

ProCoSA: a software package
for autonomous system supervision

Magali BARBIER1 – Jean-François GABARD1
Dominique VIZCAINO2 – Olivier BONNET-TORRÈS1,2

1 ONERA/DCSD – 2 av. Edouard Belin – 31055 Toulouse cedex 4 - FRANCE

{ Magali.Barbier, Jean-Francois.Gabard, Olivier.Bonnet }@onera.fr
2 SUPAERO/LIA – 10 av. Edouard Belin – 31055 Toulouse cedex 4 - FRANCE

Dominique.Vizcaino@supaero.fr

Abstract

Autonomy is required onboard uninhabited vehicles that move in partially known and dynamic environments. This
autonomy is made possible thanks to the use of embedded decisional software architectures. This paper presents ProCoSA, an
asynchronous Petri net-based tool that enables implementing such architectures. It allows procedure programming and
execution in autonomous systems. Vehicle behaviours are modelled using Petri nets; a Petri net player runs the model and
manages links with other software components. Several decisional architectures developed using ProCoSA for different types
of vehicles - Autonomous Underwater Vehicle (AUV), autonomous Uninhabited Aerial Vehicle (UAV) and autonomous
Uninhabited Ground Vehicles (UGVs) - are described in this paper, together with associated experiments and results.

1. Introduction

Research on autonomy is performed for Uninhabited
Ground Vehicles (UGVs), Uninhabited Aerial Vehicles
(UAVs), Autonomous Underwater Vehicles (AUVs) and
space vehicles. Autonomy is characterised by the level of
interaction between the vehicle and a human operator: the
higher level the operator’s decisions are, the more
autonomous the vehicle is. Between tele-operation (no
autonomy) and full autonomy (no operator intervention),
there are several ways to allow a vehicle to control its own
behaviour during the mission [1].

Autonomous vehicles that move in partially known and
dynamic environments have to deal with asynchronous
disruptive events. Hence the need for implementing
onboard decision capabilities that allow the vehicle to
perform the mission even when the initial plan prepared
offline is not valid any more. Decision capabilities, which
guarantee the adaptability of the vehicle to variable
environmental conditions, must be implemented in a
dedicated architecture able to manage the components of

the whole control loop {perception, situation assessment,
decision, and action}. The capacity to integrate
environmental information given by sensors and to evaluate
the current state is indeed essential for the vehicle to assure
its own safety and the desired level of autonomy.

In an embedded decisional software architecture, a high
level function is required to control mission execution: it
supervises the nominal execution and triggers reactions to
disruptive events. This function includes interactions with
the physical system through dedicated control algorithms
and deliberative task management.

The supervision function considered in this paper,
sometimes called mission execution control function, does
not include offline mission preparation, task allocation on
computers, actuator control, nor replaces the underlying
real time operating system. Its central role is shown on
Figure 1.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Supervision

Decision
Planning

Situation Monitoring
and Assessment

Navigation
Guidance

Perception

Vehicle

Operator

Figure 1 – Central role of the supervision function

The embedded decisional software architecture has to
integrate all the data relative to the mission (its objectives),
vehicle behaviour monitoring, connection to deliberative
software programs, communication with the ground station
and other vehicles, and reaction to disruptive events. The
main features required for such an architecture are:
robustness, reliability, modularity, flexibility, genericity -
regarding to mission, vehicle and environment -,
independence from software components, easy interfacing.

Several types of architectures exist in the literature. In
this paper, we focus on the ProCoSA software package,
used by ONERA for controlling and monitoring highly
autonomous systems.

2. ProCoSA software package

ProCoSA, which stands for “Programmation et Contrôle
de Systèmes à forte Autonomie”, was first developed in
1993 at ONERA while performing research in the field of
mobile robotics. Several enhancements and its rewriting in
an interpreted language led in 1999 to its official
registration.

