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Abstract. Today’s distributed and embedded systems challenge the traditional procedural
approach to reflection. Central to this approach is the use of an “implements” relationship
to realize the connection between the meta and the base level. This restricted view of re-
flection is inappropriate in distributed or embedded computing, where part of the system to
reflect upon cannot be captured in an “implements” relationship, either because we lack a
centralized state or an essential ingredient lies outside the system. We introduce a novel asyn-
chronous reflective model, ARM, where the connection between levels use an asynchronous
publish/subscribe communication model. We show not only that this model is better suited
to distributed and reactive systems, but that it also generalizes the possible forms of reflection
by adopting and adapting to B. Smith’s “right combination of connection and detachment”
between the base and the metalevel. ARM is applied to the reflective control of modular
robots, which dynamic physical reconfigurability must be paralleled by a software recon-
figurability offered by reflection. ARM then uses reactive objects founded on the GALS
approach (globally asynchronous, locally synchronous), which implements synchronization
by future values. A hybrid deliberative/reactive framework inspired by intelligent robotic
control systems is implemented using the ARM[GALS ] for Java platform.

Keywords: reflection, object-oriented systems, distributed systems, embedded & reactive
systems, event-based computing, AI robotics.

1 Introduction

Today’s distributed and embedded systems operate for long periods of time, while large variations
in the level of available resources are observed. Sustaining an acceptable level of performance in
such contexts requires dynamic adaptation of applications. Reflection [39] has been proposed both
as a conceptual framework and as an architectural blueprint to achieve dynamic adaptation of
applications, yet these new systems challenge the traditional procedural approach to reflection.

In this paper, we consider the problem of controlling modular robots. A modular robot is one
that is made of a large number of homogeneous and simple robotic entities, which can be physically
assembled and reconfigured during the mission. Examples of such robots are CONRO [38] and M-
TRAN [48]. The key concept behind modular robotics is that the shape provides for the function.
Modular robots are morphologically reconfigurable to adapt to their mission: open field motion,
go over obstacles, motion within pipes or between close walls, etc. We currently participate in a
modular robot project called MAAM (Molecule := Atom | Atom + Molecule) where modules called
atoms are build from a spherical kernel to which six orthogonal legs are attached. Legs can move in
a cone and they can bind to each others to form molecules (see Figure 1). Because the morphology
of the robot defines its function, we claim that a parallel reconfigurability of the software controlling
the robot is necessary to dynamically implement the control of the new function.

Modular robots are examples of distributed embedded systems for which we introduce a novel
reflection model called Asynchronous Reflection Model, or ARM. We apply this new model to
the software reconfiguration and dynamic adaptation of MAAM atoms. ARM aims at breaking
the limits of procedural reflection to apply to distributed or embedded systems. It is seeking for
generality and genericity, being parameterized both by the kind of base level supporting entities
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Fig. 1. The MAAM atom and molecule.

(components, active objects, reactive objects, and so on) and by the form of reified representation
chosen to match the need for adaptation of the application. Hence, ARM should rather be seen
as a generator ARM[·](·) of reflection models.

We also present a Java implementation of ARM, which is based on an hybrid active and
reactive object model. In this implementation, reactive objects use a synchronous approach to
real-time [18], which meshes well with the event-based computation model of ARM. However, we
preserve active objects, better suited to program the metalevel entities. We therefore have adopted
the globally asynchronous but locally synchronous (GALS) approach. The control of individual
atoms is seen as a synchronous program, which can communicate with other atoms and the met-
alevel using asynchronous events. Our active and reactive objects implement synchronization using
future values, a premiere in this context to our knowledge. For the MAAM project, we have de-
veloped a hybrid deliberative/reactive framework inspired from work in AI robotics [2], within the
ARM[GALS] for Java platform. A first deliberative metamodel for the dynamic adaptation of
atoms has also been implemented.

The rest of the paper is organized as follows. In the next section, we introduce procedural
reflection and then discuss its limitations in order to argue in favor of a novel asynchronous approach
to reflection. In Section 3, we introduce the ARM model and its implementation in Java. Next,
we address the problem of MAAM distributed real-time control by introducing our GALS model,
its integration with ARM to give the ARM[GALS] platform for Java, and its use to develop the
deliberative/reactive framework used to program MAAM atoms. We then compare our approach
to the related work and finally give conclusions and some perspectives of this work.

2 Motivations

2.1 Procedural reflection

Dating back to the seminal work of Smith, reflection is “an entity’s integral ability to represent,

operate on, and otherwise deal with its self in the same way that it represents, operates on and deals

with its primary subject matter” [40]. Reflective behavior is implemented by a metalevel, “the most

identifiable feature of reflective systems”, placed in a meta relationship with a base level. Although
Smith did not impose any particular way to realize this relationship, his 3-Lisp language [39] and
most of its descendents have adopted an “implements” relationship, where the metalevel interprets
or otherwise processes the base level using traditional data structures of language processors reified
into the language of the base level, thus enabling reflective computations.

