at
GeorgiaTech by Arkin, [5]. The principles are close to those
of DAMN: behaviours, here called “motor schemas”, provide
their commands to a process that sums and normalizes them
using the potential fields method. A sligth difference is how-
ever introduced since a homeostatic control system is added:
this can be thought as a bus that collects state variables from
robot internal sensors and broadcast them to all of the motor
schemas. Resulting monitoring information are used both to
influence internal parameters of behaviours and their relative
weights. The structure is synthesized on figure 3.

Fig. 3. AuRA principle. This figure both shows the fusion process between
two motor schemas and the homeostatic control system that regulates the
performance of the overall architecture.

However, theoretically, modularity does not only apply to
behaviours (i.e., reactive modules) but also to deliberative ca-
pabilities of robots. If the complete AuRA framework already
integrates a planning component (as well as a layer responsible
for user-robot interaction that can convey human decisions),
the reasoning capacities are fixed once for all. But there exists
practical cases for which these capacities are more flexible.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



An army is a typical example of an efficient organisation in
which deliberative agents are not gathered in a centralized
structure, as each soldier is not only able to act but also
to learn, acquire experience, and use complex reasonings to
succeed in his elementary task. And a robot architecture is,in
some way, comparable: in both cases, an upper objective (the
goal of the robot or of the army) can be achieved by getting
elementary agents (modules or men) to work in a coordinated
fashion (i.e., respecting rules imposed by the architecture or
the hierarchy). Such comparisons naturally lead to propose
new robot frameworks, in which deliberative capacities, and
not only reactive behaviours, are also designed in a modular
manner.

Albus’ researches on 4-D/RCS1 have been conducted based,
partly, on these reflexions and lead to a node-oriented archi-
tecture. Each elementary component, called a node, integrates
sensory processings and reactive parts, like “classical” modu-
les, but can also simultaneously gather modeling, learningand
reasoning capabilities, as shown figure 4. Each node is then
arranged within a global hierarchy modeled on the military
structure. A natural way of implementing this architectureis to
grant more deliberative responsibilities to nodes that areplaced
high in the hierarchy, whereas lower nodes are rather dedicated
to information processing. Furthermore, by construction,this
framework is multirobot-ready: from a macroscopic point of
view, a robot can itself be considered a node and teams
of robots can hence be constituted the same way nodes are
structured inside each robot. More detailed explanations can
be found in [2].

Fig. 4. A typical 4-D/RCS node.

The emergence of modern programming methods, i.e.
object-oriented (OO) approaches, hugely contributed to ease
the implementation of the above concepts. Inheritance and
related mechanisms (polymorphism, methods over-writing)
are directly useful to derive efficient modules and permit
to easily extend robots capacities, whereas the encapsulation
of properties and methods enables objects to share only the
useful interfaces. But these approaches did not only reveal

14-D/RCS is the architecture that is embedded on the Demo III Experimen-
tal Unmanned Vehicle (XUV), a project supported by the American DoD. This
probably explains the origin of the parallel between robotsarchitecture and
military organisation.

interesting for programmers but also inspired the conception
of recent architectures. The most appealing one is probably
CLARAty in which the whole functional layer is thought
as a hierarchy of objects. A simple example is shown on
figure 5, whereas very detailed explanations, including coding
considerations, can be found in [19]. One interest of OO-
conception is to provide all the mechanisms to build proper
extensible interfaces, without imposing any limitations on
the way objects are internally implemented. COSARC is a
very recent example of this trend: it uses an extension of
OO-methods (the component-based approach) to define four
types of components which internal structure is described with
Petri Nets, please refer to [4] for details. This is a relevant
illustration of the ability of object-based languages to both ease
the development of open frameworks, satisfying modularity
requirements, and take benefit from any other recognized
approach for the modelisation of components behaviour, here
Petri Nets.

Fig. 5. This example illustrates the object-oriented design of the functional
layer of CLARAty. Note that, like all moderns frameworks, italso provides a
decision layer, not shown here. But although most other architectures split the
executive and planning levels, these functionalities are here gathered within
the same layer, for consistency reasons. See [20] for a discussion on this
point.

