39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

A simple architecture for modular robots
A. Gaodin

DGA/ETAS
Route de Laval
BP 60036 - Montreuil-Juigné
49245 AVRILLE Cedex

Abstract

Different ongoing robotics projects financed by D&Aaim at developing modular
demonstrators with advanced autonomous functigealitin order to support these
developments, state services carry out studiesotmdiable and emerging concepts, especially
concerning architectures issues.

The ArMoR architecture, presented in this artickean effort to build a structure, based on
well-known proven solutions, to demonstrate théilrtg of robotic systems. At the same time,
it aims at being a test platform in which to valieland capitalize new functionalities. Such a
work is often conducted by trainees, not alwayslestts in robotics, and the underlying

architecture should therefore be simple to apprehand offer a minimalist programming

interface. Modularity and simplicity were thus paftthe initial requirements.

Section 1 presents a brief analysis of previouskwtrat will point out the main trends in
architectural design. The interest of hybrid sturess, that is the choice we have retained, will
be pointed out. Hence, the following sections Wit focus on the modular reactive layer
(section 2) and, in a second step, on the minimaantroller, inspired by Petri nets
approaches, section 3. A set of tools, coming aw®ywith the framework to build the
modular layer and the mission plan, and still invelepment at that time, is then presented in
section 4. The results of our first tests, condilidte simulation with open source SLAM
algorithms and mentioned in section 5, tend to erdive viability of the implementation.
Finally, section 6 will conclude on the limitationd this work and on some promising
approaches that we hope to integrate as soon ashave robust and ready for operational
use.

Keywords
Architecture; Robot; Modularity.

1 PREVIOUSWORK

For the last twenty years now, scientists have bbeeking for more autonomous systems
and many solutions have been proposed. Among ttvemmnain trends appeared.

Autonomy is often considered as a synonym of "ligehce”: the robot becomes
autonomous as soon as it can analyse the envirevimigl, plan actions in consequence and
execute them. In such an approach, a high levaleggimposes its decisions, that take into
account both the environment and the initial gdhkt were given to the system. For this
reason, the resulting actions are often quite agtim the long term. So-called deliberative

! DGA is the procurement agency within the Frencpdenent of Defence

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

architectures are especially relevant in casesavhdault during execution can be catastrophic.
For instance, in space exploration missions, foiciwmo human can interfere in case of
deadlocks, a mobile robot should not execute aifsp@cove, in reaction to a local obstacle,
without checking the safety of the new path. In 80e’, the NASA developed an architecture,
NASREM [1], following the previous paradigm. A glabmemory, storing the state of the
environment, is updated by three main communicatunggctionalities, task decomposition,
world modelling and sensory processing. In the Iteguhighly structured conception, it is
worth noting that effectors commands are only iddaethe "task decomposition” block: each
action can only be taken after a planning stegmmuediate reflex in response to sensory data
is allowed. The TCA framework [2] is another exaenpF a mainly deliberative architecture
based on task decomposition and a strict respebeatsulting plan.

However, reflexive hierarchic architectures makalifficult to build very fast systems.
Besides, when these systems evolve in a dynamildwaometimes while moving themselves,
safety is not always guaranteed by long-term plammind it should be possible to apprehend
upcoming unpredicted events. A possible solutionsédve this reactivity problem is to
associate a predefined action to a given perceptinaulus: a short term loop is hence inserted
between perception and effectors control. Obvigushgh approaches are minimalist and it has
quickly been proposed that more advanced data gsesebe implemented, often called
"behaviours" in the literature. One of the most daim architectures of this kind was introduced
by Brooks [3] in the 80s'. The robot is organizaedayers; each module is allowed to inhibit
the outputs or suppress the inputs of a modulengelg to a lower layer and to provide its own
output in place (i.e. higher layers subsume lowsesd. Especially, different working layers
concurrently imply that the robot is able to pursudtiple goals so that it is not only restrained
to simple tasks. The complexity of the overall stiwe is however a probable drawback of the
"subsumption" design. More flexible frameworks, dxhon the behavioural approach, have
been further proposed. In DAMN [4], for instancayigation modules all deliver their outputs
to a central arbiter which generates the finalidgv\command. Modularity is increased but the
framework implies that all behaviours provide theng kind of data, in this case for navigation
purpose only. For a system that should execute rdimerse tasks, a generalisation of this
principle is necessary, such as the one propostteireactive layer of AuRA [5]. Behaviours
(here called "motor schemas") also send their tesnlprocesses that use a potential-fields-like
method to merge the different contributions andegate the controls; but, compared to DAMN,
multiple arbiters are allowed, each dedicated pariicular task. At this point, the architecture
has all the cumulated advantages of Brooks' sutpsom and Rosenblatt's DAMN ones:
multiple goals pursuing, flexibility, generalizabjland reactivity.