ProCoSA was designed in order to provide the
developer with an integrated package putting together and
synchronising the various functions achieving system
autonomy, among which:

• data processing (sensor data, situation assessment data,
operator’s input);

• nominal mission monitoring and control (vehicle and
payload control actions);

• decision (management of disruptive events, replanning).

These functions are often developed as separate
subsystems. They have to co-operate in order to fulfil the
autonomous system behaviour requirements for the
specified missions. More precisely, the needs are the
following:

• offline tasks: specification of the nominal and non-
nominal procedures, including co-operation between
procedures and software programs, software program
coding for embedded operation; a software program
includes a set of functions that can be called by
procedures;

• online tasks: procedure execution, event monitoring,
and management of the dialog with the operator.

ProCoSA is based on the Petri net graphical and
mathematical modelling tool for discrete event systems. It
includes the following components:

• EdiPet, a graphical user interface for Petri nets, is used
both by the developer for procedure design and by the
operator for execution monitoring;

• JdP is the Petri net player of ProCoSA:

. it executes the procedures: looking for the
occurrence of events, it fires the event-triggered
transitions of the Petri nets and runs associated
actions;

. it supervises the dialog between procedures and
software programs;

. it manages the communication with systems
outside the vehicle.

• Tiny, a Lisp interpreter specially dedicated to
distributed embedded applications, is the development
language of JdP. The communication protocol for the
exchange of data is socket-based (TCP/IP).

Tiny and JdP were respectively developed at the
computer science and automatic control departments of
ONERA. Prolexia Company developed EdiPet.

The following subsections describe:

• the Petri net formalism used in ProCoSA;

• the Petri net player (JdP);

• EdiPet;

• the property verification process.

2.1. ProCoSA Petri nets

A Petri net [2] <P, T, F, B > is a bipartite graph with
two types of nodes: P is a finite set of places and T is a
finite set of transitions. Arcs are directed and represent the
forward incidence function F: P × T → N (from a place to a
transition) and the backward incidence function
B: P × T → N (from a transition to a place) respectively.
The marking of a Petri net is defined as a function from
P→ N, and symbolised by tokens: a given marking is
associated to a given state of the system modelled by the
Petri net. The evolution of tokens within the net is achieved
trough transition firing (Figure 2), which obeys transition
firing rules:

• a transition is enabled if its input places contain at least
the number of tokens given by the F forward incidence
function;

• an enabled transition can be fired, and if it is fired, this
number of tokens is removed from its input places;

• a number of tokens given by the B backward incidence
function is added in its output places.

Petri nets allow sequencing, parallelism and
synchronisation to be easily represented.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Figure 2 – Example of a Petri net transition firing sequence:

t1 t2 t1 t3

Petri nets used by ProCoSA are interpreted nets: triggering
events and actions are attached to transitions: an enabled
transition is now fired iff the associated triggering event
occurs, and the associated actions are executed. They also
are “safe” nets: only unary arcs are used, and places should
not contain more than one token. Special places, called
“global places”, have been introduced in order to ease
synchronisation between nets while preserving modularity:
a global place is “shared” between different nets, thus
enabling the behaviour modelled by a given net to take into
account a state of the system modelled in another net. This
feature is particularly suitable for handling disruptive
events. Timers can be programmed within ProCoSA: a
special action enables a timer variable to be instantiated,
which allows actions with a limited duration to be
modelled. Finally, the hierarchical modelling features
offered by ProCoSA enable the developer to structure the
whole application in a generic way: at the highest
description level, nets model generic behaviours, regardless
of the characteristics of a given vehicle; at the lowest level,
they model the sequences of elementary actions to be
performed by vehicle or payload. This modular approach
eases a quick adaptation to system changes (e.g. taking into
account a new payload).

Several types of actions can be associated to transitions:

• activation of a Petri net (a Petri net is activated when it
receives its initial marking);

• deactivation of a Petri net (when a Petri net is
deactivated, it looses its marking);

• emission of an event;

• emission of a request towards JdP (e.g. a timer
initialisation);

• emission of a message towards a software program.

