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Abstract

In the context of supervisory control of one or several artificial agents by a human operator, the definition
of the autonomy of an agent remains a major challenge. When the mission is critical within a dynamic
environment, e.g. in the case of uninhabited vehicles, errors are not permitted while performance must be
as high as possible. Therefore a trade-off must be found between manual control, usually ensuring good
confidence in the system but putting a high workload on the operator, and full autonomy of the agents,
often leading to less reliability in uncertain environments and lower performance. Having an operator in
the decision loop does not always grant maximal performanceand safety anyway, as human beings are
fallible. Additionally when an agent and a human decide and act simultaneously using the same resources,
conflicts are likely to occur and coordination between theseheterogenous entities is mandatory. We present
the basic concepts of an approach that will aim at dynamically adjusting the autonomy of an agent in a
mission relatively to its operator, based on a formal modelling of mission ingredients.

Keywords

Adaptive autonomy, Authority sharing, Multiagent systems, Human-Machine interactions.

1 CONTEXT OF THE STUDY, ASSUMPTIONS AND OBJECTIVES

In this paper we focus on the autonomy of artificial agents (e.g. uninhabited vehicles, au-
topilots. . . ) supervised by a human operator and achieving objectives for a given mission. Such
agents evolve in a dynamic environment and face unexpected events. Consequently real-time
reactions to these events in order to avoid dangerous situations and the loss of the agents them-
selves are compulsory. Additionally we consider systems where most of operational tasks can
be associated with procedures, i.e. tasks must be executed in a precise order and respect strict
constraints (as it is the case in aeronautics).

In an ideal context the agents would be able to achieve the mission completely independently
from the operator, a case that is hardly likely to occur in reality. However this is a necessary
ability for the agents as communication breakdowns betweenthe agents and the operator may
occur during the mission. Beyond this extreme case the agents may request the operator’s help
anytime for any task when an issue arises. On the other hand the operator her/himself must be
free to intervene at any stage of the mission in order to adjust the agents’behaviours according to
her/his preferences but also to correct their possible mistakes or improve their performance.

One of the main challenges is conflicts. The human operator’sinputs may interfere with the
agents’plans and break their consistency anytime, even if the inputs are intended to improve a



task or to correct an agent’s mistake. As an agent and the operator may both execute actions on
their own, it is of great importance that they should remain coordinated so that they should not
use the same resources at the same time for different purposes. For example if the autopilot of
a UAV 1 and the operator simultaneously “decide” to move the vehicle in different directions,
inconsistencies are very likely to appear in the flight and lead to an accident. Therefore conflicts
must be detected and solved as soon as possible.

Finally our main objective can be summarized in the following question: why, when and how
should an agent take the initiative? When the environment has changed and the agents’plan needs
to be updated? When the operator’s inputs are inconsistent with the procedures and with security
constraints? Or when they create conflicts with the current goals?

2 STATE OF THE ART

While there is no universal definition of autonomy, this concept can be seen as a relational
notion between entities about an object [5, 2]: for instance, a subjectX is autonomous with re-
spect to the entityZ about the goalG. In a social context entities like other agents or institutions
may influence a given agent thus affecting its decision-making freedom and its behaviour [4].

In the context of a physical agent evolving in the real world (i.e. an uninhabited vehicle) under
the control of a human operator, autonomy can be seen as the ability of the agent to minimize the
need of human supervision and to act alone [20]: the primary focus is then rather the operational
aspect of the autonomy than the social one. In this situationpure autonomy is just a particular
case of the agent - operator relationship, precisely consisting in not using this relationship.

However in practice, as automation within complex missionsis not perfectly reliable and is
usually not designed to reach the defined objectives alone, human supervision is still needed.
Moreover it seems that human intervention significantly improves performance over time com-
pared to a neglected agent [11, 10] (see Fig. 1).

Figure 1: performance vs neglect

1Uninhabited Air Vehicle



Autonomy levels

[22] first proposed a classification for operational autonomy based on a ten-level scale. This
model remains quite abstract as it takes into account neither the environment complexity nor
the mission context. However it provides an interesting insight into the interactions between an
operator and an agent. This model has later been extended, using the same scale applied to a
four-stage cognitive information processing model (perception, analysis, decision-making and
action) [18]. Based on the same principles other scales for autonomy classification have also
been proposed, e.g. [1].

Other approaches aim at evaluating an agent’s autonomy in a given mission context, like
MAP [12], ACL [6] or ALFUS [14]. The latter proposes to evaluate autonomy according to
three aspects: mission complexity, environmental difficulty and human interface. However this
methodology aggregates many heterogeneous metrics and themeaning of the result is hard to
evaluate. Moreover a qualitative step is necessary especially to set weights on the different tasks
composing a mission and evaluate their importance.

