
Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

An Asynchronous Reflection Model for
Object-Oriented Distributed Reactive Systems

c© Jacques Malenfant, 2006

Laboratoire d’informatique de Paris 6 (LIP6)
Université Pierre et Marie Curie et CNRS (UMR 7606)

Jacques.Malenfant@lip6.fr

$Revision: 1.5 $ — $Date: 2006/03/25 09:18:14 $

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

1 Context & problem

2 Our MAAM software architecture

3 Extensions and future work

4 Conclusion

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

The MAAM Project

Molecule := Atom | Atom + Molecule

An atom : an autonomous module
6 motorized legs
End connectors

A molecule : modular robot
1, 2 or 3D set of atoms
shape⇔ function
reconfiguring (changing shape)⇒ new
capabilities, new task

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Challenges for the software architecture

Strategic level
Reconfiguring is needed to tackle different tasks (walking,
climbing, transporting, ...).
Shows when the robot goes from one task to another.

Tactical level
Connecting new atoms⇒ new capabilities, but also different ways
for doing the same things.
New functions appear in the robot interface.
Old functions take a new implementation

Need to adapt the control software.
How? When? Efficiency?

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

General problem and proposed solution

Applications in ambiant intelligence, pervasive systems, and the
like impose a similar challenge to the software architecture.

The high dynamicity of such applications as well as the
variabilility in the available resources require run-time adaptation.

Reflective systems have been studied for two decades to provide
means to adapt software systems by giving the programmer
introspection and intercession API.

However, the traditional way reflective systems have been
constructed does not scale to distributed and reactive systems.

We propose AR M , a new model that we applied to the MAAM
project, but which also generalizes to the case of distributed
reactive systems.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

1 Context & problem

2 Our MAAM software architecture

Reactive framework

Adaptation and reflective architecture

3 Extensions and future work

4 Conclusion

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Hybrid deliberative/reactive architectures

Reactive subsumption achieves good reflex but doesn’t cope well
with long term goals.

Deliberative approaches use symbolic reasoning to control
actuators but tend to be too heavy to sustain the real-time.

The AR M /MAAM achitecture adopts a hybrid
deliberative/reactive approach, as many current robot control
architectures.

Achieves good performance by mixing short-term reactive
capabilities and long-term deliberative ones.

How to implement this conceptual architecture?

programming model mixing synchronous reactive objects and
concurrent asynchronous objects.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

The reactive framework

Implementing the subsumption reactive layer.

Objectives:
Giving a framework (set of abstract classes) for a subsumption
approach to program reactive modules in a high level
programming language (Java).
Offering the runtime to execute the modules (perception, action).
Enabling the coordination among atoms in molecules.

User perspective:
The user designs his schema, programs the modules and
registers them.
Modules are programmed by inheriting from abstract framework
classes and then defining:

putting conditions on signals
implementing the handle abstract method.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Implementation : synchronous programming

Synchronous model: notion of cycle
at each cycle, the system evaluates the received signals and
starts the corresponding activities.
interests: determinism, formal verification.

Solutions:
Using REJO, a reactive extension of Java: rejected
Defining our own minimal synchronous runtime: adopted
Idea: implementing a harmonious intergration of concurrent
asynchronous objects (for deliberation, see later) and
synchronous reactive objects for the control.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Minimal synchronous runtime

Package ActiveObjects (active and reactive objects)
minimal support for executing active objects with asynchronous
communication capability
standard implementation: asynchronous execution model
(immediate reaction to events, messages).
extension: synchronous model (react to events at each cycle).

Interest of the asynchronous communication
heterogeneous but transparent runtime: an asynchronous object
can communicate with a synchronous one, and vice versa.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Overall GALS runtime, synchronization

GALS: globally asynchronous, locally synchronous
keep a synchronous approach for the reactive part while
mastering the inherent global asynchrony.
possible, thanks to the asynchronous communication.

Synchronization in a GALS distributed system:
ensure the synchronization of synchnous objects without imparing
their respectives execution constraints.
our solution: busy wait on future values, by looking for the value at
each cycle.
advantages: transparent use of future variables between reactive
synchronous objects and concurrent asynchronous objects.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Motivation: adaptation scenarios

Changing task
reconfiguration of the robot, end of a task
changing part or all of the modules

Fault-tolerance
detecting a fault on a sensor or motor
replacing impaired modules by others bypassing the faulty
equipments.

