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Abstract

In the context of supervisory control of one or several aiifiagents by a human operator, the definition
of the autonomy of an agent remains a major challenge. Whemtksion is critical within a dynamic
environment, e.g. in the case of uninhabited vehiclesyeawe not permitted while performance must be
as high as possible. Therefore a trade-off must be founddetwnanual control, usually ensuring good
confidence in the system but putting a high workload on theatqe and full autonomy of the agents,
often leading to less reliability in uncertain environmeiaind lower performance. Having an operator in
the decision loop does not always grant maximal performaarak safety anyway, as human beings are
fallible. Additionally when an agent and a human decide artcsanultaneously using the same resources,
conflicts are likely to occur and coordination between thHesterogenous entities is mandatory. We present
the basic concepts of an approach that will aim at dynamycatljusting the autonomy of an agent in a
mission relatively to its operator, based on a formal maddglbf mission ingredients.
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1 CONTEXT OF THE STUDY, ASSUMPTIONS AND OBJECTIVES

In this paper we focus on the autonomy of artificial agentg. (eininhabited vehicles, au-
topilots. . .) supervised by a human operator and achievipgctives for a given mission. Such
agents evolve in a dynamic environment and face unexpestiie Consequently real-time
reactions to these events in order to avoid dangerousisitsatnd the loss of the agents them-
selves are compulsory. Additionally we consider systemsre/imost of operational tasks can
be associated with procedures, i.e. tasks must be executegrecise order and respect strict
constraints (as it is the case in aeronautics).

In an ideal context the agents would be able to achieve theionisompletely independently
from the operator, a case that is hardly likely to occur iditgaHowever this is a necessary
ability for the agents as communication breakdowns betwkeragents and the operator may
occur during the mission. Beyond this extreme case the ageay request the operator’s help
anytime for any task when an issue arises. On the other hanoptrator her/himself must be
free to intervene at any stage of the mission in order to athesagents’behaviours according to
her/his preferences but also to correct their possibleakest or improve their performance.

One of the main challenges is conflicts. The human operatgigts may interfere with the
agents’plans and break their consistency anytime, evdreifrtputs are intended to improve a



task or to correct an agent’s mistake. As an agent and thaimpenay both execute actions on
their own, it is of great importance that they should remaardinated so that they should not
use the same resources at the same time for different puwrpBse example if the autopilot of
a UAV [l and the operator simultaneously “decide” to move the vetiitldifferent directions,
inconsistencies are very likely to appear in the flight aradi e an accident. Therefore conflicts
must be detected and solved as soon as possible.

Finally our main objective can be summarized in the follagwuestion: why, when and how
should an agent take the initiative? When the environmenthanged and the agents’plan needs
to be updated? When the operator’s inputs are inconsisiéintive procedures and with security
constraints? Or when they create conflicts with the curreatsy

2 STATE OF THE ART

While there is no universal definition of autonomy, this ogpiccan be seen as a relational
notion between entities about an objectl]5, 2]: for instamcsubjeciX is autonomous with re-
spect to the entity about the goa. In a social context entities like other agents or institns
may influence a given agent thus affecting its decision-ngakieedom and its behavior [4].

In the context of a physical agent evolving in the real worlel (@an uninhabited vehicle) under
the control of a human operator, autonomy can be seen asititg @tthe agent to minimize the
need of human supervision and to act aloné [20]: the prim@oyd is then rather the operational
aspect of the autonomy than the social one. In this situgtior autonomy is just a particular
case of the agent - operator relationship, precisely congis not using this relationship.

However in practice, as automation within complex missiensot perfectly reliable and is
usually not designed to reach the defined objectives alammah supervision is still needed.
Moreover it seems that human intervention significantlyrowes performance over time com-
pared to a neglected ageht[1L1] 10] (see Hig. 1).
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Figure 1: performance vs neglect
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Autonomy levels

[22] first proposed a classification for operational autopdrased on a ten-level scale. This
model remains quite abstract as it takes into account neftieeenvironment complexity nor
the mission context. However it provides an interestingpimsinto the interactions between an
operator and an agent. This model has later been extended, the same scale applied to a
four-stage cognitive information processing model (petiom, analysis, decision-making and
action) [18]. Based on the same principles other scalesudtomamy classification have also
been proposed, e.d.I[1].

Other approaches aim at evaluating an agent’s autonomy igea gnission context, like
MAP [12], ACL [B] or ALFUS [14]. The latter proposes to evateaautonomy according to
three aspects: mission complexity, environmental difficahd human interface. However this
methodology aggregates many heterogeneous metrics amdethieing of the result is hard to
evaluate. Moreover a qualitative step is necessary edlygoaet weights on the different tasks
composing a mission and evaluate their importance.

