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Abstract 

Autonomy is required onboard uninhabited vehicles that move in partially known and dynamic environments. This 
autonomy is made possible thanks to the use of embedded decisional software architectures. This paper presents ProCoSA, an 
asynchronous Petri net-based tool that enables implementing such architectures. It allows procedure programming and 
execution in autonomous systems. Vehicle behaviours are modelled using Petri nets; a Petri net player runs the model and 
manages links with other software components. Several decisional architectures developed using ProCoSA for different types 
of vehicles - Autonomous Underwater Vehicle (AUV), autonomous Uninhabited Aerial Vehicle (UAV) and autonomous 
Uninhabited Ground Vehicles (UGVs) - are described in this paper, together with associated experiments and results. 

 

 

 

 

1. Introduction 

Research on autonomy is performed for Uninhabited 
Ground Vehicles (UGVs), Uninhabited Aerial Vehicles 
(UAVs), Autonomous Underwater Vehicles (AUVs) and 
space vehicles. Autonomy is characterised by the level of 
interaction between the vehicle and a human operator: the 
higher level the operator’s decisions are, the more 
autonomous the vehicle is. Between tele-operation (no 
autonomy) and full autonomy (no operator intervention), 
there are several ways to allow a vehicle to control its own 
behaviour during the mission  [1]. 

Autonomous vehicles that move in partially known and 
dynamic environments have to deal with asynchronous 
disruptive events. Hence the need for implementing 
onboard decision capabilities that allow the vehicle to 
perform the mission even when the initial plan prepared 
offline is not valid any more. Decision capabilities, which 
guarantee the adaptability of the vehicle to variable 
environmental conditions, must be implemented in a 
dedicated architecture able to manage the components of 

the whole control loop {perception, situation assessment, 
decision, and action}. The capacity to integrate 
environmental information given by sensors and to evaluate 
the current state is indeed essential for the vehicle to assure 
its own safety and the desired level of autonomy. 

In an embedded decisional software architecture, a high 
level function is required to control mission execution: it 
supervises the nominal execution and triggers reactions to 
disruptive events. This function includes interactions with 
the physical system through dedicated control algorithms 
and deliberative task management. 

The supervision function considered in this paper, 
sometimes called mission execution control function, does 
not include offline mission preparation, task allocation on 
computers, actuator control, nor replaces the underlying 
real time operating system. Its central role is shown on 
Figure 1.  
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Figure 1 – Central role of the supervision function 

The embedded decisional software architecture has to 
integrate all the data relative to the mission (its objectives), 
vehicle behaviour monitoring, connection to deliberative 
software programs, communication with the ground station 
and other vehicles, and reaction to disruptive events. The 
main features required for such an architecture are: 
robustness, reliability, modularity, flexibility, genericity - 
regarding to mission, vehicle and environment -, 
independence from software components, easy interfacing. 

Several types of architectures exist in the literature. In 
this paper, we focus on the ProCoSA software package, 
used by ONERA for controlling and monitoring highly 
autonomous systems. 

2. ProCoSA software package 

ProCoSA, which stands for “Programmation et Contrôle 
de Systèmes à forte Autonomie”, was first developed in 
1993 at ONERA while performing research in the field of 
mobile robotics. Several enhancements and its rewriting in 
an interpreted language led in 1999 to its official 
registration. 

ProCoSA was designed in order to provide the 
developer with an integrated package putting together and 
synchronising the various functions achieving system 
autonomy, among which: 

• data processing (sensor data, situation assessment data, 
operator’s input); 

• nominal mission monitoring and control (vehicle and 
payload control actions); 

• decision (management of disruptive events, replanning). 

These functions are often developed as separate 
subsystems. They have to co-operate in order to fulfil the 
autonomous system behaviour requirements for the 
specified missions. More precisely, the needs are the 
following: 

• offline tasks: specification of the nominal and non-
nominal procedures, including co-operation between 
procedures and software programs, software program 
coding for embedded operation; a software program 
includes a set of functions that can be called by 
procedures; 

• online tasks: procedure execution, event monitoring, 
and management of the dialog with the operator. 

