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Abstract

This work inserts in the general field of collective robotics. In this paper, we present the results on the design and the 
conception of (1) our robotics component called Atom, (2) the informal semantics of the HoRoCoL language. The 
expressivity of the language is illustrated on a simple example. 

At the hardware level,  we propose a  versatile  architecture easily  adaptable for  most  mechatronic systems.  The 
hardware is based on a processing unit developed around a CPU + FPGA computing system communicating through 
bluetooth. On this hardware we build a software architecture, where each robot embeds its own description in an 
XML file. Control interfaces or programming tools are self-reconfigurable, depending of the XML description of the 
robot. That enables quick technology transfer for many mechatronics applications.

At the software level, we present  the Horocol language for programming a society or teams of robots. An example 
shows the principal features of the Horocol language. This language has been developed to offer a solution to express 
the behaviours of a set of teams of robots or agents. We focus on the originality of this language which is in the 
instructions for programming the team coordination.

Introduction

This project takes place in the more general field of reconfigurable modular robotics.  We can mention several 
various  experiments.  The  M-TRAN  (Modular  Transformer  -  AIST)  described  in  [1],  is  a  distributed  self-
reconfigurable system composed of homogeneous robotic modules. CONRO (Configurable Robot - USC), is a robot 
made  of  a  set  of  connectible,  autonomous  and  self-sufficient  modules  [2].  ATRON,  is  a  lattice  based  self-
reconfigurable robot  [3], and also, PolyPod (Xeros) [4], I-Cube (CMU) [5], Hydra . These robots generally consist 
in modules working together and where each module is permanently linked to at least one other.

Programming such reconfigurable systems is a difficult task [6]. This field covers very different concepts like : 
methods or  algorithms (planning,  trajectory generation...),  or  classically,  architectures  for  robot  control,  usually 
hierarchical : centralised [7], reactive [8], hybrid [9, 10, 11].  Some languages are developed in order to implement 
these high level concepts [12, 13]. Different  paradigms are also proposed: functional [14, 15, 16], deliberative or 
declarative [17, 11, 18] and synchronous [12].  In any way, we can schematically summarise the difficulties of robot 
programming in two great characteristics:  
• programming of elementary actions (primitives) on a robot is often a program including many process running 

in parallel with real-time constraints and local synchronisation
• interactions  with  the  environment  are  driven  via  traditional  features:  interrupt  on  event  or  exception  and 

synchronisation with another element.
The recent introduction of teams of robot, where cooperation and coordination are needed, introduces an additional 
difficulty : programming the behaviour of a group of robots or even a society of robots [19, 20, 21, 22]. In this case 
(except in the case of a centralised control) programming implies to load a specific program on to each robot because 
of  the  different  characteristics  of  robots  :  different  hardware,  different  behaviours  and  different  programming 
languages.  These  distinct  programs must  in  general  be  synchronized to  carry  out  missions of  group (foraging, 
displacement in patrol, ...)  and have reconfiguration capabilities according to a map of cooperation communication.
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From the human point of view it is then difficult to have simultaneously an overall vision of the group on three 
levels: the social level where we look for the global behaviour of any robot, the team level where we focus on a 
specific group of robot and the individual robot level. 
The definition of our general  language HoRoCoL is driven by these three levels of team programming: Social, 
Group, Agent. Social and Agent programming are very classical, the original part of this work is on the Group 
programming where we introduce two original instructions : ParOfSeq/SeqOfPar and the where instruction.

This paper presents the design of our robotics modular component, called Atom, and preliminary results on the 
prototypeand introduces the HoRoCoL language.

Hardware level

This section is a quick presentation of some mechanical aspects of the basic module (atom) and next, a description of 
the hardware and embedded software. Some informations on the progress of this project can be found in. The priority 
was given to the high-level tools and the communication middleware, .

Mechanical design
One atom is composed of six legs which are directed towards the six orthogonal directions of space. They allow the 
atom to move itself  and/or  dock to  another  one.  The carcass of  the atom consists of  six plates molded out of 
polyurethane. A carcass weights approximately 180g. The first walking prototype of atom is shown here.

 

Fig1. -The fisrt prototype of Maam robot -The CPU Board -The CPU Organisation

The CPU has to 
- control 12 axis (2 DOF for one leg) : each leg is driven by two servo--motors and  a servo--motor is controlled 

by a PWM (Pulse Width Modulation) signal.  The servo includes  a  motor,  an angle  reducer  and a P.I.D. 
regulator. 