As noted above, the same requirements of modularity and
extensibility are needed in the multi-robots context. Here, the
main constraint is to enable the adjonction and the removal of
agents within the team. If some architectures, like 4-D/RCS,
inherently have the capacity to manage several robots, they
should also tackle the “fault-tolerancy” problem. That is to
say, the lost of a robot or of the communication channel,
during the mission, must not induce the failure of the whole
team. Most of the time, specific coordination schemes are
thus added to the upper layers of the architectures and run all
the processes needed to manage a team (especially scalability
mechanisms, communication strategies and task allocation).
Among all approaches proposed, let us quote ALLIANCE and

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



TABLE I

TECHNOLOGYREADINESSLEVELS

Low maturity

1 Basic principles of technology observed &

reported

2 Technology concept and/or

application formulated

3 Analytical and laboratory

studies to validate analytical predictions

Medium maturity

4 Component and/or basic sub-system

technology valid in lab environment

5 Component and/or basic sub-system

technology valid in relevant environment

6 System/sub-system technology model or

prototype demo in relevant environment

High maturity

7 System technology prototype demo in an

operational environment

8 System technology qualified

through test & demonstration

9 System technology ‘qualified’ through

successful mission operations

M+. The first one mainly focuses on determining an efficient
fault-tolerant scheme: details can be found in [17]. The
second one, [6], offers an alternative based on negociations
between the robots. It has been successfully integrated in the
LAAS-CNRS framework, [1], that hence provides a complete
open architecture gathering all functionalities, from reactive
behaviours to decisional capacities, for a lonely robot or a
team of agents.

Besides, all above quoted works do not remain pure the-
orical concepts. Many of them have been ported on some
vehicles and proved to be relevant potential candidates for
real applications.

B. Introducing Technology Readiness Levels

Technology Readiness Levels (TRLs) were initially created
by NASA in 1995 and were officialy adopted by the American
Ministry of Defence (MoD) in 2001. This referential aims
at assessing the maturity of technologies so as to reduce
the risks related to acquisition programmes. It consists of
nine levels, of increasing maturity, that apply to individual
technologies (not to entire systems). The TRLs grid, copied
from [8], is given in table I.

Nowadays results and experimentations show that levels
5/6 can currently be reached. 4-D/RCS framework has thus
been ported to the American XUV (Experimental Unmanned
Vehicle) and its ability to host functionnal modules could be
demonstrated. Besides, Albus’ report [3] comforts us in our
evaluation of the maturity of this architecture when asserting

that “the tests are designed to determine whether the Demo
III XUVs have achieved technology readiness level six”.

In France, the same encouraging conclusions can be drawn.
All along SYRANO2 project, industrials have shown their
ability to deploy a modular architecture (although proprietary)
on a prototype tank and their capacity to incrementally add
new functionalities when they become available. Demonstra-
tions with this vehicle took place in the military camp of
Mourmelon, in a quasi-operational context, as related in [16].
Because only teleoperated functions have been used, not all
possibilities of the architecture have been extensively tested,
and these demonstrations “only” correspond to the TRL-5.

However, a vehicle such as Syrano is TRL-6-ready as, in
theory, advanced autonomous modules can be added the same
way. Moreover results achieved by some laboratories comfort
this point of view. For instance, experiments conducted by
LAAS-CNRS in autonomous navigation demonstrated the
ability of a robot to automatically explore an unknown area.
During these tests, all functionalities were used: planning,
supervision, autonomous modules management as well as
human-robot interfaces (at least to send mission reports and
receive high level orders from the operator). The multi-robot
scheme is itself under ‘validation’ as, in some current projects,
additional aerial information is provided by a Blimp UAV to
assist the robot in its navigation task.

Since 2004, this laboratory has also been running a robot
equipped with the same architecture, [1], in Cité de l’Espace,
Toulouse. This robot serves as a guide for visitors, interacting
with them to retrieve their questions, then conducting themto
the desired point. Since people are obviously neither roboti-
cians nor technicians, the environment of the robot can be
considered operational. This experiment can maybe not claim
the TRL-7 title, which would require huge reliability, but
definitely proves that this level is now achievable.

Of course, qualitatively judging the architecture, on an
experiment that takes into account the whole system, is quite
difficult and its exact contribution to the overall performance is
hard to deduce. But at least, this means that services expected
from the software are functional and that internal communica-
tions between framework components work. When, moreover,
the architecture has been ported on heterogeneous systems
(the SYRANO one was previously integrated on a robot jeep,
called DARDS, and is reused for a future demining system),
it can be argued that modularity and portability have been
validated. In conclusion, based on the observation of above
quoted experiments, giving TRL-6 as the current achieved
maturity level seems relevant.

