
 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

HNG: a Hybrid Network-based Generic architecture for fast 
prototyping and evaluation of robust autonomous vehicle systems. 

R. Jaulmes, E. Moliné 

DGA - CEP 
16 bis, avenue Prieur de la Côte d’Or 

94114 Arcueil Cedex 

Abstract 

The robotic researchers all agree that control architectures should be deliberative, reactive, 
robust, modular, and multi-robot. The HARPIC architecture that was developed with these 
ideas by GIP to show modular autonomy functionalities, had an” attention” feature  that 
allowed the architecture to automatically switch from one algorithm to another according to 
the circumstances. Using the return we had about HARPIC, we design a new architecture, the 
Hybrid Network-based Generic architecture, based on concepts developed by different teams: 
it uses independent processes as modules, communication uses Inter Process Communication, 
and the “attention” feature is realized through a protocol inspired from Contract-Net: this 
protocol builds customer / supplier relationship within the processes and allows comparisons 
between them. Preliminary tests we have conducted on this architecture project prove the 
robustness and adaptability of this method. HNG is also a robust framework to benchmark the 
advanced techniques used in autonomous systems. 

Keywords 

Robotics ; Control architecture ; Real Applications ; Robustness ; Reliability ; Modularity ; 
IPC ; Multi-agent ; Contract-net Protocol. 

 
 

1 INTRODUCTION  
One of the main challenges in autonomous mobile robotic is the conception of mobile 

systems able to quickly and efficiently answer their users’ needs. They must easily integrate the 
best and latest algorithms from a wide set of domains such as control, image processing, data 
fusing or AI for instance. They also must be easily adaptable to the new emerging technologies 
or new concepts. One of the main issues, in the conception of a control architecture, is to take 
into account and to combine as well as possible all this different abilities. 

 
One can number a lot of various control architecture [1]. In a way, one can say that every 

laboratories may have developed is own that have been perfectly designed to answer their 
issues. Therefore this kind of architecture cannot easily be used for others applications. 
Moreover, because theses architectures have been developed independently from each others, it 
is often impossible to make interaction between them. Bringing one algorithm from one 
architecture to another, without decreasing its performance is a complex task requiring a 
perfect knowledge of both architectures and algorithm. 

 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

For a decade, more and more projects address the standardization issue [2][3]: they are 
gathering a increasing libraries of algorithms but are still in concurrence especially because 
they are not compatible and they are not offering the same functionalities. In our evaluation 
activities and capitalization of robotic technologies [5], getting standardized architecture to 
ease the integration has become a necessity. Without any will of standardization but taking into 
account the possibility of an integration of new algorithms as easy as possible, we have 
developed the HARPIC architecture [6] in order to validate two new operational concepts: the 
adjustable autonomy, which allows the user to give the robot commands of different levels, and 
the attention function, which allows a comparison between similar perception algorithms. As 
we want to ease the integration of new algorithms and new features, we have in a first time 
formalized our needs. In a second time we have studied the possibility to integrate the desired 
new mechanisms to an already existing architecture. We have also studied the possibility to 
extend the mechanisms of control developed during the ACROBATE project [7]. All these 
studies have allowed us to prototype a new decentralized control mechanism. 

 
This article presents our works on the definition and the conception of the HNG architecture 

(Hybrid Network-based Generic Architecture) which is based on the results of our reflection 
and on some principles of already existing architecture. Part 2 and 3 present the analysis of our 
need about the architecture we wish to use in our evaluation activity and some existing 
architectures we have considered. In Part 4 we try to formalize the issue the controller has to 
solve before describing HNG concept in part 5. Finally part 6 presents some preliminary results 
that let us think that HNG would be a useful framework in our robotic activity. 

2 ANALYSIS OF THE NEED  
The first step in our study for the conception of HNG is to identify and analyze the qualities 

we want the architecture to have. The main objective is to use HNG to evaluate the 
performance of various algorithms in operational conditions and to study their robustness. In 
order to fulfill this objective the HNG architecture must have some qualities: robustness, 
security, modularity, to ease maintenance, adaptability to a multi-robot utilization, adjustable 
autonomy, and self-reconfiguration. Of course, it is obvious that in a first time, HNG should 
have all the necessary interfaces with robotic platforms, their sensors and actuators such as 
interfaces with the user. Moreover HNG must have a maximum of functionality that can 
contribute to the global autonomy of the systems.  

 
Here are described the main qualities we want to provide to HNG: 
 
- Robustness: one of the most primordial aspects in robotic control architecture is the 

robustness to the execution failure. All must be done in the architecture to avoid the 
system stop working in the correct way. Whatever the circumstances, the system must be 
as fault-tolerant as possible.  As said before, we focus on the evaluation of algorithms 
coming from various domains, and from various sources. We often can not master all the 
code sources. The addition of a new algorithmic module (or functional module) should 
not make the architecture become unstable. In others words, the failure of a part of the 
system, e.g. of one or more modules, should not be synonymous with the failure of all 
the architecture, whatever the nature of this failure (lack of memory, data reading 
mistake, segmentation fault, …) 

 
- Security: the notion of security must be taken into account in HNG. The integrity of the 

materials and the security of the persons using it are very important. Security is a 
constant and top priority task in the system. Therefore the architecture should use 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

parallel mechanisms (threads, multi processes) and be able to manage priority between 
these mechanisms.  