- control the docking of two legs :   the mechanic system under consideration provides a flip-flop control. The 
same control must alternatively couple  then uncouple the two atoms. 

- identify the legs at the touch of the ground :   an atom may have 3 or 4 legs touching the ground at the same 
time.   The presence of pincers at the tip of the leg make the installation of a  sensor hard. We extract this 
information   from the inside of the servo by processing some control-signals of  the PID regulator.

- line up 2 legs : the mechanical connection between two atoms  requires the lining up of two legs. We propose an 
infrared  transmitter/receiver   system. The search for an optimal position needs the  use of 6 analog--to--digital 
converters for each atom. It may be useful to  activate or deactivate the transmitter if necessary: that leads to 
add 6  digital outputs  in our system.  

- communicate with another atom or with a host computer: this aspect is discussed in the next section. 

We also have the following general constraints for robotic and embedded systems: 
- mechanical: the electronic is embedded in a robotic atom; it must fit in a cube which edges < 50 mm.
- adaptation: emergence of new requirements due to unforeseen problems during the  development of robotic 

atom must not question the general architecture. 

Embedded electronic
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The architecture represented by the diagram in Fig 1 takes the previous enumeration of functions and constraints into 
account. The Embedded electronics is built around  a Triscend TE505 CSoC. The TE505 integrates a CPU 8051, a 
FPGA with 512 cells and an internal 16KB RAM.  It is completed by an AD convertor card and external bluetooth 
module for radio--communication
This solution gives a suitable answer for previous constraints. The micro-controller provides usual functions of a 
computing  architecture:  central  unit,  serial  line,  timers,  internal  memory.  With  the  FPGA  we  can  realise  the 
equivalent  of  an  input/output  card with low level  functionalities.  It  provide  most  of  classical  combinatory and 
sequential circuits (latches, counters, look--up--tables, comparators With the 512 cells build in the TE505 we could 
carry out the twelve PWM-commands, as well as the command of A/D converter (MAX117) in a pipeline mode and 
also other input/output.  So we can command each axis by just writing in one register and control the level of the Ir 
receptor simply by reading in a register that is refreshed in real time. 

Low level Software
Because managing a team of robots with effectiveness suppose to guess the actual robots reachable in the area, to 
learn the capabilities of each one, to be able to distribute an application between them, and, possibly to remote-
control any of them, we developed the following architecture.

The host computer searches for the bluethoot robots 
accessible and build the first map of communication 
between them. 

The host computer receives all the XML files coming from 
the robots. These files describes the commands and sensors 
available on the robot. 

A specific interface allows to make a direct use of the 
commands avaliable on each robot

It is also possible to use the generic interface to program 
the all set of robots using the Horocol language (decribed 
further). 
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After a compilation, the program can be loaded in each 
robot connected to the system. In each robot a local 
language interpreter will run its own part of the code. 

This general procedure permit to program with a unify 
system a all set of robot making by this a multi-agent 
programming language : Horocol. 

Fig 2 : Ambient Robotics presentation

Horocol Language

In Horocol we distingush three levels of programmind : social programming, coordination programming and agent 
programming

Social programming 

Is used to express the general behaviour of the sets of agent. It gives a general description of « what set of agent is 
doing what ». It is a meta langage of behaviour. It offers a high level  point of view to the programmer who describes 
its calculation in term of composition of event, directed parallel programs synchronized by areas. Areas stands for a 
set of agents, virtually or physically distributed over a network of computers or a set of mechatronics agents, running 
the same goal.

Main structure

Horocol : := *import file.xml ;*
 programHorocol program_name {

agents_set_declaration // Declaration section
* global_instruction ; * // Programming section

  }

import  is used to express what which real robots are used in this program. 

We assume that an agent (robot) is define by a set of 3 files:
• primitive.xml which describe the elementary actions that can perform the agent (for instance in the next example 

myRobot will be able to : “findTheBall() or searchNeighbourg() …”
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• langage.xml which describe the kind of program that can execute the agent (robot). This language can be a 
standard programming language (Java, C++, …) or a specific language for an industrial robot. In our case it is 
the interpeter described in Fig2 which is the target language.

• horocolSystemBasics.xml which describe the list of system features available for this agent (robot) like 
communication, synchronisation... This file will allow a Horocol engine to know if it is possible to generate 
from an Horocol program a specific program for this agent (robot).