The restriction of reflection to systems where the metalevel is in an “implements” relationship
with the base level has been called procedural reflection by Jim des Rivières [14] and it has been
defined as follows by Bobrow, Gabriel and White [5] in the context of reflective programming
languages:

“Reflection is the ability of a program to manipulate as data something representing the

state of the program during its own execution. There are two aspects of such manipulation:
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introspection and intercession. Introspection is the ability for a program to observe and

therefore reason about its own state. Intercession is the ability for a program to modify

its own execution state or alter its own interpretation or meaning. Both aspects require

a mechanism for encoding execution state as data; providing such an encoding is called

reification.

To be more precise, reification encompasses both defining a representation (e.g. a class hierar-
chy) and obtaining objects at run-time that actually represent the current state of the computation.
To be effective, introspection and intercession must operate on reified data that are continuously
updated. Causal connection is the property of the link between the base and the metalevel imposing
that any changes to one level leads to a causal effect on the other.

2.2 Limits of procedural reflection

The “implements” relationship exhibits many desirable properties, such as a full causal connection.
When using metacircular interpreters as metalevel, it becomes easy to reify since everything is
already represented by the metacircular interpreter as data structures in the base level language.
However, it has the major drawback of introducing a full coupling between the two levels. Indeed,
when adopting this kind of relationship, the meta in some sense is the base level, an observation
that Danvy and Malmkjaer have formalized under the single-threadedness property of 3-Lisp like
reflective languages [13].

The single-threadedness property says that, at any time, only one of the base or the metalevel
is actually running. A usual corollary assumption permeating all reflective code is that nothing
happens at the base level during reflective computations, and therefore modifications to the base
level through its metalevel representation take effect before any computation steps can be carried
over at the base level. In other words, metalevel and base level computations steps are synchronous

with each other in the sense that they are totally ordered and happening in “mutual exclusion”.
Except for some attempts in AI and agent-oriented programming, this view of reflection has

permeated the vast majority of the reflective languages, middleware and systems proposed to date.
Only a few recent reflective languages and middleware begin to timidly introduce alternatives (see
§6). Unfortunately, this vision does not scale outside the traditional sequential programming field
where it was first realized. Smith has often argued against such a restriction of reflection in an
AI perspective, where his theory would apply to the relation between an intelligent entity and
the world into which it operates [41]. Today, the challenge for this choice of the “implements”
relationship to connect the base and metalevel comes from attempts to apply reflection into the
distributed and embedded computing paradigms, where this relation fails to cope with the very
nature of actual systems.

In distributed computing, the “implements” relationship goes against the absence of a global
state and the inherent characteristics of a system made of independent computing nodes. As a
result, most attempts to introduce reflection in distributed systems either restrict themselves to
reflect upon individual (sequential) entities independently [45, 46, 30, 22, 28, 35, 47, 11, 31, 29], where
a procedural approach can be applied, or reify only very particular aspects (e.g. message sending,
stubs, ...) upon which local reflective computations can be introduced. Little work has been done
to introduce reflection in embedded systems (however, see [21]); difficulties are similar to the ones
while of AI applications foreseen by Smith, since they need reflection upon the “outside world”
that indeed cannot be put in an “implements” relationship with the metalevel.

2.3 Advantages of an asynchronous non-implementing approach

To achieve its full generality, reflection must go beyond the traditional procedural approach and
propose new ways to view reification and to implement the connection between the base level
and its metalevel. In this paper, we propose that the publish/subscribe event-based computation
model is better suited to implement the connection between the meta and the base level. We
therefore introduce an asynchronous reflective model where the communication between levels
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uses asynchronous events and we claim that this model provides the means to adopt and adapt to
the “right combination of connection and detachment” [39] necessary to reflect in general.

Of course, developing a reflective kernel upon a publish/subscribe middleware is not a real chal-
lenge. The crucial point concerns the revolution in the resulting form of reflection and therefore
what this new form allows us to do that was not possible in the traditional procedural reflection

approach. Generally speaking, using asynchronous events and distinguishing the metalevel repre-
sentation from the data structures of the language processor go around the old discussions about
the concurrency versus the non-concurrency between the base and the metalevels. Being relieved
from its execution role, the metalevel can execute concurrently with the the base level.

More substantially, rejecting the strict synchrony imposed by procedural reflection to the ben-
efit of a more finely-shaded semantics more or less synchronized, more or less fault-tolerant, or
respecting different notions of causality between events, allows us to introduce a corresponding
finely-shaded notion of causal connection. This corresponds exactly to what Smith was argueing
for when requiring an equilibrium between connection and detachment among levels. The im-
portance of this aspect appears clearly in real-time systems where strict deadlines must be met
even when calling for reflective computations. These reflective computations must be sufficiently
detached from the real-time base level to maintain the timeliness of the system.

Asynchronous reflection opens a wide spectrum of possible reified representation to be explored
according to the form of introspection and intercession to be implemented. When relieved from
the constraints of acting as the execution state of the language processor, reified representation
can be defined as a model, in its very sense, i.e. an abstraction chosen for its proper goal. In the
complex world of distributed embedded systems, it is illusive to hope for complete models, taking
into account all aspects of the base level. In asynchronous reflection, incompleteness, fuzziness,
or even randomness in representation can be smoothly integrated in models. Given the needs for
adaptation, the model is defined by necessity, for the reified representation and for the means to
construct the model, to instrospect and to intercede with the base level. A model is constructed
by the metalevel by aggregation and processing of events received from the base level. The model
needs not be unique. Models can easily be composite, thanks to the publish/subscribe technology.