Optimizing parameters
enhancing the behavior of a module

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Adaptation framework

Objective: ease the adaptation.

Provide mechanisms for the dynamic adaptation of the system.

Cope with different granularities:
fault-tolerance: granularity = reactive module.
changing task: granularity = set of modules = reactive “schema”.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Our reflective model: AR M

Reflection: capability for a program to know itself and to modify
itself at runtime.

The base level does the “standard” processing of the application.
A metalevel does processing on the base level on order to adapt it
to new execution conditions.

AR M (Asynchronous Reflection Model)
An object kernel for distributed reactive systems.
Separate the execution of the base and meta levels using an
asynchronous communication between the two levels.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Hybrid Reflective Architecture

real−time

Meta level ~ Deliberative level

high level components

Base level ~ Reactive level

synchronous process

<asynchronous>notifications adaptations

Environment
perceptions actions

Enables the

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Reactive framework
Adaptation and reflective architecture

Adaptation protocol

Notifications from the base level to the meta level
at each cycle, data is emitted towards on the state of the atom
(sensors, actuators)

Processing of the notifications at the meta level
integration in the meta level model of the atom
delibaration on the current state

Adaptation requests sent to the base level (if needed)
serialized method call to the base level, applied at the next cycle
before or after the reactive activity of the cycle?

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

1 Context & problem

2 Our MAAM software architecture

3 Extensions and future work

4 Conclusion

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Inside the AR M model

The AR M model is:

independent of the precise base level objet model (unit of
concurrency, communication, ...)

parameterized by the kind of meta level representation of the
base level

integrates a control theory (or decision theory) approach to
decide when and how to adapt the base level.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Middleware level

In the MAAM project, adaptation of the base level is currently
limited to the exchange of reactive modules.

In general, both the base level application and the underlying
middleware may need to be adapted.

Much work has been done on reflective middleware, including our
own LIP6 PolyOrb reconfigurable ORB.

For ambiant intelligence and pervasive systems, but also for less
constrained robotic systems, such a middleware layer should be
deployed on individual nodes.

A communication between the meta level and such middleware
has to be established to guide the latter in applying the best
policies to the current application.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Virtual machine level

Many systems today uses a virtual machine abstraction at the
base level.

As a specific middleware, the virtual machine can also be the
target for adaptation at run-time.

Work has been done to render virtual machines reflective and
easily reconfigurable, including our LIP6 Virtual Virtual Machine
(VVM).

A strong connection between the VVM and the meta level is also
sought to control the adaptation of the virtual machine from an
application perspective.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Model-based reasoning

As software systems grow in complexity, reasoning about their
behavior and its adaptation can cope with all the details.

Reasoning at a model level, thus hiding unnecessary details,
appears as a natural evolution to engineer such systems.

Work has been done to provide run-time tools to manipulate
models, namely UML models, such as our LIP6 ModFact system.

Connecting the meta level with model-based reasoning tools
promised to seamlessly integrate run-time adaptations and
software updating done in the development and maintenance
processes.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

1 Context & problem

2 Our MAAM software architecture

3 Extensions and future work

4 Conclusion

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Conclusion I

On AR M /MAAM:

Objectives reached:

minimal runtime of the GALS type
high level reactive control framework
integration in a reflective platform
identification of run-time adaptation scenarios

Experiments:

experiments on a typical complet schema
at the time of these experiments, the atom programming model
was too premature to enable “real” experiments on atoms

c© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem
Our MAAM software architecture

Extensions and future work
Conclusion

Conclusion II

On AR M in general:

Coupling with underlying middleware layers (system,
communication, virtual machine, model-based reasoning tools).

Coordination among meta levels of different entities in a
distributed application: problem of decentralized adaptation
decisions.

Implementing a well-defined distributed adaptation protocol:
domain-specific language with locking and transaction
capabilities.

c© Jacques Malenfant, 2006 AR M @ CAR 2006

	Context & problem
	Our MAAM software architecture
	Reactive framework
	Adaptation and reflective architecture

	Extensions and future work
	Conclusion

