
Horocol language and Hardware modules for robots

Dominique Duhaut, Claude Gueganno, Yann Le Guyadec, Michel Dubois
Valoria

Université de Bretagne Sud
Lorient Vannes, Morbihan, France

dominique.duhaut@univ-ubs.fr

Abstract

This work inserts in the general field of collective robotics. In this paper, we present the results on the design and the
conception of (1) our robotics component called Atom, (2) the informal semantics of the HoRoCoL language. The
expressivity of the language is illustrated on a simple example.

At the hardware level, we propose a versatile architecture easily adaptable for most mechatronic systems. The
hardware is based on a processing unit developed around a CPU + FPGA computing system communicating through
bluetooth. On this hardware we build a software architecture, where each robot embeds its own description in an
XML file. Control interfaces or programming tools are self-reconfigurable, depending of the XML description of the
robot. That enables quick technology transfer for many mechatronics applications.

At the software level, we present the Horocol language for programming a society or teams of robots. An example
shows the principal features of the Horocol language. This language has been developed to offer a solution to express
the behaviours of a set of teams of robots or agents. We focus on the originality of this language which is in the
instructions for programming the team coordination.

Introduction

This project takes place in the more general field of reconfigurable modular robotics. We can mention several
various experiments. The M-TRAN (Modular Transformer - AIST) described in [1], is a distributed self-
reconfigurable system composed of homogeneous robotic modules. CONRO (Configurable Robot - USC), is a robot
made of a set of connectible, autonomous and self-sufficient modules [2]. ATRON, is a lattice based self-
reconfigurable robot [3], and also, PolyPod (Xeros) [4], I-Cube (CMU) [5], Hydra . These robots generally consist
in modules working together and where each module is permanently linked to at least one other.

Programming such reconfigurable systems is a difficult task [6]. This field covers very different concepts like :
methods or algorithms (planning, trajectory generation...), or classically, architectures for robot control, usually
hierarchical : centralised [7], reactive [8], hybrid [9, 10, 11]. Some languages are developed in order to implement
these high level concepts [12, 13]. Different paradigms are also proposed: functional [14, 15, 16], deliberative or
declarative [17, 11, 18] and synchronous [12]. In any way, we can schematically summarise the difficulties of robot
programming in two great characteristics:
• programming of elementary actions (primitives) on a robot is often a program including many process running

in parallel with real-time constraints and local synchronisation
• interactions with the environment are driven via traditional features: interrupt on event or exception and

synchronisation with another element.
The recent introduction of teams of robot, where cooperation and coordination are needed, introduces an additional
difficulty : programming the behaviour of a group of robots or even a society of robots [19, 20, 21, 22]. In this case
(except in the case of a centralised control) programming implies to load a specific program on to each robot because
of the different characteristics of robots : different hardware, different behaviours and different programming
languages. These distinct programs must in general be synchronized to carry out missions of group (foraging,
displacement in patrol, ...) and have reconfiguration capabilities according to a map of cooperation communication.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

mailto:dominique.duhaut@univ-ubs.fr

From the human point of view it is then difficult to have simultaneously an overall vision of the group on three
levels: the social level where we look for the global behaviour of any robot, the team level where we focus on a
specific group of robot and the individual robot level.
The definition of our general language HoRoCoL is driven by these three levels of team programming: Social,
Group, Agent. Social and Agent programming are very classical, the original part of this work is on the Group
programming where we introduce two original instructions : ParOfSeq/SeqOfPar and the where instruction.

This paper presents the design of our robotics modular component, called Atom, and preliminary results on the
prototypeand introduces the HoRoCoL language.

Hardware level

This section is a quick presentation of some mechanical aspects of the basic module (atom) and next, a description of
the hardware and embedded software. Some informations on the progress of this project can be found in. The priority
was given to the high-level tools and the communication middleware, .

Mechanical design
One atom is composed of six legs which are directed towards the six orthogonal directions of space. They allow the
atom to move itself and/or dock to another one. The carcass of the atom consists of six plates molded out of
polyurethane. A carcass weights approximately 180g. The first walking prototype of atom is shown here.