Reactive structures are nevertheless known to peodiead-end situations, especially for
navigation tasks. Consequently, many authors havpoged to mix deliberative approaches
and behavioural ones so that a high reactivitycliewvable while anticipatory capabilities are
added. Most of the time, "hybrid" architectures aesed on a layered design, where the
reflexive upper part controls the execution of teactive one. The LAAS architecture [6], for
instance, respects this structure: it has beernesstdly implemented in very diverse systems,
from very autonomous planets-exploration robotautmmatic museum guides with continuous
interaction with human beings. Many research tehave since proposed different variations:
CLARAty [7] introduced a two-layered framework, wheplanning and control are tightly
linked in the upper level, Ranganathan an Koenigw8rked on an architecture in which
replanning is triggered on demand when behavioxesigion fails; Albus et al. [9] presented a
design where layers are replaced by a hierarcmodés, each one gathering deliberative and
reactive capabilities. But all approaches confitme turrent interest for this kind of hybrid

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

structures, which have besides proved very conmngetifor instance, [10] illustrates the
performances of a military demonstrator running/R0OS for an autonomous navigation task.

From an implementation point of view, most recertdrkg in robotic applications have
proposed object-oriented approaches, some implicitke Carmen [11] that uses the C
language, others taking directly benefit of OO-laages inheritance properties, like
Player/Stage [12]. Some architectures (CLARAty J18¢plicitly make the assumption of an
OO-hierarchy as the base of their design. Advamtesomputer science have also brought
more formal models, through the introduction of poment-based approaches [14]. Besides,
the latter provide a whole framework that also ps®gs a methodology to generate and deploy
the components [15], [16]. Finally, it has been dastrated that software has reached
sufficient robustness to undertake real long termsions, as shown by Stanley, the 2005
DARPA Grand Challenge winner [17].

ArMoR project

The project began in 2006, while we decided tondtte®n our own, to the first European
Land-Robot Trial (Elrob'06 [18]). At that time, tmmed was a very simple modular software
that could embed teleoperation, vision and basiomgeaphy modules. Even if hardware issues
prevented us to go further, the developed progeatiyr revealed easy to use. However, some
limitations had shown up, such as robustness. &stime period, a couple of internships gave
very promising results but most students, learnoognputer science, had difficulties to
apprehend existing robotic frameworks and the uyihey concepts during their three months
of presence in the robotics department. Therefeeswere in search of a tool that could gather
these individual programs and offer, for later warlan easy to understand, simplified,
interface. Provided some evolutions, the Elrobvearfé was considered a relevant base.

The following of this article thus describes thengie Architecture for Modular Robots
(ArMoR) that was developed taking into account bibibse constraints and the state of the art
presented above. Therefore, the main requirementbé framework were:

» Robustness. The Stanley [17] and Carmen [11] pgmasliwere retained, that is
running independent processes, whatever local girilolited, so that the failure of
some of them does not imply the failure of the vehsfstem.

= Simplicity. The software must present a minimalgreanming interface (a minimal
set of usable functions) so that as little prergi¢gs in robotics as possible be needed.
On another hand, we are convinced that this siitpl@an only be attained if the
architecture itself comes with appropriate toolssgbly graphical ones, to help in
the conception of the system.

= Representativity. Ease of use does not mean loompeance. Our robots are
periodically implied in demonstrations for militangpresentatives and should be
able to run state-of-the-art algorithms and prdna they can be driven by (kind of)
military plans. This naturally conducted us to meta hybrid structure and, thus, to
add a control layer that was missing in the origsudtware.