Using its autonomous execution, the metalevel can also perceive events coming from other base
level entities and even events coming from sensors collecting information from the non-computerized
“outside” world, thus enabling truly distributed and embedded reflection. Autonomous execution
also allows the metalevel to probe its environment to collect the necessary information. Unlike
reflection à la 3-Lisp, the metalevel can take the lead in adaptation instead of waiting for requests
from the base level.

The flexibility of publish/subscribe communication can also be recruited to provide a wide
spectrum of connection/detachment possibilities. Events coming from the base level entity asso-
ciated to the metalevel can be followed with a finer granularity than the ones coming from other
entities or from the sensors. This can be done using the content-based filtering capabilities of
message-oriented middleware. For example, to reflect upon the tactics and strategies of a robot
football player, the metalevel need not be informed of the precise state of all the mechanisms con-
trolling the movement of the robot. Moreover, in asynchronous procedural reflection, the grain of
observable computational steps can be organized hierarchically (bigger steps being an aggregation
of finer steps) so that the choice of notification granularity can be made on a per entity basis. This
provides exactly the kind of tradeoffs Smith was looking for when he was talking about “the right

combination of connection and detachment”.

Furthermore, as filters can be modified dynamically, the connection/detachment tradeoffs need
not be decided once and for all but rather adapted to the current situation. For example, at some
point in time, the metalevel may want to ignore the level of remaining energy in the robot batteries,
and inhibit the related events. But when the energy level crosses some threshold, the metalevel can
switch into a mode where such events are sollicited and taken into account to adapt the behavior
of the base level (robot). More generally, some sort of meta-events can mark thresholds crossing
leading to a modification in the granularity of observation from the metalevel.

Finally, the very nature of reified representations will drastically change in this new settings.
The experience we got when applying reflection to adapt systems dynamically [27], as well as the
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Fig. 2. Kernel entities of ARM.

work in multi-agent systems show the necessity of prevision and planning for intercession. To adapt
an application to the level of physical resources available is a control problem in the sense of classical
control theory. Poor control policies can severely deteriorate the performance. To repetitively adapt
to rapidly varying physical parameters can lead to a form of trashing where the system does nothing
else but adapt itself. This well-known problem in control theory can be tackled by an appropriate
choice of metalevel representation upon which viable policies, if not optimal, can be computed and
then applied when interceding with the base level. Our asynchronous reflection model therefore goes
towards a marriage of reflection and control to succeed in the dynamic adaptation of applications.

Of course, the major disadvantage of our asynchronous approach to reflection is the loss in
reactiveness of the metalevel. Very fine-grained adaptations, to the level of instructions in the base
level program, will not be efficiently implementable in the asynchronous approach. There are two
counter-arguments to this. First, the kind of adaptability needed in distributed and embedded
systems has often to do with variations of resources or context that happen infrequently compared
to the rythm of instruction scheduling and execution but frequently compared to the duration of the
whole program execution (sometimes years of continuous execution for some embedded systems).
Second, nothing prevents a dual model, where a more traditional procedural reflection tightly
integrated with the base level for language-oriented adaptation combines with an asynchronous
reflection metalevel catering for environmental adaptation.

As a matter of fact, asynchronous reflection does not abolish procedural reflection, because
intercession with a base level program still needs a reification of the program to be effective.
Full procedural reification is not always necessary for all kinds of adaptation however. Reflective
middleware such as reflective virtual machines can provide the necessary APIs to adapt the base
level. In Java, for example, the possiblity to modify the code by hotswap as provided by the
Java Platform Debugging Architecture (JPDA) [23] or code manipulation capabilities provided by
reflective JIT compilers [34] can give enough flexibility to attack a wide spectrum of adaptation
problems.

3 The Asynchronous Reflection Model

3.1 Kernel entities

The kernel of ARM is largely inspired from the ObjVlisp model of Cointe and Briot [7, 12], to which
are added behavioral meta-objects in the line of Ferber [15]. The kernel is therefore built around
three core structural meta-entities, Entity, StructuralMeta and BehavioralMeta, and a first
behavioral meta-entity, hereafter called basicBehavioralMeta, which role is to be the behavioral
meta-entity of all kernel entities, i.e. the three structural meta-entities (“classes”) and itself. We
have avoided the classical names Object, Class and MetaObject in order to emphasize the fact
that ARM extends the procedural reflection of ObjVlisp with a more generic model for the reified
representation of a computational entity from which many different specific representations can be
developed.

Accordingly, we will use the word entity instead of object. ARM can be applied to several
different kinds of base level entities: sequential objects, active objects, reactive objects, components,
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etc. To emphasize this genericity, we will use the notation ARM[·] to introduce the fact that ARM
is rather a generator of reflective kernels for given choices of the kind of base level entities. ARM
need not be directive but rather liberal in the way it can be extended to apply to specific contexts
and to implement specific applications. It therefore focuses more on APIs and relationships between
entities than their actual content.

The figure 2 puts on the main “inheritance”, “instantiation” and “meta-of” relationships of the
ARM kernel. These relationships must be understood with a specific semantics in the context of
ARM, which can have nothing to do with their traditional meaning. Being instance here must
be understood as “having as structural meta-entity”, while inheritance must be understood as
extending a structural meta-entity and the “meta-of” relationship as “having as behavioral meta-
entity”. Specific kernels generated from ARM with a given reified representation are responsible
for giving a precise semantics to these relationships. In a procedural kernel, for example, they
would take back their traditional meanings.

