Advanced Robotics

CAR'06

Modular distributed architecture for embedded robotics systems

Pierre Pomiers pierre@robosoft.fr>

robosoft

::1-0 Implementing Embedded Applications ced Robotics

Implementing embedded applications deals with both system **hardware** and system **functional** layer.

robosoft

::1-1 Hardware Related Implementation anced Robotics

robosoft

::1-2 Functional Layer Implementation vanced Robotics

robosoft

::1-3-0 Implementation Issues

Synchronous programming techniques are known to satisfy many **Hardware** related implementation points...

- :: Automatic code generation (assembly, C...)
- :: Automatic code distribution over the hardware architecture
- :: Easier heterogeneity handling
- :: Easier parallel and pseudo-parallel programming
- :: Code verification (through synchronous formalism)

... but do not offer enough flexibility for higher level computing (that does not fit sequential finite state automata representation).

robosoft

::1-3-1 Implementation Issues

Concerning **Functional** layer programming, many approaches are satisfactory so long as they provide user with:

- :: High-level representations (objects, tasks, processes...)
- :: Multi-rhythm capabilities
- :: Priorities handling and arbitration
- :: Access to various OS services (networking, video...)

Nevertheless, such approaches are not optimized enough and can hardly satisfy requirements for embedded and distributed software.

robosoft

::2-0 Introduction to The iCORE Methodology need Robotics

Our idea is to mix up **both** high-level specification and, as far as possible, synchronous implementation. As well as proposing **well adapted hardware** for satisfying each layers constraints.

robosoft

::2-1 SynDEx CAD Software

SynDEx key features::

:: Rapid prototyping of complex applications based on automatic code generation in three steps:

execution on a mono-processor workstation for simulation execution on a multi-workstation in order to study parallelism benefits real-time execution on the actual multi-component architecture

:: Safety and Optimization of multi-component real-time embedded code

:: Co-design when parts of the application must be implemented by software running on processors, while other parts must be implemented by specific integrated circuits.

:: System level CAD tool offering a software environment to help the user from the specification level (functionality, hardware resources, real-time and embedding constraints, of the application) to the embedded code level

::2-1 SynDEx CAD Software

K

Advanced Robotics

robosoft

SynDEx sample graph::

K Adequation ega onto archi2procs		
Window		
	tcp	p1
zero_p0]	fcoeffs_p1
		qensiq
Explode_coens.o_adap	Transfer_p1_p0(//ega/gensig.o)	window
windowa	Transfer_p0_p1(//ega/Explode_coeffs.o_adap.o#1)	
filta	Transfer_p0_p1(//ega/windowa.o)	filt
sub	Transfer_p1_p0(//ega/filt.o)	Explode_windowa.o_adap
mul	Transfer_p0_p1 (//ega/sub.o)	
	Transfer_p1_p0(//ega/Explode_windowa.o_adap.o#0)	visu
Algorithm Organica aga (main)	Transfer_p0_p1(//ega/mul.o)	
indow Edit		adap#1
ensign windowa)	Transfer_p0_p1(//ega/adap#0.o)	Implode_adap.o
	p Transfer_p1_p0(//ega/coeffs.o)	
window	K Architecture archi2procs (main)	
zero[2]		

robosoft

::2-2 iCORE Embedded Hardware Advanced Robotics

Thanks to **iCORE** kernels and cross-compilers sets, the SynDEx development system described above is able to generated executive binaries for various types of target and communication media:

MPC555 based control boards Intel x86 Real-time Linux computer CAN bus controllers Serial controllers Ethernet controllers

::2-3 cb555 Control Board Features Advanced Robotics

	Description
1	MPC555 connector
2	Power supply: 18-60VDC (from the batteries)
3	BDM Interface (Basic Debug Interface)
4	Analog input (Potentiometer, Joystick)
5	Logical Input/Output
6	Synchronous serial line (Absolute Encoder)
7	Asynchronous serial lines (Port 0)
8	Asynchronous serial lines (Port 1)
9	CAN network (Port 0)
10	CAN network (Port 1)
11	Axis 0
13	Axis 1
14	Axis 2
15	Axis 3

::2-4 emPC: Embedded PC Rangedvanced Robotics

A wide range of embedded PC is supported (through Linux/RTAI ports): from Pentium-based **SBC** to **STACK104** industrial PC and more...

::3-0 The robuCAB Application Advanced Robotics

Let us illustrate the **iCORE**-based approach through the case of an all-terrain embedded application: the robuCAB

robosoft

::3-1 The robuCAR Mechanical Structured vanced Robotics

robosoft

::3-2 robuCAR Hardware Architectured vanced Robotics

The robuCAR Control Structured vanced Robotics ::3-3

::3-4 Application Example

Advanced Robotics

robosoft

iCORE-based approach allow a wide range of software interactions.

::3-5 Application Example

Advanced Robotics Solutions and Modul

iCORE-based approach allow flexible hardware design as well as modular software implementations.

robosoft

::4 Conclusion

iCORE key features:

Rapid and safe prototyping of complex embedded and distributed applications Handle a wide range of software libraries (Linux/RTAI) Handle a wide range of hardware (cb555, emPC, ...) Merging robotics software modules is effortless Provides both hardware and software flexibility and modularity

::5 Contact Us

Advanced Robotics

robosoft

ROBOSOFT

Technopole d'Izarbel F-64210 BIDART Tel (+33/0)5 59 41 53 60 Fax (+33/0)5 59 41 53 79

http://www.robosoft.fr