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Abstract

In real-world applications where physical agents (such as robots) are used, agents often share information
in order to build a common point of view or a common plan. Theseagents are generally constrained in
their communication capabilities and must make decisions without consultation. Consequently, the agents’
plans may change without the other agents being aware. In a multi-agent system composed of physical
agents, these constraints have a strong influence on the organization and the coordination mechanisms.
This paper deals with a satellite constellation, for which we propose a collaboration method based on an
incremental coalition formation in order to optimize individual plans so as to satisfy collective objectives.
This involves a communication protocol, a common knowledgenotion, a definition of trust based on the
agents’ communication capabilities and two coordination mechanisms: (1) an incentive to join coalitions
and (2) coalition minimization. Results on a simulated satellite constellation are presented and discussed.
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1 INTRODUCTION

In the multi-agent literature, most of the coordination mechanisms either based on norms [6],
contracts [14] or organizations [3, 8] involvesoftware agentsor social agents. In such contexts
communications are generally assumed to be unconstrained.As far asphysical agentssuch as
robots or satellites are concerned, physical and cost constraints have a major impact on commu-
nication and therefore on coordination. On the first hand an agent cannot always communicate
with another agent or the communications are restricted to short time intervals; on the other
hand an agent cannot always wait until the coordination process terminates before acting. Such
constraints are present in space applications.

Let us consider satellite constellations i.e. 3 to 20 satellites placed in low orbit around the
Earth to take pictures of the ground [4]. Observation requests are generated asynchronously with
various priorities by ground stations or the satellites themselves. As each satellite is equipped
with a single observation instrument with use constraints,too close requests cannot be realized

∗We would like to thank Marie-Claire Charmeau (CNES) and Serge Rainjonneau (Thales Alenia Space) for their
comments on this work.
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by the same satellite. Likewise, each satellite is constrained in memory resources and can realize
only a limited number of requests before downloading1. Finally, the orbits of the satellites cross
around the poles: two (or more) satellites that meet in the polar areas can communicatevia
InterSatellite Links (ISL) without any ground intervention. So the satellites can communicate
from time to time.

Centralized planning is not considered because (1) the aim of future space applications is to
avoid using ground stations as much as possible (operating aground station is expensive); (2) the
asynchronous generation of new requests by each satellite prevents us from having a centralized
view of the problem and therefore a centralized resolution.

Consequently the problem we focus on is a decentralized taskallocation problem in a multi-
agent system with new tasks arriving asynchronously and intermittent communications. Each
satellite (each agent) builds and revises a task plan such that the number of tasks realized by
the constellation is the highest possible, they are realized as soon as possible, the number of
redundancies2 is the lowest possible and the number of high priority tasks that are not realized is
the lowest possible. Notice that these constraints are not necessarily compatible with each other.
The communication problem was firstly addressed in [2]. In this paper the allocation problem is
addressed with an online incremental dynamic organizationmechanism in three steps:

1. agents plan individually ;

2. agents communicate in order to build a common knowledge ;

3. agents build and revise coalitions that influence their individual plans.

Our paper is organized as follows. In Section 2, we will first present the multiagent system
modelling the satellite constellation. The communicationprotocol is described in Section 3 and
a trust model is proposed in Section 4 in order to evaluate thetransmitted pieces of information.
In Section 5 we will present our collaboration model througha coalition formation mechanism.
Simulation results are given in Section 6 before concluding.

2 THE AGENTS

2.1 The multi-agent system structure

The constellation is modelled as a multi-agent system whereeach satellite is represented by
an agent:

Definition 1 (Constellation) TheconstellationS is a triplet〈A ,T,Vicinity〉 withA = {a1 . . .an}
the set of n agents representing the n satellites,T⊂N+ a set of dates defining a common clock and
Vicinity : A ×T 7→ 2A a symmetric non transitive relation specifying for a given agent and a given
date the set of agents with which it can communicate at that date (acquaintance model). Vicinity
represents the temporal windows when the satellites meet; it is calculated from the satellite orbits,
which are periodic.

Definition 2 (Periodicity) Let S be a constellation and{p1 . . . pn} the set of the orbital cycle
durations pi ∈ T of agents ai ∈ A. The Vicinity periodp̊ ∈ T is thelowest common multipleof
set{p1 . . . pn}.