The idea that operational autonomy can be graduated ledtie toncept of adjustable au-
tonomy or shared authority. The main principle is that maetand human abilities are com-
plementary and they are likely to provide better perforneawben joined efficiently than when
used separately [15]. A physical agent is thus capable d¥iexpat several predefined autonomy
levels and switches levels according to the context. A lesdefined by the complexity of the
commands([8] or the ability to perform tasks without the neédperator’s interventions [11].
The major limitation we can see in these approaches is thgori definition of the levels, the
static distribution of tasks among entities at each level e fact that the number of levels is
necessarily limited. Interactions between the agent amadplerator are thus restricted to a given
set and are determined by autonomy levels, there is no plitysib fine dynamic task sharing.

To add more flexibility,[[19] endow agents with learning claitiies based on Markov Deci-
sion Processes (MDP) allowing them to better manage the foeddiman intervention. Agents
can define their own autonomy levels from the user’s provideghtions. However this method
does not seem to be directly applicable to critical systesrie@behaviour of learning agents fac-
ing unexpected situations is hard to validate. Moreoveojerator’s interactions are restricted
to the agent’s needs.

The approach of[17] adds more human control on the agenel&ave not defined in a static
way but come from a norm: permissions and restrictions da@agrthe agent’s behaviours are
set by the operator. In order to do so, the operator has tbeceeeomplete set of rules like ”In
case of medical emergency, consult the operator to choadenf@location”. The major issues
associated with such an approach are the high number oftaupgsvide and the risk of conflict
between rules. Anyway the autonomy of the agent is complatahan-supervised and the agent
has no possibility to adapt by itself.

Sliding autonomylB3] consists in determining whether a tsistuld be executed by the agent
alone or by the operator using manual control; there is nectliireference to autonomy levels.
Roles are not shared at the mission level but are reconslifi@reach action to realize. However
it seems that the range of human-agent interactions ig/resdtricted as each task is performed
either "completely autonomously” or "completely througietoperation”.

In contrast, collaborative control is an approach aiming@ating dialogs between the opera-
tor and the agent[9]: the agent sends requests to the hunesatopwhen problems occur so that



she/he could provide the needed support. This is again ictast of all possible interactions:
only dialog is used whatever the circumstances. In praetic®st all interactions are initiated
by the agent’s requests and the operator acts almost exallyias a support, she/he has not much
initiative.

[21] have studied two authority sharing modes on a simulafete assembly task, SISA
(System-Initiative Sliding Autonomy) where only the agean request the operator’s support
and MISA (Mixed-Initiative Sliding Autonomy), where the efator can also intervene anytime.
The allocation between the agent and the operator is reazgarately for each task according to
statistics to determine which entity will be the most effitjiavhich does not seem sufficient for
a critical mission where errors are not allowed. Howeverisigat the task level is an interesting
idea as it provides the most adaptive solution to the mission

As shown by the literature review it is often interestingaojhuman and machine abilities
to carry out a mission and adjustable autonomy seems a gauzdgbe. However the fact that
the human operator also is fallible is often neglected. Witiseems reasonable that the operator
should keep the control over the agent, in most of the stutieegperator’s inputs are not eval-
uated and accepted “as they are” by the agent. Moreoverrhdtaneous decisions and actions
from an artificial agent and a human agent might create menstahdings and lead to conflicts
and dramatic situation5sI[7].

3 EXPERIMENTAL ENVIRONMENT AND SCENARIO

In order to validate our approach for adaptive autonomy duadex! authority with concrete
applications, the framework for experimentations in realditions with human operators inter-
acting with “autonomous” vehicles is already being designe

3.1 The Scenario

The scenario is the localization and assessment of a fire b@\#ln a partially unknown
area. The mission for the UGV and the operator consists ikitgofor starting fires around a
factory or a facility and determining its properties (lagation, size, dynamics) so that it could
be quickly put out. The area is hardly accessible, dangeandgartially unknown (no precise
and updated map available). Additionally, the scenaridatba extended with the possibility for
the UGV to carry an extinguisher. This would allow the UGV icedtly put out a very starting
fire or delay a fire evolution in a given area, e.g. close toifeastems. As the extinguisher
would be very small, its use would have to be carefully choségure[2 shows the scenario.

