An Asynchronous Reflection Model for
Object-Oriented Distributed Reactive Systems

(© Jacques Malenfant, 2006

Laboratoire d’informatique de Paris 6 (LIP6)
Université Pierre et Marie Curie et CNRS (UMR 7606)
Jacques.Malenfant@lip6.fr

SRevision: 1.5 $— $Date: 2006/03/25 09:18:14 $

(© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem

e Context & problem

(© Jacques Malenfant, M @ CAR 2006

Context & problem

The MAAM Project

@ Molecule := Atom | Atom + Molecule
@ An atom : an autonomous module

@ 6 motorized legs
e End connectors

@ A molecule : modular robot
e 1, 2 or 3D set of atoms
e shape < function
e reconfiguring (changing shape) = new
capabilities, new task

© Jacques Malenfant, 2006 AR M @ CAR 2006

Context & problem

Challenges for the software architecture

@ Strategic level
e Reconfiguring is needed to tackle different tasks (walking,
climbing, transporting, ...).
@ Shows when the robot goes from one task to another.
@ Tactical level
e Connecting new atoms = new capabilities, but also different ways
for doing the same things.
o New functions appear in the robot interface.
@ Old functions take a new implementation

Need to adapt the control software.
How? When? Efficiency?

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Context & problem

General problem and proposed solution

@ Applications in ambiant intelligence, pervasive systems, and the
like impose a similar challenge to the software architecture.

@ The high dynamicity of such applications as well as the
variabilility in the available resources require run-time adaptation.

@ Reflective systems have been studied for two decades to provide
means to adapt software systems by giving the programmer
introspection and intercession API.

@ However, the traditional way reflective systems have been
constructed does not scale to distributed and reactive systems.

@ We propose AR M, a new model that we applied to the MAAM
project, but which also generalizes to the case of distributed
reactive systems.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture

architecture

e Our MAAM software architecture
@ Reactive framework

@ Adaptation and reflective architecture

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framewo
Adaptation and r ve architecture

Hybrid deliberative/reactive architectures

@ Reactive subsumption achieves good reflex but doesn’t cope well
with long term goals.

@ Deliberative approaches use symbolic reasoning to control
actuators but tend to be too heavy to sustain the real-time.

@ The AR MIMAAM achitecture adopts a hybrid
deliberative/reactive approach, as many current robot control
architectures.

@ Achieves good performance by mixing short-term reactive
capabilities and long-term deliberative ones.

How to implement this conceptual architecture?

@ programming model mixing synchronous reactive objects and
concurrent asynchronous objects.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and refle

The reactive framework

Implementing the subsumption reactive layer.

@ Objectives:

e Giving a framework (set of abstract classes) for a subsumption
approach to program reactive modules in a high level
programming language (Java).

e Offering the runtime to execute the modules (perception, action).

e Enabling the coordination among atoms in molecules.

@ User perspective:

@ The user designs his schema, programs the modules and

registers them.

e Modules are programmed by inheriting from abstract framework
classes and then defining:

@ putting conditions on signals
@ implementing the handle abstract method.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and refle

Implementation : synchronous programming

@ Synchronous model: notion of cycle
e at each cycle, the system evaluates the received signals and
starts the corresponding activities.
o interests: determinism, formal verification.

@ Solutions:
e Using REJO, a reactive extension of Java: rejected
e Defining our own minimal synchronous runtime: adopted
Idea: implementing a harmonious intergration of concurrent
asynchronous objects (for deliberation, see later) and
synchronous reactive objects for the control.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and reflective architecture

Minimal synchronous runtime

@ Package ActiveObijects (active and reactive objects)
e minimal support for executing active objects with asynchronous
communication capability
e standard implementation: asynchronous execution model
(immediate reaction to events, messages).
e extension: synchronous model (react to events at each cycle).
@ Interest of the asynchronous communication

o heterogeneous but transparent runtime: an asynchronous object
can communicate with a synchronous one, and vice versa.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and refle

Overall GALS runtime, synchronization

@ GALS: globally asynchronous, locally synchronous

e keep a synchronous approach for the reactive part while
mastering the inherent global asynchrony.
@ possible, thanks to the asynchronous communication.

@ Synchronization in a GALS distributed system:

e ensure the synchronization of synchnous objects without imparing
their respectives execution constraints.

@ our solution: busy wait on future values, by looking for the value at
each cycle.

e advantages: transparent use of future variables between reactive
synchronous objects and concurrent asynchronous objects.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and reflective architecture

Motivation: adaptation scenarios

@ Changing task

e reconfiguration of the robot, end of a task
e changing part or all of the modules

@ Fault-tolerance

e detecting a fault on a sensor or motor
e replacing impaired modules by others bypassing the faulty
equipments.