ProCoSA is based on the Petri net graphical and 
mathematical modelling tool for discrete event systems. It 
includes the following components: 

• EdiPet, a graphical user interface for Petri nets, is used 
both by the developer for procedure design and by the 
operator for execution monitoring; 

• JdP is the Petri net player of ProCoSA:  

. it executes the procedures: looking for the 
occurrence of events, it fires the event-triggered 
transitions of the Petri nets and runs associated 
actions; 

. it supervises the dialog between procedures and 
software programs; 

. it manages the communication with systems 
outside the vehicle. 

• Tiny, a Lisp interpreter specially dedicated to 
distributed embedded applications, is the development 
language of JdP. The communication protocol for the 
exchange of data is socket-based (TCP/IP). 

Tiny and JdP were respectively developed at the 
computer science and automatic control departments of 
ONERA. Prolexia Company developed EdiPet. 

The following subsections describe: 

• the Petri net formalism used in ProCoSA; 

• the Petri net player (JdP); 

• EdiPet; 

• the property verification process. 

2.1. ProCoSA Petri nets 

A Petri net  [2] <P, T, F, B > is a bipartite graph with 
two types of nodes: P is a finite set of places and T is a 
finite set of transitions. Arcs are directed and represent the 
forward incidence function F: P × T → N (from a place to a 
transition) and the backward incidence function 
B: P × T → N (from a transition to a place) respectively. 
The marking of a Petri net is defined as a function from 
P→ N, and symbolised by tokens: a given marking is 
associated to a given state of the system modelled by the 
Petri net. The evolution of tokens within the net is achieved 
trough transition firing (Figure 2), which obeys transition 
firing rules: 

• a transition is enabled if its input places contain at least 
the number of tokens given by the F forward incidence 
function; 

• an enabled transition can be fired, and if it is fired, this 
number of tokens is removed from its input places; 

• a number of tokens given by the B backward incidence 
function is added in its output places. 

Petri nets allow sequencing, parallelism and 
synchronisation to be easily represented. 
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Figure 2 – Example of a Petri net transition firing sequence: 

t1 t2 t1 t3 

Petri nets used by ProCoSA are interpreted nets: triggering 
events and actions are attached to transitions: an enabled 
transition is now fired iff the associated triggering event 
occurs, and the associated actions are executed. They also 
are “safe” nets: only unary arcs are used, and places should 
not contain more than one token. Special places, called 
“global places”, have been introduced in order to ease 
synchronisation between nets while preserving modularity: 
a global place is “shared” between different nets, thus 
enabling the behaviour modelled by a given net to take into 
account a state of the system modelled in another net. This 
feature is particularly suitable for handling disruptive 
events. Timers can be programmed within ProCoSA: a 
special action enables a timer variable to be instantiated, 
which allows actions with a limited duration to be 
modelled. Finally, the hierarchical modelling features 
offered by ProCoSA enable the developer to structure the 
whole application in a generic way: at the highest 
description level, nets model generic behaviours, regardless 
of the characteristics of a given vehicle; at the lowest level, 
they model the sequences of elementary actions to be 
performed by vehicle or payload. This modular approach 
eases a quick adaptation to system changes (e.g. taking into 
account a new payload). 

Several types of actions can be associated to transitions: 

• activation of a Petri net (a Petri net is activated when it 
receives its initial marking); 

• deactivation of a Petri net (when a Petri net is 
deactivated, it looses its marking); 

• emission of an event; 

• emission of a request towards JdP (e.g. a timer 
initialisation); 

• emission of a message towards a software program. 

Several parameters can be associated to an event and 
used by the actions associated to the transition. This 
enables to establish a limited data flow between the 
different software programs activated by the Petri nets: 
when a software program ends, it sends an event towards a 
Petri net (usually the one that launched it) with a set of 
output parameters. Those parameters can be immediately 
transferred by the receiving transition to the next software 
program activated by this transition. 

2.2. The JdP Petri net player 

JdP was developed in Tiny language. Tiny is a Lisp 
interpreter designed for distributed embedded applications 
and includes a library implementing the TCP/IP 
communication protocol. An important feature of ProCoSA 
lies in the fact that there is no code translation step between 
the Petri net procedures and their execution: they are 
directly interpreted by the Petri net player, thus avoiding 
any supplementary error causes. 

When a ProCoSA application is launched, JdP first 
reads the Petri net structures and establishes the socket 
connections with EdiPet (if used during the execution 
phase) and software programs. Specified Petri nets are 
activated (they receive their initial markings), and the 
internal JdP loop is ready to receive the incoming events. 