The idea that operational autonomy can be graduated leads tothe concept of adjustable au-
tonomy or shared authority. The main principle is that machine and human abilities are com-
plementary and they are likely to provide better performance when joined efficiently than when
used separately [15]. A physical agent is thus capable of evolving at several predefined autonomy
levels and switches levels according to the context. A levelis defined by the complexity of the
commands [8] or the ability to perform tasks without the needof operator’s interventions [11].
The major limitation we can see in these approaches is thea priori definition of the levels, the
static distribution of tasks among entities at each level and the fact that the number of levels is
necessarily limited. Interactions between the agent and the operator are thus restricted to a given
set and are determined by autonomy levels, there is no possibility of fine dynamic task sharing.

To add more flexibility, [19] endow agents with learning capabilities based on Markov Deci-
sion Processes (MDP) allowing them to better manage the needfor human intervention. Agents
can define their own autonomy levels from the user’s providedintentions. However this method
does not seem to be directly applicable to critical systems as the behaviour of learning agents fac-
ing unexpected situations is hard to validate. Moreover theoperator’s interactions are restricted
to the agent’s needs.

The approach of [17] adds more human control on the agent. Levels are not defined in a static
way but come from a norm: permissions and restrictions describing the agent’s behaviours are
set by the operator. In order to do so, the operator has to create a complete set of rules like ”In
case of medical emergency, consult the operator to choose landing location”. The major issues
associated with such an approach are the high number of rulesto provide and the risk of conflict
between rules. Anyway the autonomy of the agent is completely human-supervised and the agent
has no possibility to adapt by itself.

Sliding autonomy[3] consists in determining whether a taskshould be executed by the agent
alone or by the operator using manual control; there is no direct reference to autonomy levels.
Roles are not shared at the mission level but are reconsidered for each action to realize. However
it seems that the range of human-agent interactions is really restricted as each task is performed
either ”completely autonomously” or ”completely through teleoperation”.

In contrast, collaborative control is an approach aiming atcreating dialogs between the opera-
tor and the agent [9]: the agent sends requests to the human operator when problems occur so that



she/he could provide the needed support. This is again a restriction of all possible interactions:
only dialog is used whatever the circumstances. In practicealmost all interactions are initiated
by the agent’s requests and the operator acts almost exclusively as a support, she/he has not much
initiative.

[21] have studied two authority sharing modes on a simulatedspace assembly task, SISA
(System-Initiative Sliding Autonomy) where only the agentcan request the operator’s support
and MISA (Mixed-Initiative Sliding Autonomy), where the operator can also intervene anytime.
The allocation between the agent and the operator is realized separately for each task according to
statistics to determine which entity will be the most efficient, which does not seem sufficient for
a critical mission where errors are not allowed. However sharing at the task level is an interesting
idea as it provides the most adaptive solution to the mission.

As shown by the literature review it is often interesting to join human and machine abilities
to carry out a mission and adjustable autonomy seems a good principle. However the fact that
the human operator also is fallible is often neglected. While it seems reasonable that the operator
should keep the control over the agent, in most of the studiesthe operator’s inputs are not eval-
uated and accepted “as they are” by the agent. Moreover the simultaneous decisions and actions
from an artificial agent and a human agent might create misunderstandings and lead to conflicts
and dramatic situations [7].

3 EXPERIMENTAL ENVIRONMENT AND SCENARIO

In order to validate our approach for adaptive autonomy and shared authority with concrete
applications, the framework for experimentations in real conditions with human operators inter-
acting with “autonomous” vehicles is already being designed.

3.1 The Scenario

The scenario is the localization and assessment of a fire by a UGV2 in a partially unknown
area. The mission for the UGV and the operator consists in looking for starting fires around a
factory or a facility and determining its properties (localization, size, dynamics) so that it could
be quickly put out. The area is hardly accessible, dangerousand partially unknown (no precise
and updated map available). Additionally, the scenario could be extended with the possibility for
the UGV to carry an extinguisher. This would allow the UGV to directly put out a very starting
fire or delay a fire evolution in a given area, e.g. close to sensitive items. As the extinguisher
would be very small, its use would have to be carefully chosen. Figure 2 shows the scenario.