= Modularity. Evaluating systems belongs to our daityivities. This means that our
students works should be easily integrated in amadlvstructure that then enables us
to carry out tests and comparisons. This is onlgsjibe with a modular design. In
particular, the addition of a specific module muoist imply the re-compilation of the
whole architecture.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

Solutions chosen to answer these four main reqeinésn both the operational ones and
those that are currently under development, arglddtbelow.

2 A MODULAR DESIGN

The current ArMoR is based on a two-layer modek Tdwer level gathers modules which
provide the functional capabilities to the systemavigation, mapping, environment
observation are examples of what could be inseradin the LAAS architecture [6], the
functional module notion embraces a large numbediféérent behaviours. For instance, for
navigation task, it covers from pure reactive otistaavoidance to short term trajectory
planning. In brief, modules in this level can implent every function that only needs local
information provided by instantaneous perceptiothefenvironment.

2.1 Module modd

Each module of the functional layer can link to rgvether module to retrieve the data it
needs. Links establishment is realized throughdighysubscribe mechanism which resembles
in some ways the strategy used by ECA society witirobots [19]. But contrary to the latter,
in which the central agent forwards messages tsubscribers, in ArMoR the central module
is only compulsory during the initialisation of thgystem. Each module declares its
publications, then opens a socket connection atehls to it. The central agent, that keeps trace
of published data, when receiving a subscripticuest, only provides the reference of the
server module (i.e. its IP address and the portvbich it listens). The two modules then
initiate a direct connection between each othercdse of the central agent failure, the link
remains valid and functionalities, especially thaseharge of preserving the robot integrity,
keep on running. It should be noticed that modekas detect when a connection is closed,
which happens when the data provider crashesalnctise, the concerned input of the module
is also closed and a subscription request is résnio the central agent, so that the connection
can be re-established if the missing module igedaagain.

As will be seen later, modules also initialise cections with a configuration database. On
the whole, each module can thus be modelled asnpaeent which is dedicated to a specific
task (i.e. which runs its own process) and manége® types of flow: control, configuration
and data. For each of the first two types, the rfeodpens a bi-directional port, while data
ports are differentiated into outputs and inputgufe 1 gives the external representation of a
module.

Conmol flow Confignration flow

-

—_—
—=
Midin process
—_— R
Inputs Qutpuls
(suscriptions) (publications)

FIG. 1 — Global model of a module.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

2.2 Flow Model

In the current implementation, all data and confiolvs respect a "push” model: the
provider asynchronously sends the message, wittegutest from the target module. This is
indeed a simple way of insuring that all moduleseree and work on the updated information.
However, as discussed in section 6, this mechanssmmometimes problematic for data
management and, in a next version, should be congrited with a "pull” mode.

2.3 Configuring the modules

Each output, and so each link, is associated wipexific data, which is identified by a
unique name, initially read in a configuration f{keport to section 4 for its creation). Different
modules can subscribe to the same data and, carggguconnect to a same output. Inversely,
a given input can only receive data from one outpbese connections are initially described
in the same file. Finally, in general, the coreqass of a module needs to be tuned depending,
at least, on external conditions and on the sysyg® (for instance dimensions and dynamics
for a mobile ground vehicle). All parameters neaeg$or the module to run are also noted in
the configuration file.

A usual way to configure algorithms is to assocedeh one with a particular file. Most of
the time, from one author to another, naming cotiwves and file format vary drastically. In
ArMoR, the choice was made to gather all confignraparameters in a server, that reads the
unique -XML- configuration file mentioned above. #tart-up, the server reads and stores all
the information: for a given module, it include® thames of data served by the outputs, the
names of data the component subscribes to an@nafiyi, all parameters needed to run.

During its initialisation stage, each module auttoadly asks the configuration server for
the outputs and inputs related information so thaan emit the associated publication and
subscription requests to the central agent. If rpatars have to be retrieved, equivalent
messages can be sent; in parallel, an internal améxh increases a counter for each request
and decreases it each time a value for a givemymea is received. A specific command,
available to the developer for the module codebksato wait for this counter to return to zero
before continuing execution: this guarantees thatmodule is completely configured before
starting its actual task, in the case when thigltam is needed.