These 3 files are supposed merged in a file file.xml. In the case of a set of heterogeneous robot then there will be 
several different file.xml : one by kind of robot.

Declaration section

[A] agents_set_declaration : := *agents_type_declaration* [A1]
*agent_list * [A2]
*[social_variable]*  [A3]
*[social_event]* [A4]

Agents, variables and events are declared at the global scope. Agents list is the  list of all 
agents participating to the program. Variables and event declared at global scope are sup
posed visible by any agent. The public variables of the agents (define in files.xml) are also 
supposed visible by all agents.

[A1] agents_type_declaration ::= type agents_type_identifier use file.xml;

This construction defines type of agents and make the link with the real external agents/ro
bots. 

[A2] agent_list ::= agent_type_identifier identifier=newAgent([agent_type_identifier]); 

 This is the declaration of all the agents participating in this code. The newAgent order ex
press the begining of the robot life for this appication. It is not necessarily implementable it  
can be reduce to “power on” a robot. 

[A3] social_variable ::= type_indication identifier_list [limited( agents_list, agents_type)] [= expression]; 

Classical variable are allowed (int, float, boolean …). This defines public variables visible 
by all agents of the system named social variables. 

The keyword limited express that for the agents in agents_list or agents_type the variable 
is “read only”.

[A4] social_event ::= event identifier_list; 

It is possible to declare public events. Social event are supposed to be visible from all 
agents declared in this program.

Programming section

[B] global_instruction ::=   global_noninterrupt_action [B1]
| global_interrupt_action [B2]
| global_parallel [B3]
| global_variable_assignment [B4]
| global_if [B5]
| global_loop [B6]

 [B1] global_noninterrupt_action ::= [ local_program ]
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This defines a program that is executed from the first to the last instruction without possib
ility to end its execution. This construction is only usefull in [ B3] construction.

[B2] global_interrupt_action ::= ° local_program °

This defines a program that can be ended during its execution. The way of finishing a pro
gram is not defined by Horocol because it depend on the type of real agents used. Basically 
we can consider two kinds of ending. First the system kills the program. The second way is 
to send a message to this program to ask it to finish, this technique will be preferred when 
security is needed (shared variable, robot …).

[B3] global_parallel ::=    || (*global_instruction,* global_instruction )

This construction allows to begin at the same time two (at least) different programs over 
the set of all agents. At this point an agent will execute the first code possible for him. This 
means that in the case of a || (P1,P2,P3,P4) then there is 4 programs running in parallel. 
An agent will execute the first program that he is able to execute in the list beginning by P1 
end ending by P4. The  ||(P1,P2,P3,P4) instruction is terminated when all the programs 
P1, P2, P3, P4 are terminated. 

[B4] global_variable_assignment ::= identifier = expression

[B5] global_if ::= if (test) { local_program } else {local_program} 

[B6] global_loop ::= while (test) { local_program }

These are very classical assignment to social variables or If and While instructions
.
Coordination or Group Programming

The coordination programming gives the description of how a specific set of agent will execute the code and how it 
is distributed over this set of agents. This is the most original part of the language. It contains two different original 
constructions. 

First original part : the couple seqofpar and parofseq express the way in which the code is executed : synchronously 
(seqofpar) or independently in parallel (parofseq).

Second original part : the where instruction express the pre condition to be satisfied for an agent to execute a code. 

[C] local_program : := 
  *[global_variable_assignment]* [B4]
| *[agent programming]* [C1]

[C1] agent programming :: = 
  <agent name>.method() [D1]
| seqofpar(agent_type_list) { [LP1]

[protected_declaration] [D2]
*where_without_event*  [D3]

   }
| parofseq(agent_type_list ){ [LP2]

[protected _declaration] [D2]
*where_with_event*  [D4]

   }
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Coordination programming in Horocol language takes three different forms : a classical 
specific method called to a specific agent [D1], or one of the two constructions “seqofpar” 
[LP1] or “parofseq” [LP2] detailed below. 

[D2] protected _declaration ::= 
 type_indication identifier_list [ limited( agents_list, agents_class)] [= expression] ;
| event identifier_list ;

It is possible to declare protected scope variables or events (inside a  seqofpar or  parof
seq). In this case they are visible only to the subset of all agents executing this part of code.

