
3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

Towards the Formal Verification of the functional architecture
of Autonomous Satellite Onboard Flight Software

Michel Lemaître, Gérard Verfaillie

ONERA Centre de Toulouse – DCSD/CD
2 avenue Édouard Belin, B.P. 4025
F-31055 TOULOUSE CEDEX 4

Abstract

The AGATA project, jointly conducted by CNES and ONERA, investigates the possibility of ad-
vanced autonomy for spacecraft. The flight software (FS) is a key component of such an au-
tonomous spacecraft. We are currently investigating the use of the high level synchronous langage
Esterel to design the reactive part of the FS. The choice of such a semantically well-defined lan-
guage has many advantages. One of those is to open the verification process to formal methods.
This article reports the effective use of a formal method and tool to verify some typical properties
on the preliminary version of the FS for an autonomous observing satellite.

Keywords

Formal verification ; Functional Architecture ; Synchronous languages ; Esterel ; Onboard
Flight Software.

1 INTRODUCTION

An increased level of autonomy is demanded for spacecraft so as to meet more and more tight
cost requirements as well as effectiveness. See for example [7] for arguments.

The AGATA project, jointly conducted by CNES and ONERA, investigates the possibility of
advanced autonomy for spacecraft. A virtual mission, named HOTSPOT [6], has been designed
to serve as the basis for the project. The HOTSPOT mission is similar to the Earth Observing One
mission [8] or the Proba mission [10]. It brings into play an Earth Observing Satellite, boarding
two payload equipments : a detection instrument – the hotspotter – and an observation instrument.
Thanks to these equipments, the satellite is able to detect hot spots on the Earth surface (fires,
volcanoes, ...) and to observe them later on. It must also satisfy observation demands asked by
the mission center on ground.

The on-board flight software (FS) is a key component of such an autonomous spacecraft. The
FS must react continuously to events. Main events related to the mission are :

• hot spot detections

• observation orders from the ground

• deadlines for observations or downloadings

• monitoring of equipements (fault detection and recovery)

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

• housekeeping periodic events : orbit parameters updates, maintenance of the catalogue of
observed and detected spots, and so on.

Reaction to events are worked out by a set of reactive tasks.

Among other tasks, the FS is responsible for planning all the observing and downloading
activities of the satellite. This planning activity is worked out by a deliberative task, which may
not be as responsive as the reactive one.

The AGATA main purpose is to build the functional architecture of the FS and to verify it as
much as possible.

The FS currently in construction follows a modular functional architecture described in [13,
12]. Its development obeys the following principles :

• incremental development (successive versions with increasing functionalities)

• use of a simulator for the equipments and the environment of the satellite (BASILES simu-
lator, developped at CNES).

Verifying a system consists in proving that some given properties of a system are met. There
are two main ways to do this :

• simulation

• formal verification (see [5] for a good introduction).

This article investigates the possibilities of formal verification of well-chosen properties, in
the context of the FS of an autonomous satellite. It is organized as follows. First we describe a
simplified functional architecture of the FS. Then we argue in favour of a synchronous executable
language to specify the FS. After having exposed the observer principle, which is at the basis of
the verification process, we give several examples of different kind of properties that have been
verified on a simplified version of the FS.

2 A FLIGHT SOFTWARE FUNCTIONAL ARCHITECTURE

The Figure 1 depicts a simplified functional architecture of the FS. The FS is interfaced with
four equipments :

• a stellar-sensor (or star-tracker) – giving the attitude of the satellite

• a GPS – giving the position of the satellite

• an alarm emitter

• a hotspotter, able to detect hot spots on the Earth surface.

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

monitorsequipments managers

Str Attitude

gpsAcq

strAcq

hspAcq

Gps

Almalarm−emitter

gps

stellar−sensor

Hsphotspotter

Orbit

Platform

Detection

almCmd

attitude

position

alarm

hotspot

Mission

detection

alarm

attitudeposition Satellite

supervisors

FIG. 1 – Simplified functional architecture of the Flight Software.

Each equipment is controlled and monitored by a corresponding monitor. A monitor conducts
two main tasks. The first one is to translate low-level acquisition signals into more abstract but
logically equivalent ones, and high-level output command signals into low-level ones (see Figure
1, column of signals on the left).