Finally, the current implementation takes benebtf the "inotify" Linux-kernel daemon to
monitor the configuration file and notify the serviegit has been modified. The configuration is
then automatically refreshed. However, changesnateimmediately sent to the concerned
modules. Contrary to data or control, configuratitow is initiated by the component:
subsequent requests from a module will actuallyltés receiving the correct updated values.

2.4 Overview of the functional layer API

The current implementation, following all the abopanciples, offer an programming
interface limited to 12 functions. The first two emnare used to declare publications and
subscribe to data (given the name of the data @sntype). As multiple instances of a same
component can be used, the system gives an inteniglie name to the data, that will differ
from the "id" argument. For further operations, tle&r can get this unique name through the
two latest functions.

void provide(std::string id, int type);
voi d suscribe(std::string id, int type);
std::string getProvidedData(std::string id);
std::string getSuscribedData(std::string id);

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

If necessary, a user can define some specific peteamin the configuration file in order for
the module to run correctly. These parameters eartoieved through a set of three functions.
The last one generally follows calls to "getParar(§t it enables to wait for the reception of
all values so that the main loop of the componearnot start before it is completely
configured.

voi d get Parameter(std::string paranmNane);
virtual void parameterReceived(std::string paranNane, std::string paranVal ue);
voi d synchroni ze();

Manipulation of data flows is enabled with the thrimllowing functions, the last one
providing the current time in a common referenfiwalall the modules. This time can especially
be used, in the case of a component producinga ttatetrieve the instant of creation to be
included in the "header".

int sendData(data_t header, unsigned char * data);
virtual void dataRecei ved(data_t header, unsigned char * data);
doubl e get Ti mestanp() const;

Data handling is most often managed in the maip lmfathe module that is implemented in
the virtual following function.

virtual void exec();

Finally, a special function is provided in order tell the system that this particular
component can not be commanded by the executiottotlen. This is especially useful for
module that provide a man-machine interface soitltainnot be freezed.

voi d set NonControl | abl e();

We have found that this API is enough for contngjlall aspects of a component but still is
very convenient to use.

3 EXECUTING THE MISSION

As explained above, our mobile robots participateexhibitions with officials. In such
circumstances, they aim at demonstrating credybdit robotics concepts and adequation to
military needs.

3.1 Military missions and planning

Every military mission is based on a plan, whichthen declined to each level of the
hierarchy. This plan specifies both time constsiahd geographical information such as
dedicated action area, dangerous zones, enemy ramally troops location. It is also a
dynamic element since it must be updated whilesuarié moving and achieving their tasks. A
view of a characteristic plan is shown on figure 2.

We argue that robotic systems should be able t&k wath such a plan since they (will)
belong to military units that affect, feed and its@he control level of our robots should thus
include mechanisms to handle planning informat&ymchronization schemes to conform to
imposed time limits; planning models that allow gpecify and pursue multiple goals and
respect geographical constraints; possibilitiesetteive events and updated upper objectives;
processes to repair or re-compute the current plaen new pieces of information contrast
with it.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

FIG. 2 — Aspect of a military-like plan. Blue syntbon the left indicate friendly units;
black horizontal lines delimitate the action afglack vertical lines are used to represent time
appointments (synchronization of the action).

Our department maintains tight relations with Frenesearch laboratories. While working
with them, we have been convinced by a specifi¢, Betri nets, that inherently handles the
above-quoted mechanisms. Especially, the recenistfi20] or article [21] emphasize that the
use of this mathematical approach is well-suitedgsign tasks to robot, monitor them, replan
when necessary, even for teams of heterogeneoudsagéme constraints are themselves
transparently managed, either implicitly (transigoin the net work as a synchronisation
mechanism), or explicitly (time conditions can ked to the transition firing rules). As a
consequence, we have decided to implement a "rettike” feature in ArMoR to control the
activities of the modules.