Several operational assumptions are made:

e The area where the UGV evolves is divided into two parts: thg area which is known (a
map is available), the search area which is partially unkmow

¢ the known area includes obstacles to avoid, but there aa¢ized on a map;

¢ the human operator has no direct visual contact with eitetXGV nor the outdoor environ-
ment;

¢ there are sensitive items in the known area, which have tadteqied against the fire threat
coming from the partially unknown area;
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¢ the fires may evolve, possibly blocking known paths or endang the UGV,
¢ afire evolution is determined by the objects that can burn;

e the access paths to the search area are limited and narrd&ingrthe access to the zone
difficult.
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Figure 2: the scenario

Additionally, some hazards may impair the mission:

communication breakdowns between the UGV and the operator;

dynamic and uncertain environment in the search area (@bstdires);

possible loss of GPS positioning;

sensor failures.

3.2 The Experimental Set-up

ISAET is developing an experimental set-up composed of a groatidstand several Emaxx
UGVs - see Fig.[13. The UGVs may be controlled either using aotensontrol (in case of
problems) or a graphical interface (normal use). They csaveral sensors (GPS, inertial sensors,
scenic camera, ultrasounds, odometry) and are able tavfallset of waypoints autonomously.
Algorithms are currently being developed to be implememteldoard (ARM 7 & 9 electronic
cards, Linux OS) in order to give them decisional abilitiplaining, situation assessment).

A wizard of Oz user interface is also being developed as #refyreater possibilities to
control "unexpected” events during the experiments (e gommunication breakdowns, sensor
failures).
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Figure 3. an Emaxx UGV

4 ARCHITECTURE FOR MISSION M ANAGEMENT

Planning and situation assessment are the two key “highiZléunctions for autonomous
agents. However, a third function, the authority sharingefion, is proposed so as to manage the
interactions between an operator and an agent. This funatibbe based on conflict solving.

4.1 Planning

A mission consists in a set @bjectivesthe agents should reach. To do so the agents will
executetasks each task being supposed to provide an expected resuk wdspecting some
constraints(security, physical limits, authorizations, etc.) Eackktghat is executed uses and
producesesourcesand is a resource itself to reach an objective.

As the agent has to react to unplanned events occurringglthig mission, the plan has
to be continuously updated. This replanning process is aatary ability of the agent and is
requested by the authority sharing function.

4.2 Situation Assessment

Situation assessment[16] constantly analyzes the stéte sfstem: the current and possible
future states are estimated according to the plan and puoeednd to the evolution models of
the environment, of the system itself and of all other rai¢wdbjects.

As far as the recognition of the operator’s intentions amceoned, the only available infor-
mation comes from her/his inputs in the system. If a pattene¢ognized from these inputs and
can be associated with one or several known procedures;dhgitutes a valuable clue about
the operator’s non-explicit goals and may contribute tacgrdte her/his future actions.

More precisely situation assessment compares the expesialis of the tasks performed by
the agents and the operator with the actual results andtdefaps that may appear. This allows
potentials conflicts to be detected in the current statelbatia an anticipated manner.

A conflict is a mismatch between the plan and its executioreappg as an inconsistency
at the level resource. The situation assessment functemtifeées the conflicting resources and
determines the characteristics of the conflict (involvetities, occuring time of the conflict, etc.)

Finally, this information is transmitted to the authorityasing function.



4.3 Authority Sharing

Allissues in the execution of the mission correspond to a tfconflicts in the allocation of
resources, between the entities or between the plan anceitsigon.

The authority sharing function gets information about dotglfrom the situation assessment
function: depending on the category of the conflict, appatpisolving methods can be executed.
In any case, if a solution for a conflict exists, this is alwesalized through resource reallocation
among the agents.

This can be done through the planning function. From thermmé&ion coming from the
situation assessment, the authority sharing function rddycanstraints to the planning process
so that a new consistent allocation of resources can be found

5 FIRST FORMALIZATION

The first step to get a formal and operational definition ofptistie autonomy is to formalize
the basic concepts of a mission operated by physical agedtaraoperator.

Mission

A mission is a set of objectives to be reached by the agent(sjree human operator.
Example:

M = { go to zone, detect fires, return to base }

Resource

A resource is an item contributing to satisfying a missiojeotive. It can be a physical object,
energy, a permission, a piece of information, a task, anrilhgo, a logic condition...

Aresource is writtent =< item id, typetime_interval, valugtime interval], Rcons R prod, SOUrce>,
with item id : the identifier of the resource;

type the type of the resource (additive or absolute, exclusask, etc.);

time_interval = [tstart, tend: the time interval defining the existence of the resource;
valudtime interval| : a set of dated discrete values taken by the resourter@ninterval;

Reons: the set of resources consumed or needed by this resource;

Rprod - the set of resources produced or affected by this resource;

andsource the origin of the resource (see definition below).