Several parameters can be associated to an event and
used by the actions associated to the transition. This
enables to establish a limited data flow between the
different software programs activated by the Petri nets:
when a software program ends, it sends an event towards a
Petri net (usually the one that launched it) with a set of
output parameters. Those parameters can be immediately
transferred by the receiving transition to the next software
program activated by this transition.

2.2. The JdP Petri net player

JdP was developed in Tiny language. Tiny is a Lisp
interpreter designed for distributed embedded applications
and includes a library implementing the TCP/IP
communication protocol. An important feature of ProCoSA
lies in the fact that there is no code translation step between
the Petri net procedures and their execution: they are
directly interpreted by the Petri net player, thus avoiding
any supplementary error causes.

When a ProCoSA application is launched, JdP first
reads the Petri net structures and establishes the socket
connections with EdiPet (if used during the execution
phase) and software programs. Specified Petri nets are
activated (they receive their initial markings), and the
internal JdP loop is ready to receive the incoming events.

2.3. EdiPet graphical user interface

Prolexia Company developed the EdiPet graphical user
interface (Figure 3). This tool is used both for the
development of a ProCoSA project and for execution
monitoring. The set of Petri nets, the set of software
function names and their relations define a project in
EdiPet. EdiPet thus allows:

• the connections inside the whole project between JdP,
nets and software programs;

• the graphical creation of Petri nets; several editor
windows display and allow to modify attributes
associated to each object (net, place, transition, event,
action);

• the generation of relevant interfaces between Petri nets
and software programs; EdiPet generates the function
prototypes, which have then to be filled by the software
developer;

• the display of the net states during execution; when
activated (which means that one token is present),
places and transitions are displayed in red.

During the execution phase, EdiPet can be used in the
ground station of the autonomous vehicle, as far as a
communication link is established.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Figure 3 – EdiPet graphical user interface

The example shown on Figure 4 and Figure 5 models a
simple project for the supervision of a UAV. The objective
of the mission is to join a sequence of waypoints. Several
payloads are available onboard, and the activation of a
given payload is associated to each waypoint. The
MISSION Petri net models the main mission phases: roll,
takeoff, climb, transits to each waypoint, approach and
landing. The GUI software program simulates the guidance
of the vehicle. In the nominal execution, the DEC
decisional software program gives the next waypoint to
join. The EVENTS Petri net models two examples of non-
nominal reactions. If a payload fails, MISSION is
deactivated, DEC is called and computes another list of
waypoints that do not use the faulty payload. The
replanning transition of the MISSION net is then fired and
the vehicle continues the mission with the new list of
waypoints. In case of engine failure, MISSION is also
deactivated, DEC is called and computes the nearest
emergency site. The EVENTS net supervises directly the
transit to this site by calling GUI.

Figure 4 – Example of EdiPet project

Figure 5 – Examples of EdiPet Petri nets

2.4. Verification process

ProCoSA includes a verification tool, which makes use
of well known Petri net analysis techniques to check that
some “good” properties are satisfied by the procedures,
both at the single procedure level and at the whole project
level (that is to say taking into account inter-net
connections).

The following properties are checked:

• place safety (not more than one token per Petri net
place);

• detection of dead markings (deadlocks);

• detection of cyclic firing sequences (loops).

The principle of this analysis lies on the automatic
generation of the reachability graph, which contains all the
possible reachable states of each net and of the whole set of
interconnected nets. As nets are safe, this set is necessarily
finite, and its analysis permits to deduce the above
properties.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

 3. Applications

Several projects are ongoing with ProCoSA:

• with DGA/GESMA on an Autonomous Uninhabited
Vehicle [3];

• with EADS DS SA on an Uninhabited Aerial Vehicle
 [4];

• at SUPAERO, a French Engineer School, on
Uninhabited Ground Vehicles, for team operation [1].