A word on task planningve here made the hypothesis that a quite detpildwas known
and that we only needed to translate it into aiPetrform. But in the general case, only high
level goals are specified and they need to be ‘@rdknto a sequence of unitary tasks which,
taking into account the system capacities, camdresterred to the robot.

Many approaches have been proposed for plannimag, ptimarily differ on the way the
mission is described. A classical approach usesSTTRIPS language [22], to enunciate the
goals of the mission and the rules to achieve themwariety of algorithms exists to solve the
resulting problem, GraphPlan [23] being a famouangple that inspired many other planners.
Constraints solvers also provide an elegant salutahe planning problem that can inherently
handle time-based equations; an example of suchngta can be found in [24]. Other
approaches can also rely on heuristics [25], satigfy problems [26] or Markov processes.

In a military context, we think that planning witbnstraints satisfaction techniques presents
many advantages: time is handled, geographic lioaits be easily expressed, resources limits
are directly translated into constraints. Moreoy20] has shown possible to directly use plans
produced by such solvers into a Petri net-basettatar. In a further version of ArMoR, we
envision to embed such a planner, for examplergedpen-source Choco tool [27].

3.2 Controlling the robot

The mission plan in ArMoR is specified as an XMlefihat lists all the functional modules
that should be activated during the mission. Marecdically, each module is seen as a place
of a simple Petri net. Transitions between placesabso listed in this configuration file.

At the initialisation of the system, the file isackand, for each place marked as "initial", the
corresponding module is activated. Then, a onergkeperiodic process checks if the different

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

transitions in the net are activable and, if ithe case, fires them; input places are commanded
to stop their execution, output places are actd/adttowever, not all necessary mechanisms are
implemented yet: for example, the controller doestake into account modules reports (for
instance, alerts that their task has ended) evitnisittapacity should be added soon. Currently,
the user can only associate timeouts to the transitif one is activable and its timeout is non-
zero, it is fired after the delay is reached. Tdnables the current active modules to run for a
specific amount of time. This first basic versioh the controller, at least, enables to
autonomously execute simple missions.

4 BUILDING THE SYSTEM

As mentioned in section 1, ArMoR is associated witbet of graphical tools to enable the
user to easily apprehend the architecture. Adingt is currently under development and is used
to build the functional layer of the robot; a sed@ne, that will offer an interface to prepare
the mission plan, is envisioned.

4.1 Organizing the modules

While developping ArMoR, we were looking for a wiyeasily build the functional layer
of the system: specifying the components to beriedeconfiguring and linking them. Some
verification mechanisms should also prevent ther dsem making mistakes. Scientific
softwares editors have already been confrontethéassue and, for long, have proposed the
use of block diagrams: for instance, Simulink or-R@ps [28] have retained this concept
which drastically decreases the learning time erstiftware.

Our tool offers a similar interface: the currentsien is shown on figure 3. It lists all the
components that are stored in a specific directorg executes each one in a configuration
mode to retrieve its inputs, outputs and parameterse the component is dragged to the
workspace, the user can access these propertieoudiyle-clicking on it. In order for the
developer not to forget specifying them, the numberthe block indicates how many
parameters are needed; anyway, when asking fong#ve diagram, the tool checks whether a
value has been assigned to each of them. Linkiagrtbdules is also verified. It is actually
forbidden to connect two inputs, two outputs orrengenerally, two ports that do not handle
the same type of data. When creating a link andging the mouse over a specific destination
port, the user is advised that the action is altbiwe the colour of the port, that turns red. These
very basic mechanisms make it very fast to buieldtagram representing the functional layer
and ensures that the resulting configuration fdkll no mistake.

Tittlegui

N
[

dp-siam

FIG. 3 — View of the graphical tool to build thebad internal organization.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

4.2 Creatingthe plan

While the creation of the functional layer is o&tresponsibility of a developer, specifying
the tasks that the system should achieve is tleeofathe end-user, in our case the soldier. As a
consequence, the tool dedicated for mission préparahould not look like a scientific tool
and, on the contrary, should take advantage afiskees reflex.