 
- Modularity: we wish the addition of new functionalities to the architecture can easily use 

the existing algorithms. One of the best ways to answer this need is to divide the 
architecture in modules. Each module is a part of the architecture that can change, 
upgrade, or evolve all the time during the projects. To separate the architecture in 
independent modules also allow the distribution of the architecture on several calculators 
(GUI PC, onboard PC, fixed PC …). 

 
- Maintenance: the architecture must be designed to ease the maintenance. Especially the 

reconfiguration and the re-launch of a module must be possible while the system is 
running and without interrupting the experiments. Moreover the module must be able to 
record and save online their internal data and their interfaces so that in case of failure, it 
is possible to identify the module(s) responsible of this dysfunctional execution. The 
modules can also be tested alone, their input and their output perfectly controlled. 

 
- Multi-robots: the scientific community is working more and more with the issue of the 

cooperation between robots: the HNG architecture must intrinsically be fitted with the 
conception and the use of multi-robots systems. The modules of the architecture can be 
located on several computers or robots and the share of the information between the 
different platforms must be managed by the architecture.  

 
- Simulation: the architecture should have simulation tools and interface. Simulation is a 

way to test the behaviors of the modules in perfectly well-controlled environments and 
therefore to evaluate in some conditions their performances. Hybrid simulations where a 
part of the data is simulated while the other part is real data could also be conducted.  

 
- Hybrid: a part of the modules must come from the automatic domain and allow the 

control of the robot in a reactive way. But the use of these short close loops modules 
must not forbid the use of high level module allowing the planning of the activities of 
the robots by the use of models / representations of the world. The architecture must be 
hybrid.  

 
- GUI and adjustable autonomy: the interface between the user and the system must give 

the user the ability to interact with the different level of autonomy of the robot. 
Therefore the system can both deals with high-level mission (exploration mission for 
instance) and with low-level control (remote control for instance). The GUI is also a way 
to provide modules with configuration data and designation data that the user is the only 
one to provide. The GUI must be adaptable to both the needs of the user and the abilities 
of the system. 

 
- Self-reconfiguration: this ability is very important. First, in case of failure of one or 

more modules, or when the chosen modules are no more able to fulfill the designed task, 
the system must self-adapt and find a new module or series of modules to efficiently do 
the task. Second, the architecture must fit the needs of the users and adapt itself to his 
change (from a full remote control interaction to a supervised remote control one for 
instance). The architecture must also update and change the data exchange between the 
modules depending of the circumstance.   



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

3 HNG AND THE EXISTING CONTROL ARCHITECTURE  
Here are some existing control architectures we have considered in order to check how they 

can answer to our needs. Our reflection is based on the analysis by Kramer and al. [1] of the 
robotic development environments for autonomous mobile robots. HNG has found its 
inspiration in some of the existing architectures, starting with HARPIC. 

 
HARPIC [6]: it is a hybrid architecture based on posix threads and divided in two parts, the 

Perception, supervised by an Attention agent, and the Action, supervised by the Selection 
agent, and offering to the user a control interface allowing him to select the desired behaviors. 
The main particularity of HARPIC is that these two parts have self-reconfiguration 
functionalities depending on the self-evaluation of the algorithms for the Perception part and on 
the needs of the user for the Action part. Despite some works to open the architecture to the 
multirobots [8], to add new control and high-level decision mechanisms with the ACROBATE 
project [7], or non Action-Perception dividable mechanism such as the SLAM [9], this 
architecture is not perfectly answering our need, especially in terms of robustness. 
Nevertheless, the innovative concepts the HARPIC architecture has proposed are very 
interesting.  First, the adjustable autonomy gives the user the possibility to send order of 
different level of complexity. Those can be for instance remote control orders, waypoints 
navigation orders, or image designed objects tracking orders. Second, the Attention Agent has 
to detect the agents that are the most efficient to answer the queries of the users regarding the 
environment and the events happening by analysis the representations of the world. It can also 
send at real time some functionality or action the system is able to execute. For example, if the 
Attention agent detects that a Wall can be used by the couple “Wall detection Perception agent/ 
Wall Following Action agent” this behavior is indicated as available trough the GUI. 

 
Player/Stage [2]: Player/Stage is using two processes; one is either the simulator or the 

robot controller and the other is gathering all the control mechanisms (based on posix threads). 
HARPIC is using an identical mechanism to interface with the simulator or with the robot. 
HARPIC is also compatible with Stage (2D) and Gazebo (3D) simulators.  

