

Overview of a new Robot Controller
Development Methodology

R. Passama1,2, D. Andreu1, C. Dony2, T. Libourel2

1Robotics Department
2Computer sciences Department

LIRMM, 161 rue Ada 34392 Montpellier, France
E-mail : {passama, andreu, dony, libourel}@lirmm.fr

Abstract - The paper presents a methodology for the development of robot software controllers, based on actual
software component approaches and robot control architectures. This methodology defines a process that
guides developers from the analysis of a robot controller to its execution. A proposed control architecture
pattern and a dedicated component-based language, focusing on modularity, reusability, scalability and
upgradeability of controller architectures parts during design and implementation steps, are presented. Finally,
language implementation issues are shown.

Keywords: Software Components, Control Architecture, Integration, Reuse, Object Petri Nets.

I. INTRODUCTION

Robots are complex systems whose complexity is continuously increasing as more and more
intelligence (decisional and operational autonomies, human-machine interaction, robots cooperation,
etc.) is embedded into their controllers. This complexity also depends, of course, on the mechanical
portion of the robot that the controller has to deal with, ranging from simple vehicles to complex
humanoid robots. Robot controllers development platforms and their underlying methodologies are of
great importance for laboratories and IT societies, because there is an increasing interest in future
service robotics. Such platforms help developers in many of their activities (modelling, programming,
model analysis, test and simulation) and should take into account preoccupations like the reuse of
software pieces and the modularity of control architectures as they correspond to two major issues.

The goal of our team is to provide a robot controller development methodology and its dedicated

tools, in order to help developers overcoming problems during all steps of the design process. So, we
investigate on the creation of a software paradigm that specifically deals with controller development
preoccupations. From the study of robot control architectures presented in the literature, we identified
four main different practices in control architecture design approaches that must be considered.

The first practice is the structuring of the control activities. There are different approaches. One

approach consists in decomposing the control architecture into hierarchical layers, like in LAAS
architecture [ALA, 98], 4D/RDC [ALB, 02], ORCCAD [BOR, 98] and some others. Each layer within
the robot controller has a “decision-making system”, as each layer only ensures part of the control
(from low level control to planning). Such a decomposition impacts on the reactivity of the robot
controller. The lower the layer is, the higher is the time constraint of its execution. The upper the
layer is, the higher is the priority of its reaction. This hierarchical approach has been extended to
hybrid architectures. For instance, AURA [ARK, 97] proposes to mix it with a behavioural approach
in order to improve reactivity. In doing so, the interaction scheme is not limited to interactions
between adjacent layers (for reactivity purposes): some data can be simultaneously available to
several layers, or an event, can be directly notified to the upper layers (without passing through
intermediary ones), etc. In behavioural approaches, like the subsumption architecture [BRO, 86] or

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

similar ones (AURA for example), interactions between basic behaviours are complex, even if those
interactions are not explicit and that they are taken into account by means of an “external” entity (for
instance, the entity that computes the weighting of commands generated by individual low level
behaviours).

The second practice is the decomposition of the control architecture into sub-systems that

incorporate the control of specific parts of a robotic system. This practice is reified in IDEA agents
architectures [MUS, 02] and Chimera development methodology [STE, 96]. This organizational view is
orthogonal to the hierarchical one: each sub-system can incorporate both reactive and ‘long term’
decision-making activities and so can be ”layered” itself.

The third practice is to separate, in the architecture description, the “robot operative portion”

description from the “control and decision-making” one. This practice is often adopted at
implementation phase, except in specific architectures like CLARATY [VOL,01], in which the “real
world” description is made by means of objects hierarchies. These two portions of a robot, its
mechanical portion (including its sensors and actuators) and its control one, are intrinsically
interdependent. Nevertheless, for reasons of reusability and upgradeability, the controller design
should separate, as far as possible, two aspects: the functionalities that are expected from the robot on
the one hand, and, on the other, both the representation of the mechanical part that implements them
and that of the environment with which it interacts. One current limitation in the development of
robot software controllers is the difficulty of integrating different functionalities, potentially
originating from different teams (laboratories), into a same controller, as they are often closely
designed and developed for a given robot (i.e. for a given mechanical part). Hence, upgradeability and
reusability are aims that are currently almost impossible to achieve since both aspects of the robot
(control and mechanical descriptions) are tightly merged. The reuse of decision-making/control
systems parts is also a big challenge, because of the different approaches (behavioural or hierarchical)
that can be used to design it.

Finally, the fourth practice is to use notations to describe the controller’s parts and to formalize

their interactions. Model-based specifications are coupled with formal analysis techniques in order to
follow a “quality-oriented” design process. The verification of properties like invariants or the
research of “dead-lock free” interactions are examples of benefits of such a process.

A robotic development methodology and its platform should propose a way to develop a control

architecture using all these practices, as they correspond to complementary preoccupations. We
identified five different preoccupations: description of the real world, description of the control (in the
following this term will include decision-making, action, perception, etc.), description of interactions,
description of the layers of the hierarchy, description of subsystems. The software component
paradigm [SZY,99] helps dealing with these preoccupations in many ways (separation of protocols
description from computation description, deployment management, etc.). Component based
approaches propose techniques to support easy reuse and integration and they sometimes rely on
formal languages to describe complex behaviour and interactions (aiming at improving quality of the
design), like architecture description languages [MED, 97] for example.

In the following sections, we present the CoSARC (Component-based Software Architecture of

Robot Controllers) development methodology, based on actual component models. It defines a
process that guides developers during analysis, design, implementation and deployment phases. It is
based on two concepts: a control architecture pattern for analysis, presented in section 2, and a
component-based language, presented in section 3. It integrates robot controller preoccupation
management and takes into account actual practices by promoting the use of Objects Petri Nets. The

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

component execution and deployment model is shown in section 4. This paper concludes by citing
actual work on, and perspectives of, the CoSARC methodology.