With the introduction of geographical informatioysgems (GIS) at all levels of the military
hierarchy, people have become used to handling dercitces. Actually, section 3 emphasized
the tight similarity between the graphical formtbé plan (the map with tactical information,
as shown on figure 2) and the description of thesmn with Petri nets. We thus argue that a
relevant tool should simply offer a map view to thger, on which to enter waypoints, time
constraints and active modules, and translateghigting plan into the corresponding Petri net.

This tool does not exist yet in the current implaetagon of ArMoR but we at least envision
to offer the following functionalities:

= enter the legs of the trajectory. Each leg couldléscribed by two waypoints and
the action that should be pursued, both on itseextres and on the leg itself. We
here call "action" a set of modules that shouldtteve.

= associate time constraints to the legs. It can beaiding period (for observation
phase for example), in which case a duration i®red{ or an absolute date for
synchronization purpose or if the overall missicheslule imposes it (appointment
with other units).

= use standard military symbols and graphical coneest

Ideally, corresponding work should be conducted coordination with DGA teams
specialized in GIS so that the mission preparatoh should look like a conventional military
one and offer all the necessary functions.

5 PRELIMINARY RESULTS

As of the first tests, three properties were chdckility of the framework to handle large
amounts of data; ability to run processes consummagy resources; ease of deployment. Our
choice fell on SLAM algorithms as they meet the fivst properties. Actually, no one in our
department is a real mapping expert, so we werblera modify deeply such an algorithm to
tune it: achieving the port to ArMoR should thewoye that the framework is flexible. Finally,
military units are actually interested and convihbg the utility of automatic mapping process
so the feature is worth implementing quickly in ooiot.

Some open-source SLAM algorithms can be found @n lthernet [29], some of them
already implemented in C with the Carmen APTwo algorithms, DP-SLAM [30] and
GridSLAM [31] were thus retained. The work congista removing all calls to the Carmen
functions so that both algorithms became self-etedater programs, then locating all points in
the code were data were consumed or produced @dpand laser measurements, maps) and
replacing the corresponding lines with calls to AR1API. No modification in the SLAM
process was brought at all. At the moment, DP-SLi&Mntirely ported and GridSLAM is "on
the way".

A whole system was tested with the resulting atbori Odometry and raw laser data is
provided by a simulation component which integraesr models, so that the SLAM process

2 ArMoR itself is written in C++ so we were firstaehing for C or C++ pieces of software

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

is fed with realistic measurements. A preliminarylHand a webcam components are also
available. A last module, that aims at controllithg mobility of our real robot (an ATRV
Mini), is ready too but still needs to be validat8dhe block diagram corresponding to the
tested system is the one shown on figure 3 andtseme presenting on figure 4.

FIG. 4 —Views of the system used of the tests. tpyper left window is the simulator, where
the blue dots are the odometry measurements (withllavisible drift) and the red dots are the
laser impacts on the walls. The upper right windethe user interface presenting raw laser
measurements, the lower left receives the vidam (lo the real system, for teleoperation task).
Finally, the lower right window gives an overviewtbe DP-SLAM mapping result. All
processes run and exchange data correctly as stenen

6 DISCUSSION AND CONCLUSION

If DGA tries to support the scientific effort inlyotics, through multiple research programs,
its role also implies to promote technologies talgamilitary units, as soon as they reveal
robust and ready for operational use. This haseguadir work on ArMoR which has been built
as the aggregation of well-known principles. Itsximal API is also a quality and answers to
the constraint of making it accessible to the largaumber of people. It thus provides a
relevant framework for capitalising available aigfons and students works. But this must not
conceal the fact that it remains a "minimalist"hatecture too, without all the possibilities of
modern ones, developed in laboratories. Hereafterdiscuss on some functionalities that still
lack in our own work and would deserve to be iraéenl.

a) Data links: currently, components establish direct links usli¢P protocols. But it is
known that, in some cases such as remote contf, thn reveal more efficient. Depending
on the performance of the current implementatibis second protocol will be studied and
proposed as an alternative to link modules.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

b) Data flow: it was highlighted that information exchanges irMAR respect a "push”
model: producers send their data as soon as ivasahle. In the case when a consumer
component runs at a slower rate, data processmgaiabe started on each reception as it will
not be finished on the next data arrival. Some iipeaonechanisms have to be implemented, so
that the data is ignored until the current iteratad the main process loop is finished. In such
cases, it would be actually more efficient to wawith a "pull” model, that is the consumer
requests the latest available data when needed.ribdel has to be added in further versions
of our framework.