The constellation (agents, clock and Vicinity) is knowledge that all the agents hold in com-
mon.

1Downloading consists in transferring data to a ground station (i.e. the pictures).
2There is a redundancy when two different agents realize the same task whereas only one would have been

sufficient.
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2.2 Tasks

Each agent within the constellation knows sometasksto realize.

Definition 3 (Task) A taskt is an observation request associated with a priority3 prio(t) ∈ N∗

and with a boolean bt that indicates whether t has been realized or not.

The tasks may be constrained in two ways:

• mutual exclusion: it is an agent’s constraint meaning that it cannot realize several tasks at the
same timeτ ;

• compositionof n tasks: all then tasks must be realized, it is useless to realize only a strict
subset of them. Formally,

Definition 4 (Compound task) A compound taskis a subsetT of tasks such that(∃ti ∈ T , ti
is realized)⇒ (∀t j ∈ T , t j 6= ti must be realized).

Moreover when a task is realized by an agent, it is redundant if it has already been realized
by another agent:

Definition 5 (Redundancy) Let ai be an agent that realizes a task t at timeτ ∈ T. There is a
redundancyabout t if and only if∃ a j ∈ A and∃ τ′ ∈T (τ′ ≤ τ) such that aj has realized t at time
τ′.

2.3 Intentions

Each agent within the constellation knows someintentionsabout the tasks.

Definition 6 (Intention) Let Iai
t be theintentionof agent ai towards task t. Iai

t is a modality of
proposition (ai realizes t) :

• 2 (commitment): ai is committed to realize t

• 3 (proposal): ai proposes to realize t

• 2¬ (strong withdrawal): ai will not realize t

• 3¬ (weak withdrawal): ai does not propose to realize t

A realization date rea(Iai
t ) ∈ T ∪ {Ø} and a download date tel(Iai

t ) ∈ T ∪ {Ø} are associated
with each intention.

The set of an agent’s intentions corresponds to its current plan. Each commitment or proposal
means that the associated task is planned. The tasks associated with withdrawals are not planned.
We assume that each agent has an individual planner. Planning is a three-step process:

1. From the set of unrealized tasks known byai at timeτ, ai computes an optimal local plan
under two criteria4:

• maximize the number of planned tasks;

3In the space domain, the lowerprio(t), the more important taskt.
4The individual planning process itself is beyond the scope of our work. The mono-agent planning problem may

be addressed with many techniques such as constraint programming or HTN planning.
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• minimize the number of unplanned high priority tasks.

2. The intentions of agentai about taskst at time(τ−1) constrain the planning process (step 1):

• tasks associated with a commitment (2) arealwaysplanned;

• tasks associated with a strong withdrawal (2¬) areneverplanned.

3. Agentai ’s plan at timeτ modifies its intentions as follows:

• each new planned task generates a proposal (3);

• each new unplanned task generates a weak withdrawal (3¬).

We can notice that commitments (2) and strong withdrawals (2¬) are not generated by the
planning process. We will see in Section 5 that these intentions are generated by a collaboration
process.

2.4 Private knowledge

Tasks and intentions an agent knows are captured by knowledge:

Definition 7 (Knowledge) Apiece of knowledgeKτ
ai

of agent ai at timeτ is a triplet〈DKτ
ai
,AKτ

ai
,τKτ

ai
〉:

• DKτ
ai

is a task t or an intention Iak
t of ak about t, ak ∈ A ;

• AKτ
ai
⊆ A is the subset of agents knowing Kτ

ai
;

• τKτ
ai
∈ T is the date when DKτ

ai
was created or updated;

LetK τ
ai

be agent ai ’s knowledge at timeτ: K τ
ai

is the set of all the pieces of knowledge Kτ
ai

.

FromK τ
ai

, we defineT τ
ai

= {t1 . . .tm} the set of tasks known by agentai at timeτ ; andI τ
ai

= (Iak
t ) the matrix of the intentions known by agentai at timeτ. Each agentai has resources

available to realize only a subset ofT τ
ai

.