II. CONTROL ARCHITECTURE PATTERN

The CoSARC methodology provides a generic view on robot control architecture design by means
of an architecture pattern. The proposed pattern is adaptable to a large set of hybrid architectures. It
provides a conceptual framework to the developers, useful for controller analysis. The analysis phase
is an important stage because it allows outlining of all the entities involved in the actions/reactions of
the controller (i.e. the robot behaviour) and the interactions between them. It is made by following
concepts and organization described in the pattern. It takes into account robot controller description
depending on robot’s physical portion (operative portion), to make the analysis more intuitive. The
pattern also deals with design subjects, by defining the properties of layers of the hierarchy and the
matching between layers and entities.

The central abstraction in the architecture pattern is the Resource. A resource is a part of the robot’s

intelligence that is responsible for the control of a given set of independently controllable physical
elements. For instance, consider a mobile manipulator robot consisting of a mechanical arm
(manipulator) and a vehicle. It is possible to abstract at least two resources: the ManipulatorResource
which controls the mechanical arm and the MobileResource which controls the vehicle. Depending on
developer’s choices or needs, a third resource can also be considered, coupling all the different
physical elements of the robot, the Mobile-ManipulatorResource. This resource is thus in charge of the
control of all the degrees of freedom of the vehicle and the mechanical arm (the robot is thus
considered as a whole). The breaking down of the robot’s intelligence into resources mainly depends
on three factors: the robot’s physical elements, the functionalities that the robot must provide and the
means developers have to implement those functionalities with this operative part.

A resource (cf. Fig. 1) corresponds to a sub-architecture decomposed into a set of hierarchically
organised interacting entities. Presented from bottom to top, they are:

• A set of Commands. A command is in charge of the periodical generation of command data to

actuators, according to given higher-level instructions (often setup points) and sensor data.
Commands encapsulate control laws. The actuators which are concerned belong to the set of
physical elements controlled by this resource. An example of a command of the
ManipulatorResource is the JointSpacePositionCommand (based on a joint space-position control law
that is not sensible to singularities, i.e. singular positions linked to the lining up of some axis of
the arm).

• A set of Perceptions. A perception is responsible for the periodical transformation of sensor data

into, potentially, more abstract data. An example of a perception of the ManipulatorResource is the
ArmConfigurationPerception that generates the data representing the configuration of the mechanical
arm in the task space from joint space data (by means of the direct geometrical model of the arm).

• A set of Event Generators. An event generator ensures the detection of predefined events

(exteroceptive or proprioceptive phenomena) and their notification to higher-level entities. An
example of an event generator of the ManipulatorResource is the SingularityGenerator; it is able to
detect, for instance, the singularity vicinity (by means of a ‘singularity model’, i.e. a set of
equations describing the singular configurations).

• A set of Actions. An action represents an (atomic) activity that the resource can carry out. An

action is in charge of commutations and reconfigurations of commands. An example of action of

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

the ManipulatorResource is the ManipulatorContactSearchAction, which uses a set of commands to
which belongs the ManipulatorImpedanceCommand. This command is based on an impedance
control law (allowing a spring-damper like behaviour). In a more “behavioural oriented” design
an action could activate and deactivate sets of commands and manage the summing and the
weighting of the command data they send to I/O controllers.

Figure 1: Control architecture pattern (UML-like syntax), and properties of the layers.

• A set of Modes. Each Mode describes the behaviour of a resource and defines the set of orders

the resource is able to perform in the given mode. For example, the MobileResource has two
modes: the MobileTeleoperationMode using which the human operator can directly control the
vehicle (low-level teleoperation, for which obstacle avoidance is ensured), and the
MobileAutonomousMode in which the resource is able to accomplish high-level orders (e.g., ‘go to
position’). A mode is responsible for the breaking down of orders into a sequence of actions, as
well as the scheduling and synchronization of these actions.

• A Resource Supervisor is the entity in charge of the modes commutation strategy, which depends

on the current context of execution, the context being defined by the corresponding operative
portion state, the environment state and the orders to be performed. A robot control architecture
consists of a set of resources (Fig. 1). The Global Supervisor of a robot controller is responsible
for the management of resources according to orders sent by the operator, and events and data
respectively produced by event generators and perceptions. Event generators and perceptions not
belonging to a resource thus refer to physical elements not contained in any resource. In the given
example, we use such resource-independent event generators to notify, for instance, ‘low battery
level’ and ‘loss of WiFi connection’ events to some resources as well as to the global supervisor.
The lowest level of the hierarchical decomposition of a robot controller is composed of a set of
Input/Output controllers. These I/O controllers are in charge of periodical sensor- and actuator-
data updating. Commands, event generators, and perceptions interact with I/O controllers in
order to obtain sensor data, and commands use them to set actuator values. Other upper layer
entities, like actions for instance, can directly interact with I/O controllers to configure their
activities (if necessary).

Time constraints

Input/Output Controller

Global Supervisor

Event
Generator

1..*

*

1..* 1..*

Resource Supervisor

Mode

Action

Resource

Command Perception
Event

Generator

1..*

1..*

1..*
1..*

*

1..1

Mission
Manager 1..1

1..1

Robot Controller Reaction priority

low

medium

high low

high

medium

Reactivity
loop

Control
relationship

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Organization inside resources and robot controller follow a hierarchical approach. Each layer
represents a ”level of control and decision” in the controller activities. The upper layer incorporates
entities embedding complex decision-making mechanisms like modes, supervisors and mission
managers. The intermediate layer incorporates entities like control schemas (commands), observers
modules (event generators, perceptions) and reflex adaptation activities (inside actions). The lowest
layer (I/O controllers) interfaces upper layers with sensor, actuators and external communication
peripherals, and helps standardizing data exchanges. The semantic of layers hierarchy is based on the
“control” relationship: a given layer controls the activities of lower layers. Two design properties
emerge from this hierarchical organization. The first one is that upper layers must have a higher
priority of reaction than lower layers, because their decision is more important for the system at a
global scope. The second one is that lower layers have greater temporal constraints to respect,
because they contain reflex and periodic activities. Managing these properties together is very
important for the “real-time” aspect of the control architecture and has to be considered in our
proposition.