 
Carmen [3]: it is more a toolbox than an architecture. Here every module is an independent 

process so that the maintenance is easier to do. This toolbox contains control mechanisms, 
SLAM mechanisms, an inter process communication tools (IPC) based on the Publish/ 
Subscribe paradigm, interfaces with sensors and actuators, diagnosis and maintenance tools, 
such as a “watchdog” mechanism which allows to check during the execution the states of the 
different processes (and therefore of the different modules) and to rerun them if needed. 
Carmen has focused our attention because the first robots winners of the DARPA Grand 
Challenge used it or was inspired by it [10]. Carmen has been initially designed to run on 
several calculators and can be adapted to the multi-robot. Carmen is rather singular thanks to its 
robustness and maintenance mechanisms. 

 
We have been convinced by Carmen and we have envisaged improving it by making the 

concepts of HARPIC compatible with Carmen. Nevertheless, not only HARPIC is written in 
C++ and Carmen in C, but also Carmen, by its lack of high level control mechanism or self-
reconfiguration is not perfectly answering our needs. Therefore we have decided to develop our 
own control mechanism. We have decided to base our work on the Gazebo simulator of the 
Player/Stage project, on the new concept proposed by HARPIC, and on the communication and 
maintenance mechanisms of CARMEN. This new architecture called HNG should be as 
generic as possible in order to add others control principles from different architectures [1]. 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

4 DEFINITION OF THE CONTROLLER  
In this part we present the study we have conducted for the conception of the controller of 

the architecture. The controller has to decide which modules to activate and what are the data 
exchanges that must be done.  We present a formal description of the issue that the controller 
has to solve, before we propose a solution of what the controller could be. 

4.1 Formal description of the issue 
The architecture is made of N modules {m1,…,mN}. Each of these modules can be activated 

or deactivated, and has a set of inputs, for the data it consumes, and a set of outputs for the data 
it produces. Every data is typed so that some input/output connections are not valid. Let C the 
matrix, unique for all the system, taking its values in {0;1} and indicating the existence or not 
of a connection between the different inputs/outputs. C(i,j) = 1 if and only if the input i is 
linked to the output j. The controller must be able to decide at every time and among all the 
available modules, which are the ones to be activated. It also has to determine the coefficients 
of the matrix C. Several inputs can be connected to a same output. It means that the published 
message is sent to several subscribers. In a same way, several outputs can be connected to a 
same input. It is especially the case when different modules want to control the mobility of the 
robot. Therefore, priority rules must be defined in order to prevent conflicts. Theses actions of 
control have an impact on the consumed resources, the abilities to run and the qualities of this 
running.  

 
The different modules mi are also able to evaluate online a value fmi(t) { }1;0∈  which indicate 

their aptitude to function, to do their task. When this value is 1, they also calculate another 
value reflecting their working quality Qmi(t) whose values are in [-1;+1]. Qmi(t) can be biased. 
If a module cannot evaluate its working quality, the values of Qmi(t) will be 0.  

Finally they are able to evaluate the amount of resources they are using. Let Rmi(t) a vector 
of size Z, where Z is the total number of the different resources available in the system : CPU 
and memory resources (RAM)of each computer, and the density of the communication in the 
network. 

 
One of the modules is called the Manager. The control mechanism must verify that this 

module can be activated and that its working quality is maximal. The global resources of the 
system are limited and the controller has to check that the inequality (1) is always true. (Rmax is 
a vector characterizing the maximal amount of resources the system is able to supply). 

  
    ∑ ≤∀ max)(,, RtRit

im    (1) 

 
The controller has the knowledge of the mission. This mission which can be modify online 

depending on the will of the user is constituted by a set of objectives )(),...,(1 tOtO P , 

respectively associated with a hierarchical priority. The priority of the objective ( )tOi  is higher 

than the priority of the objective ( )tOj  if and only if ji > . For each objectivekO , the controller 

knows the set ( )kOΓ  which contains the modules which can answer this objective. To complete 

the mission, the Manager has to find the best modules which can fulfil these objectives thanks 
to the service they provide. In the next section of this paper, we will use without any distinction 
the terms objectives or service. 

 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

The controller has to guarantee the execution of a maximal number of the objectives of the 
current mission while guaranteeing the hierarchy of the objectives at each time. In others words, 
the rule (2) must always be true.  

 
 ( )( ) ( )( ) ( )[ ]11)(,, =Γ∈∃⇒=Γ∈∃⇒>∀ tftOmtftOmjitji

yx miymjx      (2) 

 
One interpretation of this rule is that as long as the resources are available, all the objectives 

have to be fulfilled. In a case of lack of resources, the controller has to check that the choice 
between two objectives will be in favor of the one with the highest priority. 

 
The issue could be present as an optimization under constraints, applied in an environment 

where both the target function and the constraints vary with the time. Moreover, because the 
controller is the controller of an onboard system, the decision must be done in limited time and 
if possible, independently of the number of modules to manage. 

