
DES (Data Exchange System), a publish/subscribe architecture for robotics.

C. Riquier, N. Ricard, C. Rousset
ECA

Rue des Frères Lumière
83130 La Garde

Abstract

This paper presents ECA software architecture for robotics projects such as Miniroc or AUVs.
This architecture is made of two parts:

- Software architecture is the tool to exchange data between processes the DES: Data
Exchange System.

- Functional architecture is the organization of processes in order to fulfill robot
functions.

This paper presents the DES layer and gives an example of utilization.

The DES is based upon a publish/subscribe design.
A Process is a publisher of the data it “creates”, and a subscriber to the data it needs. It
doesn’t need to know which process will publish the data it needs, neither which will use the
data it publishes. Communications are based upon TCP/IP channels directly between the
publishers and the subscribers. A “Mediator” manages all communications between
processes. All processes ask what they want and tell what they can give. The Mediator tells
everyone who can give what they want. Then all communication links are established directly
between processes. At anytime, a process can ask something more, or stop sending a data. The
Mediator also deals with process disappearance or arrival.
The same data can be published by several publishers with different priorities. Data can have
a period of validity.
Processes can be on different computers and they don’t need to know where the other
processes are.
This architecture allows modular hot plug of payloads on robots.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

I - INTRODUCTION

Several years ago (last century in fact !), all ECA robots were based upon point to point
client-server architectures. Most of them had only two processes: one for HMI and one
embedded in the vehicle.
Around year 2000, according to the increasing complexity of robots (more sensors, more
autonomous behaviors, more computers, …), the need of a distributed, reusable and flexible
architecture arises.
Among available concepts of architecture, we chose the “Publish – Subscribe” one. The first
chapter compares three kinds of possible architecture.

The first “Publish – Subscribe” architecture we developed was named “BDC” (Broadcast
Data Center). Our first AUVs were built around it. After two years of utilization, and
according to robots more and more demanding for “real time” performances, we specified
some improvements of the BDC which has been renamed “DES”.
This paper only describes the DES architecture which now equipped our AUVs and
“Miniroc” ground robots (military robots for DGA).

The last chapter of the document illustrates the utilization of the DES, with an example
extract from the Miniroc architecture.

II – COMPARISON OF SEVERAL COMMUNICATION ARCHITECTURES

Distributed real-time applications have unique communication requirements. Real-time
applications must handle different kinds of data flow, such as repetitive updates, single-event
transactions, and reliable transfers; many nodes intercommunicate, making data flow
complex; and dynamic configuration changes occur as nodes leave and join the network.
Strict timing requirements further complicate the entire design.
Traditional client-server architectures route all communications through a central server. This
makes them ill-suited to handle real-time data distribution. Publish-subscribe architectures,
designed to distribute data to many nodes simultaneously and anonymously, have clear
advantages for real-time application developers: they are more efficient, handle complex
communication flow patterns, and map well to underlying connectionless protocols such as
multicast.

Distributed application developers have several choices for easing their communications
effort:
• Client-server, either in the traditional form of a central server node intermediating for a set
of clients or its updated manifestation – distributes objects and object brokers
• Publish-subscribe, in the form of middleware that distributes data – publications –
anonymously among applications in one-to-many patterns.

II.1 Client-Server Architectures
Client-server communications generalize the data flow by allowing one server node to
connect simultaneously to many client nodes. Thus, client-server is a many-toone
architecture. It works well when the server has all the information. Examples of client-server
applications include database servers, transaction processing systems and central file servers.
When the data is produced by multiple nodes for consumption by multiple nodes, client-
server architectures are inefficient because they require an unnecessary transmission step:

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

instead of direct peerto-peer, the data must go through the server. The transmission to the
server also adds unknown delay to the system. Furthermore, the server can become a
bottleneck and presents a single point of failure. Multiple-server nets are possible, but they are
very cumbersome to set up, synchronize, manage, and reconnect when failures occur. This
resolves bottleneck and point-of-failure exposures, however it only increases inefficiencies
and bandwidth consumption.