[LP1] Instruction   seqofpar  : sequence of parallel  

seqofpar(agent_type_list) can be understood as : “apply seqofpar to all agents having the type « agent_type » in the 
following”. In this construction « agent_type » are defined in  [A1].  The seqofpar is a control structure for which 
each line of the internal program (where_without_event) will be executed synchronously over all agents concerned 
by this branch. Synchronously execution means that agents execute one instruction at the same time than the others.

[D3] where_without_event  ::=
  where (test) {

[private_declaration] [D5]
* local_instruction ; * [E]

  }

where indicates who is concerned by the “local_instruction”. This construction can be un
derstood like : “for all agents satisfying the condition expressed by the test execute the fol
lowing local_instuction”. Remark also that it is possible to define private variables [D5] or 
events which are visible only by the agent executing this branch an duplicated in each of 
them (i.e. duplicated in each agent satisfying the condition  test). Because this kind of in
struction is in a seqofpar this means that each instruction [F1] to  [F11] of the local instruc
tions [E] is executed locally at the same time on each agent satisfying the test. In this case 
we speak of synchronous multi-agent programming. 

[LP2] Instruction   parofseq  : concurrency of sequence  

Here all agents concerned by the code (where_with_event) are executing their code in parallel and no instruction 
synchronisation between them is made. This means that all agents execute its own code independently from the 
others. The only instruction synchronisation is at the end of the  parofseq because this instruction is considered 
terminated when all the agents concerned by the internal code have finished their execution.

[D4] where_with_event ::= 
   where (test ){

[private_declaration] [D5]
* local_instruction ; * [E]

  [react
* when_event ; *] [D6]

  }

[D5] [private_declaration]

Declaration of private variable or event at a private level. These elements are only visible 
by the agent executing this code and are duplicated in each agent. 
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[D6] when_event ::= when test => * local_instruction ; *

The react part is used to express reactive multi-agent programming. It works like excep
tions in standard languages. Each time that an event (supposed visible by the agent execut
ing this code) is emitted (by the emit [F7] instruction) then the react part is activated and 
looks if a specific program is linked to it. If it is the case then this program is executed else 
the normal program continues at the point where the event arrived. 

If during the execution of local_instruction an other event is raised the this second event is 
queued until  the end of the code actully running in the react part. After what it  will be 
treated by the react part. Nevertheless,  it is possible to use Horocol to simulate preemption 
and priority.

Agent programming

The agent programming will describe the code executed at low level by the agents. To the set of instructions defined 
in [E] we have to add local agent primtives which are defined in the file.xml imported in the beginning of the 
Horocol program. 

 [E] local_instruction : :=
basic_primitive() [F0]
 <agent>. basic_primitive() [F1]

   | if (test) { local_instruction  }{ local_instruction  } [F2]
| while (test) { local_instruction  } [F3]
| loop local_instruction  end loop [F4]
| exit [F5]
| variable_assignement [F6]
| emit event [F7]
| resume [F8]
| restart [F9]
| reevaluate [F10]

[F0] basic_primitive()
Again classical specific method applied to the concern agent.

[F1] <agent>. basic_primitive()
Again classical specific method call to a specific agent identical to[D1]. 

[F2] if (test) { local_instruction  } else { local_instruction }
standard. 

[F3] while (test) { local_instruction  }
standard

[F4] loop local_instruction  end loop
standard 

[F5] exit
used to exit from a loop …end loop [F4] or while [F3] instruction.

[F6] variable_assignement
Identical to [B4] 

[F7] emit event | emit event (*type var,* type var)
This instruction emits an event that can be declared at the social level [A4] or protected if 

declared in [D2] or private if declared in [D5]. When an event is emitted then the react part 
[D6] of the program  is executed.
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[F8] resume
This instruction can be present only in when_event [D6] part. Its execution will restart the 

execution of the corresponding local_instruction [E] program at the instruction where was 
emmited the event that stops its execution to enter in the react part. 

[F9] restart
This instruction can be present only in when_event [D6] part. Its execution will restart the 

execution of the corresponding local_instruction [E] program at the first instruction.