 
It is impossible to solve in a precise way this problem because it would mean to know very 

precisely the needs and the working domains of each module. Therefore the methods based on 
the linear programming [11] are not interesting. Others methods based on supervised learning 
(SVM, neurons network…) could be envisaged but we have chosen to not use them because the 
leaning should have to be done each time a module is modified. About methods based on 
probabilistic models such as Bayesian network [14] it would be difficult to catch with enough 
precision all the phenomena that can happen for a set of a given module. Moreover, the 
adjustment of the parameters of these models is not an easy task to do, and they could change 
each time a module is modified. The weakness of all this control mechanisms is that they are 
centralized. The centralization is needed to deal with the conflicts created by the use of the 
shared resources. To detect and manage these conflicts must be done in a centralized way but 
the optimization of the working quality could be done in a decentralized way. Indeed, with the 
assumption that the modules are able to determine what they need to do their job and that they 
are also able to estimate their working quality, thus they are able to decide which connections 
to create with which modules.  

4.2 Description of the proposed solution 
Consider the following assumptions: each module is associated to a vector of needs N (the 

services he is waiting) and to a vector of objectives it can fulfill K  (the services he is able to 
provide if all its needs are satisfied). Each of these needs/objectives can be linked to 
inputs/outputs of type T. 

 
- If for each need ni of the vector N of a module m, there is another module m’ such as fm’ 

(t) = 1 and its vector K  contains the service ni (so it is said that m’ can answer the need ni 
of m) then fm (t) = 1. 

- The value of Qm(t) increases if the value of Qm’(t) increases, m’ being one of the 
modules answering one or more needs of the module m. 

-  Each need of the module m has a unique level of priority. This priority is proper to the 
module m. The needs with the lowest priorities are not indispensable to obtain the 
equality fm (t) = 1 but they can have an effect on the value of the working quality of the 
module. 

 
We use theses assumptions to define a protocol that guarantees to have, if she exists, the best 

working quality under constraints (the available resources of the system). This mechanism is 
close to the Contract-Net protocol [12] which is rather well known in the multi-agent literature. 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

The Manager module in order to fulfill its objectives (and thus the mission) has to send queries. 
Some modules will be able to answer this queries and thus to establish a contract with the 
Manager module. But before that, they have to express some queries too and make some 
contracts with others modules, and so on until all the needs are fulfilled (or until there is no 
module able to answer the needs) 

 
Because several modules can answer the same queries i.e. they provide the same kind of 

service a mechanism has been defined to help the Client module to choose the best Provider. 
This mechanism is used to note the efficiency of each candidate. Each module and thus each 
Provider has a value function Vmi(t) which is linked to its self-evaluation (working quality) but 
not only. Vmi(t) must depend on the effective consumption, by the module mi, of the resources 

( )tREff
mi

, whose the description is written in section 5.3, and also on the rarity of the resources 

through a centralized cost of resources CR(t) whose the coefficients are regularly updated.  
 
Vmi(t) must also take into account the cases where the self-evaluation is not efficient. As a 

module is able to detect, when it measures a decrease of its quality, which modules among its 
provider are responsible of this, it could be interesting to modify the values of a module by the 
feedback of the clients of this module. Let E(mi,t) the set of the evaluations transmitted by the 
client of mi between the time 0 et the time t, let En one of these evaluations (whose the values is 
between -1 and 1), and T(En) the time when this evaluation has occurred, and finally let ( )imτ  

the characteristic length of time for the validity of these evaluations. The principle used to 
evaluate the value of a module is summarized in the following equation:  

 

 ( ) ( ) ( )
( )

( )
∑

∈

−−

+−=
tmEE

ETt

nR
Eff
mmm

in

im

n

iii
eEtCtRtQtV

,

).(
τ     (3) 

 
The value of a module increase with a high value of its working quality, a low consumption 

of resources and a high evaluation feedback from its clients. One can notice that the last term of 
(3) gives more weight to the latest evaluations. The feedback evaluation by the client can also 
‘correct’ a biased self-evaluation. It can be used by the client to force a change between a bad 
but optimistic provider (A) and another better but pessimistic provider (B). Indeed, as long as 
(A) will provide its services to the client module, it will receive bad feedback evaluation, thus 
VA(t) will decrease and when VB(t) will become higher than VA(t) plus a threshold, the client 
module will change its provider. As (B) is good, it should receive a good feedback evaluation 
from the client. Even if the value of (A) will progressively increase, she should stay inferior to 
the value of (B). We advocate that the evaluation sent by a module to its providers is linked 
with the evaluation this module has received from its clients. If we do so, then if the Manager 
module is able of a non biased evaluation the system can be balanced.  

5 DESCRIPTION OF THE HNG ARCHITECTURE  
We now describe the general principle of HNG, the communication mechanism, the 

resources managers, the failures management mechanism and the generic mechanism used by 
all the modules. There is also a list of module implemented in the 1.0 version and a description 
of the architecture on an example.  

