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Abstract 

RT
Maps 

Bruno
 Steux – « 

RT
Maps, a software environment for real-time applications 

development » – PhD thesis at Ecole des Mines de Paris– Dec, 2001. (Real-Time Multisensor 

Advanced Prototyping Software) is a rapid development environment oriented for applications 

handling multiple asynchronous sensors and actuators of various types like videos, radars, 

Lidars, GPS, gyrometers, accelerometers, ultrasonic belts, etc. It is designed for efficiency and 

ease of use: it provides functionalities like modular development, graphical programming, 

associated with helpful functionalities for the prototyping phase like synchronized recording 

and replay of sensors data thanks to advanced timestamping ability. 

The 
RT

Maps kernel architecture and runtime engine has been initially developed at the “Centre 

de Robotique of Ecole des Mines de Paris” and is now edited by Intempora since year 2000. It 

is now widely used in fields like automotive and mobile robotics for perception and data-fusion 

applications. 
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1 INTRODUCTION 

State-of-the-art automotive and robotics systems must embed many sensors. In order to 

manage the variety of embedded sensors and applications, the need for a modular software 

framework appears very clearly. We’ll describe at first our requirements for such a framework, 

which might be yours too, and then we’ll show how 
RT

Maps can fulfil them. 

 

First of all, is there a need to remind why modularity is necessary in any development 

framework? 

• capitalization and re-use of the developments 

• step by step developments with incremental upgrades 

• quick and easy evolution of the applications (easy switching of sensors, algorithms, 

without having to break and rebuild the whole software) 

• cooperative team work 

 

Apart from that, it is often difficult to develop and test applications directly on a real system 

(an equipped vehicle or a robot): it is costly and time consuming for hardware maintenance 
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reasons, material immobilization, and for comfort issues as well (who likes developing 

software standing up next to the system with the keyboard in one hand and a screen somewhere 

far away…). This makes it necessary to use tools that can bring a hardware abstraction layer 

simulating the system on a desktop environment, and that can also facilitates porting desktop 

developments to the real-system (back and forth). 

This software environment must finally enable very quick and easy integration and testing 

of algorithms, easy management of multi-tasking and distribution of the processing. 
RT

Maps has been designed to meet such requirements in that its modular architecture allows 

easy development of independent building blocks (also called 
RT

Maps components) and 

provides integrated functionalities for recording timestamped sensors data flows and replaying 

them in a desktop environment in order to simulate the real-system. It was built upon 

experience of researchers and engineers in multi-sensor algorithms for perception and meets a 

lot of our needs. 

 

 

Figure 1 - The 
RT

Maps Studio 
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2 THE 
RT

MAPS ARCHITECTURE 

2.1 What makes the software 

 
Figure 2 - The 

RT
Maps software structure 

 

The 
RT

Maps software is composed of several modules (see Figure 2 - The 
RT

Maps software 

structure): 

 

• The execution engine:  

This is the central part of the software. It handles services such as real-time clock, 

inter component buffers management, threads control, dynamic loading of the 
RT

Maps components. For optimization considerations, this part has been written in C 

and C++. 

 

• The components library:  

It is a set of shared libraries (.dll files under Windows, .so files under Linux 

platforms), containing 
RT

Maps components that can be dynamically loaded in the 

execution engine, and used in 
RT

Maps applications. An 
RT

Maps component is 

basically like a plug-in. See Figure 1 - The 
RT

Maps Studio: components are 

represented as the blue functional blocks. A component is written in C++ and can 

contain any functionality like performing sensor data acquisition from a given sensor, 

running a given algorithm for data-processing or data fusion, provide data display 

functionalities, etc. An 
RT

Maps application will be made by using different 

components at will, then connecting them together and configuring them. 

 

 

• The 
RT

Maps Studio:  

It is the graphical programming layer. It provides a graphical interface for easy 

development and configuration of 
RT

Maps based applications. It has been written in 

Java for portability constraints and is not required for embedded use of 
RT

Maps. 