Some complementary methods also exist to assess the
maturity of a whole system, System Readiness Levels. A brief
review of SRLs ([9] and table II) confirms that these vehicles
have reached levels 6-7, meaning that demonstrations have
been conducted successfully in representative environment.

2SYRANO is a teleoperated prototype vehicle, with simple autonomous
behaviours, for reconnaissance and detection of potentialadverse targets. It
aims at evolving in open areas.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



TABLE II

SYSTEM READINESSLEVELS

1 User requirements

defined

2 System requirements

defined

3 Architectural design

refined

4 Detailed design

is nominally complete

5 Sub-systems verification

in laboratory environment

6 Sub-system verification

in representative integration environment

7 System prototype demonstration

in a representative integration environment

8 Pre-production system completed and demonstrated

in a representative operational environment

9 System proven through successful

representative mission profile

Nevertheless, the previous section raises a major concern,
as it shows that numerous architectures have been develop
concurrently: if each one, separatly, does satisfy the modularity
requirements, components developed for one of them cannot
be ported to another. A higher level of specification is still
missing that would ensure interoperability, a property of real
importance, especially in a military context. Consequently,
as upcoming programmes can not systematically rely on a
standard, they only correspond to SRL-2. It is thus quite
urgent to emphasize the research effort on this point, as will
be discussed in section III. We will first focus on a relevant
American example, JAUS, then present some French research
programmes that tackle the issue.

III. T OWARDS STANDARDISATION

A. American proposals

1) History: In the last 20 years, a large number of un-
manned systems have been developed by US companies in
response to the American DoD, but most of them are task-
specific and non-interoperable. Therefore, in 1994, JAUGS,
an effort to avoid the pitfalls of “eaches” in an expanding
domain, was initiated. It was still limited to ground systems
(the “G” actually stands for “ground”).

In 1998, OUSD (Office of the Under Secretary of Defence)
chartered a working group, consisting of members from the
government, industry and academia, to develop an architecture
for unmanned systems. It set itselffive targets:

• support all classes of unmanned systems ;
• advocate rapid technology insertion ;
• provide interoperable Operating Control Units (OCUs) ;
• provide interchangeable/interoperable payloads ;

• provide interoperable unmanned systems.

The resulting Joint Architecture for Unmanned Systems
(JAUS), available for use by defence, academic and commer-
cial sectors, is an upper level design for the interfaces within
the domain of unmanned vehicles. It aims at being independent
from technology, computer hardware, operator use and vehicle
platforms, and isolated from mission. It is a component based,
message-passing framework that specifies data formats and
methods of communication between computing entities of
unmanned systems.

Its final goal is to reduce development and integration
times, ownership cost, and to enable an expanded range of
vendors by providing a framework for technology insertion.

2) JAUS specifications:to date, two documents describe the
JAUS architecture: the Reference Architecture specification
(RA), [13], and the Domain Model (DM), [12].

a) Domain model: the analysis conducted in the DM
on the five above targets, along with the study of military
contracts constraints, urged to define five main requirements
on messages within the architecture. Indeed they need to be
independent from: 1. vehicle platform, 2. mission, 3. computer
resource, 4. technology and 5. operator use. This document is
also a tool with which customers/users can define both near
and far term operational requirements, for unmanned systems,
based on mission needs; and by defining far-term capabilities,
the JAUS Domain Model can actually be considered a “road
map” for developers to focus research and design efforts to
support these future requirements.

In a word, the domain model is a common language which
contains three distinct elements : functional capabilities (FC),
informational capabilities (IC), and device groups (DG). The
first ones, all documented in DM so that to ease dialog
between users and developers, are a set of capabilities with
similar functional purposes. Eleven categories are identified,
that permit to describe the abilities of an unmanned system:
command, manœuvre, navigation, communication, payload,
safety, security, resource management, maintenance, training
and automatic configuration. In parallel with the functional de-
scription, Informational Capabilities provide a representation

Fig. 6. JAUS domain model representation.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



of what unmanned systems (should) know. They are groupings
of similar types of information. Five categories are depicted in
DM: vehicle status, world model, library, logistics, time/date.
Finally, device groups are a classification of sensors and/or
effectors that are used for similar functions. Functional and
informational capabilities may interface with device groups,
but the JAUS domain model does not define these interfaces.
Figure 6 summarises the DM representation.

b) Reference architecture specification:in the develop-
ment cycle, the specification of capabilities described in the
DM will always precede those that appear in the RA, whose
main purpose is to detail all functions and messages that
shall be employed to design new components. All currently
defined messages as well as rules that govern messaging are
also depicted in this second document. It is worth noting
that messaging is the sole accepted method to communicate
between components.