Example:
rl =< energyadditive [10h05m17s— 10h06m20g],[1,1,1.5,..., 1], { battery}, { }, source>
with source=< engine10h03m02s, EmaxA > (see definition osourcebelow).

Source

A source defines the origin of a resource.

A source is written:

source=< I prod, tprod, & >

with r g the producing resource;

tprod the production time;

andathe producing entity (agent, operator...).

Example:
sourcd =< navigatiorl, 10h20m50s, Emaxx{ >
sourc® =< piloting2, 11h42m20s, Emaxx >



Tasks
Tasks are particular resources. They are created and $ebdxjtthe planning algorithm in order
to satisfy mission objectives.

Example:

Let navl be a task realized by the robot on operator’s request. €b@urce is written:

navl =< navigatingtask [tstart— tend|, iNitiated, {map navAlgorithn}, {waypointsLis}, src >
with {map navAlgorithn} the resources needed to perform taskl;

way pointsListhe resource produced by tasévl;

andsrc=< GUIRequesttyoq1, 0perator> specifying the origin ohavl, a request from the op-
erator through the graphical user interfacéak; -

It is only when resources consumed by task/d have been allocated over time that this task
takes the valusstantiatedand its timegdstat andteng are set in the plan.

A taskresource can take the following values:

{initiated, instanciatedexecutingdone aborted paused failed}.

Conflicts

A conflict appears during the plan execution when incons@és at the resource level are de-
tected. Situation assessment allows to detect such irstensies and to identify the involved

resources. As all resources are marked with the Belatce the producing entities are known.

This makes it possible to classify conflicts in several catieg, which are listed in tablé 1 (verti-

cally the entity responsible for the plan disruption, hontally the entity whose plan is affected).

Conflict Operator Agent External World Procedures
_Contradlctory | Prioritary Physically Violation
simultaneous o Order, -
Operator . i unworkable (deliberately
successive | contradictory
, Order or not)
Orders to agent’s plan
Prioritary . Violation
. Inconsistency .
Action, (with
. , between the ,
Agent contradictory to Failure , operator’s
. agent’s plan and o
operator’s | authorization
. actual measures
actions or not)
Invalidation of | Invalidation of .
, ) (external world is ) .
External world operator’s agent’s plan or Violation
. . supposed to be
action actions :
consistent)
Modification of Modification :
of procedures Inadapted Procedure in-
Procedures procedures ; ) .
: being Procedures consistencies
being executed
executed

Table 1: The different conflict categories

Several entities influence the mission : the human opeta®ggent, the external world and pro-

cedures. The external world represents the world in whielptiysical agent evolves. Procedures
represent the set of rules that the operator and the agemtaiide by. They are established by

external entities like designers of the system or regutaigthorities (security rules for instance).

The operator and the agent may violate these rules, deidhg@ not.



6 CONCLUSION AND FUTURE WORK

We have presented the general principles and some basiemisrfor an approach of opera-
tional adaptive autonomy. Resources, including the opesaiasks, are the key items to deter-
mine the contribution of each entity to the mission’s ohbjexst. Conflicts can be detected and
classified depending on the entities that disrupt the plams€quently task reallocation within
the system is performed so that conflicts could be solvedysaith every entity being aware of
what is being done.

Task reallocation will take into account the current capesiof the agents and operators, the
operators’desires, the mission constraints, the presritif objectives, all this being aggregated by
the authority sharing function and transmitted to the piagrfiunction. Early conflict detection
will allow agents to adapt their behaviours to the estimaigerator’s intentions as long as main
constraints and objectives are respected, therefore inmmgrdhe overall system performance.
However, whether the operator intervenes or not, the ageatstill expected to have the means
to react “alone” to key issues.

Another aspect of adaptive autonomy is the fact that agdmsld be able to alleviate the
operator’s workload, e.g. relieving her/him of routinek®sind let her/him focus on key tasks
of the mission. Again this is based on mutual situation norimg and assessment and a better
allocation of resources (including tasks) within the sgstehen the context changes.

Current work focuses on a formal definition of mission exexuincluding the dynamic
aspects of the basic concepts we have defined, particutanlificts, and on the fine identification
of what precisely is involved in task reallocation. Theseaapts have to be operationalized then
implemented on a real UGV platform (Emaxx) in order to coridexperiments with human
operatoﬂ. Reliability, overall performance and the operator’ssfatition will allow us to assess
our concepts for adaptive autonomy in real conditions.
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