[F10] reevaluate
This instruction can be present only in when_event [D6] part. Its execution will restart the 

execution of the  seqofpar or  parofseq instruction. The idea is to check is the agent stills 
have the properties expressed in the where test of [D3] or [D4]

Example of Horocol programming
Let’s consider an example in which we simulate the behaviour of a robot team playing football. Let’s say that there is 
4 players, one goal keeper and one coach in the team. A general clock will calculate the end of the play.

import myRobot.xml;
import clock.xml;
programHorocol footballVersion1
   type football use myRobot.xml; // the football type is builded by the decscription of my robots
   type clock use  clock.xml; // a general clock type
   football a1,a2,a3,a4,a5,coach = newAgent( football ); // define 6 agent variables member of the team
   clock watch= newAgent( clock); // and on agent for the clock
   event coachGivesOrder, timeOut; // two global events one for the coach, one for the clock
   int coachStrategy; // the global variable defining the strategy of the team
   int time limited (football); // variable impossible to modify for agent having type football
{
// init part here we suppose that each football agent will receive his assignment (player, goal keeper, coach)
  parofseq(football, clock){
              int playersOrganisation ; // this variable is visible for all members of this section 

where (football.isPlayer()){ // only football agents satisfying isPlayer() primitive execute this 
section
      football x; // this local variable is in each player of this section

  loop
findTheBall(); // call to a primitive of the agent defined in myRobot.xml
if (foundBall ) { moveToBall(); shootBall(); }
else { localMove(playersOrganisation); 
          x =searchNeighbourg();  // search an other agent to speak with
          playersOrganisation = x.exchangeInformation(); // discuss with this agent
} // this make possible change in the team organisation 

 end loop;
       react // if an event is raised the previous section stops and this part is executed

when timeOut      => resetBehaviour() ; restart; // end of the game start again
when coachGivesOrder      => setMyself( coachStrategy); reevaluate; // change my behaviour

  };

where (football.isGoalKeeper()){ // executted by the football agent verifying isGoalKeeper()
loop
  findTheBall(); ….
  coach.exchangeInformation();// direct talk between the goal keeper/coach: local synchronisation
end loop; 

      react
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      when timeOut => resetBehaviour() ; restart;
      when coachGivesOrder => setMyself( coachStrategy); reevaluate;

}; // according to the coach decision the goal could change his behaviour and become a player

where (football.isCoach()){
    int coachConclusion ; // local variable used by the coach to analyse the situation

loop
   if (time<100) { coachStrategy := 15;  emit coachGivesOrder;} // ending game changes strategy
   else {coachConclusion = analyseSituation();

            if (coachConclusion != coachStrategy){   //comparison general strategy local conclusion
 coachStrategy = coachConclusion;        // define the new strategy
 emit coachGivesOrder;}        // raise an event to “react” other player
           }

end loop;
};

where (clock.isWatch()){
       while (time>0) { waitOneSecond(); time =time-1;};
      emit timeOut; // raise the timeout then all the agents will react to this event and end the game
};

 } 
}

Mapping Horocol on a set of real robots

By these example we see how the Horocol programs are linked to the real robot by the use is the import and use 
constructions. 
The idea of Horocol is to assume that some primitive actions are available for each type of agents. Then when we 
write an Horocol program we manipulate these primitives under some parallel : ||, seqofpar or parofseq constructions. 
In fact, depending on the hardware structure of the robots, we have no guaranties that these parallel constructions are 
really  possible  to  implement.  For  instance  if  the  robots  are  very  simple  :  contact  sensor,  ligth  sensor  no 
communication (think of a Lego Mindstorm robot) then constructions like : seqofpar or a direct call to a specific 
robot [F1] are not possible. 

To know if it is possible to compile the Horocol program in a equivalent code running on the real robot the Horocol 
compiler will use the informations included in the XML file. This file is including three levels of information : 
- the robot primitive, 
- the syntax of the language used to program this robot, 
- the horocol system primitives avaliable on this physical target. 
The  compiler  checks  first  with  the  information  stored  in  the  horocol  system if  all  the  basics  features  exist  to 
implement : social or protected variable, parallel constructions, direct information exchange. 
The second phase is to check if all the primitive used in the Horocol for the associated type are present in the robot 
primitive. 
Finnaly a purely syntactic rewriting transform the Horocol source code in the specific robot language. Of course this 
last pass is specific to each robot language so it needs to be rewrited for each kind of target. In our case we tested this 
transformation for the local interpreted language mentioned in fig 2. 

CONCLUSION

The Horocol language proposed here allow the description of multi-agents, multi robots behavior at three different 
levels :  social, coordination and agent. The originality of Horocol is in the instructions :  parofseq/seqofpar for 
synchronous programming coupled to the where instruction for precondition evaluation coming with the reevalute 
to check for dynamical. Coupled to the distributed hardware it offers a solution to distributed mechatronics systems.
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