III. COMPONENT-BASED LANGUAGE

A. General concepts

The CoSARC language is devoted to the design and implementation of robot controller
architectures. This language draws from existing software component technologies such as Fractal
[BRU, 02] or CCM [OMG, 01] and Architecture Description Languages such as Meta-H [BIN, 96] or
ArchJava [ALD, 03]. It proposes a set of structures to describe the architecture in terms of a
composition of cooperating software components. A software component is a reusable entity subject
to “late composition”: the assembly of components is not defined at ‘component development time’
but at ‘architecture description time’.

The main features of components in the CoSARC language are internal properties, ports,
interfaces, and connections. A component encapsulates internal properties (such as operations and
data) that define the component implementation. A component’s port is a point of connection with
other components. A port is typed by an interface, which is a contract containing the declaration of a
set of services. If a port is ‘required’, the component uses one or more services declared in the
interface typing the port. If a port is ‘provided’, the component offers the services declared in the
interface typing the port. All required ports must always be connected whereas it is unnecessary for
provided ones. The internal properties of a component implement services and service calls, all being
defined in the interfaces typing each port of a component. Connections are explicit architecture
description entities, used to connect ports. A connection is used to connect ‘required’ ports with
‘provided’ ones. When a connection is established, the compatibility of interfaces is checked, to
ensure ports connection consistency.

Components composition mechanism (by means of connections between their ports) supports the
“late composition” paradigm. The step when using a component-based language is to separate the
definition of components from software architecture description (i.e. their composition). Components
are independently defined/programmed and are made available in a ‘shelf of components’. According
to the software architecture to be described, components are used and composed (i.e. their ports are
connected by means of connections). The advantages of such a composition paradigm is to improve
the reusability of components (because they are more independent from each other than objects), and
the modularity of architectures (possibility to change components and/or connections). Obviously, the
reuse of components is influenced by the standardization of interfaces typing their ports (which define
the compatibility and so, the composability of components), but this is out of the scope of this paper.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

In the CoSARC language, there are four types of components: Representation Components, Control
Components, Connectors and Configurations. Each of them is used to deal with a specific
preoccupation of controller architecture design and implementation. We present the specificities of
these types in the following sub-sections.

B. Representation Components

This type of component is used to describe a robot’s “knowledge” as regards on its operative part,
its mission and its environment. Representation components are used to satisfy the “real-world
modelling” preoccupation, but their use can be extended to whatever developers considers as the
knowledge of the robot. They can represent concrete entities, such as those relating to the robot’s
physical elements (e.g. chassis, and wheels of a vehicle) or elements of its environment. They can
also represent abstract entities, such as events, sensor/actuator data, mission orders, control or
perception computational models (in this context, those models are mathematical models that describe
how to compute a set of outputs based on a given set of inputs, like for instance control laws and
observers), etc. When a developer wants to represent the fact that a specific model is applied on a
specific (operative) part of the robot, it just has to connect those two representation components: that
corresponding to the computational model with that related to the operative part. For example, Fig. 2
illustrates how to apply a control law to a given vehicle.

Representation components are ‘passive’ entities that only act when one of their provided services

is called. They only interact according to a synchronous communication model. Internally,
representation components consist of object-like attributes and operations. Operations implement the
services declared in provided ports and they use services declared in interfaces of required ports.
Representation components are incorporated and/or exchanged by components of other types, such as
control components and connectors. Representation components can also be composed between
themselves when they require services of each-other. Indeed, a representation component consists of a
set of provided ports that allows other representation components to get the value of its “static”
physical properties (wheel diameter, frame width, etc.) and/or to set/get the current value of its
“dynamic” properties (velocity and orientation of wheels, etc.).

Figure 2: Example of two connected representation components

Fig. 2 shows a simple example of composition. The representation component called

VehiclePositionControlLaw consists of:
• a provided port, typed by the VehicleActuatorsValueComputation interface, through which another

component (a representation or a control component) can ask for a computation of the value to
be applied to the actuator.

• and two required ports. The first one is typed by the VehiclePhysicalPropertiesConsultation
interface, the second one by the VehicleDynamicProperties interface. These interfaces are

Vehicle

VehiclePosition
ControlLaw

VehiclePhysicalPropertiesConsultation

VehicleDynamicPropertiesAccess

VehicleActuatorsValueComputation

port

typing
interface

Representation component

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

necessary for the computation as some parameters of the model depend on the vehicle on which
the corresponding law is applied. The corresponding ports are provided by the representation
component Vehicle. VehiclePositionControlLaw and Vehicle are so composed by connecting the two
required ports of VehiclePositionControlLaw with the two corresponding provided ports of Vehicle.

C. Control Components

A Control Component describes a part of the control activities of a robot controller. It can represent
several entities of the controller, as we decompose the controller into a set of interconnected entities
(all being components), like for example: Command (i.e. entity that executes a control law or a
control sequence), Perception (i.e. entity in charge of sensor signal analysis, estimation, etc.), Event
Generator (i.e. entity that monitors event occurrences), Mode Supervisor (i.e. entity that pilots the use
of a physical resource in a given mode as teleoperation, autonomous, cooperation), Mission Manager
(i.e. entity that manages the execution of a given mission), etc. A control component incorporates and
manages a set of representation components which define the knowledge it uses to determine the
contextual state and to make its decisions.

Control components are ‘active’ entities. They can have one or more (potentially parallel) activities,

and they can send messages to other control components (the communication being further detailed).
Internal properties of a control component are attributes, operations and an asynchronous behaviour.
Representation components are incorporated as attributes (representing the knowledge used by the
component) and as formal parameters of its operations. Each operation of a control component
represents a context change during its execution. The asynchronous behaviour of the control
component is described by an Object Petri Net (OPN) [SIB, 85], that models its ‘control logic’ (i.e. the
event-based control-flow). Tokens inside the OPN refer to representation components used by the
control component. The OPN structure describes the logical and temporal way the operations of a
control component are managed (synchronizations, parallelism, concurrent access to its attributes,
etc.). Operations of the control component are executed when firing OPN transitions. This OPN based
behaviour also describes the exchanges (message reception and emission) performed by the control
component, as well as the way it synchronizes its internal activities according to these messages. Thus
the OPN corresponds to the reaction of the control component according to the context evolution
(received message, occurring events, etc.).