3 COMMUNICATION

The agents have to reason on a common knowledge in terms of tasks and intentions. Con-
sequently, a communication protocol is defined to allow an agent to know what the other agents
know. Communication is based on Vicinity: when two agents meet they can communicate. Con-
sequently the Vicinity structure influences the communication capabilities.

3.1 Definition

Two kinds of communications are defined:

Definition 8 (Communication) Let S be a constellation and ai , aj ∈ A :

• Agent ai cancommunicate directlywith agent aj iff ∃ τ within p̊ such that aj ∈ Vicinity(ai ,τ);

• Agent ai cancommunicate indirectlywith agent aj iff ∃ {ak ∈ A , i ≤ k < j} and∃ {τkwithin p̊,
i ≤ k < j} such that ak+1 ∈ Vicinity(ak,τk).

As Vicinity is symmetric but not transitive, direct communication is symmetric whereas indi-
rect communication is oriented from an agent to another one.Each communication fromai to a j

is associated with a couple(τi ,τ j) ∈ T2 with τi the emitting date ofai andτ j the receipt date of
a j . We will write: ai communicates witha j at (τi,τ j). In case of a direct communication,τi = τ j .
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Figure 1: Vicinity graph for Example 1

3.2 Unfolding the Vicinity relation

In order to compute the next indirect communication betweentwo agents, Vicinity is pro-
jected on a valued-directed-graphV . Formally,

Definition 9 (Vicinity graph) The Vicinity graphV is such thatV = (A ,(ai,a j),vi j ) where:

• A is the set of vertices ofV ;

• the edge(ai,a j) exists iff∃ τ ∈ T such that aj ∈ Vicinity(ai,τ);

• each edge is valued with the set vi j = {τ ∈ T : a j ∈ Vicinity(ai,τ)}.

Let the following example illustrate this definition.

Example 1 Let a1, a2, a3 be three agents. Let us suppose that Vicinity is defined as follows on
period p̊ = 20:



























Vicinity(a1,2) = {a2}
Vicinity(a2,5) = {a3}
Vicinity(a3,8) = {a1}
Vicinity(a1,12) = {a2}
Vicinity(a2,15) = {a3}
Vicinity(a3,16) = {a1}

The vicinity graph is shown on Figure 1.

Intuitively an indirect communication from agentai to agenta j is a path from vertexai to
vertexa j . Thereby from this multi-valued graph, we unfold a single-valued graph with respect to
the current date and compute the lowest weighted path between both vertices. This single-valued
graph is built as it is explored. In order to do that, we propose a modified Dijkstra’s algorithm
where:

1. the current timeτi is stored in vertexai (initial time plus the weight of the current path);

2. the weight of each edge(ai ,a j) is computed as follows: minvi j − τi[mod p̊].
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Example 2 Let us resume Example 1 and compute from time1 the next indirect communication
from a1 to a3. The weight of edge(a1,a2) is 1 (min(2−1[mod 20],12−1[mod 20])). The weight
of edge(a1,a3) is 7. Thereby, the current time for vertex a2 and a3 are respectively2 and8. A
first solution(a1,a3) has been found: a communication at(2,8). Let us continue the exploration
from vertex a2. The weight of edge(a2,a3) is 3 (min(5−2[mod 20],15−2[mod 20])) and the
current time for vertex a3 is 5. A better solution has been found: an indirect communication at
(2,5).

3.3 An epidemic protocol

An epidemic protocol based on overhearing [10] has been proposed [2]. The agents use every
communication opportunity even to communicate information that does not concern themselves:

1. each agentai considers its own knowledge changes;

2. ai communicates the changes toa j ∈ Vicinity(ai ,τ);

3. a j updates its own knowledge thanks to the timestampτKτ
ai

.

It has been proved that, in a set ofn agents where a single agent knows a piece of information,
an epidemic protocol needsO (logn) communication rounds to completely propagate this infor-
mation [12]. During a communication round, each agent executes a communication step that has
a polynomial complexity in the number of agents and tasks [2].

The agents have to reason on a common knowledge in terms of tasks and intentions. Be-
cause of the communication delays, this common knowledge concerns only a subset of agents.
Formally,

Definition 10 (Common knowledge)At timeτ, agent ai knows that agent aj knows the intention
Iai
t captured by Kτai

iff:

• a j ∈ AKτ
ai

or

• ai communicated with aj at (τi,τ j) such thatτKτ
ai
≤ τi, τ j ≤ τ.