II.2 Object Brokers
CORBA and DCOM are the best-known examples of distributed object architectures.
Distributed objects architectures are middleware that abstract the complex network
communication functions and promote object re-usability, two features that substantially
reduce the programming effort. Object brokers do not address several distributed realtime
application data flow characteristics, however: they offer little support to control the
properties governing deterministic data delivery (especially important for signal data) and are
cumbersome and unwieldy when programming dynamic, many-to-many flow patterns. This
largely derives from the distributed objects inherent and fundamental reliance on a broker
to route requests and its object management requirements.

II.3 Publish-Subscribe
The publish-subscribe architecture is designed to simplify one-to-many data-distribution
requirements. In this model, an application "publishes” data and "subscribes" to data.
Publishers and subscribers are decoupled from each other too. That is,
• Publishers simply send data anonymously, they do not need any knowledge of the number
or network location of subscribers.
• Subscribers simply receive data anonymously, they do not need any knowledge of the
number or network location of the publisher.
An application can be a publisher, subscriber, or both a publisher and a subscriber.
Publish-subscribe architectures are best-suited to distributed applications with complex data
flows.
The primary advantages of publish-subscribe to applications developers are:
• Publish-subscribe applications are modular and scalable. The data flow is easy to manage
regardless of the number of publishers and subscribers.
• The application subscribes to the data by name rather than to a specific publisher or
publisher location. It can thus accommodate configuration changes without disrupting the data
flow.
• Redundant publishers and subscribers can be supported, allowing programs to be replicated
(e.g. multiple control stations) and moved transparently.
• Publish-subscribe is much more efficient, especially over client-server, with bandwidth
utilization.
Publish-subscribe architectures are not good at sporadic request/response traffic, such as file
transfers. However, this architecture offers practical advantages for applications with
repetitive, time-critical data flows.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

III –DES: Data Exchange System

III-1 – General Principles of Publish – subscribe architectures

Several main features characterize all publish-subscribe architectures:
Distinct declaration and delivery. Communications occur in three simple steps:
• Publisher declares intent to publish a publication.
• Subscriber declares interest in a publication.
• Publisher sends a publication issue.

Named publications: PS applications distribute data using named publications. Each
publication is identified by a name by which a publisher declares and sends the data and a
subscriber declares its interest.

Many-to-many communications support: PS distributes each publication issue
simultaneously in a one-to-many pattern. However, the model’s flexibility helps developers
implement complex, many-to-many distribution schemes quite easily. For example, different
publishers can declare the same publication so that multiple subscribers can get the same
issues from multiple sources.

Event-driven transfer. PS communication is naturally event-driven. A publisher can send the
datum when it is ready. A subscriber can block until the datum arrives. The publish-subscribe
services are typically made available to applications through middleware that sits on top of
the operating system’s network interface and presents an application programming interface
(see Figure 1). The middleware presents a publishsubscribe API so that applications make just
a few simple calls to send and receive publications. The middleware performs the many and
complex network functions that physically distribute the data..

Figure 1. Generic Publish-Subscribe Architecture

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

III – 2 – DES overview

All processes of the architecture are called “Agents”.

There is one special agent which is essential: the MEDIATOR
It is the “heart” of the DES. This Deamon is connected with all the agents running in the
system. Any time a new data flow is required or an existing data flow disappear, the Mediator
send to the concerned agents the pieces of information they need to establish or destroy the
data flow. So the Mediator neither sends nor receives any data flow. It just establishes them
directly from publisher(s) to subscriber(s).
The figure 2, shows the sequence of life of a data flow: all the transitions between the steps of
life are supervised by the Mediator.
The figure 3, shows the data flow itself once it is established (in the state “Publication” of the
figure 2).

Figure 1 : sequence of life of a data flow

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Figure 2 : data flow publication

Three over system processes can be used:

SWC: SoftWare Controller :
This service is a daemon which starts all the agents (including the Mediator), monitors them
(from the OS point of view). Some of the agents are defined as “critic”. If one of the critical
agents crashes, the SWC halts all the system properly.

DRC: Data Recording Center
This service is a special agent which subscribes to all the data you have configured, and
records them with the date.

NTS: Network Time Synchronization
This service is not really part of DES architecture but it is required for dating of data, as soon
as the architecture is distributed among several CPUs. We use the NTP (Network Time
Protocol) implementation provided with the OS.