Fig1. -The fisrt prototype of Maam robot -The CPU Board -The CPU Organisation

The CPU has to
- control 12 axis (2 DOF for one leg) : each leg is driven by two servo--motors and a servo--motor is controlled

by a PWM (Pulse Width Modulation) signal. The servo includes a motor, an angle reducer and a P.I.D.
regulator.

- control the docking of two legs : the mechanic system under consideration provides a flip-flop control. The
same control must alternatively couple then uncouple the two atoms.

- identify the legs at the touch of the ground : an atom may have 3 or 4 legs touching the ground at the same
time. The presence of pincers at the tip of the leg make the installation of a sensor hard. We extract this
information from the inside of the servo by processing some control-signals of the PID regulator.

- line up 2 legs : the mechanical connection between two atoms requires the lining up of two legs. We propose an
infrared transmitter/receiver system. The search for an optimal position needs the use of 6 analog--to--digital
converters for each atom. It may be useful to activate or deactivate the transmitter if necessary: that leads to
add 6 digital outputs in our system.

- communicate with another atom or with a host computer: this aspect is discussed in the next section.

We also have the following general constraints for robotic and embedded systems:
- mechanical: the electronic is embedded in a robotic atom; it must fit in a cube which edges < 50 mm.
- adaptation: emergence of new requirements due to unforeseen problems during the development of robotic

atom must not question the general architecture.

Embedded electronic

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

The architecture represented by the diagram in Fig 1 takes the previous enumeration of functions and constraints into
account. The Embedded electronics is built around a Triscend TE505 CSoC. The TE505 integrates a CPU 8051, a
FPGA with 512 cells and an internal 16KB RAM. It is completed by an AD convertor card and external bluetooth
module for radio--communication
This solution gives a suitable answer for previous constraints. The micro-controller provides usual functions of a
computing architecture: central unit, serial line, timers, internal memory. With the FPGA we can realise the
equivalent of an input/output card with low level functionalities. It provide most of classical combinatory and
sequential circuits (latches, counters, look--up--tables, comparators With the 512 cells build in the TE505 we could
carry out the twelve PWM-commands, as well as the command of A/D converter (MAX117) in a pipeline mode and
also other input/output. So we can command each axis by just writing in one register and control the level of the Ir
receptor simply by reading in a register that is refreshed in real time.

Low level Software
Because managing a team of robots with effectiveness suppose to guess the actual robots reachable in the area, to
learn the capabilities of each one, to be able to distribute an application between them, and, possibly to remote-
control any of them, we developed the following architecture.

The host computer searches for the bluethoot robots
accessible and build the first map of communication
between them.

The host computer receives all the XML files coming from
the robots. These files describes the commands and sensors
available on the robot.

A specific interface allows to make a direct use of the
commands avaliable on each robot

It is also possible to use the generic interface to program
the all set of robots using the Horocol language (decribed
further).

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

After a compilation, the program can be loaded in each
robot connected to the system. In each robot a local
language interpreter will run its own part of the code.

This general procedure permit to program with a unify
system a all set of robot making by this a multi-agent
programming language : Horocol.

Fig 2 : Ambient Robotics presentation

Horocol Language

In Horocol we distingush three levels of programmind : social programming, coordination programming and agent
programming

Social programming

Is used to express the general behaviour of the sets of agent. It gives a general description of « what set of agent is
doing what ». It is a meta langage of behaviour. It offers a high level point of view to the programmer who describes
its calculation in term of composition of event, directed parallel programs synchronized by areas. Areas stands for a
set of agents, virtually or physically distributed over a network of computers or a set of mechatronics agents, running
the same goal.

Main structure

Horocol : := *import file.xml ;*
 programHorocol program_name {

agents_set_declaration // Declaration section
* global_instruction ; * // Programming section

 }

import is used to express what which real robots are used in this program.

We assume that an agent (robot) is define by a set of 3 files:
• primitive.xml which describe the elementary actions that can perform the agent (for instance in the next example

myRobot will be able to : “findTheBall() or searchNeighbourg() …”

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

• langage.xml which describe the kind of program that can execute the agent (robot). This language can be a
standard programming language (Java, C++, …) or a specific language for an industrial robot. In our case it is
the interpeter described in Fig2 which is the target language.