4 THE TRUST MODEL

Our application can be viewed as an ad-hoc network. However trust literature on ad-hoc
networks [11, 20, 23] focus on the reliability of a node in itself and the way to route reliable
information. In our application, as agents are trustworthy, trust erosion does not come from the
nodes themselves but from interactions between nodes.

4.1 Last confirmation

When two agents communicate at timeτ, the agent that receives a given intention cannot be
sure that this intention will be the same at timeτ′ (τ′ > τ). Indeed as the environment is dynamic,
an agent may receive new tasks or new intentions and modify its plan, i.e. its own intentions,
accordingly. The more time between the generation of a givenintention and the realization date,
the less an agent can trust this intention. However a furtherconfirmation transmitted by the agent
that has generated this intention increases the associatedtrust again.

As we consider the agents honest and cooperative, an indirect communication (which is a
testimony) is trustworthy in itself. Thereby an agentai considers that a given proposal generated
by an agenta j has been confirmed ifa j communicates (directly or not) withai without modifying
its proposal. We define formally the last confirmation.
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Definition 11 (Last confirmation) Let ai be an agent, I
a j
t a proposal of an agent aj about a task

t known by ai . Thelast confirmationof proposal I
a j
t for ai at timeτ is:

τ∗ = max
τKτ

ai
<τ j

τi<τ

{τ j : a j communicates with ai at (τ j ,τi)}

Example 3 Let us resume Example 1. Let us suppose that, at time15, a3 computes the trust
associated with an intention of agent a1 generated at time7. a1 communicated directly with a3
at time8 then it communicated indirectly with a3 at time(12,15) without modifying its proposal.
Thereby the last confirmation is12 and a3 knows that a1 kept its proposal between times7 and
12.

4.2 Trust

Intuitively, the trust associated with a proposal depends on the time between its last confirma-
tion and its realization. As the agents do not have a model of the environment, they cannot predict
the arrival of new tasks. However as time passes, an agent meets other agents and each meeting is
an opportunity to receive new tasks and revise its intentions. Consequently an agent’s trust about
a given proposal is defined from the number of meetings between the last confirmation and the
realization date. This number is based on Vicinity therefore each agent can compute its own trust
in the others’ proposals.

Definition 12 (Meetings) Let ai be an agent, I
a j
t a proposal known by ai andτ the current date.

Let τ∗ be the last confirmation of I
a j
t for ai at timeτ. The number of agents Mai

τ∗(I
a j
t ) agent aj will

meet betweenτ∗ and rea(I
a j
t ) is given by:

Mai
τ∗(I

a j
t ) = |

[

τ∗<τ′<rea(I
aj
t )

Vicinity(a j ,τ′)|

Finally, an agent trusts or does not trust a given proposal:

Definition 13 (Trust) Let ai be an agent, I
a j
t a proposal known by ai and τ the current date.

Agent ai trustsagent aj about I
a j
t if and only if Mai

τ∗(I
a j
t ) = 0.

Example 4 Let ai be an agent that knows a proposal I
a j
t at timeτ. Let us suppose that Mai

τ∗(I
a j
t )

= 5. Agent ai does not trust aj about this proposal. Let us suppose that aj keeps its proposal for
long enough to confirm it twice. At each confirmation, ai can compute Mai

τ∗(I
a j
t ) again, e.g.3 and

1. Each time, ai trusts aj more.

We can notice that the trust criterion of Definition 13 is hard: an agent is not trusted if it meets
at least another agent before realizing its proposal (Mai

τ∗(I
ak
t ) = 0). This pessimistic assumption

can be relaxed (e.g.Mai
τ∗(I

ak
t ) ≤ 1).

5 COLLABORATION VIA COALITIONS

5.1 Coalitions

A coalition is an agent organization with a short life cycle.It is formed in order to realize a
given goal and is destroyed when the goal is achieved. Through a coalition, each agent tries to
maximize its personal outcome. In the literature, the methods dedicated to coalition formation
are based on the exploration of the lattice of the possible coalition structures [15, 22]. In order
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to find the optimal structure, the agents often have uncertain and (or) incomplete information on
the other agents’ costs and preferences: they need to use heuristics [9] or trust [16] to evaluate a
coalition value.