The graph of Figure 2 subsumes the one of ObjVlisp. Entity describes the common structure
and behaviors of entities, while StructuralMeta describes the structure and behaviors common
to all structural meta entities. Being an itself entity, StructuralMeta inherits from Entity. Being
itself the first structural meta-entity, it is constructed in such a way that it is its own instance, i.e.
it possesses the structure and behaviors of a structural meta-entity.

Adding to the relationships isomorphic to those of ObjVlisp, we have everything that have to
do with BehavioralMeta. BehavioralMeta is the structural meta-entity for all behavioral meta-
entities, and therefore is an instance of StructuralMeta. Being also an entity, it inherits from
Entity. The first behavioral meta-entity, basicBehavioralMeta, is instance of BehavioralMeta

and it is the behavioral meta-entity of all kernel entities, including itself.
The main flow of events that appear between the three different kinds of entities in order to

implement the causal connection between the two levels are the following:

– notification of state changes or other semantically important modifications from the base level
entity to its behavioral meta-entity allows the latter to construct or refine its model of what is
currently going on at the base level;

– request for reflective computations can flow from the base level entity to its behavioral meta-
entity, often to initiate an adaptation phase;

– requests from the behavioral meta-entity to the base level occur when adaptation are made;
– adaptation can also lead to modify the structural description of a base level entity, and therefore

we have events flowing from the behavioral meta-entity to the structural one to implement these
modifications;

– accordingly, structural modifications can lead to events flowing from the structural meta-entity
to the base level object to harmonize the structure of the latter with the description held by
the former.

Besides the requests from the behavioral to the structural meta-entities, all other communi-
cation flows go across level boundaries, and are therefore comparable to the classical procedural
reflection operations “reify” and “reflect”. Hence, the problem of designation of reified entities
versus base level entities is posed. This aspect needs a more thorough study with the foundations
of ARM to which we plan to return in future work.

3.2 Generalization of the reified representation concept

The reified representation is central to the metalevel. It is generally decomposed into a structural
part and a behavioral part. The interest of this decomposition is that the structural part can often
be shared among several base level entities (aka classes for objects), while the behavioral part,
which accounts for the run-time state of base level entities, is not sharable by its very nature.

To get some point of reference, in sequential procedural reflection, the reified representation
is implemented by classes (well-known) and by behavioral meta-objects. This representation com-
prises a description of the structure of base level entities, by a list of instance variables (with their
types and other modifiers) and a description of the behavior by a list of methods that can be
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applied by the base level entities. The behavioral representation comprises the execution state of
the base level entities, typically the current continuation and the current environment (given that
the continuation embodies the environments of all subcomputations waiting still for a result of a
method call). In distributed procedural reflection, the local behavioral representation comprises
elements used to manage the concurrency such as the queue of incoming messages and threads.

Being open to several choices in representation that can even live together in one applica-
tion, ARM is conceptually a generator of specific reflective models, noted ARM[·](RR), given a
choice RR of reified representation. The kernel defines a set of abstract “classes” for the reified
representation that impose its constraints. ARM can therefore be concretely viewed as a model
parameterized by a set of concrete classes derived from the representation abstract classes.

The design of this set of abstract classes results from an induction process aiming at making
what transcends different representations appear. In this process, we have currently looked at three
different forms of representation: one based on a classical procedural approach ARM[·](P), one
based on a deterministic finite-state automaton approach ARM[·](DFA), and finally one based
on a statechart approach ARM[·](SC) where it is possible to have several levels of granularity
in a clear semantic framework. The analysis of these three approaches has lead to the following
minimal concepts of a reified representation:

– the set of possible states of the base level entity,
– a behavior that a base level object can apply to go from one state to another,
– the set of behaviors that a base level entity can apply,
– the activation of a base level object, and
– a possible state for a base level object.

The first three concepts are comprised in the structural part of the reified representation, while
the activation concept is the hearth of the behavioral part as it will gather all the information about
the run-time properties of an entity. The state concept can give us an account for the current state
of an entity, thus being part of the behavioral part. On the other hand, the set of possible states
can sometimes be defined in extension as the set of all possible individual states, hence leading to
see the state concept as part of the structural representation too.

ARM represents these concepts as the five entities State, StateSpace, Behavior, Behaviors
and Activation. For the sake of homogeneity, these can be considered as entities of the same kind
as base level entities, but we do not impose that, as we will see in the ARM for Java platforms
where they are abstract classes (partially) describing plain Java objects. The figure 4 provides the
UML model of the kernel entities and reified representation for the ARM for Java platform.

These concepts map easily to different choices of reified representation. For example, the state
of an entity can be a vector of instance variable values (for traditional objects), a state in an
automaton (for the DFA approach), or a (possibly composite) state in the statechart approach.
The set of possible states can be the cartesian product of set of admissible values (product type)
for traditional objects, or sets of states defined in extensions for DFA or statcharts. A behavior
can be seen as a method in traditional objects, but also as a transition in a DFA or a statechart.
Accordingly, the set of behaviors can be either a method dictionary (procedural reflection) or the
set of all transitions in the automaton (DFA or statechart).