The second task is to perform a minimum level of fault detection and recovery : a monitor
checks continuously that its equipment is correctly powered and working. If not, it sends to
the equipment a sequence of reset signals until the equipment is again operational. The Figure
2 depicts the control and state signals exchanged between equipments and its monitors. This
behaviour is the subject of a vivacity property that will be discussed in section .

equipment monitor

working

powered

powerOff

reset

powerOn

FIG. 2 – Control and state signals exchanged between an equipment and its monitor.

The managers and supervisors modules (see Figure 1) perform high-level tasks. They are not
relevant for the purpose of this article.

3 LANGUAGE DEVELOPMENT CHOICES

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

There is a demand for accurate and rigourous methods for the development and verification
of embedded software. A mean to reach these objectives is to increase the abstraction level of
programming languages.

We choose the Esterel language [1, 9, 3] for programming the reactive cyclic controller. Es-
terel is a reactive synchronous language suited for control dominated systems such as controllers,
protocols, embedded systems in general. It is modular, has an imperative style with explicit par-
allelism and sequencing. Logical threads communicate by signal broadcasting. Its semantics is
defined in term of Finite State Mealy Machines. We use the V5 version of Esterel [2] which is free
software, and allows for controlling asynchronous external task harmoniously with the language
semantics.

The advantages of synchronous languages in general are :

• expressivity and concision

• mathematically defined semantics

• determinism : the same input sequence always results in the same output sequence

• executability

• open to formal verification techniques.

We use Java for implementation of Esterel abstract types, and for prodedural parts of the
reactive and deliberative tasks. The Esterel code is compiled to a single Java program, using the
ocjava tool [11]. This Java code implements the reactive cyclic loop body.

4 FORMAL VERIFICATION ON SYNCHRONOUS LANGUAGE CODE

M

O ?

FIG. 3 – The observer technique. M is the program to be verified, o is the program which
expresses the property to be verified on M.

Formal verification techniques [5] are able to prove in a mathematical way that given properties
of a given program are satisfied, without executing the program, that is for every possible sequence
of inputs.

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

The observer principle is often used in formal verification. The idea is (see Figure 3) to join the
program for which some property is to be verified, with another program that checks continuously
this property (or the negation of this property). Moreover, advantage is taken of the fact that the
properties to be verified on the program are written in the same language as the program itself
(Esterel in our case).

Many formal verification tools are available. We use Xeve [4, 14].

5 VERIFYING THE REACTIVE PART OF THE FLIGHT SOFTWARE : EXAM-
PLES

5.1 A reachability property

The first property we want to check is that it is possible to reach a state in which the almCmd
signal is emitted. This reachability property is directly verified with the verification tool, actually
without the need to write any observer (the observer is the output signal itself). The verication
tool exhibits a sequence of inputs that reaches a state in which the signal is emitted, hence proving
the property.

5.2 A safety property

We want now to check that, if an alarm is emitted (almCmd), then a hot spot has been detected
by the hotspotter (hspAcq). In other words : there are no false alarms. Expressed formally, the
property is almCmd => hspAcq. The corresponding observer is the following piece of code :

1 loop
2 present [almCmd and not hspAcq] then
3 emit VIOLATION_P1
4 end ;
5 pause
6 end loop

This observer is composed of a loop construct in which the presence of almCmd and not
hspAcq is tested. The pause instruction just waits for the next reaction cycle. So, this observer
code is actually the negation of the property to be verified : if almCmd and not hspAcq
is present in the same reaction, which is not desired, then the signal VIOLATION_P1 will be
emitted.

The prover formally verifies that VIOLATION_P1 can never be emitted, for any possible
sequence of inputs. So the property is proved.

5.3 A complex bounded vivacity property

The property we want to check now is informally stated as : «any equipment that shows a
failing behavior receives a reset signal within one second». A first attempt to express this
property with an observer is the following.

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

1 loop
2 await [not powered or not working] ;
3 abort
4 await second ;
5 emit VIOLATION_P2
6 when immediate reset
7 end loop

This observer code is again the negation of the property to be verified. It consists of a loop in
which

• we wait first for a failure event (not powered or not working)

• if this failure occurs, we wait for the next second1, and then we emit the signal
VIOLATION_P2, unless a reset has arrived before the second or is present in the same
reaction2.