• horocolSystemBasics.xml which describe the list of system features available for this agent (robot) like
communication, synchronisation... This file will allow a Horocol engine to know if it is possible to generate
from an Horocol program a specific program for this agent (robot).

These 3 files are supposed merged in a file file.xml. In the case of a set of heterogeneous robot then there will be
several different file.xml : one by kind of robot.

Declaration section

[A] agents_set_declaration : := *agents_type_declaration* [A1]
*agent_list * [A2]
[social_variable] [A3]
[social_event] [A4]

Agents, variables and events are declared at the global scope. Agents list is the list of all
agents participating to the program. Variables and event declared at global scope are sup
posed visible by any agent. The public variables of the agents (define in files.xml) are also
supposed visible by all agents.

[A1] agents_type_declaration ::= type agents_type_identifier use file.xml;

This construction defines type of agents and make the link with the real external agents/ro
bots.

[A2] agent_list ::= agent_type_identifier identifier=newAgent([agent_type_identifier]);

 This is the declaration of all the agents participating in this code. The newAgent order ex
press the begining of the robot life for this appication. It is not necessarily implementable it
can be reduce to “power on” a robot.

[A3] social_variable ::= type_indication identifier_list [limited(agents_list, agents_type)] [= expression];

Classical variable are allowed (int, float, boolean …). This defines public variables visible
by all agents of the system named social variables.

The keyword limited express that for the agents in agents_list or agents_type the variable
is “read only”.

[A4] social_event ::= event identifier_list;

It is possible to declare public events. Social event are supposed to be visible from all
agents declared in this program.

Programming section

[B] global_instruction ::= global_noninterrupt_action [B1]
| global_interrupt_action [B2]
| global_parallel [B3]
| global_variable_assignment [B4]
| global_if [B5]
| global_loop [B6]

 [B1] global_noninterrupt_action ::= [local_program]

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

This defines a program that is executed from the first to the last instruction without possib
ility to end its execution. This construction is only usefull in [B3] construction.

[B2] global_interrupt_action ::= ° local_program °

This defines a program that can be ended during its execution. The way of finishing a pro
gram is not defined by Horocol because it depend on the type of real agents used. Basically
we can consider two kinds of ending. First the system kills the program. The second way is
to send a message to this program to ask it to finish, this technique will be preferred when
security is needed (shared variable, robot …).

[B3] global_parallel ::= || (*global_instruction,* global_instruction)

This construction allows to begin at the same time two (at least) different programs over
the set of all agents. At this point an agent will execute the first code possible for him. This
means that in the case of a || (P1,P2,P3,P4) then there is 4 programs running in parallel.
An agent will execute the first program that he is able to execute in the list beginning by P1
end ending by P4. The ||(P1,P2,P3,P4) instruction is terminated when all the programs
P1, P2, P3, P4 are terminated.

[B4] global_variable_assignment ::= identifier = expression

[B5] global_if ::= if (test) { local_program } else {local_program}

[B6] global_loop ::= while (test) { local_program }

These are very classical assignment to social variables or If and While instructions
.
Coordination or Group Programming

The coordination programming gives the description of how a specific set of agent will execute the code and how it
is distributed over this set of agents. This is the most original part of the language. It contains two different original
constructions.

First original part : the couple seqofpar and parofseq express the way in which the code is executed : synchronously
(seqofpar) or independently in parallel (parofseq).

Second original part : the where instruction express the pre condition to be satisfied for an agent to execute a code.

[C] local_program : :=
 [global_variable_assignment] [B4]
| *[agent programming]* [C1]

[C1] agent programming :: =
 <agent name>.method() [D1]
| seqofpar(agent_type_list) { [LP1]

[protected_declaration] [D2]
where_without_event [D3]

 }
| parofseq(agent_type_list){ [LP2]

[protected _declaration] [D2]
where_with_event [D4]

 }

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

Coordination programming in Horocol language takes three different forms : a classical
specific method called to a specific agent [D1], or one of the two constructions “seqofpar”
[LP1] or “parofseq” [LP2] detailed below.