3.1. AUV project

GESMA, in co-operation with ONERA and
PROLEXIA, develops a software architecture with four
levels of autonomy from tele-operated mission to fully
autonomous goal driven mission. Tele-operation is seen as
level 0: the operator uses a control box to move the vehicle.
Main tests of the vehicle were performed within this level:
battery, communication, sonar, and other sensors. At the 1st
autonomy level, an ordered set of elementary controls
prepared by the operator describes the mission. Sixteen
controls combining monitoring and modification of main
variables (duration, speed, heading, immersion, and
altitude) have thus been implemented. In May 2005, sea
trials conducted with the Redermor AUV successfully
validated the pilot software program. At the 2nd autonomy
level, a mission is defined by a set of segments (straight
line trajectories).

A ProCoSA based architecture has been implemented
for the 3rd autonomy level: the mission is defined by a set
of mission areas where a survey procedure is performed. At
the end of these operations, the vehicle joins the end area.
The environment is defined by bathymetry, currents,
forbidden areas and non-navigable water data. The
planning software program has then to compute the 2D
itinerary (the order to join the mission areas), the 4D
trajectory between mission areas, and the survey planning.

3.1.1. Experimental configuration and
decisional architecture overview

Experiments are conducted with the Redermor AUV
(Figure 6). Three computers and thirteen distributed Can
interfaces with computation capabilities are installed on the
platform. Serial link, Can Bus, I2C and Ethernet
connections are available for payload integration and data
exchange. OA1 computer is in charge of complex vehicle
functions, supervision and mission planning; it thus
includes the decisional software architecture. OA2 and
OA3 computers are used for sonar payload controls and
treatments like Computer Aided Detection and
Classification algorithms for mine warfare. The embedded
architecture is shown on Figure 7.

Figure 6 – Redermor AUV

Pilot IDC

Planning PLN

Petri nets
vehicle

behaviour

Petri Player
ProCoSA

Guidance GUI
commands

controls

Data
manager

GDD

state

mission

events

EVT

Data server
OA_NAVIO

OA2, OA3

Payload drivers
and treatments

events

CAN bus Drivers actuatorssensors Drivers

OA1

Figure 7 – AUV embedded architecture

For mission supervision, the decisional architecture in
OA1 computer includes:

• the Petri net player of ProCoSA;

• vehicle behaviour modelling through Petri nets, for
nominal and non-nominal situations;

• four software programs connected to ProCoSA:
planning (PLN), guidance (GUI), dynamic data
manager (GDD) and event listener (EVT);

• the pilot program software (IDC) that computes controls
sent to the engine;

• the data server (OA_NAVIO) developed by GESMA
that carries out bi-directional communication links with
the hardware architecture.

3.1.2. Nominal scenario

The behaviour of the vehicle during the execution of a
mission is described in eleven Petri nets. This description is
hierarchical (Figure 8):

• In Mission net, at level 1, two places model the stop and
the ongoing states of the mission;

• Mission_Phases net at level 2 models main phases of
the ongoing mission: planning initialisation, the loop
structure enabling the vehicle to join each mission area
(transit to the area and survey) and transit to the end
area;

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

• Three Petri nets model level 3: Transit_to_Area net for

transiting to the next mission area and Operation net for
survey achievement; Initialisation net runs itinerary and
operation planning when starting the mission;

• Level 4 is devoted to computation: Itinerary_Planning
net computes an itinerary for the saved mission taking
into account non-navigable areas; Trajectory_Planning
net computes a trajectory between two areas modelled
by their centroid waypoint; Operation_Planning net
asks for vehicle state and computes the operative
sequence; both a trajectory and an operative sequence
are composed of linear trajectory followings and course
changes;

• Level 5 executes the mission: Trajectory net asks for the
next trajectory and runs it; Survey net asks for the
operative sequence and runs it; Planning_and_
course_change net computes the required gyrations and
heading following sequence and executes it.