5.1 General principle 
HNG uses the principles and the communications methods of CARMEN combined with the 

control mechanism presented in section 4. On the software point of view, all the modules are 
independent processes.  



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

 
As Carmen, HNG has « Central » processes (no more than one by calculator) whose the 

function is to transmit information inside the architecture: each module of HNG is connected to 
at least one Central and he can receive messages from all the Centrals he is connected to. HNG 
also have a one administrator process for each calculator: these processes are called “Resources 
Manager” (RM). They receive different activity reports from the modules running on the 
calculator they have to manage, they calculate and transmit the global cost of the resources  

( )tCR  we mentioned in 4.2, and they also calculate for each module le effective resources cost 

vector ( )tREff
mi

. The RM can also stop (kill) and re-start modules if they have made a failure in 

their execution. At the beginning, when a RM process is starting, a set of modules is also 
started and configure regarding the values of parameters of the configuration files. In this file, 
one of the modules can be designed as the Manager module. This module will have the priority 
with the highest value. 

 
Having a set of processes rather than a set of threads is more advantageous for several 

reasons: 
- The architecture can run on several calculators, which is interesting for multirobots 

applications.  
- The operating system can be easily used to determine precisely and easily the amount of 

memory and computation load used by the modules 
- If one of the modules (thus a process) makes an execution failure (as a segmentation 

fault) there is no influence on the others modules. The architecture is more stable to 
unexpected failure of some modules. 

- We gain time when doing diagnosis of failures, because no memory is ever shared 
between the modules and therefore determining which module failed when a crash 
occurs is instantaneous. 

5.2 The Communications 
The communication in HNG is based on the IPC library developed by CMU [13]. This 

library of inter process communication functions is based on TCP Unix sockets 
communications and allows the transmission of data by Ethernet (between two robots of two 
computers, or one computer and one robot). IPC offers mechanisms to interrupt a process at the 
time of the reception of a message. That means that a process is not wasting time waiting a 
message and checking an empty mail box. IPC also allows the management of periodic events 
and is compatible with the multi-thread.  

 
IPC offers Publish/Subscribe functionalities working on the following principle: a module 

can subscribe by indicating to IPC Central the name of the Channel he is interested in, the 
structure that the messages using this Channel must have, and what kind of functions (handlers) 
to call at the reception of one of these messages. The module can also send message by 
indicating the name of the Channel he want to use to emit its message. IPC knows the identity 
of the processes which are interested in this message and he automatically send a copy of it: the 
processes execute the predefined function (handler) at the reception. IPC also dates the send 
messages and provides a common time reference for the system. It is also possible to define 
and use several Central in order to avoid saturation in transmission. All the different 
mechanisms of communication have been encapsulated in a unique C++ class.  



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

5.3 The Resources Managers  
There are three kinds of resources in HNG: CPU resources, memory, and the 

communication load of the Centrals. Each Resources Manager has to calculate the effective 
consumption of resources of each module presents on the same calculator and to estimate the 
remaining resources. RM is using the information given by the operating system (OS), the 
information periodically send by the modules and the information send by the others RM of the 
others calculators of the system. 

 
The communication load of a Central is measured by the RM present on the same calculator 

by measuring the time differential between the moment the reports message were sent and the 
time of the reception of this message by the RM. If this time is higher than a defined threshold, 
the cost of the communication is increasing. Otherwise this cost decreases until a minimal cost.  

 
For each module mi managed by the RM, and a each instant, its CPU and memory resources 

consumption R(mi) = ( )tR
im  is measured using tools provided by the OS. Then the RM can 

calculate measures the effective resources consumption of each module. It built the set F(mi) 
which contains the indices of the different modules chosen as providers to answer the needs N 
of mi. It also determines the number of queries NR(mj) answered by a module mj. The effective 
cost ( ) )(tRmR Eff

mi
Eff

i
= used in the calculation of the value Vmi(t) is calculated using the formula 

(4). 

∑
∈

+=
)( )(

)(
)()(

imFj jR

j
Eff

ii
Eff

mN

mR
mRmR        (4) 

The more a module answers queries, the less its weight is important on the effective cost of 
its clients. In others words even if a module consumes a lot of resources, the more he has 
clients the less it impacts their values. 

 
Another function that a RM must be able to do is the management of the resources in 

situations of lack of resources. If a module needs to consume resources to do its task and if 
there is no more resources available he will put in its report for the RM, “waiting for resources 
to answer queries X”. The RM measures the amount of available resources in term of memory 
and CPU time. If the quantity falls under a fixed threshold, the RM will increase the cost of the 
corresponding resource and will update the cost vector CR(t) seen in 4.2. Otherwise, it will 
decrease the cost of this resource. As soon as the RM receives at least one report including 
information of lack of resources, it will increase their cost. If despite a maximal cost for the 
resources, it still receives this kind of reports, it can activate the “degraded mode”. In this case, 
a message indicating the minimum priority a query must have to be taken into account despite 
the lack of resources is sent to all the modules under its responsibility (it means on the same 
calculator of the RM). The modules providing the services useful for the query with a priority 
lower than the minimum one are not allowed anymore to work. The definition of the priority 
between two queries is defined in 5.7. 