 

• The 
RT

Maps SDK:  
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The Software Development Kit is made of the 
RT

Maps component C++ API (headers 

and libraries), and also several additional tools like makefiles (or “projects”) and 

wizards for code generation. It allows to write and compile your own 
RT

Maps 

components (including your own algorithms for example) and integrating them 

easily in your 
RT

Maps applications. 

 

 
Figure 3 - Programming components with the RTMaps SDK 

 

2.2 The 
RT

Maps component model 

Let’s get inside the 
RT

Maps architecture and study what an 
RT

Maps component is made of 

and how it behaves. 

As mentioned above, an 
RT

Maps component is a building-block that can be placed (or 

“instantiated”) on an 
RT

Maps application (also called a “diagram”) at will, a little bit like in 

other well-known software tools handle building blocks such as Simulink
®

 or LabView
®

. 

An 
RT

Maps component is characterized by: 

• inputs: inputs are ports that receive data. Since data is typed, a filter is specified on 

the inputs so that inputs accept connections only if the connected output data type 

passed the filter. 

• outputs: outputs produce data. An output produces data of a given type (images, 

CAN frames, scalars, vectors, matrices, etc.) 

• properties: they allow to configure the component dynamically at runtime 

(specifying algorithms parameters, threshold, or devices to address, etc.) 

• actions: actions can be triggered at any time by the user and result in a specific 

function call in the component’s code. 

 

An output can be connected to several inputs, and input can only be connected to a single 

output (1 – N producer/consumer model). 

 

So what makes the 
RT

Maps execution model different from tools like Simulink
®

 or 

LabView
®
? 

2.2.1 Multi-threading 

First of all, it can be considered that each component in 
RT

Maps will run in its own thread, 

independently from the surrounding other components (note that sequential behaviour is also 
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available if needed). Multi-threading plays a key role in 
RT

Maps since there is a need to handle 

sensors of different types, with different output frequencies (like 30Hz videos + 100Hz 

gyrometers + asynchronous CAN bus frames), or no output frequency at all but just 

asynchronous events. 

 

Basically an 
RT

Maps component life is most often like the following: 

1. Wait for data on its input(s) and retrieve data when available (most often thanks to 

an event-based mechanism) 

2. Process the data 

3. Output the results on its output(s) 

4. Loop back to step 1. 

 

Additionally, for a threaded component, a property called “priority” is always available and 

allows adjusting the real-time priority of the component thread. This way the user can setup 

critical priority processing chains and lower priority ones that may stop running in case there is 

a lack of computing resources at some time. 

2.2.2 How components synchronize and exchange data? 

First of all, consider that a circular buffer (of configurable size) is associated to each 

component output. This buffer can contain samples of data produced on its output. 

When connecting an output to another component input, the input registers on the circular 

buffer and can then read data 

 

 

 
Figure 4 - Inter-components data exchange via output buffers 

 

In order to deal with as many types of applications as possible such as data acquisition, data 

logging, real-time control, real-time processing, post-processing, data display, etc… 
RT

Maps 

provides different possible behaviours for readers (inputs) like the following: 

• FIFO 

• Last or Next 

• Wait for Next 

• Sampling 

• Never skipping 

 

Let’s have a closer look at each of them: 

 

The FIFO reader:  

This behaviour is the most widely used in 
RT

Maps: in such a mode, an input will use the 

output buffer as a FIFO buffer. It constitutes an implementation of asynchronous Kahn 

networks 
G.

 Kahn, “The semantics of a simple language for parallel programming”, in 

Component 1 

Component 2 

Component 3 

Writing 

Reading 

Reading 
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Information Processing 74: Proceedings of IFIP Congress 74, (Stockholm, Sweden) – 1974., 

defined for inter-process communication, with the difference that in 
RT

Maps only inter-thread 

communication is setup, and the buffer is constrained in size. 

The data request on a FIFO reader input will behave the following way: 

• If all the samples in the circular buffer have already been processed, the data request 

function will block until a new sample is generated. During this time, the component 

thread enters an efficient sleep state where it consumes no CPU. When a new sample 

data is written in the buffer by the upstream component, an event is triggered, and 

the data request function returns the newly arrived sample. This way, establish 

asynchronous inter-thread optimized communication and threads synchronization is 

performed transparently by the arrival of new data samples. 