TrajectoryTrajectory

Itinerary
planning

Itinerary
planning

Operation
planning

Operation
planning

Mission PhasesMission Phases

Transit to AreaTransit to Area

SurveySurvey

Planning and course
change

Planning and course
change

PLN

MissionMission

InitialisationInitialisation OperationOperation

PLN

PLN GUI

GUI GUI

Trajectory
planning

Trajectory
planningPLN

Software programs
PLN: planning
GUI: guidance
GDD: data manager

GDD GDD GDD

GDD GDD

Figure 8 – Hierarchy of Petri nets

3.1.3. Non-nominal scenario

Many events can affect AUV missions and require
onboard replanning. At present, three types of events are
implemented:

• an alarm event forces the vehicle to move directly to the
end area: a new itinerary to avoid non-navigable areas
and a new trajectory are computed;

• when arriving on an objective area, the real current is
different from the predicted one and invalidates the
already-computed survey: a new operative sequence is
thus computed;

• the operator asks for a local operation of inspection, for
example to inspect a suspicious object. A specific
operative sequence is planned before the vehicle
resumes its mission.

These events are considered in the architecture through
three new Petri nets. The Decision net implements the
decisions that the vehicle must make according to the type
of event, e.g. return to the end area in case of an alarm
event. The Action net executes the decisions; it can run
nominal nets. The Inspection net executes the inspection
asked by the operator.

3.1.4. Lab bench tests

A bench test has been developed to test the whole
decisional architecture. The OA_NAVIO data server has
been connected to on the one hand a Redermor simulator,
and on the other hand the IOVAS interface. The simulation
of several missions allowed to validate the desired
behaviour of the vehicle (Petri nets), the decisional
functions of PLN, the management of dynamic data in
GDD, the guidance and the pilot of the vehicle (GDD and
IDC) and the reception of disrupted events (EVT) together
with the supervision on IOVAS operator interface (Figure
9). Nominal and non-nominal scenarios were both
successfully simulated.

Figure 9 – Supervision of a simulated AUV mission.

Survey area is blue, forbidden area is red, planning trace is
yellow, vehicle simulated trace is green.

3.1.5. Sea experiments

Recent sea experiments have been conducted in
Douarnenez Bay. Three missions were carried out. The
vehicle is followed by acoustic means, and only a few
points are currently available (Figure 10). Vehicle
immersion, transit to the survey area, line following at a
given altitude and return to the end area were successfully
performed. These experiments validated the embedded use
of ProCoSA. Emphasis should now be put on guidance
accuracy, perception function, classification of disruptive
events, situation monitoring and assessment functions.

Figure 10 – Supervision of a real AUV mission.

Acoustic vehicle trace is green.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

 3.2. UAV project

EADS and ONERA are involved in a national project
that aims at testing an architecture designed for mission
supervision in a UAV and demonstrating the relevance of
such architectures in future uninhabited vehicles. As all
categories of UAVs have to perform their missions in
complex environments with the same types of constraints,
the embedded architecture has to be generic, i.e. not
dedicated to a given mission, environment or vehicle. As
the mission may be disrupted by internal or external events,
e.g. failures, weather situation, interfering aircraft, and
threats, onboard plan monitoring and replanning are
required in order to deal with nominal or disruptive events,
avoid systematic return to base and proceed with the
mission as well as possible given the new constraints.

3.2.1. Experimental configuration and
decisional architecture overview

Experiments are conducted on a light plane, a Dyn’Aero
MCR-4S (Figure 11). Two computers are devoted to the
control part of the plane, and a third one to the decision
part, i.e. mission management. The first control computer is
directly linked to the plane sensors and actuators (e.g. the
automatic pilot) and to the ground station, while the second
one acts as an interface between the previous real time
control computer and the decision computer: it sends
formatted frames and interprets elaborated orders.