 
The modules which are not allowed to answer queries because of the degraded mode are still 

sending reports message to their RM. As long as the RM receives lack of resources report 
messages or as long as it detects that the system have no more available resources, the 
degraded mode is active. This mechanism has been defined in order to assure that even if the 
system has not enough resources to fulfill all the objectives (even by using the modules 
consuming few resources), the queries the system will not answer will be the one with the 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

lowest priority. Of course, the more the lack of resources increases, the less the number of 
answerable queries is. This can even be synonym of a global stop of the system. But this 
mechanism guarantees that until the end, only the queries with the highest priorities are taken 
into account. The figure 1 presents the different interfaces of the RM. The failures management 
is described in 5.4 

 
 
 

 
 

FIG. 1 – Interfaces of the Resource Manager. 

5.4 Failures management 
HNG has a mechanism for the management of the execution failures. Periodically each 

module writes in a file all the data concerning its state of running. If the process is stopped 
(killed) and restarted it can detect the presence of this file and thus it is able to come back at a 
previous state before the failure. If the failure occurs too often, the module is finally completely 
deactivated. 

 
 Every process pi is associated with a “Watchdog” process which surveys it. The watchdog 

can detect an unusual end of pi and therefore automatically and immediately restart it. The RM 
can do this Watchdog function for the modules he manages. Of course there is also another 
simple watchdog process for each RM. Each process also has a maximal authorized CPU load 
and memory load. The RM can then send interrupt signal to some module if needed (i.e. when 
they are too much resources consuming). The RM can also stop and restart a module which has 
not sent its periodic report, or which has sent a report indicating a too long time to provide the 
data. 

5.5 The priority of the modules and the queries 
We describe here how the absolute priority is defined. The priority is not linked to the nature 

of the query but it depends on the module asking this query, the position of this module in the 
contract tree and the internal hierarchy of the service this module have to request. Each module 
and each query in the architecture has an associated priority:  as we have already mentioned, 
this feature is absolutely necessary when there is a conflict in resources (a module that can only 
process data from one client at a time, for instance). A priority is affected to each contract and 
is defined by a list of integers: P1.P2.….Pi.….Pk-1 where for each value i, Pi is an integer. We 
use the classic integer order to compare the priority. For instance the module m1 with priority 
1.2.5 has a bigger priority than the module m2 with the priority 1.3.2.  

 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

Let R= r1, . . . , rn the contracts module m has signed with its providers (ordered by priority), 
and S = s1, . . . , sn the contracts module m has signed with its clients. Let’s P(si) be the 
priority of contract si. By definition the priorities of each of the contracts ri is:  

P(ri) = ( max i =1...k (P(si)) )· i.  

The priority of the module m is directly linked to the priority of the queries is answer to. It is 
defined by:  

P(m) = ( max i =1...k (P(si)) )  

5.6 The generic mechanisms of the modules 
We now present the standard mechanisms used by all the modules. By construction 

(inheritance of a generic class) all the modules can use these mechanisms and therefore they 
can assume each of these functions: 

 
Producer: a module can produces data (representations, plans, commands…). He often 

produces its data on one (or more) channel he has created or on some channels he was asked to 
during the reply/query phases. These channels are named DEST1, DEST2 on the figure 2. 

 
Consumer: a module can use and process data (representations, plans, commands). If he 

knows the name of the channel where to take the data, he can listen on it and process with the 
data at their reception. This data processing can be associated with the production of others 
data. The name of the channel used to receive the data is either unique (it is the case when the 
module can process only one source at a time) or is indicated in the query he answer to. These 
channels are named SRC1, SRC2 in the Figure 2. 

 
Provider: a provider of services is able to publish on a channel corresponding to the 

provided service (Query A on the Figure): he indicates the provided service and its value Vmi(t) 
calculated as presented in section 4.2. If the service is to provide data, the name of the channel 
where the data are sent is also indicated. In the standard mode, a module provides its service 
only if it has been selected as a provider for a query. This information is sent on the “Query A” 
channel in the Figure 2. If the module is the “Manager” module, he automatically provides its 
services as soon as they are available. The provider module receives on the channel “Query A” 
the feedback evaluations of its Clients modules. These evaluations are used to calculate its 
values Vmi(t). They can also be used to improve its behavior: for instance he can indirectly 
transmit the evaluations he received on its own provider modules. 

 
Client: a module is able to send a query on the “Query” channel corresponding to the needed 

service. He does so if he needs data or services to realize its work.  The needed service could 
be a function, a data processing, or data. The query is sent on the “Query B” channel in the 
Figure 2. The module can know if a module is able to provide the requested service by listening 
to the “Reply B” channel. Once the client module has selected its provider, it’s sending again 
its query but this time the message contains the selected module with its value, (used by the 
other providers to check if they are better or not than the selected one) and also the feedback 
evaluation if available. 