Generally speaking, these methods have two limits.
On the one hand, they are often centralized, they assume thatall tasks are known by all agents and
they are performed off-line [5, 7, 13, 17] ; or they use an auctioneer (or other kinds of hierarchy)
[1, 18] that centralizes the information and organizes the negotiations.
As far as communications are concerned, methods based on thesystem organization structure
consider constrained communications: agents can communicate through a hierarchy [1, 18] or
in a vicinity [19]. These constraints are associated with a communication cost [21]. However in
a real dynamic environment, agents are not always able to exchange information and may have
to decide alone. Moreover some tasks cannot wait for the complete computation of the coalition
structure and must be realized quickly. Consequently thesemethods are very sensitive to the
system dynamics.

Be that as it may, the coalition formation mechanisms are interesting for three reasons: (1)
agents gather in order to realize a collective task; (2) the short life cycle of coalitions is adapted to
dynamic environments; (3) agents search for efficient solutions under uncertain and (or) incom-
plete information. In our application, compound tasks require that some agents should realize
some subsets of tasks jointly. However these joint realizations cannot be planned by the agents’
individual planners as an agent does not plan for the others.In order to dynamically organize the
agents, we will consider a decentralized coalition formation mechanism taking into account the
features of our problem, i.e. cooperative agents and constrained communications. The mecha-
nism is as follows:

1. Agents build maximal-size coalitions from their own knowledge;

2. Coalitions are refined as the agents meet to remove uselessagents.

Coalitions are defined as follows:

Definition 14 (Coalition) A coalitionC is a triplet〈A,O,P〉 :

• A⊆ A is a subset of agents that are themembersof the coalition;

• O is the set of tasks that are thegoalsof the coalition;

• P is the set of tasks that are in thepowerof the coalition.

A coalition C can be in different states:

• C iscompleteiff O ⊆ P;

• C isminimal iff C is complete and A is minimal for inclusion (⊆).

Coalitions are build and managed locally by each agent, given the knowledge it has about
the other agents through communication. Indeed each agent uses the coalition notion to reason
and adapt its own intentions to the others’ intentions. Therefore coalitions are formed implicitly
through intentions but are not explicitly built by the multi-agent system. Each agent:

1. computes the current coalition structure from its point of view;

2. checks whether it should join a coalition to increase its power;

3. checks whether it can withdraw from a coalition to minimize it ;

4. modifies its intentions accordingly.
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5.2 Computation of the coalition structure

Each agentai generates the current coalition structure as follows:

1. ai organizes the set of tasksT τ
ai

as a partition{T1 . . .Th} according to the compound tasks;

Example 5 Let T τ
ai

be{t1, t2, t3, t4, t5}. Let us suppose that tasks t1 and t2 form a compound
task as well as t4 and t5. ThenT τ

ai
is organized as{{t1, t2}, {t3}, {t4, t5}}.

2. eachT i is the goal of a single potential coalition; as subsetsT i are disjoint5, the number of
potential coalitions generated by agentai is given by the number of compound tasksai knows;

3. from agentai ’s point of view, the potential coalition members for subsetT i are defined as:
{ak ∈ A : ∃ t ∈ T i /∃ Iak

t ∈ K
τ

ai
such thatIak

t ∈ {2,3}}

Example 6 Let us resume Example 5. Let us consider t3 and suppose that Iai
t3 = 3 and Iak

t3 =
2. ai can build coalition C= 〈{ai,ak},{t3},{t3}〉. This coalition is complete but not minimal
because{ai ,ak} is not minimal for inclusion. Notice that ai plans t3 even if it knows that ak
did too. Indeed the others’ intentions are not taken into account in the planning step: they will
be taken into account in the collaboration steps (steps 2, 3,4 described in Section 5.1).

4. then the power of each potential coalition is defined as:P = {t ∈O|∃ai ∈ A : Iai
t ∈ {2,3}}

Notice that this framework defines the current coalition structure from the agent’s point of
view. It capturescoveringanddisjoint coalitions: if an agent has many intentions, it can be a
member of many coalitions; if it has a single intention (because it lacks resources or capabilities),
it is a member of a single coalition.