2.3. EdiPet graphical user interface 

Prolexia Company developed the EdiPet graphical user 
interface (Figure 3). This tool is used both for the 
development of a ProCoSA project and for execution 
monitoring. The set of Petri nets, the set of software 
function names and their relations define a project in 
EdiPet. EdiPet thus allows: 

• the connections inside the whole project between JdP, 
nets and software programs; 

• the graphical creation of Petri nets; several editor 
windows display and allow to modify attributes 
associated to each object (net, place, transition, event, 
action); 

• the generation of relevant interfaces between Petri nets 
and software programs; EdiPet generates the function 
prototypes, which have then to be filled by the software 
developer; 

• the display of the net states during execution; when 
activated (which means that one token is present), 
places and transitions are displayed in red. 

During the execution phase, EdiPet can be used in the 
ground station of the autonomous vehicle, as far as a 
communication link is established. 
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Figure 3 – EdiPet graphical user interface 

The example shown on Figure 4 and Figure 5 models a 
simple project for the supervision of a UAV. The objective 
of the mission is to join a sequence of waypoints. Several 
payloads are available onboard, and the activation of a 
given payload is associated to each waypoint. The 
MISSION Petri net models the main mission phases: roll, 
takeoff, climb, transits to each waypoint, approach and 
landing. The GUI software program simulates the guidance 
of the vehicle. In the nominal execution, the DEC 
decisional software program gives the next waypoint to 
join. The EVENTS Petri net models two examples of non-
nominal reactions. If a payload fails, MISSION is 
deactivated, DEC is called and computes another list of 
waypoints that do not use the faulty payload. The 
replanning transition of the MISSION net is then fired and 
the vehicle continues the mission with the new list of 
waypoints. In case of engine failure, MISSION is also 
deactivated, DEC is called and computes the nearest 
emergency site. The EVENTS net supervises directly the 
transit to this site by calling GUI. 

 
Figure 4 – Example of EdiPet project 

 

 
Figure 5 – Examples of EdiPet Petri nets 

2.4. Verification process 

ProCoSA includes a verification tool, which makes use 
of well known Petri net analysis techniques to check that 
some “good” properties are satisfied by the procedures, 
both at the single procedure level and at the whole project 
level (that is to say taking into account inter-net 
connections). 

The following properties are checked: 

• place safety (not more than one token per Petri net 
place); 

• detection of dead markings (deadlocks); 

• detection of cyclic firing sequences (loops). 

The principle of this analysis lies on the automatic 
generation of the reachability graph, which contains all the 
possible reachable states of each net and of the whole set of 
interconnected nets. As nets are safe, this set is necessarily 
finite, and its analysis permits to deduce the above 
properties. 
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 3. Applications 

Several projects are ongoing with ProCoSA: 

• with DGA/GESMA on an Autonomous Uninhabited 
Vehicle  [3]; 

• with EADS DS SA on an Uninhabited Aerial Vehicle 
 [4]; 

• at SUPAERO, a French Engineer School, on 
Uninhabited Ground Vehicles, for team operation  [1]. 

3.1. AUV project 

GESMA, in co-operation with ONERA and 
PROLEXIA, develops a software architecture with four 
levels of autonomy from tele-operated mission to fully 
autonomous goal driven mission. Tele-operation is seen as 
level 0: the operator uses a control box to move the vehicle. 
Main tests of the vehicle were performed within this level: 
battery, communication, sonar, and other sensors. At the 1st 
autonomy level, an ordered set of elementary controls 
prepared by the operator describes the mission. Sixteen 
controls combining monitoring and modification of main 
variables (duration, speed, heading, immersion, and 
altitude) have thus been implemented. In May 2005, sea 
trials conducted with the Redermor AUV successfully 
validated the pilot software program. At the 2nd autonomy 
level, a mission is defined by a set of segments (straight 
line trajectories). 

A ProCoSA based architecture has been implemented 
for the 3rd autonomy level: the mission is defined by a set 
of mission areas where a survey procedure is performed. At 
the end of these operations, the vehicle joins the end area. 
The environment is defined by bathymetry, currents, 
forbidden areas and non-navigable water data. The 
planning software program has then to compute the 2D 
itinerary (the order to join the mission areas), the 4D 
trajectory between mission areas, and the survey planning. 