c) Robustnessat the moment, mechanisms presented in sectioav2ipt the whole system
from crashing if one component accidentally disa@ppeThey also enable to re-establish the
connections if the dead module is launched agaowedy¥er, no automatic fault detection and
component reactivation are currently included. Imear future, we plan to implement a
watchdog to overcome this issue. Some previous svbave proposed solutions: the Stanley
vehicle [17], for instance, was equipped with a@gamechanism, that was later released in the
Carmen toolkit [11]. Besides, our colleagues in Uit successfully managed to add this
functionality to their own architecture [32], denstrating the viability of the solution.

d) Control: the controller currently implemented is actualipglistic. A complete system
that could accept more features of the Petri nets tb be developed alongside with the
graphical tool that will translate the mission piato a correct net. It must also be noted that, at
the moment, the human user cannot interfere ircdinérol process. This issue of man-machine
interaction, that is probably one of the most difft problems raised in the robotics community
today, has to be addressed in the future. Ongoorgsyin the DGA as well as in laboratories,
tend to show that adjustable autonomy is a verynming way. In the near future, if some
consensus is reached on this concept, we envigiongiement it.

References

[1] J. S. Albus, R. Quintero, and R. Lumig@Vverview of NASREM: The NASA/NBS standard
reference model for telerobot control system amattitré, NASA STI/Recon Technical
Report N, vol. 95, April 1994.

[2] R. Simmons, Concurrent planning and execution for a walking@tibRobotics Institute,
Carnegie Mellon University, Pittsburgh, PA, TeckepRCMU-RI-TR-90-16, July 1990.

[3] R. Brooks, A robust layered control system for a mobile r6pdEEE Journal of
Robotics and Automation, vol. 2, no. 1, pp. 14-1236.

[4] J. Rosenblatt, DAMN: A Distributed Architecture for Mobile Navigah’, Ph.D.
dissertation, Robotics Institute, Carnegie Mellamvérsity, Pittsburgh, PA, January 1997.

[5] R. C. Arkin and T. R. Balch, AuRA: Principles and practice in reviéwJournal of
Experimental and Theoretical Atrtificial Intelligem¢JETAI), vol. 9, no. 2/3, pp. 175-188,
April 1997.

[6] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and IRgrand, ‘An architecture for
autonomy, International journal of robotics research, Vvbl, no. 4, 1998.

[71 I. A. D. Nesnas, CLARAty: a collaborative software for advancing heclogies, in
NASA Science Technology Conference, June 2007.

[8] A. Ranganathan and S. Koenid feactive robot architecture with planning on derda
in Proceedings of the Intelligent Robots and Syst€unference (IROS), vol. 2, October
2003, pp. 1462-1468.

[9] J. Albus, H.-M. Huang, E. Messina, K. Murphy, Mbéus, A. Lacaze, S. Balakirsky, M.
Schneier, T. Hong, H. Scott, F. Proctor, W. Shdokte J. Michaloski, A. Wavering, T.
Kramer, N. Dagalakis, W. Rippey, K. Stouffer, Sgbaik, J. Evans, R. Bostelman, R.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

Norcross, A. Jacoff, S. Szabo, J. Falco, R. BudclGilsinn, T. Chang, T.-M. Tsali, A.
Meystel, A. Barbera, M. L. Fitzgerald, M. del Giornand R. Finkelstein,4D/RCS: A
Reference Model Architecture For Unmanned VehigisteéBns Version 20 National
Institute of Standards and Technology, Tech. RéSTNR 6910, August 2002.

[10] A. Lacaze, K. Murphy, and M. DelGiornoAtitonomous mobility for the DEMO IlI
Experimental Unmanned Vehitlén Proceedings of AUVSI, July 2002.