The RA specification comprises three parts. First of them,
the architecture framework provides a description of the struc-
ture of JAUS-based systems. Actually, unmanned systems are
seen as a hierarchical topology, shown on figure 7. A system
is a logical grouping of one or more subsystems, which are
independent and distinct units. A node, in such a topology, is a
‘black-box’ containing all the hardware and software necessary
to provide a complete service, for example a mobility or
a payload controller. A component is the lowest level of
decomposition in the JAUS hierarchy: it is an executable task
or process. All the components, which may be found within
an unmanned system, are listed in this first part of the RA.
The above defined topology is very flexible since the only
requirement is that a subsystem be composed of component
software, distributed across one or more nodes. Interoperability
between intelligent systems is achieved by defining functional
components with supported messages. Therefore, the only
constraint to be JAUS-compliant is that all messages that pass
between components, over networks or via airwaves, shall be
JAUS-compatible messages. No other rules are imposed to
system engineers. Besides, messages coming from or/and sent
to non-JAUS components can have their own protocol.

The definition and the format of those messages are the
objects of the second and the third parts of the RA. In the
second one, message definition, different classes of messages
(command, query, inform, event setup, event notification) and
message composition (classically, a header and a data fields)
are defined. Messaging protocol is also depicted with the
routing strategy, the way to send large data messages, the way
to establish a connection between two components, as well
as some various messaging rules. The third and final part of
the RA, Message Set, presents the details of command code
usage for each message (the command code is an information
included in the message header).

c) Other documents:additional documents support the
JAUS standards: a Document Control Plan (DCP) and the
Standard Operating Procedures (SOP), [14]. The first one
defines the process to update the JAUS DM and RA whereas
the second one establishes the charter and organisation for

Fig. 7. The reference architecture from JAUS.

the JAUS working group. A compliance plan, [11], transport
plan and user’s handbook are under development.

3) Conclusion on JAUS:JAUS is not an architecture, as
defined at the beginning of this article. It is rather a process
to easecommunication between users and developersand to
standardise exchanges of datawithin software embedded in an
autonomous system. However, nowadays, JAUS is mandated
for use by all of the programmes in the Joint Robotics Program
(JRP), [15], and numerous American manufacturers begin
to follow the requirements. For example, the EOD3 Man-
Transportable Robotic System (MTRS), PackBot, produced by
IRobot, is JAUS-compliant. Moreover, JAUS is now recog-
nized as a technical committee within the SAE, Aerospace
Council’s Aviation Systems Division (ASD), which name is
AS-4 Unmanned Systems.

B. French government effort

For several years now, French DoD has been preparing a
number of studies to get standards to emerge, so that future
architectures embedded in military demonstrators be readyfor
interoperability needs. In the ground robotics field, two major
research programmes have been, or are about to be, launched.

At the end of year 2005, the “Démonstrateur BOA” pro-
gramme was notified to an industrial group (TGS: Thales,
GIAT Industries, SAGEM). Roughly, BOA is the equivalent of
the American Network Centric Warfare. It aims at proposing
new organisations for ground forces (including aerial devices
operating to their profit) with a high degree of interoperability
between the different units, through advanced communication
means. UGVs and mini-UAVS will naturally be part of this
structure since they represent a privileged way to retrieve
information, even during high-intensity actions, withoutexpos-
ing soldiers, enabling new combat strategies such as indirect
firing, see figure 8. Missions which they should respond to are
manifold and heterogeneous, from urban fighting, to logistics
or reconnaissance. Hence, the challenge:

3explosive ordnance disposal

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



Fig. 8. Official illustration of the BOA concept, showing candidate systems,
data exchanges between them and consequent achievable missions.

• integrating unmanned vehicles communications in an
already very constraint electromagnetic environment;

• enabling information sharing between robots and with
human units;

• getting highly reconfigurable robots/UAVs so that they
can quickly be adapted to the actual mission.