We chose OPN both for modelling and implementation purposes. The use of Petri nets with objects

is justified by the need of formalism to describe precisely synchronizations, concurrent access to data
and parallelism (unlike finite state machines) within control components, but also interactions
between them. The use of Petri nets is common, for specification and analysis purposes, in the
automation and robotic communities. Petri nets formal analysis has been widely studied, and provides
algorithms [DAV, 04] for verifying the controller event-based model (its logical part). Moreover, Petri
nets with objects can be executed by means of a token player, which extends its use to programming
purposes (cf. section 4).

Fig. 3 shows a simplified example of a control component behaviour that corresponds to a

command entity, named VehiclePositionCommand. It has three attributes: its periodicity, the Vehicle
being controlled and the applied VehiclePositionControlLaw. The Vehicle and the
VehiclePositionControlLaw are connected in the same way as described in Fig.3, meaning that the
VehiclePositionCommand will apply the VehiclePositionControlLaw to the Vehicle at a given periodicity.
Such decomposition allows the adaptation of the control component VehiclePositionCommand to the
Vehicle and VehiclePositionControlLaw used (i.e. the representation components it incorporates). It is
thus possible to reuse this control component in different control architectures (for vehicles of the
same type).

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

This control component’s provided port (Fig. 3) is typed by the interface named

VehiclePositionControl that declares services offered (to other control components) in order to be
activated/deactivated/configured. Its required ports are typed by one interface each:
VehicleMotorsAccess which declares services used to fix the value of the vehicle’s motors and
MobileWheelVelocityandOrientationAccess which declares services used to obtain the values of the
orientation and velocity of the vehicle’s wheels. These two interfaces are provided by ports of one or
more other control components (depending on the decomposition of the control architecture).

The (simplified) OPN representing the asynchronous behaviour of VehiclePositionCommand shown in

Fig. 3, describes the periodic control loop it performs. This loop is composed of three steps:
- the first one (firing of transition T1) consists in requesting sensors data,
- the second one (firing of transition T2) consists in computing the reaction by executing MotorData

computeVehicleMotorControl(Velocity,Orientation) operation (cf. Fig. 1) and then by fixing the values of
the vehicle motors (token put in FixMotorValue black place),

- and the third one (firing of transition T3) consists in waiting for the next period before a new
iteration (loop). Grey and black Petri net places both represent, respectively, the reception and
transmission of messages corresponding to service calls. For example, grey places startExecution and
stopExecution correspond to a service declared in the VehiclePositionControl interface, whereas the black
place RequestVelAndOrient and the grey place ReceiveVelAndOrient correspond to a service declared in
the VehicleWheelVelocityandOrientationAccess interface.

Figure 3: Simple example of a control component

VehiclePositionControl
: Executor
In StartExecution()
In StopExecution()

VehicleMotorsAccesss
: Sender
Out
FixMotorsValues(MotorCommandData)

VehicleWheelsVelocityAndOrientationAccess
: Requester
Out RequestVelAndOrien()
In ReceiveVelAndOrient(Velocity, Orientation)

VehiclePositionCommand
Attributes:
int period;
VehiclePositionControlLaw law;
Vehicle v;
Operations: MotorData computeVehicleMotorControl (Velocity,
Orientation)
//state change and initialization operations
Asynchronous Behaviour:

<v, law>

[period,∞]

RequestVel
AndOrient

FixMotors
Value

T1

T2
T3

ReceiveVel
AndOrient stopExecution

startExecution

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

D. Connectors

Connections of control components are reified into components named connectors (that allow the

assembly). Connectors contain the protocol according to which connected control components
interact. Being a component, a connector is an entity definable and reusable by a user. It implements a
protocol that potentially involves a large number of message exchanges, synchronizations and
constraints. Once defined, connectors can be reused for different connections into the control
architecture. This separation of the interaction aspect from the control one appears to be very
important in order to create generic protocols adapted to domain specific architectures. One good
practical aspect of this separation is that it leads to distinguish interactions description with control
activities description, whereas describing both aspects inside the same entity type would reduce the
reusability.

 A connector incorporates sub-components named roles (as attributes). Each role defines the
behaviour’s part that a control component adopts when interacting through the protocol defined by
the connector. We then say that a control component “plays” or “assumes” a role. For example, the
connector of Fig. 4 describes a simple interaction between a RequesterRole and a ReplierRole. The
control component assuming the Requester role sends a request message to the control component
assuming the Replier role, which then sends the reply message to the Requester (once the reply has
been computed). For each role it incorporates, a connector associates one of its required or provided
ports. A connector’s port is typed by an interface that defines the message exchanges allowed
between the connector on one side and the control component to be connected on the other side. Fig.
4 shows that the connector has one provided port (left) typed by the Requester interface and one
required port (right) typed by the Replier interface. The Replier interface defines the message
exchanges between the connector and the VehicleIOController control component. VehicleIOController
receives a request from the connector, computes it internally, and then sends the reply. The
connection between the control components and the connector has been possible because of the
compatibility of ports: an interface typing a connector’s port (provided or required) must be
referenced by the interface of the control component’s port to which it is connected. Fig. 2 shows that
VehicleWheelsVelocityAndOrientationAccess interface references the Requester interface which allows the
connection of VehiclePositionCommand’s port; VelocityAndOrientationAccess interface references the
Replier interface which allows the connection of VehicleIOController‘s port (cf. Fig. 4). Finally,
compatibility of control components ports is verified according to interface names. Fig. 4 shows that
the connection has been possible because VehicleWheelsVelocityAndOrientationAccess service is required
and provided by the two control components ports connected (i.e. each interface has the same name).