In fact, the observer is incorrect, and the verification tool is able to find a sequence of in-
puts such that the signal VIOLATION_P2 is emitted ! Looking at this sequence, the designer
understands that he/she made two mistakes :

• before checking the desired property, the equipment must have received a powerOn signal
(otherwise it is of course not powered)

• after a reset, before re-checking the property, one must wait for the first occurrence of the
two following events :

– an elapsed delay — say 3 seconds — for the reset to have a chance to produce an effect
on the equipment,

– the equipment is powered and working again.

So, the desired property is far more complex than expected at first glance. Fortunately, the
language allows to express this complex property in a quite understandable way. A correct formu-
lation of the property is the following observer.

1 await powerOn;
2 abort
3 await 3 second ;
4 when [powered and working] ;
5

6 loop
7 await [not powered or not working] ;
8 abort
9 await second ;

10 emit VIOLATION_P3
11 when immediate reset ;

1The second signal is supposed to be emitted regularly each physical second by an external clock.
2This is the meaning of the abort - when immediate construction. If the second and the reset signals

occur in the same reaction, then the body of the abort construction is aborted (and VIOLATION_P2 is not emitted).
This behavior is dictated by the immediate keyword.

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

12 abort
13 await 3 second ;
14 when [powered and working] ;
15 end loop

This time, the prover formally verifies that VIOLATION_P3 can never be emitted, for any
possible sequence of inputs, which proves the property.

6 CONCLUSION

This article reports the effective use of a formal method and tool to verify some typical prop-
erties on the preliminary version of the FS for an autonomous observing satellite. It shows that
expressing properties is not always an easy task, but that both the language and associated tools
can help.

The limits of the approach are the following.

• The properties to be proven must be explicitly described in the language, and so are limited
to those expressable in the language. However, this is not a tight constraint in practice.

• The properties are limited to “boolean” one ; it is not possible with this approach (language
and tools) to take into account directly numerical values, nor a continuous time (as in timed
automata).

Nevertheless, this verification approach proves its usefulness even for simple properties, be-
cause

• it is automatic and complete

• it enforces the specification itself.

References

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. “The
Synchronous Languages Twelve Years Later”. Proceedings of the IEEE, 91(1):64–83, 2003.

[2] G. Berry. The Esterel V5 Language Primer, version v5_91. École des Mines et INRIA, July
2000.

[3] G. Berry, Amar Bouali, X. Fornari, E. Ledinot, E. Nassor, and R. de Simone. “Esterel : A
formal method applied to avionic software development”. Science of Computer Program-
ming, 2000.

[4] A. Bouali. Xeve : an Esterel Verification Environment. Technical report, INRIA, 1997.

[5] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools. Springer, 2001.

3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

[6] M.C. Charmeau, J. Pouly, E. Bensana, and M. Lemaître. “Testing Spacecraft Autonomy
with AGATA”. In 9th INternational Symposium on Artificial Intelligence, Robotics and
Automation in Space (ISAIRAS’2008), Los Angeles, California, Feb. 2008.

[7] S. Chien. “Using Autonomy Flight Software to Improve Science Return on Earth Observing
One”. Journal of Aerospace Computing, Information, and Communication, 2:196–216, Apr.
2005.

[8] Earth Observing-1, Legacy Site. http://eo1.gsfc.nasa.gov.

[9] N. Halbwachs. “Synchronous programming of reactive systems, a tutorial and commented
bibliography”. In Tenth International Conference on Computer-Aided Verification, CAV’98,
Vancouver (B.C.), June 1998. LNCS 1427, Springer Verlag.

[10] Proba, Observing the Earth. http://www.esa.int/proba.

[11] A. Ressouche and M. Robert. ocjava, a Java code generator for Esterel programs.
www-sop.inria.fr/meije/esterel/ocjava.html.

[12] G. Verfaillie and M.-C. Charmeau. “A generic modular architecture for the control of an
autonomous spacecraft”. In IWPSS 2006 (International Workshop on Planning and Schedul-
ing for Space), Baltimore, USA, MD, 22 - 25 October 2006. STSI (Space Telescope Science
Institute).

[13] G. Verfaillie, M. Lemaître, and M.-C. Charmeau. “A generic architectural framework for the
closed-loop control of a system”. In 2nd National Workshop on "Control Architectures of
Robots: from models to execution on distributed control architectures" (CAR 2007), Paris,
France, 31 May-1 June 2007. Université Pierre et Marie Curie.

[14] http://www-sop.inria.fr/meije/verification/Xeve/.