Figure 11 – Light plane used for experiments in UAV

project

The role of the software decisional architecture
implemented on the decision computer through ProCoSA
(Figure 12) is thus to monitor the main mission phases of
the nominal scenario, to manage the dialog with the
operator (payload use), and to generate control decision
when disruptive events occur. In order to elaborate the pre-
specified events used by ProCoSA from the telemetry
frame data, an additional interface software layer was
developed (Figure 13).

environment
database mission

database

UAV
database

Petri
nets

JdP
Petri Player

EdiPet

subsystem
software

connection

decision
computation

interface software

frame receipt

event
processing

frame
emission

co
nt

ro
l

co
m

pu
te

r

fr
am

es

ProCoSA

decision computer

dialog windows

Figure 12 – UAV embedded decisional software
architecture

Figure 13 – Example of the “ready for takeoff” event
elaboration

3.2.2. Nominal scenarios

A four-level mission modelling architecture was
defined in order to guarantee a generic approach:

• level 0: initialisation of the communication protocols
between ProCoSA and the other software layers;

• level 1: global state of the mission and modes
monitoring (nominal - non nominal);

• level 2: main nominal phases of the mission (from pre-
flight tests and takeoff to touchdown and end-of-flight
tests);

• level 3: sub-phases of the mission.

Level 3 corresponds to less generic procedures, i.e.
more specific to the vehicle type or to mission and payload
characteristics. The Petri net shown on Figure 14 details the
linking of the different steps within the operational area:
this net clearly shows the looped structure enabling the set
of pre-programmed tasks to be achieved, and includes
communication requests to the operator. ProCoSA timers
are used to limit the time allowed for the operator’s answer.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Figure 14 – Modelling of the linking of operational tasks

3.2.3. Non-nominal scenarios

In order to be able to apply a generic approach to deal
with disruptive events, they were classified in four
categories:

• catastrophic events lead to mission abortion, and cannot
be recovered; when such an event occurs, the
processing of any other kind of events is aborted and no
further incoming event can be processed; example:
engine total failure;

• safety-related events lead to modifying the flight profile
or the flight plan - e.g. change route for a while - which
may induce delays or new constraints on the use of the
payload; examples: interfering aircraft, new forbidden
area, turbulence...

• mission-related events only have consequences on the
mission itself; replanning amounts to adapt the mission
to the new constraints, e.g. remove waypoints;
examples: camera failure, violated temporal constraint,
new mission goal...

• communication-related events are related to
communication breakdowns between the UAV and the
ground; such events result in the UAV being fully
“autonomous” therefore it has to proceed with the
mission as planned; example: telemetry failure.

According to this classification, one Petri net was
designed for each disruptive event category: an example is
given by the engine failure Petri net shown on Figure 15:
one can note the use of the ProCoSA “global places”
feature (see section 2.1), which enables to adapt the

reconfiguration actions to the current state of the mission.
This reconfiguration process is achieved through software
function activation requests, which enable to build a set of
control orders to be sent to the control computer

Figure 15 – Engine failure reaction modelling

3.2.4. Ground and flight tests

Two series of field tests are planned in March and May
2006. A test series will be organised as a two-step process:
during the first week, ground tests will be conducted in
order to prepare and simulate the scenarios, which will be
run on the plane. Flight tests will be conducted during the
second week, with a pilot and an operator onboard the
plane.

The nominal scenario will be tested first. Non-nominal
scenarios implying a unique disruptive event will be
considered afterwards, and eventually scenarios including
two or three cumulative disruptive events.

A double check process will be achieved during each
flight test. Flight data (telemetry frames) and the
corresponding Petri net states will be registered onboard.
The ProCoSA layer of the decision computer will be
duplicated on the ground station that will also receive the
real-time telemetry frames, thus enabling system state to be
monitored on the ground.

3.3. UGVs project

The computer science and automation lab (LIA) at
SUPAERO and the Systems Control and Flight Dynamics
Department (DCSD) at ONERA are involved in a co-
operation on mobile robotics to answer a national need to
integrate robots into military operations. The project goal is
to operate several autonomous robots. In these studies, the
choice of a centralised architecture was made.