 
Drivers: a module can also have some interface with the hardware like the sensors and the 

actuators. In this case, the RM has to control than one and only one module is the interlocutor 
of a specific device. To do this it uses the priority of the query. For instance if two Client 
modules have to control the position of a pan and tilt camera, the client with the highest priority 
query will be the only interlocutor of the camera Drivers module. 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

5.7 List of the modules of HNG 1.0 
The modules of HNG v1.0 are listed in Table1. For each module, the table presents the 

given services (the queries the module can answer), the needed services (the queries the 
module must ask) and the inputs and outputs for the exchanged data. On this first version the 
listed modules concern the navigation of a mobile robot, but there is no limitation to define and 
implement others specific services like the “survey of an area” for instance. 

 
All these modules are based on the different behaviors already implemented in HARPIC. 

The next step will be the implementation of the already realized works during the ACROBATE 
project [7] and of others functionality developed for the control architecture in freeware 
licenses.  

 
Module Services Needs Data in Data out 

 Robot integrity   

Manager  Human control   

Robot integrity Robot control LIDAR data Commands 

Security  LIDAR data   

Human control Robot control   

Beacon designation Follow wall Map Commands 

 Reach beacon Position Goal 
 Reach goal Images Beacon 

 Localization   

 Mapping   

 Video   

 Beacon tracking   

Interface  Wall detection   

Robot control  Commands Odometry 

Robot Odometry    

Robot control  Commands Odometry 

Odometry   LIDAR data 

LIDAR data   Images 

Simulator Video    

Laser LIDAR data   LIDAR data 

Camera Video   Images 
Reach goal Reach  waypoint Goal Waypoint 

 Mapping Map  
Planning   Position  

Reach waypoint Robot control Waypoint Commands 

Servo-controller  Localization Position  

Localization Odometry LIDAR data Map 

SLAM Mapping LIDAR data Odometry Position 

Reach beacon Robot control Beacon Commands Beacon reacher 
  Track beacon   

Track beacon 
Beacon 

Designation Images Beacon Visual tracker 
  Video Beacon  

Follow wall Robot control LIDAR data Commands Wall follower 
 Detect wall LIDAR data   

GPS/IMU Localization   Position 

Maps Mapping   Map 

 
TABLE. 1 – List of the HNG v1.0 modules. 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

 

 
 

FIG. 2 – Interfaces of a generic module. 

5.8 Example of application 
In order to illustrate how HNG works, we describe in Figure 3 and 4 the mechanisms 

associated with the use of the modules described in 5.7. The contract tree (Figure3) shows the 
different required queries and established contract and therefore illustrates the Client/Provider 
relations between the modules. The data exchange figures (Figure 4) shows the real data 
exchange network between the modules and thus illustrates the Consumer/Producer relations. 
One has to keep in mind that these two diagrams are automatically and simultaneously created 
and that self-reconfiguration can occur.  

 
In a first step, a module asks for its queries and gets the values of all the potential providers. 

In a second step, the module informs them of the selected one and sends the value Vmi. The 
connections between the different active modules are created in order to allow the exchange of 
data, and the selected providers also have to inform which one of its sub-providers have been 
selected. The mechanisms is recursively executed until all the connections are created (or until 
no service can be provide) 

 
Periodically, the values Vmi(t) of the different modules are updated. The non-selected 

providers check if their values has became better or not than the value of the selected one. If so, 
a message is sent to the Client module which cancels the contract in order to establish a new 
one with this new module providing a better service. This mechanism therefore means a 
modification of the contract tree and a reconfiguration of the data exchange network. 

  
In the proposed example, the queries send by the Manager module is first the security of the 

platform and then the control of the robot by the user. The user wants the robot to reach a goal 
point. The architecture finds that at this time, the SLAM module is more efficient than the GPS 
module and the SIG module. 

 
About the priority, the two queries asked by the Manager have the priority 1 (Security query) 

and the priority 2 (Human Control query). Therefore the queries asked by the module 
answering the “Security” query will have a priority higher than those asked by the module 
answering the “Human Control” query. So the priority of “Control” query asked by the 
“Security module” (priority 1.1) will be higher than the priority of the “Control” query asked 
by the “GUI module” (priority 2.1). In the same way, one can determine that the priority of the 
“Control” query asked by the “Servo-Controller module” is 2.2.1.1. priorities. Therefore, the 
operator can contradict the commands of the autonomous navigation done by the “Servo-



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

Controller module”, and both these commands can be invalidated by the “Security” component, 
that ensures the integrity of the robot. 

 

 
 

FIG. 3 – Example of a contract tree. 

 

FIG. 4 – Example of a data exchange network. 