Figure 4: Simple connector example, connecting two control components

VehicleWheelVelocityandOrientationAccess

Vehicle
Position

Command

Vehicle
I/O

controller

Requester
In sendRequest(any)
Out receivedReply(any)

Replier
Out receiveRequest(any)
In sendReply(any)

RequesterRole ReplierRole

RequestReplyConnection

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

A connector can be a very adaptive entity. First, the number of roles played by components can be

parameterized. Connector’s initialisation operation is useful to manage the number of roles played,
according to the number of control components ports to be connected by the connector and according
to their interfaces. A cardinality is associated with each role to define constraints on the number of
role instances. For example, the ReplierRole has to be instantiated exactly one time, and the
RequesterRole can be instantiated one or more time. The second adaptive capacity of connector is the
ability to define generic (templates-like) parameters that allow to parameterize the connector with
types. This is particularly important to abstract, as far as possible, the connector description from data
types used in message exchanges. In Fig.2, the connector has two generic parameters: anyReq,
representing the list of the types of the parameters transmitted with the request and anyRep,
representing the list of types of the parameters transmitted with the reply. RequestReplyConnection is
parameterized as follows: anyReq is valued to void, because no data is transmitted with the message;
anyRep is valued with the Velocity and Orientation types pair, because these are the two pieces of
information returned by the reply. Protocols being describes into a composition of roles, roles are
parameterized entities too.

Figure 5: RequesterRole and ReplierRoles

A role is a sub-component, part of a connector, that itself has ports, attributes, operations and an
asynchronous behaviour, like control components (Fig. 5). But unlike, control components, roles
description is completely bounded to connectors one. A role has a provided or a required port
exported by the connector to make it “visible” outside the connector (and then, connectable with
control component’s ports). Other ports of roles are internal to the connector (Fig. 4) and are
connected by the connector’s initialization operation. A role implements the message exchange
between the port of the connected control component and its (own) associated port, as well as the
message exchange with the other role(s) of the connector (i.e. exchanges inside the connector).
Constraints described in the OPN of the ReplierRole (Fig. 5) ensure that only one request will be sent
by the Requester until it receives a reply, and that the Replier will process only one request until it
sends the reply to the Requester. The OPN of ReplierRole ensures that only one request will be proceed
at a time by the component assuming this role. It also describes the way it identifies and memorizes
the requester in order to send it the reply. A specific object of type Id, that contains all necessary
configuration information to this end, can be transmitted during messages exchanges. RequesterRole
sends its own identifier object to the ReplierRole, with transmitRequest message (the state of the Id is
“informing”). The ReplierRole uses this Id to identify its clients and then sends it the reply computed
by the control component behaviour. In this case, the Id is used to configure communications (its state
is “routing”), and not as registering data. When more than one RequesterRole exists, each has a port
typed by the Transmitter interface that is connected to the corresponding provided port of the unique
ReplierRole. Then their Id are used by the replier to select the receiver of the computed reply. The
initialization of role Id is made by the initialization operation of the connector.

Ports internal
to the connector

RequesterRole<anyReq, anyRep>
sendRequest

receiveReply

transmitRequest

transmitReply

Trasmitter < anyReq, anyRep>
Out transmitRequest(Id,anyReq)
In transmitReply(Id, anyRep)

Requester< anyReq, anyRep>
In sendRequest(anyReq)
Out receiveReply(anyRep)

<id>
<id, anyReq>

<id, anyRep>

< anyReq>
< anyRep>

Port
exported
by the
connector

ReplierRole<anyReq, anyRep>

sendReply

receiveRequest transmitRequest

transmitReply

Trasmitter < anyReq, anyRep>
In transmitRequest(Id,anyReq)
Out transmitReply(Id, anyRep)

Replier< anyReq, anyRep>
Out receiveRequest(anyReq)
In sendReply(anyRep)

<id, anyReq>

<id, anyRep>

< anyReq>
< anyRep>

Port
exported

by the
connector< Id>

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

The RequestReplyConnection connector can be used to establish connections between different

control components, if the interaction to be described corresponds to this protocol, and if ports are
compatible. To design a mobile robot architecture, we defined (and used several times) different types
of connectors supporting protocols like EventNotification or DataPublishing.

Connectors being also modelled by Petri nets, it allows to build the OPN resulting from the
composition of control components (i.e. the model resulting from the composition of all their
asynchronous behaviours). Thanks to this property, developers can analyze inter-component
synchronizations, allowing then to check, for example, that those interconnections do not introduce
any dead-lock.

E. Configurations

Once the control architecture (or part of it) has been completely modelled, the result is a graph of
the composition of control components (composition done by means of connectors). The CoSARC
language provides another type of component, named Configuration, that contains this graph. It
allows developers to incorporate a software (sub-)architecture into a reusable entity. Configurations
can be used to separate the description of sub-systems, each one corresponding to a resource of the
robot. The global control architecture can be represented by configuration. At design phase, a
configuration can be considered as a control component because it has ports that are connectable via
connectors. Ports of a configuration export ports of control components that the configuration
contains (dotted lines, Fig. 6). At runtime, any connection to those ports is replaced by a connection
to the initial port, i.e. to that of the concerned control component. Fig. 6 shows an example of a
configuration: the MobileSubSystem, corresponding to the sub-architecture controlling the vehicle part
of a mobile robot. It exports the provided port of the MobileSupervisor and the required ports of
VehiclePositionCommand and VehicleObstacleEventGenerator. Since a configuration can contain others
configurations, it allows developers to describe the controller architecture at different levels of
granularity.

Figure 6: Managing architecture organization: description of the MobileResource by means of a
configuration and description of its deployment.