3.3.1. Experimental configuration and
decisional architecture overview

Robots used in the project are Pekee robots, developed
by Wany Robotics (Montpellier, France). They feature

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

 three individual racks for computer cards (for
communication via WiFi, and/or camera and image
management), a shock detection sensor and are surrounded
by an Infra Red sensor ring (Figure 16).

Figure 16 - A Pekee robot. Note the WiFi antenna, the IR
sensor ring and the camera, as well as two occupied racks

Two libraries were developed:

• the movement library stores elements such as free
translation and rotation but also half-controlled
displacements such as translation until obstacle or
controlled movements such as following a wall, a
corridor, a sinuous route...

• the picture library is based on openCV primitives and
allows in particular the detection of obstacles and
localisation of markers.

These library elements constitute a set of services that
the agent may use in order to achieve the mission goals.

Several groups of students worked on these
experiments. The last objective was to implement the
control of the basic moves for two robots in a known
environment. The mission (Figure 17) consists in virtually
changing the position of several coloured rings following a
defined order. As robot moves are independent, a planning
algorithm was developed to manage area occupancy
conflicts.

Pekee robots

start areas

bottleneck
area

load areas

Figure 17 – UGVs mission

The control architecture for each robot heavily relies on
ProCoSA. The architecture is composed of three layers
(Figure 18):

• the ProCoSA layer models actions chronology; it is
centralised;

• the interface layer translates ProCoSA orders into robot
controls and robot sensor data into ProCoSA events; it
is written using the Visual C++ development tool;
controls are mainly related to speed and heading;

• the robot layer executes controls and sends sensor data
coming from IR sensors and camera image.

ProCoSA
Visual C++

interface
Pekee Robot

orders

controls

events

sensor data
Figure 18 – UGV architecture

3.3.2. Lab tests

Eight elementary moves have been modelled: they
allow the robot to move in the labyrinth and to take into
account the bottleneck area (go forward, go backward, turn
right, turn left, follow right wall, follow left wall, enter
bottleneck, exit bottleneck). Only one robot could enter this
area at the same time. Seven Petri nets were developed,
three per robot and one for their synchronisation, i.e. the
management of the conflict in the bottleneck area according
to the plan algorithm.

The mission was successfully executed by robots. This
validated the use of ProCoSA for synchronising a two-
robot mission.

3.3.3. Generic supervision approach

Some work [5] is carried out on designing a more
generic supervision architecture that would take advantage
of the modular nature of the robot and run the controller
and the diagnosis module (Figure 19).

Figure 19 - Robot embedded architecture

Figure 20SEQARABIC proposes a Petri net model for
the controller. The initial planning creates the plan. The
execution phase runs the plan that in its turn executes
actions from the libraries. A replanning step is triggered at

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

 the occurrence of a disruptive event: the robot is set in a
reaction mode (safety mode) while the event is analysed.
The consequences of the event are then dealt with during
the repair that recreates the plan. Once the repair is
calculated, it is adjusted so as to smoothly switch from
reaction to repaired plan execution.

Figure 20 - ProCoSA plan controller

3.3.4. Future experiments

The mission will consist in a search and rescue
operation in a partially known urban environment. The
team is composed of two aerial robots and two terrestrial
robots. The robots have knowledge of possible routes to
move in the environment. The uncertainty parameters, such
as obstacles barring expected paths, robot or service
failure... are handled through event firings that trigger
replanning phases on parts of the plan.

The experimental set-up uses four Pekee robots, a labyrinth
modelling the environment and a transparent pane to bear
the “aerial” robots (Figure 21). The two aerial robots are
characterised by a downward camera in order to detect
ground obstacles and deliver accurate global localisation
for ground robots. All communications are WiFi-based.