3.1.1. Experimental configuration and 
decisional architecture overview 

Experiments are conducted with the Redermor AUV 
(Figure 6). Three computers and thirteen distributed Can 
interfaces with computation capabilities are installed on the 
platform. Serial link, Can Bus, I2C and Ethernet 
connections are available for payload integration and data 
exchange. OA1 computer is in charge of complex vehicle 
functions, supervision and mission planning; it thus 
includes the decisional software architecture. OA2 and 
OA3 computers are used for sonar payload controls and 
treatments like Computer Aided Detection and 
Classification algorithms for mine warfare. The embedded 
architecture is shown on Figure 7.  

 
Figure 6 – Redermor AUV 
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Figure 7 – AUV embedded architecture 

For mission supervision, the decisional architecture in 
OA1 computer includes: 

• the Petri net player of ProCoSA; 

• vehicle behaviour modelling through Petri nets, for 
nominal and non-nominal situations; 

• four software programs connected to ProCoSA: 
planning (PLN), guidance (GUI), dynamic data 
manager (GDD) and event listener (EVT); 

• the pilot program software (IDC) that computes controls 
sent to the engine; 

• the data server (OA_NAVIO) developed by GESMA 
that carries out bi-directional communication links with 
the hardware architecture. 

3.1.2. Nominal scenario 

The behaviour of the vehicle during the execution of a 
mission is described in eleven Petri nets. This description is 
hierarchical (Figure 8): 

• In Mission net, at level 1, two places model the stop and 
the ongoing states of the mission; 

• Mission_Phases net at level 2 models main phases of 
the ongoing mission: planning initialisation, the loop 
structure enabling the vehicle to join each mission area 
(transit to the area and survey) and transit to the end 
area; 
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• Three Petri nets model level 3: Transit_to_Area net for 

transiting to the next mission area and Operation net for 
survey achievement; Initialisation net runs itinerary and 
operation planning when starting the mission; 

• Level 4 is devoted to computation: Itinerary_Planning 
net computes an itinerary for the saved mission taking 
into account non-navigable areas; Trajectory_Planning 
net computes a trajectory between two areas modelled 
by their centroid waypoint; Operation_Planning net 
asks for vehicle state and computes the operative 
sequence; both a trajectory and an operative sequence 
are composed of linear trajectory followings and course 
changes; 

• Level 5 executes the mission: Trajectory net asks for the 
next trajectory and runs it; Survey net asks for the 
operative sequence and runs it; Planning_and_ 
course_change net computes the required gyrations and 
heading following sequence and executes it. 
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Figure 8 – Hierarchy of Petri nets 

3.1.3. Non-nominal scenario 

Many events can affect AUV missions and require 
onboard replanning. At present, three types of events are 
implemented: 

• an alarm event forces the vehicle to move directly to the 
end area: a new itinerary to avoid non-navigable areas 
and a new trajectory are computed; 

• when arriving on an objective area, the real current is 
different from the predicted one and invalidates the 
already-computed survey: a new operative sequence is 
thus computed; 

• the operator asks for a local operation of inspection, for 
example to inspect a suspicious object. A specific 
operative sequence is planned before the vehicle 
resumes its mission. 

These events are considered in the architecture through 
three new Petri nets. The Decision net implements the 
decisions that the vehicle must make according to the type 
of event, e.g. return to the end area in case of an alarm 
event.  The Action net executes the decisions; it can run 
nominal nets. The Inspection net executes the inspection 
asked by the operator. 

3.1.4. Lab bench tests 

A bench test has been developed to test the whole 
decisional architecture. The OA_NAVIO data server has 
been connected to on the one hand a Redermor simulator, 
and on the other hand the IOVAS interface. The simulation 
of several missions allowed to validate the desired 
behaviour of the vehicle (Petri nets), the decisional 
functions of PLN, the management of dynamic data in 
GDD, the guidance and the pilot of the vehicle (GDD and 
IDC) and the reception of disrupted events (EVT) together 
with the supervision on IOVAS operator interface (Figure 
9). Nominal and non-nominal scenarios were both 
successfully simulated. 

 
Figure 9 – Supervision of a simulated AUV mission. 