A potential coalition may be minimal (thus complete), complete and not minimal or incom-
plete.

5.3 An incentive to join coalitions

An incomplete coalition means that at least one goal task is not within the coalition power.
But the more tasks within the coalition power, the more important goal tasks become because a
coalition must realize all its goal tasks. If the coalition remains incomplete, all its members waste
resources.

When agentai computes the current coalition structure according to its knowledge, it can
detect incomplete coalitions. Asai is cooperative, it should be incited to modify its intentions
and complete these coalitions when planning. In order to do that, we propose to increase the
priorities of the goal tasks of the incomplete coalitions. In the remainder of the paper, we will
noteprio(t)′ the priority of taskt ai uses for its next planning step. Notice thatprio(t)′ is a local
priority only used byai . The initial priority prio(t) of taskt remains the same.

Protocol 1 (Join a coalition) For each incomplete coalition C= 〈A,O,P〉, agent ai computes:

∀ t ∈ O, prio(t)′← prio(t)
1+|P| .

The agent is encouraged to join a coalition if and only if the goal of the coalition is to realize a
compound task that is partially planned. This mechanism isstable, i.e. two successive incentive
steps are consistent. For instance, an agent is not encouraged to give up a given task in order
to realize another one, thenceteris paribusis not encouraged to give up the latter to realize the
former.

Remark: as far as singletons{t} are concerned,

5The compound tasks are assumed disjoint but notice that theycan overlap without modifying the collaboration
process.
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Figure 3: Hard conflict

• if t is not planned byai , it is because it does not satisfy the optimization criteria(Section 2.3);
thereforeai does not build any coalition concerningt and the priority oft remains the same;

• if t is planned, the coalition concerningt is complete and its priority remains the same.

Example 7 Let us resume Example 5. Let us consider{t1, t2} and suppose that Iai
t1 = 3¬, Iai

t2 =
3¬, Iak

t1 = 3¬ and Iak
t2 = 2. ai can build coalition C= 〈{ak},{t1, t2},{t2}〉. This coalition is

incomplete. So ai applies Protocol 1. As ak is already a member of the coalition, the priorities
of t1 and t2 are halved for ai. Therefore at its next planning step, ai is more likely to plan t1 or t2
instead of other tasks.

5.4 Minimizing coalitions

A complete and non minimal coalition has the power to realizeits goals with useless agents,
i.e. agents that have redundant intentions. Within a coalition, an agent has to consider the agents
that have planned the same tasks as it has, then to make a decision about modifying or not its
own intentions. There is a conflict between two agents withina coalition if they have planned the
same task(s). Formally:

Definition 15 (Conflict) Let ai, aj be two agents and C a coalition< A,O,P> such that{ai ,a j}

⊆ A. There is aconflict between ai and aj iff ∃ t ∈ P such that Iai
t ∈ {2,3} and I

a j
t ∈ {2,3}.

It is a soft conflict iff either ai communicates with aj at (τi,τ j) such thatτI
ai
t

< τi and τ j <

min(rea(Iai
t ), rea(I

a j
t )) or a j knows agent ai ’s intention about t. Else it is ahard conflict.

Conflicts are illustrated on Figure 2 and Figure 3

Example 8 Let us resume Example 6. The coalition is not minimal: there is a conflict about task
t3 between agents ai and ak. So ai has to make a decision in order to withdraw (2¬), to keep its
intention (3) or to commit (2).

In the remainder, given an agentai and a taskt, we will denoteA∗ the set of agents with
which it is in conflict about taskt, A+ ⊆ A∗ the set of agents in soft conflict andA− ⊆ A∗ the set
of agents in hard conflict.

Proposition 1 (Symmetry) Let ai be an agent and a task t.∀ a j ∈ A+, the conflict issymmetric.
∀ a j ∈ A−, the conflict isasymmetric.

Proof 1 Let ai be an agent and A∗ the set of agents with which it is in conflict about task t.