Several operational assumptions are made:

• The area where the UGV evolves is divided into two parts: the start area which is known (a
map is available), the search area which is partially unknown;

• the known area includes obstacles to avoid, but there are localized on a map;

• the human operator has no direct visual contact with either the UGV nor the outdoor environ-
ment;

• there are sensitive items in the known area, which have to be protected against the fire threat
coming from the partially unknown area;

2Uninhabited Ground Vehicle



• the fires may evolve, possibly blocking known paths or endangering the UGV;

• a fire evolution is determined by the objects that can burn;

• the access paths to the search area are limited and narrow, making the access to the zone
difficult.

Figure 2: the scenario

Additionally, some hazards may impair the mission:

• communication breakdowns between the UGV and the operator;

• dynamic and uncertain environment in the search area (obstacles, fires);

• possible loss of GPS positioning;

• sensor failures.

3.2 The Experimental Set-up

ISAE3 is developing an experimental set-up composed of a ground station and several Emaxx
UGVs - see Fig. 3. The UGVs may be controlled either using a remote control (in case of
problems) or a graphical interface (normal use). They carryseveral sensors (GPS, inertial sensors,
scenic camera, ultrasounds, odometry) and are able to follow a set of waypoints autonomously.
Algorithms are currently being developed to be implementedonboard (ARM 7 & 9 electronic
cards, Linux OS) in order to give them decisional abilities (planning, situation assessment).

A wizard of Oz user interface is also being developed as it offers greater possibilities to
control ”unexpected” events during the experiments (e.g. :communication breakdowns, sensor
failures).

3Institut Supérieur de l’Aéronautique et de l’Espace, resulting from the merging of the ENSICA and SUPAÉRO



Figure 3: an Emaxx UGV

4 ARCHITECTURE FOR M ISSION M ANAGEMENT

Planning and situation assessment are the two key “high-level” functions for autonomous
agents. However, a third function, the authority sharing function, is proposed so as to manage the
interactions between an operator and an agent. This function will be based on conflict solving.

4.1 Planning

A mission consists in a set ofobjectivesthe agents should reach. To do so the agents will
executetasks, each task being supposed to provide an expected result while respecting some
constraints(security, physical limits, authorizations, etc.) Each task that is executed uses and
producesresources, and is a resource itself to reach an objective.

As the agent has to react to unplanned events occurring during the mission, the plan has
to be continuously updated. This replanning process is a mandatory ability of the agent and is
requested by the authority sharing function.

4.2 Situation Assessment

Situation assessment [16] constantly analyzes the state ofthe system: the current and possible
future states are estimated according to the plan and procedures and to the evolution models of
the environment, of the system itself and of all other relevant objects.

As far as the recognition of the operator’s intentions are concerned, the only available infor-
mation comes from her/his inputs in the system. If a pattern is recognized from these inputs and
can be associated with one or several known procedures, thisconstitutes a valuable clue about
the operator’s non-explicit goals and may contribute to anticipate her/his future actions.

More precisely situation assessment compares the expectedresults of the tasks performed by
the agents and the operator with the actual results and detects gaps that may appear. This allows
potentials conflicts to be detected in the current state but also in an anticipated manner.

A conflict is a mismatch between the plan and its execution appearing as an inconsistency
at the level resource. The situation assessment function identifies the conflicting resources and
determines the characteristics of the conflict (involved entities, occuring time of the conflict, etc.)

Finally, this information is transmitted to the authority sharing function.



4.3 Authority Sharing

All issues in the execution of the mission correspond to a type of conflicts in the allocation of
resources, between the entities or between the plan and its execution.

The authority sharing function gets information about conflicts from the situation assessment
function: depending on the category of the conflict, appropriate solving methods can be executed.
In any case, if a solution for a conflict exists, this is alwaysrealized through resource reallocation
among the agents.

This can be done through the planning function. From the information coming from the
situation assessment, the authority sharing function may add constraints to the planning process
so that a new consistent allocation of resources can be found.

5 FIRST FORMALIZATION

The first step to get a formal and operational definition of adaptive autonomy is to formalize
the basic concepts of a mission operated by physical agents and an operator.

Mission
A mission is a set of objectives to be reached by the agent(s) and the human operator.
Example:
M = { go to zone, detect fires, return to base }.

Resource
A resource is an item contributing to satisfying a mission objective. It can be a physical object,
energy, a permission, a piece of information, a task, an algorithm, a logic condition...
A resource is written:r =< item_id, type, time_interval,value[time_interval],Rcons,R prod,source>,
with item_id : the identifier of the resource;
type: the type of the resource (additive or absolute, exclusive,task, etc.);
time_interval= [tstart, tend]: the time interval defining the existence of the resource;
value[time_interval] : a set of dated discrete values taken by the resource ontime_interval;
Rcons : the set of resources consumed or needed by this resource;
R prod : the set of resources produced or affected by this resource;
andsource: the origin of the resource (see definition below).