Survey area is blue, forbidden area is red, planning trace is 
yellow, vehicle simulated trace is green. 

3.1.5. Sea experiments 

Recent sea experiments have been conducted in 
Douarnenez Bay. Three missions were carried out. The 
vehicle is followed by acoustic means, and only a few 
points are currently available (Figure 10). Vehicle 
immersion, transit to the survey area, line following at a 
given altitude and return to the end area were successfully 
performed. These experiments validated the embedded use 
of ProCoSA. Emphasis should now be put on guidance 
accuracy, perception function, classification of disruptive 
events, situation monitoring and assessment functions. 

  
Figure 10 – Supervision of a real AUV mission. 

Acoustic vehicle trace is green. 
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 3.2. UAV project 

EADS and ONERA are involved in a national project 
that aims at testing an architecture designed for mission 
supervision in a UAV and demonstrating the relevance of 
such architectures in future uninhabited vehicles. As all 
categories of UAVs have to perform their missions in 
complex environments with the same types of constraints, 
the embedded architecture has to be generic, i.e. not 
dedicated to a given mission, environment or vehicle. As 
the mission may be disrupted by internal or external events, 
e.g. failures, weather situation, interfering aircraft, and 
threats, onboard plan monitoring and replanning are 
required in order to deal with nominal or disruptive events, 
avoid systematic return to base and proceed with the 
mission as well as possible given the new constraints. 

3.2.1. Experimental configuration and 
decisional architecture overview 

Experiments are conducted on a light plane, a Dyn’Aero 
MCR-4S (Figure 11). Two computers are devoted to the 
control part of the plane, and a third one to the decision 
part, i.e. mission management. The first control computer is 
directly linked to the plane sensors and actuators (e.g. the 
automatic pilot) and to the ground station, while the second 
one acts as an interface between the previous real time 
control computer and the decision computer: it sends 
formatted frames and interprets elaborated orders. 

 
Figure 11 – Light plane used for experiments in UAV 

project 

The role of the software decisional architecture 
implemented on the decision computer through ProCoSA 
(Figure 12) is thus to monitor the main mission phases of 
the nominal scenario, to manage the dialog with the 
operator (payload use), and to generate control decision 
when disruptive events occur. In order to elaborate the pre-
specified events used by ProCoSA from the telemetry 
frame data, an additional interface software layer was 
developed (Figure 13). 
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Figure 12 – UAV embedded decisional software 
architecture 

 
 

Figure 13 – Example of the “ready for takeoff” event 
elaboration 

3.2.2. Nominal scenarios 

A four-level mission modelling architecture was 
defined in order to guarantee a generic approach: 

• level 0: initialisation of the communication protocols 
between ProCoSA and the other software layers; 

• level 1: global state of the mission and modes 
monitoring (nominal  - non nominal); 

• level 2: main nominal phases of the mission (from pre-
flight tests and takeoff to touchdown and end-of-flight 
tests); 

• level 3: sub-phases of the mission. 

Level 3 corresponds to less generic procedures, i.e. 
more specific to the vehicle type or to mission and payload 
characteristics. The Petri net shown on Figure 14 details the 
linking of the different steps within the operational area: 
this net clearly shows the looped structure enabling the set 
of pre-programmed tasks to be achieved, and includes 
communication requests to the operator. ProCoSA timers 
are used to limit the time allowed for the operator’s answer. 
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Figure 14 – Modelling of the linking of operational tasks 

3.2.3. Non-nominal scenarios 

In order to be able to apply a generic approach to deal 
with disruptive events, they were classified in four 
categories: 

• catastrophic events lead to mission abortion, and cannot 
be recovered; when such an event occurs, the 
processing of any other kind of events is aborted and no 
further incoming event can be processed; example: 
engine total failure; 

• safety-related events lead to modifying the flight profile 
or the flight plan - e.g. change route for a while - which 
may induce delays or new constraints on the use of the 
payload; examples: interfering aircraft, new forbidden 
area, turbulence...  

• mission-related events only have consequences on the 
mission itself; replanning amounts to adapt the mission 
to the new constraints, e.g. remove waypoints; 
examples: camera failure, violated temporal constraint, 
new mission goal... 

• communication-related events are related to 
communication breakdowns between the UAV and the 
ground; such events result in the UAV being fully 
“autonomous” therefore it has to proceed with the 
mission as planned; example: telemetry failure. 