• ∀ a j ∈ A+, ai knows I
a j
t . Conversely either aj knows Iai

t , or ∃ τb, τe ∈ T such thatτI
ai
t

< τb

and τe < min (rea(Iai
t ), rea(I

a j
t )) when aj knows Iai

t because it will receive the information.
In both cases, the conflict is symmetric and it is a soft conflict.
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Figure 4: Graphical representation of the expertise criterion

• ∀ a j ∈ A−, aj does not know Iai
t and will not know it before the datemin (rea(Iai

t ), rea(I
a j
t )).

So, aj is not and will not be aware of the conflict ; it is a hard conflict.

Both soft and hard conflicts are dealt with through protocolsbased on the agents’ expertise
for realizing the task.

As we are seeking to optimize the system reactivity, it is better that the agents realize the
tasks as soon as possible and use the fewest resources possible6. Let us aggregate both criteria in
a single expertise criterion. Formally:

Definition 16 (Expertise) Let A∗ ⊆ A be a set of agents in conflict about a task t. Let us note
rea∗ = min

ai∈A∗
rea(Iai

t ) the earliest realization date for task t. Theexpertagent for t is defined

thanks to the following distance:

a∗ = arg min
ai∈A∗
||(rea(Iai

t )− rea∗, tel(Iai
t )− rea∗)||

The resource consumption, i.e. how long the picture corresponding tot will remain in the
memory of the satellite, is defined as a duration. The distance between a potential intention and
an ideal intention (the earliest realization and download date) represents time criteria. The expert
agent fort is the one that minimizes this distance.

Figure 4 is a representation of the expertise criterion for ataskt in the plan(rea(Iai
t ), tel(Iai

t )),
ai ∈ A∗. The origin rea∗ is the earliest realization date fort and intention(rea∗, rea∗) is the
ideal intention corresponding to an agent being able to realize t at timerea∗ and download the
corresponding picture immediately.tel∗ is the latest download date fort, if t is realized at time
rea∗. Obviouslytel(Iai

t ) > rea(Iai
t ) therefore only the hatched part is meaningful.

In order to solve a conflict, three strategies are defined:

• ai maintains its proposal (3) if it does not trust the other agents therefore maintainingredun-
dancies to make sure that the task will be realized;

• ai commits (2) if it is the expert agent therefore deciding on a part of the current coalition
structure;

• ai strongly withdraws (2¬) if the expert agent is trusted thus minimizing the size of the coali-
tion.
6Using fewer resources means keeping the pictures in the satellite memory for the shortest time possible, i.e.

downloading them as soon as possible.
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Protocol 2 (Hard conflict) Let A∗ be the set of the coalition members with which agent ai is in
conflict about task t such that A− 6= /0. ai is aware of the conflict and applies:

1. if min
ak∈A−

Mai
τ∗(I

ak
t ) > 0 then Iai

t ← 3

2. else Iai
t ← 2¬

In case of a hard conflict, the agent who is aware of the conflict(1) maintains its proposal if
it does not trust the agents within the conflict ; else (2) withdraws.

Protocol 3 (Soft conflict) Let A∗ be the set of the coalition members with which agent ai is in
conflict about task t such that A+ 6= /0. Let rea∗ be min

ai∈A+
rea(Iai

t ):

1. if ai = arg min
ai∈A+

||(rea(Iai
t )− rea∗, tel(Iai

t )− rea∗)||

then Iai
t ← 2

2. else let a∗ be the expert agent:

(a) if Mai
τ∗(I

a∗
t ) > 0 then Iai

t ← 3

(b) else Iai
t ← 2¬

For soft conflicts, each agent computes the expert agent. (1)If it is the expert agent, it com-
mits. (2.a) If not, it maintains its proposal if it does not trust the expert. (2.b) If it trusts the
expert, it withdraws.

6 SIMULATIONS AND RESULTS

Simulations have been conducted on three kinds of constellations:

• isolated: no communication;

• informed: agents communicate only about tasks and coordinatea posterioriby withdrawing
already realized tasks from their plans;

• coordinated: agents communicate about tasks and intentions and coordinatea priori thanks to
coalition formation.

6.1 Reference framework : static simulations

The reference experiments are based on a scenario with 3 agents and 100 tasks. It is a static
scenario, meaning that the initial set of tasks is fixed and new tasks will not appear during the
simulations. Two parameters are considered: the task density and the task composition rate. For
each parameter value, we have launched 100 simulations and computed the average result.