• If, for some reason, the consumer component cannot handle data as fast as the 

producer sends them, the buffer is used as a FIFO, and any data request function 

called on the consumer input will return immediately the oldest data in the buffer 

that has not been processed yet. This way, the buffer can absorb temporary lack of 

resources in the downstream component, which will catch up when possible. 

• Problem: in case over-production (or under-consumption) in a durable situation, the 

output buffer will get filled with unprocessed data until the producer needs to 

overwrite samples that have not been processed yet by the consumer. Such a case 

can be very harmful for a real-time application for 2 reasons: 

o Data samples lost randomly 

o Latency is introduced between the 2 components since, when the downstream 

component can retrieve and process a sample, it will retrieve the oldest 

sample from the output buffer and: 

latency = circular buffer length / output frequency 

Of course, the user can be warned of such malfunction, and alternatives have to be 

found: a first approach can be to reduce the frame rate entering the component. The 

“subsampling” property, available on any input and output can be used for this. 

 

The LastOrNext reader:  

This behaviour is suited for example for component handling data display. The behaviour is 

the following: 

• If all the samples in the circular buffer have already been processed, the data request 

function will block until a new sample is generated (the behaviour is then identical to 

the FIFO reader one). 

• If  for some reason, unprocessed samples have been stacked in the buffer, the data 

request function will retrieve immediately the most recent one, discarding the 

previous ones automatically. 

 

The Wait for Next reader:  

A data request on an input with such behaviour will simply ignore any unprocessed pending 

data in the output buffer and enter a wait state for new data. This model is most of the time 

identical to the 2 previous ones (when everyone has time to do its job), and can be used to 

ensure minimal latency between components even if data is missed in case of lack of resources. 

 

The Sampling reader: 

This mode can be used to re-sample a data stream in time independently of the data arrival 

frequency on an input. 

The data request function will return immediately the most recent sample available in the 

output buffer, no matter whether is discards samples, or returns several times the same sample. 
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It can be used in conjunction with a timer or for reading or in multiple input components 

contexts. 

 

The Neverskipping reader: 

This mode is the only one where a downstream component can block an upstream one 

(without concerns about thread scheduling and priorities): a Neverskipping input will behave 

the same way as a FIFO one, but if the output buffer comes to be filled with samples, the 

upstream component will be blocked until some room is released.  

Of course, such behaviour shall never be used in a real-time system. It is suited for data-

conversion and post-processing modes where data can be replayed as fast as possible and needs 

to go through a processing chain without risking to be discarded. 

 

Such approaches can be mixed into a single application depending on the jobs performed by 

each component. They can also be mixed for components with more than one input (usually 

data fusion components) for which several policies can be setup: 

• asynchronous readings on multiple inputs (with FIFO reader inputs for example, and 

a single data request function on several inputs). 

• synchronized readings on several inputs (see following chapter) 

• triggered readings (1 FIFO input, and several Sampling inputs following) 

• … 

2.2.3 Data timestamping and application to data-fusion 

Data timestamping is one of the major focuses when developing data fusion applications: 

knowing when such piece of data has been acquired, when such event has occurred, etc… is 

particularly critical when exploiting several sources of data within a same data-fusion 

algorithm. 

• ability to estimate latencies in the application 

• ability to re-synchronize data streams after processing chains with different latencies 

• ability to record and playback the different sensors data tracks in a synchronized 

manner. 

 

To ensure such functionalities, the 
RT

Maps model associates 2 different timestamps with 

each and every sample of data. 

 

The “Timestamp”: 

The timestamp associated to any piece of data represents the date of origin of the sample. It 

shall be defined by the most upstream producer of the samples (usually the acquisition 

component), and transferred “as is” by any intermediate processing component. 

 

The “Time of Issue”: 

The Time of Issue of an 
RT

Maps sample of data represents the last output date of the sample, 

which means the date at which the sample was output from the last component it went through. 

For a piece of data going through a chain of several processing components, this “time of 

issue” information will then increase as long as the sample traverses each stage. 

 

At any point, it is then possible to estimate the latency of the processing chain by simply 

substracting the Timestamp from the Time of Issue. 