According to this classification, one Petri net was 
designed for each disruptive event category: an example is 
given by the engine failure Petri net shown on Figure 15: 
one can note the use of the ProCoSA “global places” 
feature (see section  2.1), which enables to adapt the 

reconfiguration actions to the current state of the mission. 
This reconfiguration process is achieved through software 
function activation requests, which enable to build a set of 
control orders to be sent to the control computer 

 
Figure 15 – Engine failure reaction modelling 

3.2.4. Ground and flight tests 

Two series of field tests are planned in March and May 
2006. A test series will be organised as a two-step process: 
during the first week, ground tests will be conducted in 
order to prepare and simulate the scenarios, which will be 
run on the plane. Flight tests will be conducted during the 
second week, with a pilot and an operator onboard the 
plane. 

The nominal scenario will be tested first. Non-nominal 
scenarios implying a unique disruptive event will be 
considered afterwards, and eventually scenarios including 
two or three cumulative disruptive events. 

A double check process will be achieved during each 
flight test. Flight data (telemetry frames) and the 
corresponding Petri net states will be registered onboard. 
The ProCoSA layer of the decision computer will be 
duplicated on the ground station that will also receive the 
real-time telemetry frames, thus enabling system state to be 
monitored on the ground. 

3.3. UGVs project 

The computer science and automation lab (LIA) at 
SUPAERO and the Systems Control and Flight Dynamics 
Department (DCSD) at ONERA are involved in a co-
operation on mobile robotics to answer a national need to 
integrate robots into military operations. The project goal is 
to operate several autonomous robots. In these studies, the 
choice of a centralised architecture was made. 

3.3.1. Experimental configuration and 
decisional architecture overview 

Robots used in the project are Pekee robots, developed 
by Wany Robotics (Montpellier, France). They feature 
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 three individual racks for computer cards (for 
communication via WiFi, and/or camera and image 
management), a shock detection sensor and are surrounded 
by an Infra Red sensor ring (Figure 16).  

 
Figure 16 - A Pekee robot. Note the WiFi antenna, the IR 
sensor ring and the camera, as well as two occupied racks 

Two libraries were developed: 

• the movement library stores elements such as free 
translation and rotation but also half-controlled 
displacements such as translation until obstacle or 
controlled movements such as following a wall, a 
corridor, a sinuous route... 

• the picture library is based on openCV primitives and 
allows in particular the detection of obstacles and 
localisation of markers. 

These library elements constitute a set of services that 
the agent may use in order to achieve the mission goals. 

Several groups of students worked on these 
experiments. The last objective was to implement the 
control of the basic moves for two robots in a known 
environment. The mission (Figure 17) consists in virtually 
changing the position of several coloured rings following a 
defined order. As robot moves are independent, a planning 
algorithm was developed to manage area occupancy 
conflicts. 

Pekee robots

start areas

bottleneck
area

load areas
 

Figure 17 – UGVs mission 

The control architecture for each robot heavily relies on 
ProCoSA. The architecture is composed of three layers 
(Figure 18): 

• the ProCoSA layer models actions chronology; it is 
centralised; 

• the interface layer translates ProCoSA orders into robot 
controls and robot sensor data into ProCoSA events; it 
is written using the Visual C++ development tool; 
controls are mainly related to speed and heading; 

• the robot layer executes controls and sends sensor data 
coming from IR sensors and camera image. 

ProCoSA
Visual C++

interface
Pekee Robot

orders

controls

events

sensor data  
Figure 18 – UGV architecture 

3.3.2. Lab tests 

Eight elementary moves have been modelled: they 
allow the robot to move in the labyrinth and to take into 
account the bottleneck area (go forward, go backward, turn 
right, turn left, follow right wall, follow left wall, enter 
bottleneck, exit bottleneck). Only one robot could enter this 
area at the same time. Seven Petri nets were developed, 
three per robot and one for their synchronisation, i.e. the 
management of the conflict in the bottleneck area according 
to the plan algorithm. 

The mission was successfully executed by robots. This 
validated the use of ProCoSA for synchronising a two-
robot mission. 

3.3.3. Generic supervision approach 

Some work  [5] is carried out on designing a more 
generic supervision architecture that would take advantage 
of the modular nature of the robot and run the controller 
and the diagnosis module (Figure 19). 