The third point can only be achieved through the use of a
modular architecture. Moreover, since BOA is still a prospec-
tive concept, all possible missions are probably not exhaus-
tively identified; finally, some specific functions, dealingwith
autonomous capacities of ground vehicles, will be provided
by other programmes, the actors of which are not necessarily
involved in BOA. These two supplementary aspects imply that
the software framework be also open, to allow the desired
extensibility. But the second above point is maybe the most
critical. The diversity of information sources, and the number
of actors that will access them, then encourages to adopt
standards for data exchanges.

As a consequence, the DoD insisted on the architecture
part of the robots and vehemently required that modularity
be achieved at all levels (software as well as hardware), that
interfaces be open and can be communicated to third parties.
The interoperability constraints were tackled by explicitely
asking for the adoption of a standard for data exchanges:
JAUS, if obviously not imposed, was quoted as an acceptable
solution, so that to clearly illustrate DoD expectations. Finally,
it is worth noting that information provided by unmmanned
vehicles are often of the same nature (localisation, detection
or intelligence data) than those conveied by Battlefield
Management Systems, that will be of primordial importance
in BOA. Robots are then natural candidates to feed these
systems and analyzing data structures used for the latter can
also be a relevant source of inspiration.

Although all previous examples are taken from ground
robotics fields, the open modular architecture is actually an
important subject for the near future UAV systems. Currently,
the French DoD is conducting two studies in parallel. The aim

for both is: “definition of an open, standardised, modular and
evolutionary architecture for a generic and interoperableUAV
system”.

The problematic of an UAV system is large and very com-
plex because of the multiple interfaces including theonboard
(aircrafts, payloads, airworthiness, air traffic management. . . ),
ground (command, control and exploitation station, recovery,
launch. . . ) andsystem(communications, certification, subsys-
tem interfaces, real time synchronization, critical software. . . )
constraints. The studies cover, from the time being, the three
different UAVs system categories: tactical, MALE (Medium
Altitude Long Endurance) and HALE (High Altitude Long
Endurance). The main technical axes of the studies can be
summed up with the following:

• define the best configurable and generic architecture;
• improve the system’s performances regarding new hard

or software technologies;
• interchangeability of payloads within the “plug and play”

concept;
• obtain secure, certifiable and everlasting architecture.
An “open, standardized, modular and evolutionary”

architecture is the challenge for the future French UAV
systems programmes. Thanks to this, the interoperability will
exist throughout the UAV system’s total cycle life (15 to 20
years).

However, one can still argue that these efforts towards
standardisation are limited either to ground or to aerial ve-
hicles, and that one still lacks a federative framework. This is
mainly the goal of the OISAU research programme. Initiated
by ground robotics experts of the DoD, this study for “open
and interoperable autonomous systems” actually introduces no
assumptions concerning the type of the candidate platforms,
that can either be aerian, ground or even marine vehicles. For
the first time, it explicitely gathers within a lone coherent
programme all the requirements presented above, asking that
the resulting architecture enable :

• platform and hardware independency;
• cost reduction thanks to standardisation (thus allowing

acquisition and maintenance savings);
• easy integration and replacement of functional modules;
• ability to incrementally proceed to these integration or

replacement to allow systems evolution.
This programme is probably of a primordial importance in
an effort to get operational robots, that can be introduced in
armed forces.

IV. CONCLUSION

Indeed, many reasons, technical, commercial or practical,
lead to increase the modularity of robots architectures. Along
the past ten years, a number of solutions has been proposed
and open extensible frameworks are actually available to
robots developers and users. Some of these concepts have even
been successfully ported on real systems, demonstrating their
relevance and maturity.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 



However, the robotics community still lacks a real federative
standard to get unmanned systems interoperable. As a matter
of fact, following the American JAUS example, and since
interoperability is of crucial importance for the introduction
of robots within armed forces, the French DoD has decided
to support the development of new normative frameworks.
Besides, this effort concerns all fields of robotics, from ground
to aerial vehicles, and is at the heart of current research
programmes. A major objective of these works is to increase
the technology and system readiness levels, i.e. to get more
mature and reliable robots.