III – 3 - Different ways to exchange data through DES

The basic principle of publish subscribe is that the subscriber does not decide when to receive
the data. It receives it when the publisher publishes it.
However the DES has a middle layer between data reception and the call from agent
functions, which allows several ways to exchange data.

The event publication:
The publisher publishes its data. The subscriber DES layer receives it and run the associated
callback of the subscriber agent. This allows you to synchronize the subscriber treatments on
reception of data. You typically use this to synchronize a perception and guidance agent on
the reception of the sensor acquisition agent.

Mediator
deamon

DES
Subscriber

DES
PublisherPublication of the data

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

The unsynchronized publication:
The publisher publishes its data. The subscriber DES layer receives it and store it. The
subscriber agent can access the data when it needs it. Only the last data received is stored.
You typically use this to get some parameters that you don’t need to use when they are
published, but only when you start your own treatments. It also allows you to get a data which
has been published before your agent was started. For example, the kind of robot you are on,
or the parameters of the current camera when you want to do some visual treatments on it.

The event publication with FIFO:
Same principle than the event publication but all received data are stored in a FIFO buffer and
one event per data is generated, even if your precedent treatment is not completed. For
example the subscription to a fire order need to receive all the order sequence (FIRE followed
by a CONFIRM).

The unsynchronized publication with FIFO:
Same principle than the event publication, but all received data are stored in a FIFO buffer,
and each time the agent request a data, the oldest received data is returned.

The event publication with a validity period:
The publisher defines a time of validity (T) on its data. An event is generated in subscriber
agent when the data is received. Another event is generated T sec after the reception and the
data is turned invalid. For example the mobility commands published to the agent dealing
with the robot drive are using a validity period.

The unsynchronized publication with a validity period:
The publisher defines a time of validity (T) on its data. The data is available for the subscriber
during T sec after the reception. After that delay, if the subscriber accesses the data, an invalid
access is returned.

The multiple publications without priority:
Several publishers can publish the same data. If you don’t define any priority, all published
data from all publishers are received by the subscriber (all the precedent kinds of publication
can be used).

The multiple publications with priorities:
Several publishers can publish the same data with different priorities. Only the data from the
higher priority publisher, is received by the subscriber.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

IV – DES Use Example

A typical illustration concerns the mobility commands of a mobile robot.

In our architecture the agents interfacing with hardware are named”EV” (for Virtual
Equipment).

The example consists in:

- the “Laser EV” :
o it acquires the laser rangefinder data
o it publishes them periodically, event driven by the hardware acquisition.

- the “Vehicle EV” :
o it subscribes to all the commands the vehicle is waiting for.
o it publishes all the data coming from the vehicle

- a “Guidance Agent” :
o it subscribes (event driven subscription) to EV laser data. Thus, the guidance

treatments and the mobility command publication are synchronized on the
laser data publication.

o it subscribes to the odometry data (unsynchronized subscription) : when the
agent receive a laser data, it accesses to last receive odometry data and utilizes
dates of data to resynchronize odometry with laser data.

o it publishes mobility commands
- a “Teleoperation Agent” :

o it acquires the operator HMI commands
o it publishes them periodically only if the operator want to take over manually

the control of the vehicle.

Let’s focus on mobility commands data flow:

- two publishers are able to publish these commands with different priorities :
o higher priority for téléopération : the operator can supervise the autonomous

guidance and take the hand over if a problem occurs.
o lower priority for autonomous guidance

- the data published have a validity period, so :
o the vehicle stop in case of communication loss with the HMI.
o The lower priority publisher take the hand back, when the higher priority

publisher stop to publish

On this very little example, let’s imagine some evolutions:

- You want to decrease the number of CPU copy your payloads applications on the
vehicle CPU and plug your laser on the vehicle CPU. Everything is still working
without any recompilation neither configuration.

- You want to use your payload on another robot plug your all payload on the
Ethernet switch of the other robot, and give it the address of the new vehicle Mediator.
If the new vehicle does not already have a DES Virtual Equipment, you just need to
develop the hardware interface.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Figure 4: example of data flow

HMI CPU

Teleoperation
Agent

Vehicle CPU

Payload CPU

Vehicle
EV

Guidance
Agent

Laser
EV

Vehicle

Laser

Mediator

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