@ Optimizing parameters
e enhancing the behavior of a module

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and reflective architecture

Adaptation framework

@ Objective: ease the adaptation.

@ Provide mechanisms for the dynamic adaptation of the system.
@ Cope with different granularities:

e fault-tolerance: granularity = reactive module.
e changing task: granularity = set of modules = reactive “schema”.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and reflective architecture

Our reflective model: AR M

@ Reflection: capability for a program to know itself and to modify
itself at runtime.
e The base level does the “standard” processing of the application.
o A metalevel does processing on the base level on order to adapt it
to new execution conditions.
@ AR M (Asynchronous Reflection Model)
o An object kernel for distributed reactive systems.
@ Separate the execution of the base and meta levels using an
asynchronous communication between the two levels.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and reflective architecture

Hybrid Reflective Architecture

Meta level ~ Deliber ative level

high level components

real-time
notifications| <asynchronous> |adaptations

Base level ~ Reactive level

f synchronous process

perceptions actions

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Our MAAM software architecture Reactive framework
Adaptation and reflective architecture

Adaptation protocol

@ Notifications from the base level to the meta level

e at each cycle, data is emitted towards on the state of the atom
(sensors, actuators)

@ Processing of the natifications at the meta level

e integration in the meta level model of the atom
o delibaration on the current state

@ Adaptation requests sent to the base level (if needed)

o serialized method call to the base level, applied at the next cycle
o before or after the reactive activity of the cycle?

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Extensions and future work

e Extensions and future work

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Extensions and future work

Inside the AR M model

The AR M model is:

@ independent of the precise base level objet model (unit of
concurrency, communication, ...)

@ parameterized by the kind of meta level representation of the
base level

@ integrates a control theory (or decision theory) approach to
decide when and how to adapt the base level.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Extensions and future work

Middleware level

@ In the MAAM project, adaptation of the base level is currently
limited to the exchange of reactive modules.

@ In general, both the base level application and the underlying
middleware may need to be adapted.

@ Much work has been done on reflective middleware, including our
own LIP6 PolyOrb reconfigurable ORB.

@ For ambiant intelligence and pervasive systems, but also for less
constrained robotic systems, such a middleware layer should be
deployed on individual nodes.

@ A communication between the meta level and such middleware
has to be established to guide the latter in applying the best
policies to the current application.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Extensions and future work

Virtual machine level

@ Many systems today uses a virtual machine abstraction at the
base level.

@ As a specific middleware, the virtual machine can also be the
target for adaptation at run-time.

@ Work has been done to render virtual machines reflective and
easily reconfigurable, including our LIP6 Virtual Virtual Machine
(VVM).

@ A strong connection between the VVM and the meta level is also
sought to control the adaptation of the virtual machine from an
application perspective.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Extensions and future work

Model-based reasoning

@ As software systems grow in complexity, reasoning about their
behavior and its adaptation can cope with all the details.

@ Reasoning at a model level, thus hiding unnecessary detalils,
appears as a natural evolution to engineer such systems.

@ Work has been done to provide run-time tools to manipulate
models, namely UML models, such as our LIP6 ModFact system.

@ Connecting the meta level with model-based reasoning tools
promised to seamlessly integrate run-time adaptations and
software updating done in the development and maintenance
processes.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Conclusion

e Conclusion

© Jacques Malenfant, 2006

Conclusion

Conclusion |

on AR MIMAAM:

@ Objectives reached:

e minimal runtime of the GALS type

o high level reactive control framework

@ integration in a reflective platform

e identification of run-time adaptation scenarios
@ Experiments:

@ experiments on a typical complet schema
e at the time of these experiments, the atom programming model
was too premature to enable “real” experiments on atoms

(© Jacques Malenfant, 2006 ARM @ CAR 2006

Conclusion

Conclusion Il

On AR M in general:

@ Coupling with underlying middleware layers (system,
communication, virtual machine, model-based reasoning tools).

@ Coordination among meta levels of different entities in a
distributed application: problem of decentralized adaptation
decisions.

@ Implementing a well-defined distributed adaptation protocol:
domain-specific language with locking and transaction
capabilities.

(© Jacques Malenfant, 2006 ARM @ CAR 2006

	Context & problem
	Our MAAM software architecture
	Reactive framework
	Adaptation and reflective architecture

	Extensions and future work
	Conclusion