3.3 Events of the communication protocol

The communication protocol between levels implies the use of asynchronous events. Besides events
that implements more traditional method invocations, ARM also needs events to notify the met-
alevel of changes at the base level. One can imagine two general well-known approaches to notifying
the metalevel. First, the base level can notify its state changes. Be it a differential description of
the new state from the current one, this can lead to quite large events if the state of the entity
comprises a large amount of data. A second approach notifies the actions taken at the base level,
from which the metalevel model can reconstruct the new state given the current state.

These two notification modes are equally interesting in our context. The notification of actions
can use a small amount of data if the parameters are of primitive data types only. On the other
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Fig. 3. Active objects.

hand, reconstructing a new state can be computationally intensive in some cases. The notification
of state changes can be data intensive if it entails the communication of a large amount of data, but
has a low computational cost. From another point of view, in distributed settings, notification of
state changes is much more robust to loss of events than action notification. To let users choose the
most appropriate form of notification for individual entities, ARM provides both a StateEvent

generic state notification event and an ActionEvent generic action notification event.

4 A Java implementation of ARM for active objects

4.1 Asynchronous active objects as base level entities

A concurrent and distributed declension of ARM is implemented in the Java J2EE platform
upon the basis of active objects communicating with asynchronous events and synchronizing using
future values. In fact, the base level computational model upon which ARM for Java is founded
is borrowed from Nierstrasz’s Hybrid language [33]. Asynchronous active objects (AAO) represent
the unit of concurrent and distributed computation, around which islands of unshared passive
objects aggregate. Passive objects cannot communicate directly with objects (passive or active)
that are not part of their island; they have to use their proprietary active object to do so. The
implementation is inspired from the design pattern Active Object formalized by Schmidt [37].

The figure 3 gives a UML class diagram of our package active. The core functionality is imple-
mented by the class ActiveObject, which is a thread (inherits from Thread) and which implements
distributed message passing and notification using the Java Message Service (JMS) asynchronous
communication API. All events used by ARM inherits from the class Event. An event has a sender
and a destination; while queued by the receiver, a boolean method isProcessable tells whether
the event is processable given the current state of the servant object.

Events can either carry data or activate methods in receivers. Method requests are executable
events that implement the interface Callable. A callable event has a guard method which tests
the processability of the event given the state of the servant. The servant is set by setServant

upon enqueue of the event. When processable, the event become candidate to a dequeue and is
applied using the method apply.
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A method request can be unsynchronized (MethodRequest) or synchronized (Synchronized-
MethodRequest). Synchronization is implemented using futures or promises [20, 25], a well-known
synchronization method in asynchronous communication. When a synchronized event is published,
an instance of FutureValue is created to represent the return value (resp. an instance of Future
representing the return signal, when there is no value but just a synchronization signal to be sent
back) in the sender. When the event has been processed, the receiver returns the result (resp. the
signal) to the sender. When the sender tries to access the result (or the signal) using the getValue

(resp. touch) method, there are two possibilities. If the value (resp. the signal) has already been
received, the sender gets that value (resp. that signal) and continue its execution. If not received
yet, it waits for the value (resp. signal) and resumes its execution only when the value arrives.

Events sent to active objects are queued into the object bounded buffer (class BoundedBuffer).
The basic behavior of an active object is to repeatedly remove a processable event from its bounded
buffer, and to process it. When none of the events are processable, or when there is no awaiting
event at all, the active object becomes dormant until a processable event comes in.

To send events through JMS, active objects first put them into an instance of javax.jms.

ObjectMessage and then send them using the JMS API. Communication in JMS is organized in
topics. The package active uses the topic called "active/Future" to deliver future values (or
signal) between active objects. Three other JMS topics are introduced to organize the communi-
cation in ARM: "arm/Entity" for the communication between entities, "arm/SMeta" for the one
between base level entities and their structural meta-entity, and "arm/BMeta" for the one between
base level entities and their behavioral meta-entity.

4.2 ARM for Java kernel

The figure 4 gives a UML class diagram for the kernel entities and for the representation ab-
stract classes of ARM[AAO](·) for Java. Besides the fact that Entity inherits from the class
ActiveObject of the active package, we can identify relationships already defined in the model.
Entities are represented by asynchronous active objects. Their main behavior appears in how they
process incoming events, which is defined by the method process. A structural meta-entity pro-
vides you with methods to add (addbehavior), delete (deleteBehavior) or look up (lookup)
behaviors. It also provides you with methods to get the initial state (getInitialState) for an
instance of the structural meta, as well as a mapping from state events to states (mapToState) of
their instances. A behavioral meta-entity provides you with a way to add a new base level entity to
be the meta of (addBaseLevelEntity), and to delete an existing one (deleteBaseLevelEntity).

Because structural (and behavioral) meta-entities are also entities, they are also represented
by asynchronous active objects. A bootstrap, implemented by the static method bootstrap of
StructuralMeta creates the three corresponding entities for the kernel, as well as the basic be-
havioral meta-entity.

We have also defined a package representation containing the five classes corresponding to
the representation entities in ARM. These classes are abstract and minimal. Only the essential
relationships between them are defined; further refinements are deferred to specifically generated
kernels. Notice that an activation for an entity is obtained by calling the method activate defined
on the StateSpace of the entity.

