First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

MINISTÈRE DE LA DÉFENSE

Integrating human / machine interaction into robot control architectures for defense applications

C/_\

D. Dufourd (DGA/SPART), A. Dalgalarrondo (DGA/CEV

Outline of the presentation

- Introduction
- Operational context for HRI (Human / Robot interaction)

 Demain 2015, BOA (Bulle Opérationnelle Aéroterrestre), Hommes et robots en reconnaissance.

2/24

- Overview of existing HRI mechanisms within robot control architectures (defense applications)
- Description on our work concerning HARPIC
- Perspectives and open issues about HRI within software architectures
- Conclusion

DGA / SPART

Introduction

Given recent advances in robotics technologies, the range of operational missions for robots is getting wider :

3/24

- reconnaissance and scout missions
- surveillance, target acquisition and illumination
- demining, breaching, security missions (EOD, IED neutralization...)
- supply delivery, mule applications, obstacle clearing, retrieval of injured people, telemanipulation

CAR '06

• communication relays, diversion...

DGA / SPART

First National Workshop on Control Architectures of Robots - April 6,7 2006 - Montpellier

French Defense robotics projects

TAROT / BOA

Architecture système science as modes de fonctionnement.

Mini-RoC

4/24

(+ PEAs Minidrones, SUAV, Evolution, Action, OISAU...)

DGA	

CAR '06

Why introduce HRI into military operations ?

 Basic teleoperation may induce a heavy workload on the operator (e.g. TMR robots at WTC disaster)

-> need for autonomy

DGA / SPART

- However, technology is not mature enough to enable full autonomy during complex missions + autonomy is not desirable in some operational situations
 - -> need to keep humans in the loop
- Humans and robots have orthogonal strengths
- -> the best solution seems to be a good collaboration between humans and robots

CAR '06

CAR '06

DGA / SPART

Existing demonstrators (defense applications)

- Most of them include various control modes
- Mostly based on well-known architectures
- Examples :

DGA / SPART

- Sweden small UGV : sliding autonomy SSS ;
- TMR (INEEL-ARL) : safeguarded teleoperation / sliding autonomy subsumption architecture (at the lower level)
- PRIMUS-D (UBM-Dornier) : teleoperation + behaviors 4D/RCS
- Demo III (ARL-NIST) : sliding autonomy 4D/RCS
- MARS (CMU) : cooperative control message-based architecture
- TMR (Georgia Tech) : multi-robot schema-based control AuRA (+ Mission Lab)

CAR '06

But difficult to compare - more feedback needed

Description of our work on HARPIC (CEP Arcueil)

DGA / SPART

<u>Goals</u> :

CAR '06

- Investigate different ways to control a mobile robot, using various levels of autonomy
- Integrate these various modes into an operator control unit suited for PDA
- Demonstrate the potentialities of the control strategies
- Get feedback from operational forces
- Express requirements for future systems

The selected control modes

We have selected the following control modes for our application:

manual control (total control) - teleoperation

Assisted control (anti-collision and obstacle avoidance ensured by the robot) - shared control (safeguarded teleoperation)

waypoints or goal-directed navigation - supervisory teleoperation

behavior-based autonomy (wall following, corridor following...) - behavior-based teleoperation

sequences of behaviors - full autonomy

different modes within the same system allowing dynamic swapping - adjustable autonomy

Constraints

- Software adapted to multi-robot applications
- Allow simple access to robot perceptions
- Small size interface (fit to the PDA screen): 320x240 pixels
- Using 2 laptops with wireless lan (1 on the robot and 1 for the operator)
- The agents of the multiagent control architecture can be executed on either laptop
- The interface must be compatible with our simulator and work on a robot equipped with a color camera, sonar range sensors and a laser range finder

Underlying control architecture: HARPIC

- Harpic is a multi-agent hybrid architecture which allows communication and task allocation between operators and robots.
- The interface itself is an agent of the architecture.