 
Figure 19 - Robot embedded architecture 

Figure 20SEQARABIC proposes a Petri net model for 
the controller. The initial planning creates the plan. The 
execution phase runs the plan that in its turn executes 
actions from the libraries. A replanning step is triggered at 
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 the occurrence of a disruptive event: the robot is set in a 
reaction mode (safety mode) while the event is analysed. 
The consequences of the event are then dealt with during 
the repair that recreates the plan. Once the repair is 
calculated, it is adjusted so as to smoothly switch from 
reaction to repaired plan execution. 

 
Figure 20 - ProCoSA plan controller 

3.3.4. Future experiments 

The mission will consist in a search and rescue 
operation in a partially known urban environment. The 
team is composed of two aerial robots and two terrestrial 
robots. The robots have knowledge of possible routes to 
move in the environment. The uncertainty parameters, such 
as obstacles barring expected paths, robot or service 
failure... are handled through event firings that trigger 
replanning phases on parts of the plan. 

The experimental set-up uses four Pekee robots, a labyrinth 
modelling the environment and a transparent pane to bear 
the “aerial” robots  (Figure 21). The two aerial robots are 
characterised by a downward camera in order to detect 
ground obstacles and deliver accurate global localisation 
for ground robots. All communications are WiFi-based. 

 
Figure 21 - Experimental set-up. Note the two aerial robots 

on the Plexiglas pane with downward camera 

4. Conclusions 

The current version of ProCoSA allows designing 
decisional embedded software architecture: Petri nets 
describe the execution logic for the various specified 
autonomous vehicle behaviours, including both nominal 
mission phases and reactions to disruptive events. It also 
manages connections with software programs associated to 
specific functionalities such as situation assessment, 
planning, guidance. Those behaviours are directly 
interpreted and executed by the Petri net player, without 
any intermediate code translation step, and on-line 
execution monitoring is possible with EdiPet. Significant 
validation steps can be achieved during the design phase 
thanks to Petri net formal analysis properties. 

ProCoSA software has been successfully used in 
several projects for the control of autonomous vehicles. 
First sea experiments validated its use in embedded 
architecture. Aerial tests are planned by the end of this 
year. Research on its implementation in several mobile 
robots composing a team is ongoing. 

The main objective of the proposed embedded 
decisional software architecture is to supervise mission 
execution whatever occurs. It thus deals with 
environmental uncertainties: reactions to disruptive events 
are implemented in Petri nets that call deliberative tasks. 
Deliberative tasks and mission data are independent of 
ProCoSA and that point offers modularity and genericity to 
the whole architecture. Indeed, specificity of the vehicle is 
taken into account in databases and in the interfaces 
connected to the control computer. 

Current results point out several possible ways of 
improvement: 

• a perception function that studies and develops methods 
to elaborate and update real world sensor data, would 
help to take appropriate decisions; of course, good data 
quality is required as well; 

• a situation monitoring and assessment function that 
estimates the system parameters and predicts their 
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 evolution could help to anticipate the arrival of 
disruptive events; this should also increase security 
level for the vehicle; image processing is also a difficult 
task to implement onboard; 

• a generic study of all types of events, their classification 
and identification of associated reactions are necessary 
in all autonomous system, as emphasised in UAV 
experiments; 

• all studies drew attention on the necessity of enhanced 
planning algorithms for autonomous vehicles; research 
have to be conducted to improve proposed algorithm 
with regard to duration constraints; mission objectives 
could also be selected onboard (objective planning 
function) according to collected environmental data; 

• all possible communications between the ground 
operator and the vehicle have to be defined properly, 
especially the operator’s decisions and the associated 
reactions onboard. This communication protocol gives 
the vehicle its level of autonomy. An onboard 
architecture adapting its autonomy level according to 
the types of disruptive events could also be considered; 

• simulation remains essential to valid autonomy 
architecture before its implementation; the use of a 
bench test before sea experiments in the AUV project 
led to architecture validation during the first 
autonomous missions; 

• studies on the collaboration between several 
autonomous vehicles have to continue, as this is the 
main point in future operational theatres; 

• the operator’s role evolves as the autonomy level 
increases, and ground systems have to evolve as well, 
e.g. with implementation of decision support systems. 
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