[11] CARMEN Robot Navigation Toolkit. [Online]. Availa®l http://carmen.sourceforge.net

[12] The Player Project: Free Software tools for robot @ensor applications. [Online].
Available: http://playerstage.sourceforge.net

[13] R. Volpe, I. A. D. Nesnas, T. Estlin, D. Mutz, RetRas, and H. DasCLARAty: Coupled
Layer Architecture for Robotic Autonoifnyloint Propulsion Laboratory, Tech. Rep. D-
19975, December 2000.

[14] C. Cobte, Y. Brosseau, D. Létourneau, C. Raievshy, B Michaud, Robotic software
integration using MARIE International Journal of Advanced Robotic Syssenol. 3, no.
1, pp. 55-60, March 2006. [Online]. Available: WMimarie.sourceforge.net

[15] The Orocos Project: Smarter control in robotics &oaation! [Online]. Available:
http://www.orocos.org

[16] R. Passama, D. Andreu, C. Dony, and T. Libour@yérview of a new robot control
development methodoldgyin Proceedings of the First National Workshop ©antrol
Architectures of Robots, Montpellier, April 2006.

[17] S. Thrun, M. Montemerlo, H. Dahlkamp, D. StavensAfon, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. &alcci, V. Pratt, P. Stang, S.
Strohband, C. Dupont, L.-E. Jendrossek, C. KoeenMarkey, C. Rummel, J. van
Niekerk, E. Jensen, P. Alessandrini, G. BradskiDBvies, S. Ettinger, A. Kaehler, A.
Nefian, and P. MahoneyStanley: The robot that won the DARPA Grand Chagk&n
Journal of Field Robotics, vol. 23, no. 9, pp. 66892, 2006.

[18] European Land-Robot Trial. [Online]. Available:gttwww.elrob.org

[19] C. Riquier, N. Ricard, and C. RoussdDES (Data Exchange System), a publish/suscribe
architecture for robotics in Proceedings of the First National Workshop Gontrol
Architectures of Robots, Montpellier, April 2006.

[20] O. Bonnet-Torres, Replanification locale pour une équipe d’agentséhagene’ Ph.D.
dissertation, ONERA, decembre 2007.

[21] M. Barbier, J.-F. Gabard, D. Vizcaino, and O. Bdrherres, ProCoSA: a software
package for autonomous system supervision Proceedings of the First National
Workshop on Control Architectures of Robots, Mollitee April 2006.

[22] R. Fikes and N. Nilsson,STRIPS: A New Approach to the Application of Theore
Proving', Artificial Intelligence, vol. 2, 1971.

[23] A. Blum and M. Furst, Fast planning through planning graph analysi#rtificial
Intelligence, no. 90, pp. 281-300, 1997.

[24] P. van Beek and X. ChenCPlan: A constraint programming approach to plamgiinin
AAAI/IAAL, 1999, pp. 585-590.

[25] B. Bonet and H. GeffnerPlanning as heuristic searthArtificial Intelligence, vol. 129,
no. 1-2, pp. 5-33, 2001.

[26] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, andMalik, “Chaff: Engineering an
efficient sat solvér in 39th Design Automation Conference (DAC 200I)ne 2001.

[27] Choco constraint programming system. [Online]. Aadale: http://choco.sourceforge.net
[28] N. Dulac, ‘Real time, multisensor, advanced prototyping safiyan Proceedings of the
First National Workshop on Control ArchitecturesRabots, Montpellier, April 2006.

[29] OpenSLAM. [Online]. Available: http://www.openslaong

[30] A. Eliazar and R. Parr,DP-SLAM 2.0, in IEEE International Conference on Robotics
and Automation (ICRA), 2004.

39 National Conference on “Control Architectures aftidts” Bourges, May29-30, 2008

[31] D. Haehnel, D. Fox, W. Burgard, and S. Thruf,Highly efficient Fast-SLAM algorithm
for generating cyclic maps of large-scale environtee from raw laser range
measurements in Proceedings of the Conference on Intellig&dbots and Systems
(IROS), 2003.

[32] R. Jaulmes and E. MolinéHNG: A Robust Architecture for Mobile Robots System
European Robotics Symposium 2008, ser. Tracts waAded Robotics. Springer, 2008,
vol. 44, pp. 121-131.