Figure 21 - Experimental set-up. Note the two aerial robots

on the Plexiglas pane with downward camera

4. Conclusions

The current version of ProCoSA allows designing
decisional embedded software architecture: Petri nets
describe the execution logic for the various specified
autonomous vehicle behaviours, including both nominal
mission phases and reactions to disruptive events. It also
manages connections with software programs associated to
specific functionalities such as situation assessment,
planning, guidance. Those behaviours are directly
interpreted and executed by the Petri net player, without
any intermediate code translation step, and on-line
execution monitoring is possible with EdiPet. Significant
validation steps can be achieved during the design phase
thanks to Petri net formal analysis properties.

ProCoSA software has been successfully used in
several projects for the control of autonomous vehicles.
First sea experiments validated its use in embedded
architecture. Aerial tests are planned by the end of this
year. Research on its implementation in several mobile
robots composing a team is ongoing.

The main objective of the proposed embedded
decisional software architecture is to supervise mission
execution whatever occurs. It thus deals with
environmental uncertainties: reactions to disruptive events
are implemented in Petri nets that call deliberative tasks.
Deliberative tasks and mission data are independent of
ProCoSA and that point offers modularity and genericity to
the whole architecture. Indeed, specificity of the vehicle is
taken into account in databases and in the interfaces
connected to the control computer.

Current results point out several possible ways of
improvement:

• a perception function that studies and develops methods
to elaborate and update real world sensor data, would
help to take appropriate decisions; of course, good data
quality is required as well;

• a situation monitoring and assessment function that
estimates the system parameters and predicts their

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

 evolution could help to anticipate the arrival of
disruptive events; this should also increase security
level for the vehicle; image processing is also a difficult
task to implement onboard;

• a generic study of all types of events, their classification
and identification of associated reactions are necessary
in all autonomous system, as emphasised in UAV
experiments;

• all studies drew attention on the necessity of enhanced
planning algorithms for autonomous vehicles; research
have to be conducted to improve proposed algorithm
with regard to duration constraints; mission objectives
could also be selected onboard (objective planning
function) according to collected environmental data;

• all possible communications between the ground
operator and the vehicle have to be defined properly,
especially the operator’s decisions and the associated
reactions onboard. This communication protocol gives
the vehicle its level of autonomy. An onboard
architecture adapting its autonomy level according to
the types of disruptive events could also be considered;

• simulation remains essential to valid autonomy
architecture before its implementation; the use of a
bench test before sea experiments in the AUV project
led to architecture validation during the first
autonomous missions;

• studies on the collaboration between several
autonomous vehicles have to continue, as this is the
main point in future operational theatres;

• the operator’s role evolves as the autonomy level
increases, and ground systems have to evolve as well,
e.g. with implementation of decision support systems.

References

[1] B.T. Clough, Metrics, Schmetrics ! How the heck do
you determine a UAV’s autonomy anyway ?
Performance Metrics for Intelligent Systems
Workshop, 2002, Gaithersburg, MA, USA.

[2] Murata, T. (1989). Petri nets: properties, analysis and
applications. IEEE. 77 (4), pp. 541-580.

[3] F. Dabe, H. Ayreault, M. Barbier, S. Nicolas, Goal
Driven Planning and Adaptivity for AUVs, UUST 05
Unmanned Untethered Submersible Technology, 21-24
August 2005, Durham, NH, USA.

[4] M. Barbier, J.F. Gabard, J.H. Llareus, C. Tessier, J.
Caron, H. Fortrye, L. Gadeau, G. Peiller,
Implementation and Flight Testing of an Onboard
Architecture for Mission Supervision, 21st IUAVS
International Unmanned Air Vehicle Systems
Conference, April 3-5, 2006, Bristol, UK.

[5] O. Bonnet-Torrès and C. Tessier, Cooperative Team
Plan: Planning, Execution and Replanning, AAAI'06
Spring Symposium on Distributed Schedule and Plan
Management, March 2006, Stanford, CA, USA.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