[D2] protected _declaration ::=
 type_indication identifier_list [limited(agents_list, agents_class)] [= expression] ;
| event identifier_list ;

It is possible to declare protected scope variables or events (inside a seqofpar or parof
seq). In this case they are visible only to the subset of all agents executing this part of code.

[LP1] Instruction seqofpar : sequence of parallel

seqofpar(agent_type_list) can be understood as : “apply seqofpar to all agents having the type « agent_type » in the
following”. In this construction « agent_type » are defined in [A1]. The seqofpar is a control structure for which
each line of the internal program (where_without_event) will be executed synchronously over all agents concerned
by this branch. Synchronously execution means that agents execute one instruction at the same time than the others.

[D3] where_without_event ::=
 where (test) {

[private_declaration] [D5]
* local_instruction ; * [E]

 }

where indicates who is concerned by the “local_instruction”. This construction can be un
derstood like : “for all agents satisfying the condition expressed by the test execute the fol
lowing local_instuction”. Remark also that it is possible to define private variables [D5] or
events which are visible only by the agent executing this branch an duplicated in each of
them (i.e. duplicated in each agent satisfying the condition test). Because this kind of in
struction is in a seqofpar this means that each instruction [F1] to [F11] of the local instruc
tions [E] is executed locally at the same time on each agent satisfying the test. In this case
we speak of synchronous multi-agent programming.

[LP2] Instruction parofseq : concurrency of sequence

Here all agents concerned by the code (where_with_event) are executing their code in parallel and no instruction
synchronisation between them is made. This means that all agents execute its own code independently from the
others. The only instruction synchronisation is at the end of the parofseq because this instruction is considered
terminated when all the agents concerned by the internal code have finished their execution.

[D4] where_with_event ::=
 where (test){

[private_declaration] [D5]
* local_instruction ; * [E]

 [react
* when_event ; *] [D6]

 }

[D5] [private_declaration]

Declaration of private variable or event at a private level. These elements are only visible
by the agent executing this code and are duplicated in each agent.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

[D6] when_event ::= when test => * local_instruction ; *

The react part is used to express reactive multi-agent programming. It works like excep
tions in standard languages. Each time that an event (supposed visible by the agent execut
ing this code) is emitted (by the emit [F7] instruction) then the react part is activated and
looks if a specific program is linked to it. If it is the case then this program is executed else
the normal program continues at the point where the event arrived.

If during the execution of local_instruction an other event is raised the this second event is
queued until the end of the code actully running in the react part. After what it will be
treated by the react part. Nevertheless, it is possible to use Horocol to simulate preemption
and priority.

Agent programming

The agent programming will describe the code executed at low level by the agents. To the set of instructions defined
in [E] we have to add local agent primtives which are defined in the file.xml imported in the beginning of the
Horocol program.

 [E] local_instruction : :=
basic_primitive() [F0]
 <agent>. basic_primitive() [F1]

 | if (test) { local_instruction }{ local_instruction } [F2]
| while (test) { local_instruction } [F3]
| loop local_instruction end loop [F4]
| exit [F5]
| variable_assignement [F6]
| emit event [F7]
| resume [F8]
| restart [F9]
| reevaluate [F10]

[F0] basic_primitive()
Again classical specific method applied to the concern agent.

[F1] <agent>. basic_primitive()
Again classical specific method call to a specific agent identical to[D1].

[F2] if (test) { local_instruction } else { local_instruction }
standard.

[F3] while (test) { local_instruction }
standard

[F4] loop local_instruction end loop
standard

[F5] exit
used to exit from a loop …end loop [F4] or while [F3] instruction.

[F6] variable_assignement
Identical to [B4]

[F7] emit event | emit event (*type var,* type var)
This instruction emits an event that can be declared at the social level [A4] or protected if

declared in [D2] or private if declared in [D5]. When an event is emitted then the react part
[D6] of the program is executed.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

[F8] resume
This instruction can be present only in when_event [D6] part. Its execution will restart the

execution of the corresponding local_instruction [E] program at the instruction where was
emmited the event that stops its execution to enter in the react part.

[F9] restart
This instruction can be present only in when_event [D6] part. Its execution will restart the

execution of the corresponding local_instruction [E] program at the first instruction.