The CoSARC language provides structures to describe the deployment of a configuration. This

description is made of two phases:

Vehicle
Autonomous

Mode

Action
Vehicle
Move To
Position

Vehicle
Position
Command

Vehicle
Obstacle
Event

Generator

Mobile Resource

Mobile
 Supervisor

processing node

container

Containers priority
Control components
 placement

configuration

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

- the hardware description phase (graphs of nodes, communication networks) allows to define
operating system (OS) resources available to execute components,
- the component placement phase allows to define the different OS processes (named
containers) executing one or more control components and to define the scheduling of these
processes on each node. At the deployment stage, configurations incorporate the description used
to install and configure components.

This mechanism allows to treat the deployment of an architecture independently of the control

behaviour it defines. We chose to treat the organization of a control architecture into layers
(hierarchy) during the deployment phase. A container is the unity that is useful to (parts of) layer’s
description. The relationships between layers are translated into container execution configuration:
container’s process execution priorities are set depending on layer’s relationship (the upper is the
layer represented by the container, the higher is its priority of reaction). One future research is to find
a multi-criteria scheduling algorithm (dealing with temporal constraints in addition to containers
priorities) which will be more adapted to the management of layers hierarchy, in order to ensure
maximal reactivity of low layers without sacrificing pre-emption of upper layers.

IV. DEPLOYMENT & EXECUTION MODEL

The CoSARC language is not only a design but also a programming language. Then, it needs a

framework to execute components. This framework is a middleware application that runs on top of an
OS. It provides standardized access to OS functionalities, and a set of functionalities specific to the
CoSARC components execution. It is also in charge of configuration deployment (i.e. the deployment
of control components and connectors corresponding to the description made) by creating containers
and by managing their scheduling on each processing node.

Figure 7: Container’s internal structure

A container is in charge of the execution of a set of control components and the set of all

the roles played by these components. Any number of control components and roles can be placed
into one container, and many containers can be deployed on the same processing node. It supports
OPN execution and roles communications by the mean of two software processes that interact
with an asynchronous communication model (Fig. 7): the Token Player (TP) and the Interaction

Threaded
Operation

Timer

Interaction
Engine

operation
ending
events

token
emission

token
reception

Threaded
Operation

Timer Timer time
events

Threaded
Operation

timer
programming

parallel operation
programming

Token
Player

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Engine (IE). The TP is a kind of OPN inference engine that executes the byte code in which is
compiled the OPN resulting from the composition of all the asynchronous behaviours of roles and
control components contained in the container. During its execution, it can program threads for
parallel operation execution and timers for timed transition management. During execution, the
TP communicates with the Interaction Engine (IE) for emission and reception of external messages.
The IE manages run-time communications of control components that are contained in the
corresponding container. These communications between control components are configured
depending on the connection of the roles they play. At run-time the IE of a given container exchanges
messages with IE of others containers according to roles connection information. Given a container,
its IE unpacks received messages to give corresponding tokens to the Token Player. And vice-versa
its IE packs up tokens arriving from its TP to send the corresponding messages (Fig. 8).

Figure 8: container communications

In the next subsections we first present components deployment model and we focus on OPN
execution mechanism in the second one.

A. Deployment Model Overview

The execution of CoSARC components is completely configured by their deployment. The

description of configuration deployment is useful to describe precisely components execution issues.
It is used to configure containers priorities, but it also helps determining where and how OPN are
executed. The deployment is realized by the following steps:

• The component placement step consists in creating each container on nodes and placing
components code inside containers, corresponding to deployment description (Fig.6).

• The role assignment step consists in defining where roles are executed. This is automatically
deduced from the preceding step by applying the following rule: when a control component plays a
role, this role is executed in the same container as the control component. Fig.9 shows that
VehiclePositionCommand and RequesterRole are placed inside the same container. A connector can be
then distributed among different containers.

• The behaviour execution model definition step consists in producing a global OPN that will be
executed by the TP. A container OPN model can be made of the disjoined union of the complete
control component behaviour. A complete behaviour is an OPN model of the fusion of a control
component’s and role’s asynchronous behaviours. This fusion is deduced from each connection
between a control component and a role it plays: each place concerned with message exchanges, of a

IE

Token
unpacking

Token
reception

TP Token
Inference

IE

Token
packing

TP

Token
emission Message

transmission

Container Container

Token
Inference

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

control component’s OPN, is merged with the corresponding place of a role’s OPN, according to port
connection and interface matching. The resulting OPN, executed by a container, is thus made of as
many “complete behaviours” as control component it has to execute. These behaviours can
communicate between each others (if connections between their roles exist) and they can
communicate with behaviours contained in other containers. Fig. 9 gives an example of this step: it
shows that, for example, places P1 and P3 are merged, because they are bind to the same sendRequest
service of the Requester Interface.

Figure 9: deployment of containers - OPN byte code compilation.

• The container communication configuration step consists in defining communications between
(and inside) Interaction Engines of containers, according to connections between ports of roles (Fig.
4). For example, the RequesterRole r1 and the ReplierRole r2 are connected by their ports typed by the
Transmitter interface. The interaction described in the two Transmitter interfaces (Figs. 4, 5) implies
that r1 sends transmitRequest message to r2 and that r2 sends transmitReply message to r1 (once their
ports are connected).

Configuring communications supported by Interactions Engines is made in different steps. First it
requires to determine relations between Interactions Engines. This is deduced by applying the
following operation:

foreach port p of a role r executed by a container c

foreach port p’ of a role r’ executed in container c’
if p connected with p’

configure message reception and emission between c and c’
with information of p and p’ interfaces.

end
end

Second, it consists in defining the system communication supports (pipe, TCP/IP, etc.) used to
make IE communication effective. This is done in accordance with connector deployment. If a
connector is deployed on one container, the communication is local to the IE, so the IE directly route
tokens without using OS communication support. If it is deployed on two or more containers placed
on the same processing node, the communication relies on OS process communication procedures

RequestReply
Connection

Requester Role

Replier Role

Vehicle
I/O controller

VehiclePositionCommand

P1

P2

P3

P4

P5

P6

P7

P8P9

P10
P11

P12

P1–P3

P2–P4

P5

P6

P8

P10–P11

P9–P12

P7

Container 1

Container 2

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

(e.g. Mailbox). If the connector is deployed then a network communication protocol has to be used
(e.g. TCP/IP). For the moment, we don’t consider network distribution problems.