Example:
r1 =< energy,additive, [10h05m17s−10h06m20s], [1,1,1.5, ...,1],{battery},{},source>
with source=< engine,10h03m02s,Emaxx1 > (see definition ofsourcebelow).

Source
A source defines the origin of a resource.
A source is written:
source=< rprod, tprod,a >

with rprod the producing resource;
tprod the production time;
anda the producing entity (agent, operator...).

Example:
source1 =< navigation1,10h20m50s,Emaxx1>

source2 =< piloting2,11h42m20s,Emaxx1>



Tasks
Tasks are particular resources. They are created and scheduled by the planning algorithm in order
to satisfy mission objectives.

Example:
Let nav1 be a task realized by the robot on operator’s request. This resource is written:
nav1 =< navigating, task, [tstart− tend], initiated,{map,navAlgorithm},{waypointsList},src>

with {map,navAlgorithm} the resources needed to perform tasknav1;
waypointsListthe resource produced by tasknav1;
andsrc=< GUIRequest, tprod1,operator> specifying the origin ofnav1, a request from the op-
erator through the graphical user interface attprod1.
It is only when resources consumed by tasknav1 have been allocated over time that this task
takes the valueinstantiatedand its timeststart andtend are set in the plan.
A taskresource can take the following values:
{initiated, instanciated,executing,done,aborted, paused, f ailed}.

Conflicts
A conflict appears during the plan execution when inconsistencies at the resource level are de-
tected. Situation assessment allows to detect such inconsistencies and to identify the involved
resources. As all resources are marked with the fieldsource, the producing entities are known.
This makes it possible to classify conflicts in several categories, which are listed in table 1 (verti-
cally the entity responsible for the plan disruption, horizontally the entity whose plan is affected).

Conflict Operator Agent External World Procedures

Operator

Contradictory
simultaneous or

successive
Orders

Prioritary
Order,

contradictory
to agent’s plan

Physically
unworkable

Order

Violation
(deliberately

or not)

Agent

Prioritary
Action,

contradictory to
operator’s

actions

Failure

Inconsistency
between the

agent’s plan and
actual measures

Violation
(with

operator’s
authorization

or not)

External world
Invalidation of

operator’s
action

Invalidation of
agent’s plan or

actions

-
(external world is

supposed to be
consistent)

Violation

Procedures
Modification of

procedures
being executed

Modification
of procedures

being
executed

Inadapted
Procedures

Procedure in-
consistencies

Table 1: The different conflict categories

Several entities influence the mission : the human operator,the agent, the external world and pro-
cedures. The external world represents the world in which the physical agent evolves. Procedures
represent the set of rules that the operator and the agent must abide by. They are established by
external entities like designers of the system or regulation authorities (security rules for instance).
The operator and the agent may violate these rules, deliberately or not.



6 CONCLUSION AND FUTURE WORK

We have presented the general principles and some basic concepts for an approach of opera-
tional adaptive autonomy. Resources, including the operator’s tasks, are the key items to deter-
mine the contribution of each entity to the mission’s objectives. Conflicts can be detected and
classified depending on the entities that disrupt the plan. Consequently task reallocation within
the system is performed so that conflicts could be solved safely with every entity being aware of
what is being done.

Task reallocation will take into account the current capacities of the agents and operators, the
operators’desires, the mission constraints, the priorities of objectives, all this being aggregated by
the authority sharing function and transmitted to the planning function. Early conflict detection
will allow agents to adapt their behaviours to the estimatedoperator’s intentions as long as main
constraints and objectives are respected, therefore improving the overall system performance.
However, whether the operator intervenes or not, the agentsare still expected to have the means
to react “alone” to key issues.

Another aspect of adaptive autonomy is the fact that agents should be able to alleviate the
operator’s workload, e.g. relieving her/him of routine tasks and let her/him focus on key tasks
of the mission. Again this is based on mutual situation monitoring and assessment and a better
allocation of resources (including tasks) within the system when the context changes.

Current work focuses on a formal definition of mission execution including the dynamic
aspects of the basic concepts we have defined, particularilyconflicts, and on the fine identification
of what precisely is involved in task reallocation. These concepts have to be operationalized then
implemented on a real UGV platform (Emaxx) in order to conduct experiments with human
operators4. Reliability, overall performance and the operator’s satisfaction will allow us to assess
our concepts for adaptive autonomy in real conditions.
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