[F10] reevaluate
This instruction can be present only in when_event [D6] part. Its execution will restart the

execution of the seqofpar or parofseq instruction. The idea is to check is the agent stills
have the properties expressed in the where test of [D3] or [D4]

Example of Horocol programming
Let’s consider an example in which we simulate the behaviour of a robot team playing football. Let’s say that there is
4 players, one goal keeper and one coach in the team. A general clock will calculate the end of the play.

import myRobot.xml;
import clock.xml;
programHorocol footballVersion1
 type football use myRobot.xml; // the football type is builded by the decscription of my robots
 type clock use clock.xml; // a general clock type
 football a1,a2,a3,a4,a5,coach = newAgent(football); // define 6 agent variables member of the team
 clock watch= newAgent(clock); // and on agent for the clock
 event coachGivesOrder, timeOut; // two global events one for the coach, one for the clock
 int coachStrategy; // the global variable defining the strategy of the team
 int time limited (football); // variable impossible to modify for agent having type football
{
// init part here we suppose that each football agent will receive his assignment (player, goal keeper, coach)
 parofseq(football, clock){
 int playersOrganisation ; // this variable is visible for all members of this section

where (football.isPlayer()){ // only football agents satisfying isPlayer() primitive execute this
section
 football x; // this local variable is in each player of this section

 loop
findTheBall(); // call to a primitive of the agent defined in myRobot.xml
if (foundBall) { moveToBall(); shootBall(); }
else { localMove(playersOrganisation);
 x =searchNeighbourg(); // search an other agent to speak with
 playersOrganisation = x.exchangeInformation(); // discuss with this agent
} // this make possible change in the team organisation

 end loop;
 react // if an event is raised the previous section stops and this part is executed

when timeOut => resetBehaviour() ; restart; // end of the game start again
when coachGivesOrder => setMyself(coachStrategy); reevaluate; // change my behaviour

 };

where (football.isGoalKeeper()){ // executted by the football agent verifying isGoalKeeper()
loop
 findTheBall(); ….
 coach.exchangeInformation();// direct talk between the goal keeper/coach: local synchronisation
end loop;

 react

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

 when timeOut => resetBehaviour() ; restart;
 when coachGivesOrder => setMyself(coachStrategy); reevaluate;

}; // according to the coach decision the goal could change his behaviour and become a player

where (football.isCoach()){
 int coachConclusion ; // local variable used by the coach to analyse the situation

loop
 if (time<100) { coachStrategy := 15; emit coachGivesOrder;} // ending game changes strategy
 else {coachConclusion = analyseSituation();

 if (coachConclusion != coachStrategy){ //comparison general strategy local conclusion
 coachStrategy = coachConclusion; // define the new strategy
 emit coachGivesOrder;} // raise an event to “react” other player
 }

end loop;
};

where (clock.isWatch()){
 while (time>0) { waitOneSecond(); time =time-1;};
 emit timeOut; // raise the timeout then all the agents will react to this event and end the game
};

 }
}

Mapping Horocol on a set of real robots

By these example we see how the Horocol programs are linked to the real robot by the use is the import and use
constructions.
The idea of Horocol is to assume that some primitive actions are available for each type of agents. Then when we
write an Horocol program we manipulate these primitives under some parallel : ||, seqofpar or parofseq constructions.
In fact, depending on the hardware structure of the robots, we have no guaranties that these parallel constructions are
really possible to implement. For instance if the robots are very simple : contact sensor, ligth sensor no
communication (think of a Lego Mindstorm robot) then constructions like : seqofpar or a direct call to a specific
robot [F1] are not possible.

To know if it is possible to compile the Horocol program in a equivalent code running on the real robot the Horocol
compiler will use the informations included in the XML file. This file is including three levels of information :
- the robot primitive,
- the syntax of the language used to program this robot,
- the horocol system primitives avaliable on this physical target.
The compiler checks first with the information stored in the horocol system if all the basics features exist to
implement : social or protected variable, parallel constructions, direct information exchange.
The second phase is to check if all the primitive used in the Horocol for the associated type are present in the robot
primitive.
Finnaly a purely syntactic rewriting transform the Horocol source code in the specific robot language. Of course this
last pass is specific to each robot language so it needs to be rewrited for each kind of target. In our case we tested this
transformation for the local interpreted language mentioned in fig 2.