Finally, it consists, for each IE, in doing the matching of the message reception and emission points

on one hand, and respectively input and output places of OPN played by the TP on the other hand.
This information is directly extracted from ports description (ports reference input and output places
associated to message transmission). The IE can then, packs tokens arriving from the token-player
into emitted messages, and unpacks token from message arrivals.

Figure 10: Configuring containers communications with connector and deployment information.

Fig. 10 shows an example of the configuration of the interaction engines of container 1 and 2
according to the connector used and its deployment. We can see that IE of container 1 packs tokens
coming from the place P5 into a transmitRequest message and sends the message to container 2. The IE
of container 2 unpacks the token from the message and puts it to the place P7.

B. OPN Execution Model Overview

Basically there are two main approaches for implementing a discrete-event controller specified by
means of a Petri net [VAL, 95]. For the first one, by means of a procedural language, a collection of
tasks are coded in such a way that their overall behaviour emulates the dynamics of the Petri net. For
the second one, the Petri net is considered as a set of declarative rules. Then an inference engine
which does not depend on the particular Petri net to be implemented operates on the data structure
representing the net. This inference engine is the Token player that propagates tokens with respect to
the semantic of OPN formalism. The TP also executes functional calls contained in condition and
action parts of OPN’s transitions. Operations can be threaded when their execution is too long and
may block the inference for a too long time. The TP also programs timers when it needs time events
to be monitored (time-out, periodic, delay events) to deal with timing notations on transitions. When
timer or thread execution is finished, they send corresponding internal events to the TP. The argument
to use a TP instead of a direct compilation into a programming language, is that the state of the OPN
during execution is reified, allowing then to put in place introspection (dynamic study of OPN state)
and reflexive (dynamic change of the OPN state) mechanisms. Introspection is useful to reason, at
run-time, about sequences of events, in order to detect a problem and elaborate a diagnosis.
Reflexivity is useful to correct (or modify) the OPN state, one diagnosis is done.

Vehicle
Position

Command
Vehicle

I/O
controller

RequestReplyConnection

Requester
Role

Replier
Role

Processing Node

Container 1Container 2

Container 2 Container 1

Token
Player

Token
Player

P5

P6

P7

P8

Interaction
Engine

Interaction
Engine

transmitRequest(Id,void)

transmitReply(Id,
Velocity, Orientation)

<Id,
void>

<Id, vel,
ori>

<Id,
vel, ori>

<Id,
void>

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

The Token Player inference mechanism [PAS, 02] is event based: PNO tokens are propagated in the

PN control structure, as far as possible according to OPN propagation rules, and then stands for new
events to reactivate the inference mechanism. In order to optimise the OPN inference, its structure is
compiled into an equivalent executable structure (Fig. 11). The principle is to decompose transitions
into an optimised graph of transition nodes (test, joint, time and action nodes are only used if
required); the propagation mechanism is applied on this resulting graph.

Figure 11: compilation of a transition into an executable structure

The propagation mechanism propagates tokens as far as possible within this resulting graph. The

TP starts from new marked places of the PNO and propagates tokens of each new marked place
through transitions, i.e. the deepest as possible within the equivalent graph. For example, in Fig. 11,
the token will be propagated to the first node ("test"). In the case of a successful test, the token will be
blocked before the "Joint" node until a token arrives in the adjacent "test" node and satisfies this test.
When done, the two tokens are used to verify test associated to the "Joint" node. If this step is passed,
tokens continue their propagation to the "Time" node and stands for the time event to occur (if
specified). Once the time event has occurred, the propagation will continue to the "Action" node,
where operations will be executed (as well as eventually new token creations). When new tokens
have been created and put into one or more post-places, these places are considered to be newly
marked ones.

When the propagation is not possible anymore (i.e. there is no newly marked place), the OPN

inference mechanism is in a “stable state”. A “stable state” is a state in which token propagation is
waiting for event occurrences to be pursued (Fig. 12). So, in a stable state, the token player stands for
internal events (time event or parallel operation ending) and/or external events (message arrival) that
will reactivate token propagation. For instance, when an external event occurs a new token is created
and put into the corresponding Input Place; such newly marked place leads the propagation to start
again.

The right part of Fig. 12 depicts the propagation of tokens from newly marked place. When all
tokens have been propagated from such place to its post-transitions, this place is no more considered
as a newly marked place. If a transition is fired (action is executed) then new tokens are created and
put down into post-places which become then newly marked places. When all the post-transition of a
given place have been treated, then the token player checks if new internal events occurred. If none,
the propagation pursues with another newly marked place. On the other hand, if an internal event has
occurred, it is treated before pursuing with the newly marked places. When all the newly marked

conditions

actions [t1, t2]

test test

Joint

Time =[t1, t2]

Action

<a>

<a>

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

places have been considered and in lack of internal event occurrences, the token player reaches a
“stable state”.

In this inference mechanism, we distinguish internal and external events: internal events are

monitored more frequently than external ones (Fig. 12). This distinction is made because of the nature
(meaning) of the events. For reactivity purposes, internal events, and particularly time events, must be
handled as quickly as possible. Indeed, such events can correspond to watchdogs for example.
External events result from message arrivals and represent communications between component
instances. Internal reactivity (reaction and propagation) is considered as having priority over external
request. When tokens are put into output places, these tokens are given to the Interaction Engine in
charge of sending them as parameters of messages.

Figure 12: Simplified Token Player inference mechanism

For determinism and performance purposes, the token player relies on:
- A real time operating system which allows to manage time events thanks to real time clocks, and to
define precisely component instances process execution priorities.
- The determinism of the executed structure that is possible thanks to OPN transition firing priorities.
- The efficiency of the propagation mechanism. It allows to avoid polling of the OPN (cyclic
execution) and consequently optimises its execution (and processor use).
- The robustness of the inference mechanism which guarantees that no evolution will take place if an
incoherent or a non-pertinent event occurs.