But, if modularity and standardisation are necessary con-
ditions for architectures to meet all the above discussed
requirements, they are not sufficient. Until now, robots are
not completely autonomous systems and, even in the future,
a supervisory control will be at least kept. Nevertheless there
still remains work to determine which role humans deserve and
which level of autonomy will be granted to robots. And the
conclusions of such a work will impact the needed exchanges,
data structures and interfaces that have to take place between
the framework components. That is, the basic characteristics
that enable modularity will deeply depend on the role of the
human in unmanned systems.

ACKNOWLEDGMENT

We would like to thank Agnès Lechevallier, French DoD,
for her contribution on the UAV part.

Special thanks go to Jérôme Lemaire, head of our depart-
ment, for his help and valuable advice on the content of this
paper.

Also note that research works quoted in this paper would
probably deserve much more attention than the one that could
be granted here. They have all bring relevant results, when no
breakthrough, to the field of control architectures. Pleaserefer
to the original articles for details and in-depth discussions on
their specificities.

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand, An
Architecture for Autonomy, International Journal of Robotics Research,
17(4), April 1998.

[2] J.S. Albus,4-D/RCS: A Reference Model Architecture for Demo III, NIS-
TIR 5994, National Institute of Standards and Technology, Gaithersburg,
MD, March 1997.

[3] J.S. Albus,Metrics and Performance Measures for Intelligent Unmanned
Ground Vehicles, in proceedings of the Performance Metrics for Intelli-
gent Systems (PerMIS) workshop, 2002.

[4] D. Andreu and R. Passama,COSARC: COmponent based Software
Architecture of Robot Controllers, in proceedings of the CAR’06 work-
shop, Montpellier, April 2006.

[5] R. Arkin and T. Balch,AuRA: Principles and practice in review, Journal
of Experimental and Theoretical Artificial Intelligence, vol. 9, no. 2-3,
pp. 175-188, 1997.

[6] S.C. Botelho and R. Alami,M+: a scheme for multi-robot cooperation
through negotaited task allocation and achievement, in proceedings of
IEEE International Conference on Robotics and Automation,vol. 2, pp.
1234-1239, Michigan, May 1999.

[7] R.A. Brooks,A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation, vol. RA-2, no. 1, pp. 14-23, April
1986.

[8] Future Business Group,Technology Readiness Levels (TRLs) guidance,
FBG/36/10, January 11th 2005.

[9] Future Business Group,System maturity assessment using System Readi-
ness Levels guidance, FBG/43/01/01, v3.2, February 16th 2006.

[10] L. Gillet and Y.L. Lunel, Des robots pour assister le combattant
débarqué en zone urbaine : les démonstrateurs MiniRoC, L’armement,
no. 85, March 2004.

[11] JAUS, The Joint Architecture for Unmanned Systems, Compliance
Specification, v. 1.1, March 10th 2005.

[12] JAUS, The Joint Architecture for Unmanned Systems, Domain Model,
volume I, v. 3.2, March 10th 2005.

[13] JAUS, The Joint Architecture for Unmanned Systems, Reference Archi-
tecture SPecification, volume II, parts 1-3, v. 3.2, August 13th 2004.

[14] JAUS, The Joint Architecture for Unmanned Systems, Standard Oper-
ating Procedures, v. 1.5, October 10th 2002.

[15] JRP, Joint Robotics Program, Master Plan, FY2005.
[16] J.G. Morillon, O. Lecointe, J.-P. Quin, M. Tissedre, C.Lewandowski,

T. Gauthier, F. Le Gusquet and F. Useo,SYRANO: a ground robotic
system for target acquisition and neutralization, in proceedings of SPIE
Aerosense, Unmanned Ground Vehicle Technology V, vol. 5083, pp.
38-51, September 2003.

[17] L.E. Parker,ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation, IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, pp. 220-240, 1998.

[18] J.K. Rosenblatt,DAMN: A Distributed Architecture for Mobile Naviga-
tion, in proceedings of the 1995 AAAI Spring Symposium on Lessons
Learned from Implemented Software Architectures for Physical Agents,
H. Hexmoor & D. Kortemkamps (Eds.), Menlo Park, CA:AAAI Press.

[19] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras and H. Das,
CLARAty: Coupled Layer Architecture for Robotic Autonomy, technical
report, Jet Propulsion Laboratory, December 2000.

[20] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras and H. Das,The
CLARAty architecture for robotic autonomy, in proceedings of IEEE
Aerospace Conference, Montana, March 2001.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier 