6 PRELIMINARY RESULTS  
The conception of the HNG architecture follows an incremental process. We validate the 

different mechanisms at each step of their realization. The following preliminary validation 
tests have been done: 

 
- The encapsulation of the IPC communication protocol into an abstract class has been 

done. The modules are able to communicate in the same calculator and between two 
different calculators. The creation online of new channel is operational such as the 
dynamic redefinition of the structure of the message. We have measured the influence of 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

the volume of the transferred data on the time delay necessary to send the data. The 
Central is able to transmit 60 Ko by second with delay inferior to 20ms. 

-  The maintenance mechanism with the periodical creation of a file to save the context of 
a module and the load of these data in a restart process has been validated. On the same 
way the Watchdog mechanism use to detect unexpected failures and to restart deficient 
modules is correctly working. 

- The Resources Managers are operational. They are able to access the OS information in 
order to measure the CPU time and memory consumption. They can also calculate the 
effective costs and to detect if a module has an unexpected consumption of resources 
and interrupt it if needed. 

- The control mechanism has successfully fulfilled several simple tests in simulation. He 
is able to automatically build the contract tree and the data exchange network, and to 
self-reconfigure according to the update of the performance of the different modules 
varying with the change of the environmental conditions. When the auto-evaluation of a 
module is not representative of its real working quality, the system can partially correct 
them and force a reconfiguration.  

- A lot of operational modules are available through CARMEN and the agents of 
HARPIC. Once these modules will be encapsulated in HNG, it would be easy to validate 
the concept HNG on real robotics systems in more realistic applications. 

7 CONCLUSION  
The bases of the HNG architecture have been defined, conceived and implemented. The 

needs/provider mechanism allows a self-reconfiguration of the system in case of an unexpected 
failure of one or more of the modules. The watchdog concept and the context save approach 
make the system more robust to execution failures. HNG would be an interesting framework 
for the development of a important library of modules, and the fact that both integration of new 
modules and maintenance of the systems have been thought to be as easy as possible will have 
a positive impact to ease the development of new modules and also to ease the implementation 
and the improvement of open source or off-the-shelf algorithms. HNG would become an 
indispensable tool in our evaluation activity of perception algorithms, sensors or concept of use 
for the robotic. Nevertheless the online self-reconfiguration has to be tested and validated on 
real robots with more operational modules and a quantitative evaluation of the quality of the 
reconfiguration mechanism has to be conducted. Our next objective is to extend the 
architecture to networks of combined ground sensors and UGV. We also want to study how the 
security aspect of the architecture can be formalized and how we can build proofs of reliability 
that would allow HNG to be used with UAVs. A study of the interaction between the robots 
and the operators and how HNG could adapt to them would be also interesting to conduct.  

 
 



 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008 

References 

[1] Kramer J., Scheutz M.,  « Robotic Development Environments for Autonomous Mobile 
Robots: A Survey. », Autonomous Robots, 22(2):101-132, 2007. 
[2] Gerkey, B. et al. “Most valuable Player: A robot device server for distributed control.”, 
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2001 
[3] Montemerlo M., Roy N., Thrun S. « Perspectives on Standardization in Mobile Robot 
Programming: The Carnegie Mellon Navigation (CARMEN) Toolkit », IROS, 2003.  
[4] Jaulmes R., “Apprentissage actif dans les Processus Décisionnels de Markov Partiellement 
Observables”, Revue d’Intelligence Artificielle, 1/2007. 
[5] Lambert M., Jaulmes R., Godin A., Moliné E., Dufourd D., « A methodology for assessing 
robot autonomous functionalities », IAV 2007. 
[6] Dalgalarrondo A., « Intégration de la fonction perception dans une architecture de contrôle 
de robot mobile autonome », thèse de doctorat, 2001. 
[7] Lacroix S., Joyeux S., Lemaire T., Bosch S., Fabiani P., Tessier C., Bonnet O., Dufourd D., 
Moliné E. «  Projet Acrobate, Algorithmes pour la coopération entre robots terrestres et 
aériens », ROBEA 2006 
[8] Sellem P., « Navigation coopérative par échange de représentations de l'environnement », 
JJCR 2000. 
[9] Dufourd D., Dalgalarrondo A., “Integrating human / robot interaction into robot control 
architectures for defense applications”, CAR 2006 
[10] Thrun S et al., «Stanley: the robot that won the DARPA Grand Challenge», Journal of 
Field Robotics 23(9) pp. 661-692, 2006. 
[11] Guéret C., Prins C., Sevaux M. , « Programmation Linéaire », 2000. 
[12] Smith R., «The Contract Net Protocol: High-Level Communication and Control in a 
Distributed Problem Solver», IEEE Transactions on Computers, C-29, 12, pp. 1104-1113, 
1980 
[13] Simmons R., « Inter Process Communication library » http://www.cs.cmu.edu/~IPC/ 
[14] Naim P., Wuillemin P., Leray P., Pourret O., Becker A., « Les Réseaux Bayésiens », 
Eyrolles 2004 

 