HARPIC implementation

- Multi-agent formalism + object-oriented language (C++)
 -> modularity, encapsulation, scalability
- POSIX threads -> parallel execution
- Common structure for all agents (communication)
 - A special Administrator agent to record information about the others -> modularity
 - Two specific agents to bind architecture to hardware (interface software/physical robot + image acquisition) -> modularity
 - Perception and action agents
 - Attention agent

DGA / SPART

Behavior selection agent

Mode: assisted remote control

speed commands

 Safeguarded Teleoperation (collision avoidance)

Reflexive teleoperation (using contextual information)

DGA / SPART

speed and direction commands

• SLAM

13/24

CAR '06

Mode: goal-oriented navigation

• goal point in the image

 Automatic planning and trajectory following

 Localization and mapping still running

. The goal point can be changed anytime

. goal point in the map

Mode: autonomous behaviors

HARPIC : /	Agent de S	Selection	- X
Navigation	Image	Agents	$[\bullet]$
Perception:			
Agt_Obst_	LASER	4	1
Agt_Carto		=	-
Agt_Cons_	Grille		
Agt_Det_L	ASER		-
Action:			_
Evit_obst_	laser		
Suit_mur_l	aser		
Suit_coul_l	aser		
Act_Planif_	Traj		
STOP 4	ctivation	Refres	h

DGA / SPART

• The operator selects, activates or stops behaviors:

- obstacle avoidance

- wall following
- corridor following

• The operator selects, activates or stops behavior sequences

CAR '06

HARPIC : Agent de Se	ection – 🗙
Agents Prog Det	ection 🚺
Programmes:	
Prog Obst-Mur-Couloir	
Prog Obst-Mur	
STOP Activation	
	V
	DG
15 / 24	

CAR '06

Mode : multirobot

HA roq	RPIC : Agent Detection	de Selection MultiRobot	-×
Adre	sses SMA		
gort	ex.etca.fr		
Retresh Selection			

DGA / SPART

→ The operator can connect to and control different robots.

CAR '06

Experimentations

DGA / SPART

• JNRR'03 :

•Navigation in a machine-tool hall about 60 x 60 m large

- Trajectories with loops and abrupt heading changes.
- CEP, Eurosatory, Le Bourget, RND, colloque AAT...

Perspectives concerning HARPIC

- Improvement of existing modules, implementation of new behaviors (both for navigation and mission purposes) and multi-robot cooperation
- Development of semi-autonomous transition mechanisms between modes:
 - Using a priori-evaluation (fixed rules for transition)

DGA / SPART

- Using on-line evaluation of the quality of perception or behaviors, learning
- Introduction of HRI at other levels of the architecture : assistance to perception, attention and action...

CAR '06

General open issues about HRI

- How can we modify existing control architectures to introduce efficient HRI ? What kind of HRI is supported by existing architectures ? Are some architectures more adapted to HRI than others ?
- Is it possible to build general standard architectures allowing any kind of HRI ? Do we need to distinguish different classes of architectures dedicated to different HRI modalities ?
- What kind of software technologies could support HRI development ?

HRI within robot control architectures

- Any function, any level may be concerned by HRI: since many architectures are oriented towards full autonomy, they may not allow the whole panel for HRI ?
- Various modes (8 modes above, ANS, ALFUS...)
- Constraints and limitations for HRI design:
 - Security
 - Communication bandwidth and real-time
 - Ergonomics and human capabilities
 - Hardware
 - Dependence from missions, platforms, payloads and interface devices

New software technologies for HRI

- Ubiquitous, ambient and pervasive computing for soldiers
- Multi-agent systems:
 - Autonomy, interaction, organization, emmergence...
 - Combine several emerging technologies :

Distributed computing (grid-computing), AI, constrained programming, data mining, planning, scheduling, web semantics...

Decentralized, open, pro-active (and bottom-up) conception

-> extensibility, portability, robustness, fault tolerance...

-> interesting, especially for network-centric warfare

- Multi-threading and object-oriented languages
- Integration platforms: specification, validation, simulation...

1 M - M	

HRI scalability and standardization

- Scalability (extension capabilities) cf. NCW :
 - Specialization, communication and hierarchy : globally OK for software systems
 - Adaptation, negociation, re-organization : more challenging (cf. communication services, "Autonomic Computing"...?)
 - What kind of information, representations should be used ?
 - Future network centric systems = Web services ???

• Standardization :

DGA / SPART

- Beyond using standard technologies: modular conception, scalability of components...
- Is it possible to build generic logical views (components + communications / relationships) for architectures including any kind of HRI ?

22/24

CAR '06

Conclusion

• Various and challenging contexts in the field of defense robotics (variety of platforms, missions, environments)

- Open and challenging issues for HRI:
 - How to develop efficient and scalable HRI?
 - How to introduce HRI into existing systems ?
 - How to support HRI development for future systems (software technologies, standardization...)?
- -> Even though today's research and new technologies are promising, there is still a major effort to be done in order to meet tomorrow needs in defense applications

DGA / SPART

Thank you for your attention !

Any questions ?

24/24

CAR '06

DGA / SPART