The Timestamp information can also be used to resynchronize data-streams that went 

through different processing chains which induced different latencies: the Timestamps are then 
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preserved whatever the latency of each chain and the 
RT

Maps API provides the necessary 

function to re-match data samples with corresponding timestamps from several outputs. 

 

2.3 Distributing 
RT

Maps applications 
[3]

 

 
Figure 5 - Distributed 

RT
Maps instances over a TCP/IP network 

 

In order to allow quick and easy development of distributed applications, version 3 of 
RT

Maps introduced functionalities aimed at: 

• Synchronizing the clocks of distant 
RT

Maps instances. This functionality enables to 

perform synchronized recordings on several computers,  

• Exchanging data between different 
RT

Maps instances. 

 

These functionalities will be helpful for: 

• Increasing the available computing resources by distributing the different parts of an 

application on several computers: indeed, when developing complex applications, a 

single computer can be limited in resources. These limitations can come from 

connectivity (number of USB or PCI slots for example), CPU computation power 

(several complex algorithms such as image processing, neural networks algorithms 

etc… may not have enough time to run), bandwidth (when exploiting several high 

speed data sources such as cameras, a standard PCI bus can be overloaded, standard 

hard disks may not be able to record more than 50 MB/s also). 

• Allowing distant cooperative applications that may exchange data and information 

between them: different sensors may be placed at distant locations and may not have the 

ability to be connected to a single PC due to cabling issues for example, or moving 

agents may need to establish wireless connections between them or with the 

infrastructure. 

 

2.3.1 Synchronizing 
RT

Maps clocks distantly 

The 
RT

Maps IP based clocks synchronization architecture is based on a 1 Master – N slaves 

model. The slaves can connect to an 
RT

Maps master, then start exchanging synchronization 

frames with the master to synchronize their own clock on the master clock. The protocol used 

is similar to NTP (Network Time Protocol). 

In such a mode, the Master also sends commands to the Slave so that execution starts and 

stops simultaneously on the different systems, or a Master may also configure distantly the 

slave systems. 
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Independently from that, when no IP connection is available between different systems, it is 

possible to synchronize the clocks thanks to an external time source like a GPS sensor for 

example. Indeed, any 
RT

Maps component implementing the necessary interface can behave as a 

time source for the entire 
RT

Maps application which runs it. This allows performing 

synchronized data acquisition sessions on distant systems such as on-board systems and 

infrastructure based sensors for instance. 

  

2.3.2 Data flows communications 

Data exchange between several 
RT

Maps instances can be performed independently of the 

Master-Slave(s) functionalities via specific Socket components. 

Such components have the ability to serialize any 
RT

Maps piece of data (images, CAN 

frames, stream data, numerical data, etc…) and send it to other instances of 
RT

Maps via TCP, 

UDP or Multicast in order for it to be used within a distant application. 

Socket components also have the ability to transmit the timestamps along with the pieces of 

data, so that if the 
RT

Maps clocks are synchronized, the data timestamps are still coherent from 

one computer to another. Data fusion operations can then be performed correctly on the entire 
RT

Maps network. 

 

3 SOME APPLICATIONS USING 
RT

MAPS  

3.1 A robotized vehicle by Induct 

For the DARPA Urban Challenge, the Dotmobilteam (http://www.dotmobilteam.com) 

equipped a Renault Scenic vehicle as an independent robot. The most advanced technologies 

have been used in the car like:  

• 2 IBEO Alasca XT laser scanners 

• an RTK GPS receiver 

• a high accuracy IMU from IXSEA 

• a high resolution front video 

• an omni-directional video sensor developed by researchers from Riverside 

University (California) 

 

The Dotmobil team chose 
RT

Maps to perform data acquisition, prototype and integrate 

perception and data-fusion algorithms, and control the vehicle (road keeping with lateral and 

longitudinal control, obstacle detection and avoidance, road marking detections, etc.) 