Finally, ARM defines the two abstract classes ActionEvent and StateEvent. An action event
holds at least the name (the method name or the transition identifier) of the behavior which
activation led to the notification of the event.

5 Application to AI robotics

5.1 Control architecture for AI robotics

AI robotic control systems are founded on the organization of the three basic primitive functions:
sense, plan and act [32]. After a long domination from the hierarchical paradigm, where the em-
phasis is put on the creation of an exhaustive model of the environment used by planning, AI
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Fig. 4. Kernel and representation entities of ARM.

robotics has been faced to the difficulty of creating such a complete model and to plan actions
from such complex data structures within strict deadlines to cope with the real-time nature of
robot operations.

Using lessons from ethology, Brooks [9] has proposed the reactive paradigm, which abandons
planning in favor of very simple reflexes associating directly a reaction to each possible perceptions
of the robot, without any memory of past perceptions and reactions. In this paradigm, the intel-
ligence of the robot is emerging from the combination of a possibly large number of elementary
reflexes. The absence of memory is grounded in Gibson’s argument saying that “the world is its

own best representation” [32, quoted in] which should be accessed only through perception. The
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Suppress (replace) the output 2 of A.

reactive paradigm leads to the design of robots capable to react very rapidly to stimuli coming from
their ecological niche. Reflex behaviors are implemented using three types of behavior modules:

1. perceptors, which role consists in reading sensors and producing stimuli (or the absence thereof)
looked for by the robot (e.g. a spot of light in an image),

2. reactors, which role consists in computing the parameters of reactions given the actual stimuli

and their intensity, and
3. actuators, which role is to transform the reaction parameters into orders to the physical actu-

ators of the robot.

When composed, higher-level behaviors can inhibit lower-level behaviors, in much the same
way our intelligent behaviors most of the time inhibit our animal ones. That’s what is called
subsumption in the reactive paradigm. To do that, modules are added to connect perceptors,
reactors and actuators, which allow us to inhibit stimuli from perceptors or reaction parameters
computed by rectors. The figure 5 illustrate these possibilities.

The successes of the reactive paradigm in the beginning of the nineties have given the first
hope for operational situated intelligent robots. Unfortunately, the lack of a model of the robot
environment and even more of planning soon appeared as a position far too extreme. Reactive
control can become quite complex when trying to cope with some abnormal situations (looping,
for instance), where planning could provide an answer. The emergent behavior of a large reactive
robot can be very difficult to predict or to alter. Hybrid deliberative/reactive architectures have
been introduced to get the best of both worlds. A reactive level takes care of robot reflexes in order
to react in real-time to events from the environment, while a deliberative level can run in parallel
to construct a model of the environment and to plan for future actions or to repair current faulty
actions (such as looping). One possibility is to have the deliberative level producing new reactive
programs to be used for a while at the reactive level until some goal has been reached or some
abnormal situation is detected, and then to change for another reactive program.

5.2 A globally asynchronous but locally synchronous model

In our MAAM project, we aim at using reflection and ARM to implement the reactive part at
the base level and the deliberative part at the metalevel. To do so, we have to provide a real-time
computational model for the base level entities of ARM. Generally speaking, robotic systems are
examples of the family of reactive systems. Reactive systems are those which main function is to
react continuously to events occuring in their environment in order to produce reactions, often in
the form of orders executed by actuators to act upon their environment. This distinguishes them
from more traditional transformational systems, which compute outputs from inputs. Furthermore,
reactive systems must cope with an environment which cannot wait, and they are generally intended
to be deterministic. This distinguishes them from more general interactive systems. Typical reactive
systems are plant control systems.

One of the most interesting approach to program reactive systems is the synchronous approach
[18], which is based on a few simple hypothesis:
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– events from the environment occur at discrete time instants,
– at each instant, the system computes reactions from all of the events perceived at that instant,
– the time to compute reactions is small compared to the time between two successive discrete

instants, and
– reactions can lead to the emission of events, which are perceived instantaneously by all reactive

processes at the next discrete time instant, along with environmental events.

The major advantages of the synchronous approach to reactive programming is the expres-
sive power of synchronous parallel composition, the potential for efficient implementation, and the
availability of formal verification methods [19]. The appropriateness of the synchronous program-
ming approach to robot control justifies its choice for MAAM atoms. However, if synchronous
programming is well adapted to the control of individual atoms, Halbwachs and Baghdadi [19]
note that it is not so well adapted to the case of distributed embedded systems where the intrinsic
asynchronism must necessarily be taken into account. Currently, researchers are looking at globally
asynchronous but locally synchronous (GALS) architectures to cope with distributed embedded
systems. In such architectures, local synchronous processes are composed with each others using
asynchronous communication [19].

We have chosen the GALS approach for our MAAM atoms. Unfornatunately, if the synchronous
approach matches very well the reactive part of MAAM atoms, it is not really appropriate to
implement the more AI-oriented deliberative functions. Hence, the GALS model we have chosen
for MAAM is a composition of both asynchronous active objects and synchronous reactive ones,
composed using a publish/subscribe communication model. Schmidt and O’Ryan [36] have shown
that publish/subscribe communication can have a level of performance that is compatible with
distributed embedded programming, therefore justifying our choice.