CONCLUSION

The Horocol language proposed here allow the description of multi-agents, multi robots behavior at three different
levels : social, coordination and agent. The originality of Horocol is in the instructions : parofseq/seqofpar for
synchronous programming coupled to the where instruction for precondition evaluation coming with the reevalute
to check for dynamical. Coupled to the distributed hardware it offers a solution to distributed mechatronics systems.

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

References

[1] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, S. Koraji, "M-TRAN: Self-Reconfigurable Modular Robotic System" in
IEEE/ASME transactions on mechatronics, Vol.7 No.4 2002

[2] M. Rubenstein, K. Payne, W-M. Shen, "Docking among independent and autonomous CONRO self-reconfigurable robot" in ICRA 2004

[3] M.W. Jorgensen, E.H. Ostergaard, H. Hautop, "Modular ATRON: Modules for a self-reconfigurable robot" in proceedings of 2004 IEE/RSJ
International conference on Intelligent Robots an Systems (IROS 2004).

[4] http://robotics.standford.edu/users/mark/polypod.html

[5] C. Unsal and P.K. Khosla, "A multi-layered planner for self-reconfiguration od a uniform group of I-cube modules", IEEE/RSJ, IROS confer
ence, Maui, Hawaii, USA, pp 598-605, Oct. 2001. http://www-2.cs.cmu.edu/~unsal/research/ices/cubes

[6] T. Lozano-Perez & R. Brooks “An approach to automatic robot programming” Proceedings of the 1986 ACM fourteeth annual conf on
computer science 1986, ACM Press

[7] J. S. Albus & all. NASA/NBS “Standard Reference Model for Telerobot Control System Architecture (NASREM)”. NBS Technical Note
1235, National Bureau of Standards, Gaithersburg, MD, 1987.

[8] P. Hudak & all “Arrows, robots, and functional reactive programming” LNCS 159-187 Spinger Verlag 2002

[9] R. Alur & all, "Hierarchical Hybrid Modeling of Embedded Systems" Proceedings of EMSOFT'01: First Workshop on Embedded Software,
October 8-10, 2001

[10] F. F. Ingrand & all “PRS: a high level supervision and control language for autonomous mobile robots”, IEEE Int Cong on Robotics and
Automation Minneapolis, 1996

[11] D. Paul Benjamin & all “Integrating perception, language an problem solving in a cognitive agent for mobile robot” AAMAS’04 july 19-23
2004, New-York

[12] I. Pembeci & G. Hager “A comparative review of robot programming languages” report CIRL – Johns Hopkins University august 14, 2001

[13] C. Zielinski “Programming and control of multi-robot systems” Conf. On Control and Automation Robotics and Vision ICRARCV’2000 dec
5-8 2000, Singapore

[14] J. Armstrong “The development in Erlang”, ACM sighpla international Conference on Functional Programming p 196-203. 1997

[15] M.S. Atkin & all “HAC: a unified view of reactive and deliberative activity”. Notes of the European Conf on Artificial Intelligence 1999

[16] G. King “Tapir: the Evolution of an Agent Control Language” American Association of Artificial Intelligence 2002.

[17] M. Dastani & L. van der Torre “Programming Boid-Plan agents deliberating about conflicts along defeasible mental attitudes and plans”
AAMAS 2003

[18] J. Peterson & all “A language for declarative robotic programming” Int Conf on Robotics and Automation ICRA 1999

[19] E. Klavins “A formal model of a multi-robot control and communication task” IEEE Conf on Decision and Control, 2003

[20] E. Klavins “A language for modeling and programming cooperative control systems” Int Conf on Robotics and Automation ICRA 2004

[21] D.C. Mackenzie & R. Arkin “Multiagent mission specification and execution” Autonomous Robot vol 1 num 25 1997

[22] F. Mondada & all “Swarm–bot: for concept to implementation”, IEEE/RSJ Int Conf on Intelligent Robots and Systems IROS 2003

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

http://www-2.cs.cmu.edu/~unsal/research/ices/cubes