 

 
Figure 6 - The Dotmobilteam vehicle participating to the Darpa Urban Challenge 
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3.2 Connection with the Marilou Robotics simulator 

Replaying pre-recorded data is interesting for prototyping perception and data-fusion 

algorithms, or for studying a system behaviour in post-processing replay. However, it remains 

difficult to work on control algorithms since it is not possible to react on the recorded data. To 

overcome this issue, we need to connect the development platform to a complete simulator 

which will simulate not only the sensor data streams but also the dynamics of the system, and 

which can receive commands and react to them accordingly. The use of 
RT

Maps interconnected 

with a simulator offers a complete on-desktop development environment, and facilitates the 

porting of developments to the real system by just requiring the replacement of simulator 

interface components by sensors and actuators interface components. 

 

An example has been developed with the Marilou Robotics Studio 

(http://www.anykode.com/index.php) which provides a complete robots simulator. 
RT

Maps 

components have been developed to establish inter-process communication with the simulator 

and retrieve sensors data in real-time (like video streams from simulated cameras, ultrasonic 

belts, wheel coders, …) and send commands to robots actuators. 

 

 
Figure 7 - Interface between RTMaps and the Marilou Robotics Studio simulator 

3.3 The PUVAME project 

 

The PUVAME project 
[4]

 (http://emotion.inrialpes.fr/puvame/) objective is to detect 

dangerous situations that may lead to collisions between pedestrians and public transport 

vehicles such as buses or tramways. 

The developed system has to be able to detect dangerous situations thanks to the on-board 

sensors system and, if available, to match the information with infrastructure sensors systems 

such as infrastructure cameras that would be installed in dangerous areas such as crossroads or 

bus stops. 
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In order to be able to develop such a cooperative system between on-board systems and 

infrastructure systems, a Cycab from INRIA has been equipped with several sensors:  

• a FireWire DCAM camera,  

• a Sick LMS lidar,  

• ultrasonic sensors (Microsonic Trans’o Prox) 

whereas the experimentation site was equipped with 6 analog cameras installed on masts 

that could cover the entire site. 

 

 
Figure 8 - The PUVAME experimentation system 

 

 

Infrastructure system had to perform pedestrian detection, vehicle detection, and trajectory 

prevision of all the actors in order to compute a risk estimation. 

The on-board system also performed its own risk estimation based on the on-board sensors 

informations. Based on the result of data fusion between the on-board system results and the 

infrastructure system results, reliable alerts could be delivered to the vehicle driver whenever 

dangerous situations occurred. 

 

In order to be able to develop such a system in cooperation with different partners, there was 

a need to record the raw data in a synchronized way (both in vehicle and on the infrastructure) 

and to be able to playback the scenarios in order to develop the detection algorithms and the 

communication protocol. 

In order to quickly setup such a distributed system, an 
RT

Maps software has been installed in 

the 3 PCs (1 on-board, and 2 on the infrastructure). A Wifi connection has been setup between 

the vehicle and the infrastructure LAN, and the vehicle software has been set as Master 

whereas the infrastructure systems were setup as Slaves. 

Figure 9 - The PUVAME playback diagram - synchronized playback of 6 infrastructure 

cameras and on-board sensorspresents the 
RT

Maps diagram which performs the synchronized 

playback of a PUVAME scenario: 3 Player components are placed on a single diagram, each of 

which replays a databases that has been recorded on one of the 3 datalogger PCs.  

 



 3
rd

 National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

 
Figure 9 - The PUVAME playback diagram - synchronized playback of 6 infrastructure cameras and 

on-board sensors 

 

4 CONCLUSION 

In this paper, we have shortly presented 
RT

Maps, a framework to be used for the development of 

real-time applications involving multiple sensors, as it is often the case in modern automotive and 

robotics applications. RTMaps is currently operational in many labs and industries, and is also often used 

as a cooperative tool to exchange and capitalize developments and data sets between teams. 

It has been made with concerns of ease of use and modularity, but also performance and 

powerful unconstrained programming with in-depth configuration availability in order to meet 

the real-time constraints of applications from embedded use on small targets (such as 

autonomous vehicles and robots) to clusters of computers running distributed applications. 

Its modular architecture also allows interfacing third party software tools (like simulators, or 

other control architectures) in order to take advantage of the best of each tool. 
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