The mix of active and reactive objects within one system raises the issue of synchronization
mechanisms between both kind of entities. In the ARM for Java platform, we have used futures to
implement synchronization between the asynchronous active objects. The mode of synchronization
is not readily adoptable for reactive objects. Obviously, the waiting entailed by the traditional
semantics of the touch and getValue operations is not appropriate for reactive objects given
their real-time constraints. To solve the problem, we have simply noticed that active wait, which
is usually considered as a bad practice in concurrent programming, is in fact the usual practice
in real-time systems. Hence, we have adopted an active-wait semantics for reactive objects when
synchronizing using futures. Futures are seen as any other stimuli upon which behavior modules
can be fired (waiting). But if at some synchronous reactive cycle an awaited future is not available,
other behaviors can continue their execution to keep up with the real-time deadlines while waiting
for synchronization on other behaviors.

5.3 A Java implementation of ARM[GALS]

Most implementations of the synchronous approach re tightly integrated with synchronous lan-
guages, which are not appropriate to program robot deliberative functions. Few synchronous sys-
tems exist to date in Java1, the language we have chosen for MAAM as a compromise between the
real-time nature of the reactive level and the AI-bound nature of the deliberative level. We have
therefore chosen to implement a minimal extension of our active package to introduce synchronous
reactive objects with their semantics of synchronization on futures.

The figure 6 shows the new class diagram of the active package. In such an object-oriented
settings, it would have been interesting to derive a class ReactiveObject from ActiveObject.
Unfortunately, this would have caused difficulties when inheriting. Decoupling active and reactive
behaviors would naturally lead to two classes in the ARM kernel: Entity and ReactiveEntity.
Because of the single inheritance of Java, it is hard to satisfactorily implement the ReactiveEntity
class because it would have to inherit both from Entity and from ReactiveObject. We have
therefore chosen to keep just one class ActiveObject with two modes of operation chosen upon
instantiation: synchronous and asynchronous.

1 SugarCubes [43] is a notable exception, but its implementation is too resource consuming for the MAAM
atom light-weight electronic.
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Fig. 6. Reactive objects.

The asynchronous mode of operation is the genuine ARM for Java behavior described in the
preceding section. The synchronous mode is the one of reactive objects. In this mode, a clock
object (class Clock) rythms the execution of reactive object threads. At each given period of
time, the clock releases all the threads waiting. When released, the threads execute one reactive
cycle, which consists in taking all events waiting in their bounded buffer and to process them
according to their reactive behavior. When the processing is done, the threads put themselves on
a wait for the next release signal from the clock. Futures are now considered as any other events
for reactive objects, thus instance of the class FutureEvent. The classes SynchronousFuture and
SynchronousFutureValue implement the active-wait semantics of futures for the synchronous
mode of operation of reactive objects. Active objects keep the traditional semantics with Future

and FutureValue

5.4 Hybrid reactive/deliberative model

In our MAAM atoms, robot control is defined as a combination of reactive schemas, themselves
being sets of perceptor, reactor and actuator modules. From a programmer point of view, we have
implemented a complete reactive framework under ARM[GALS] for Java platform, which class
diagram appears in Figure 8. The robot programmer has only to:

1. design his/her reactive schemas, taking possible subsumptions into account,
2. create the corresponding modules with classes inheriting from our framework classes,
3. create the classes for signals among modules by inheriting from our class Signal, and
4. create a class of reactive object, say Robot, inheriting from our class AbstractRobot, af-

ter which reactive behavior instances will have to be registered (using addBehaviorModule,
addConnector, . . . ).

To organize the reactive behaviors, we propose to have reactive schemas (Schema) composed of
reactive modules (ReactiveModule), which themselves comprise behavioral modules (Behavior-
Module). A reactive schema represents a logical function in the robot; it can be the basis for
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Fig. 7. Reactive framework under ARM[GALS ] for Java.

adaptation by dynamic addition or subtraction of schemas in the robot reactive program. Behavior
modules can be perceptors (Perceptor), reactors (Reactor) and actuators (Actuator).

Schemas and behavior modules can be connected to each other using connectors (Connector),
which comprise inhibitors (Inhibitor), suppressors (Suppressor) and derivators (Derivator). A
schema must form an directed acyclic graph. The scheduling of behavior modules is implemented
by a topological sort of that graph. Behavior modules in schemas are partially scheduled up to the
connections to other schemas. The complete schedule of a robot instance is made when all schemas
are known. When actually running, the robot simply executes all of its behavior modules, in turn,
as scheduled within one cycle of synchronous reaction. A complete rescheduling is done when one
or more schemas are added or subtracted by the robot metalevel. The deliberative part of the
framework is currently implemented by one abstract class MetaRobot, which main purpose is to
do the scheduling of its base level robot. The class Scheduler implements the above scheduling
algorithm.

The figure 8 shows how our deliberative/reactive framework integrates with ARM[GALS]. The
class AbstractRobot inherits from Entity, using the synchronous operating mode, from which base
level robot entities are created (e.g. robot1 and robot2). A class BMetaRobot defines behavioral
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Fig. 8. MAAM robots under ARM[GALS ] for Java.

meta-entities for robot (e.g. bmrobot1 and bmrobot2). The adaptation protocol put in place by
AbstractRobot and BMetaRobot proceeds as follows:

1. at each synchronous cycle, notifications from the base level robots are sent to the behavioral
meta,

2. the behavioral meta integrates these notifications into its reified model of the base level;
this possibly fires an adaptation request sent to the base level as an event representing
setScheduling or changeModule method request (the time needed to execute this adapta-
tion must stay within the duration of a cycle to match the synchronous hypothesis),

3. the adaptation request is processed by the base level.