Definition 17 (Density) The taskdensityrepresents how close to each other the tasks are. The
closer the tasks, the more they are likely to be in mutual exclusion.

(Figure 5) The results for informed and coordinated constellations are better than for isolated
constellations. Although informed and coordinated constellations realize nearly the same number
of tasks (with a slight advantage for coordinated constellations), coordination allows the number
of minimal (i.e. optimal) coalitions to be increased drastically. However we can notice that
for coordinated constellations, the difference between minimal and complete coalitions is not so
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Figure 5: Realized tasks (with and without redundancy) under density constraint
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Figure 6: Realized tasks (with and without redundancy) under composition constraint

important: this comes from the fact that these experiments are within a static world, new tasks do
not appear during the simulations: when resources are savedby an agent, they are not necessarily
reallocated. In a dynamic world with new tasks and no boundedtemporal horizon, resources will
be reallocated.

Definition 18 (Compound rate) The taskcompound raterepresents the percentage of tasks that
are in mutual exclusion with another task and that are jointly the goal of a potential coalition.

(Figure 6) We can notice that increasing the compound rate decreases the number of potential
coalitions, and consequently the maximal number of complete and minimal coalitions. This
affects the informed and coordinated constellations more than the isolated ones: the relative loss
of efficiency in terms of complete and minimal coalitions is higher. However, the absolute results
for informed and coordinated constellations are better than for isolated ones.

6.2 Real-world framework : dynamic simulations

The first simulation round is based on a dynamic scenario with3 agents. Every 6th hour, the
ground stations send 40 new compound tasks (including at least 2 atomic tasks) to the agents.
We have launched 25 simulations and computed the average result. Two metrics are considered:
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the number of realized tasks (Figure 7) and the number of realized tasks without redundancy
(Figure 8).

Informed and coordinated constellations outperform isolated ones. However we can notice
that the benefits increase as time passes. Indeed incremental coordination allows coordinated
constellations to realize more tasks than the other kinds ofconstellations. And as time passes the
difference between informed and coordinated constellations increases: incremental coordination
allows coordinated constellations to efficiently save and reallocate resources.
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Figure 9: Twofold disturbances

The second simulation round is based on another dynamic scenario with 3 agents. The system
is initialized with 150 atomic tasks and two sets of 200 new tasks are sent to the agents after 18
and 36 hours. We have launched 25 simulations and computed the average result. The metric is
the percentage of remaining tasks in the system as time passes (Figure 9).

We can notice that isolated constellations are quickly overloaded. They cannot realize all the
new tasks and the system load decreases slowly. With coordination, the new tasks are mostly
realized and the system load decreases quickly. For coordinated constellations the benefits corre-
spond to saved resources that are reallocated.
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7 CONCLUSION

We have proposed a collaboration method for physical agentsthat communicate from time
to time in a dynamic environment. This method has been applied to a constellation of satellites.
A communication protocol has been proposed in order to buildcommon knowledge (in terms of
tasks and intentions) as the agents meet.

The collaboration process is an online incremental coalition formation that proceeds through
a planning - communication - collaborationloop within each agent. Each agent builds an initial
plan; from its knowledge, it builds the potential coalitions that can realize the tasks it knows;
afterwards these coalitions are refined thanks both to anincentivemechanism and anoptimiza-
tion mechanism. The agents’ communication capabilities on the one hand and conflict definitions
on the other hand allow us to define protocols that refine the coalition structure dynamically and
adapt it to new knowledge.

As new tasks may appear in the system, the agents may revise their plans, that is to say their
intentions. However in order to coordinate, the agents mustrely on the others’ intentions: they
must trust them. Thereby we propose a trust notion which is defined through the communications
between agents. Each time an agent communicates, it may receive new information that modifies
its intentions; on the other hand the more an agent communicates, the more it can confirm its
intentions and the more trust may increase.

The experimental results are promising. The coalition formation mechanism allows the re-
source consumption to be minimized; then the saved resources are reallocated in a incremental
way and the number of realized tasks is increased. Future work will deal with the possible fail-
ures of the agents and the consequences on the other agents’ trusts. Furthermore, simulations
involving a higher number of satellite agents (up to 20) willbe performed to scale the approach.
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