Actually, the TP has been developed and tested in order to validate inference mechanism. A
complete and real-time version of container’s execution mechanism is under development.
Representation components are translated into objects and their types are translated into classes. Each
of these classes implements the object interfaces corresponding to the interfaces typing the provided
ports. Each required port is translated into a specific attribute that references the object interface
corresponding to the interfaces typing the required ports. Connections of representation component
ports are also manageable by means of a specific connection object.

for T, a post-transition of
this newly marked place P.

propagates all new
tokens from P to T.

yes

yes
no

Stable State :
Wait no

managing new
events

internal or external
event reception

yes no

 another post-
transition

of P ?

new
internal
event ?

still newly
marked
places ?

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

V. CONCLUSION

We have presented the CoSARC methodology, which is devoted to improving quality, modularity,
reusability and the upgradeability of robot control architectures, along all the architecture life cycle,
from analysis to execution. To this end, the methodology relies on two aspects: an architecture pattern
and a component-based language. The proposed architecture pattern helps in many way for the
organization of control activities, by synthesizing main organization principles. It also gives a way for
identifying control activities and their interactions with respect to material elements of the robot. It is
also specifically dedicated to the reification and the integration of human expertise (control laws,
physical descriptions, modes management, observers, action scheduling, etc.). The CoSARC
language deals with design, implementation and deployment of control software architecture. It
supports four categories of components, each one dealing with a specific aspect during control
architecture description. Moreover, it has the added benefit of relying on a formal approach based on
Object Petri Nets formalism. This allows analysis to be performed at the design stage which is a great
advantage when designing the control of complex systems.

Current works concern the development of the CoSARC execution environment and of the
CoSARC language development toolkit.

REFERENCES

[ALA, 98] Alami, R. & Chatila, R. & Fleury, S. & Ghallab, M. & Ingrand, F. An architecture for autonomy,
International Journal of Robotics Research, vol. 17, no. 4 (April 1998), p.315-337.
[ALB, 02] Albus, J.S. & al., 4D/RDC: A reference model architecture for unmanned vehicle systems. Technical
report, NISTIR 6910, 2002.
[ALD, 03] Aldrich, J. & Sazawal, V. & Chambers, C. & Notkin, D. Language support for connector
abstraction, in Proceedings of ECOOP’2003, pp.74-102, Darmstadt, Germany, July 2003.
[ARK, 97] Arkin, R.C. & Balch, T. Aura : principles and practice in review. Technical report, College of
Computing, Georgia Institute of Technology, 1997.
[BIN, 96] Binns, P. & Engelhart, M. & Jackson, M. & Vestal, S. Domain Specific Architectures for Guidance,
Navigation and Control. International Journal of Software Engineering and Knowledge Engineering, vol. 6, no.
2 (June 1996), pp.201-227, World Scientific Publishing Company.
[BOR,98] Borrely, J.J. & al. The Orccad Architecture. International Journal of Robotics Research, Special
issues on Integrated Architectures for Robot Control and Porgramming, vol. 17, no. 4 (April 1998), pp.338-359.
[BRO,98] Brooks, R. & al.. Alternative Essences of Intelligence. in Proceedings of American Association of
Artificial Intelligence (AAAI), pp. 89-97, July 1998, Madison, Wisconsin, USA.
[BRO, 86] Brooks, R.A. A robust layered control system for a mobile robot. IEEE journal of Robotics and
Automation, vol. 2, no. 1, pp.14-23, 1986.
[BRU, 02] Bruneton, E. & Coupaye, T. & Stefani, J.B. Recursive and Dynamic Software Composition with
Sharing. In Proceedings of the 7th International Workshop on Component-Oriented Programming (WCOP02)
at ECOOP 2002, June 2002, Malaga, Spain.
[DAV, 04] David, R. & Alla, H. Discrete, Continuous and Hybrid Petri Nets. Ed. Springer, ISBN 3-540-22480-
7, 2004.
[MED, 97] Medvidovic, N. & Taylor, R.N. A framework for Classifying and Comparing Software Architecture
Description Languages. In Proceedings of the 6th European Software Engineering Conference together with the
5th ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), Springer-Verlag,
pp. 60-76, 1997, Zurich, Switzerland.
[MUS, 02] Muscettola, N. & al.. Idea : Planning at the core of autonomous reactive agents. In Proceedings of
the 3rd Int. NASA Workshop on Planning and Scheduling for Space, 2002.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

[OMG, 01] OMG. Corba 3.0 new components chapters. OMG TC Document formal 2001-11-03, Object
Management Group, December 2001.
[PAS, 02] Passama, R & Andreu, D. & Raclot, F. & Libourel, T. J-NetObject :Un Noyau d'Exécution de
Réseaux de Petri à Objets Temporels. Research report LIRMM n°02182, version 1.0, LIRMM, France,
December 2002.
[SIB, 85] Sibertin-Blanc, C. High-level Petri Nets with Data Structure, in proceedings of the 6th European
workshop on Application and Theory of Petri Nets, pp.141-170, Espoo, Finland, June 1985.
[STE, 96] Stewart, D. B. The Chimera Methodology: Designing Dynamically Reconfigurable and Reusable
Real-Time Software Using Port-Based Objects, International Journal of Software Engineering and Knowledge
Engineering, vol. 6, no. 2, pp.249-277, June 1996.
[SZY, 99] Szyperski, C. Component Software: Beyond Object Oriented Programming, Addison-Wesley
publishing.
[VAL, 95] R. Valette. Petri nets for control and monitoring: specification, verification, implementation. In
workshop « Analysis and Design of Event-Driven Operations in Process Systems, Imperial College, Centre for
Process System Engineering, London, 10-11 April 1995.
[VOL, 01] Volpe, R. & al. The CLARATy Architecture for Robotic Autonomy, in Proceedings of the IEEE
Aerospace Conference (IAC-2001), vol. 1, pp.121-132, Big Sky, Montana, USA, March 2001.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