The adaptation request cannot be processed as other events in the synchronous processing
cycle. Modifications are better handled when the base level is in some kind of renewal state, which
needs the lowest possible amount of work to do the adaptation. For synchronous programs, this
can either be at the beginning or at the end of a cycle. Depending on the priority to be given to
adaptation compared to meeting the deadlines, the programmer can chose either policies.

6 Related work

In parallel with the industrial adoption of publish/subscribe communication for distributed pro-
gramming, as the JMS API testifies, some work have introduced event-based communication in
reflective operating systems and middleware [4, 3, 24, 44] and more generally in systems trying to
implement forms of dynamic adaptability [27]. We should also mention work in computer-human
interaction, like the MVC, as well as the Observer and State design patterns that have popular-
ized the concept and the use of notification in general. This work, as well as their counterpart in
reflection [6, 16] have inspired our work on ARM.

Among reflective languages, LEAD++ [1] proposes an approach with tends towards ARM
ideas, without breaking with procedural reflection though. The use of events has also inspired
Dynascope [42], a supervision system, which Sosic̆ read out as reflective. One can see in this
system a precursor of the Java Platform Debugger Architecture (JPDA) [23]. MetaXa [17] uses
events to reflect upon a Java-like virtual machine, but stays close to procedural reflection.

In object-oriented concurrent and distributed programming, most of the reflective languages
restrict themselves to local reflection where the metaobject can be a processor for the base level
(see [8] for a review of this wide area). Other systems have retricted themselves to the reification
of very specific aspects of their implementation, such as stubs and proxies, upon which reflective
computations can be locally implemented. All of these sticks to procedural reflection.

The actor and agent research community has identified and begins to explore ideas similar to
the ones developed in ARM. Without sharing the inspiration for agents, ARM can clearly share
much of the implementation ideas with that area. Very few papers build bridges between reflection
and control theory, Pii Lunau offering a notable exception [26], yet taking a procedural point of
view.
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The synchronous approach to reactive systes is generally associated with synchronous languages,
like Esterel. The objective of a synchronous language is to offer a way to describe how events must
be processed during a cycle of the logical clock. Several of these languages use the logical concurrent
composition between computational activities an event emission. Robotic control architectures, like
the deliberative/reactive ones pursue essentially the same goals. This is why we have not chosen
to implement our base level entities using a synchronous language or system, like Rejo [43].

Arkin’s book [2] is the reference in the area of reactive architectures in AI robotics. We did
not find a reference implementation of these ideas in Java. In AI robotics, there is a tendency for
everyone, that we unfortunately had to pursue, to reimplement his own framework. However, most
of the work we had access to use a manual scheduling of behavior modules.

Halstead has proposed futures as a synchronization abstraction in MultiLisp [20], which has
then been improved by Liskov and Shrira with promises [25]. Halbwachs and Baghdadi [19] propose
to emulate different synchronization schemes in the synchronous approach, something we actually
do with our implementation of futures for synchronous reactive systems. Caromel and Roudier
[10] have proposed a reactive extension to the Eiffel// language, but they use an asynchronous
approach to reactive systems borrowed from the Electre asynchronous reactive language.

7 Conclusion

ARM[·](·) is a new generic reflection model that we have argued in this paper to be much better
suited to address the challenges of today’s distributed and embedded systems. ARM is inspired
from the ObjVlisp model to which behavioral meta entities are added. However, the traditional
language processor role of the metalevel is abandonned in favor of a much more general role
of model construction and controlled adaptation of the base level. The traditional procedural
reified representation is also traded for the much more general concept of reification model, where
incompleteness, fuzziness and probabilistic account of the base level can be used to capture the
necessary properties of the base level to enable the wide-range of reflective capabilities needed in
distributed and embedded systems.

ARM has been developed and applied to a modular robotics project called MAAM, where
the physical reconfigurability of the robots has to be paralleled by an equivalent software recon-
figurability. To that end, we have designed and implemented the ARM[GALS] for Java platform.
This platform uses a globally asynchronous but locally synchronous approach to the design of dis-
tributed embedded systems. In our platform, asynchronous active objects mesh with synchronous
reactive objects to implement a hybrid deliberative/reactive framework typical in AI robotics. This
implementation proposes to use futures for synchronization in GALS systems, a premiere to our
knowledge.

Numerous perspectives are open by this work. Asynchronous reflection poses a large number of
profound questions, such as the possibilities offered by new forms of reified representations, and the
relationship between the kinds of adaptation and the required level of precision, synchronization,
fault-tolerance and causality that must be imposed on events notifying state changes in the base
level to the metalevel. Another important issue is the marriage of control theory and reflection
that must be done to keep away from undesirable adaptation policies which would do nothing but
repeatedly adapt the system to rapidly varying level of available physical resources for example.
IBM has launched the autonomic computing initiative where such issues have a deep impact.
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