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Abstract

We address the problem of designing decentralized output feedback laws to force the out-
puts of a class of strict feedback nonlinear systems (agents) to follow geometric paths while
holding a desired formation pattern. To this effect we propose a general framework that
takes into account, the topology of the communication links among the agents and the fact
that velocities states of agents are unavailable. We provide a decentralized controller based
on an observer backstepping approach. By using available exponential observers, stability of
the interconnected observer-coordinated controller system is obtained. As a case study, the
coordination output-feedback control design is performed for synchronizing a fleet of AUVs
where only position measurements are available. Simulation results are presented to show the
effectiveness of the approach.
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1 INTRODUCTION

Cooperating agents must be able to interact with each other using either explicit or implicit
communication and frequently both. Explicit communication corresponds to a deliberate ex-
change of messages that is in general made through a wireless network. On the other hand
implicit communication is derived through sensor observations that enable each vehicle to esti-
mate the states and trajectories of its teammates. For example, each agent can observe relative
state (position and orientation) of its neighbors (implicit communication), and through explicit
communication exchange this information with the whole team in order to construct a complete
configuration of the team.

A typical leaderfollower formation control approach (e.g., [1]) assumes only one group leader
within the team. In this case, only the group leader has the knowledge of group trajectory
information, which is either preprogrammed in the group leader or provided to the group leader
by an external source. The formation is then built on the reaction of the other group members
to the motion of the group leader. The fact that only a single group leader is involved in the
team implies that the leaderfollower approach is simple to implement and understand, and the
requirement on communication bandwidth is reduced. This is, however, a single point of massive
failure type system because the loss of the group leader causes the entire group to fail. Another
issue with the typical leaderfollower approach is the lack of inter-vehicle information feedback
throughout the group. In order to overcome this type of single point of failure tendency, much
research has been focusing on decentralized or distributed cooperative control strategies where



vehicle control laws are coupled and each vehicle makes its own decision according to the states
of its neighbors (e.g., [8],[2]-[4]). This allows the group to continue on to achieve an objective
even in the presence of failure of any group member.

In spite of significant progress in these exciting areas, much work remains to be done to
develop strategies capable of yielding robust performance of a fleet of vehicles in the presence of
complex vehicle dynamics, unmeasured vehicles states, severe communication constraints, and
partial vehicle failures. These difficulties are specially challenging in the field of marine robotics
for two main reasons: i) the dynamics of marine vehicles are often complex and cannot be simply
ignored or drastically simplified for control design purposes, and ii) controller may depend on
states that are not measured. An observer is therefore designed to estimate the unknown states
needed in the control law.

In this paper an output-feedback design method for coordinating a group of agents described
by a class of strict feedback system is proposed. State-feedback control design is used for solving a
coordination problem in [9]. This paper is motivated by the observer backstepping approach [10]
from where damping terms are added to the controller to counteract the disturbances from the
exponentially stable observer, and consequently ensure stability of the closed-loop system. The
coordination technique used in [9, 11] is modified so as to force the geometric error converging
asymptotically to zero. The controller is derived in two stages: first, a path following control law
is used that drives each agent to its assigned path regardless the temporal speed profile adopted.
Second, the derivative of each path parameter is used as an auxiliary controller to synchronize
the agents positions, thus achieving the coordination scheme.

Notation |x| denotes the standard Euclidean norm of a vector x in R
n, and the induced

matrix 2-norm of A ∈ Rn×n is denoted ‖A‖. For a matrix P = P⊤ > 0, let pm = λmin(P ) and

pM = λmax(P ). We let I = {1, . . . , n}, x
γi

di
=

∂zdi

∂γi
and x

γ2

i

di
=

∂2zdi

∂2γi
, [ai]i∈I := col(a1 . . . an)

1.1 Problem Statement

The objective of the proposed output-feedback design is to solve the coordination problem
[9] where an observer has to be designed to estimates the unknown states. The problem is
divided into two sub-problems. At the lower level, the path-following problem is solved for
individual agent, each having access to a set of local measurements. The output of the observer
shall converge to the measured states of the actual system. Finally coordination is achieved
by synchronizing the so called coordination states through the use of the derivative of path
parameters.

2 COORDINATED PATH-FOLLOWING CONTROL SYSTEM

This section proposes a coordinated path following control architecture for a group of n decoupled
agents Σi, i ∈ I modeled by general systems of the form

Σi : ẋ1i = x2i

ẋ2i = fi(yi) + gi(yi)ui (1)

yi = x1i

where xi = [x⊤
1i, x

⊤
2i]

⊤ ∈ R
2×ni denotes the state of agent i, ui ∈ Rmi its control input, yi ∈ R

ni its
measured output. Assume that the functions fi and gi are smooth, and the matrix gi is invertible.
Since the state x2i is unmeasured, an observer that can provide information about this unknown
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state must be designed. A reduced-order observer can be indeed designed. However, it is often
noise-sensitive. Here we use the following full-order observer

˙̂x1i = x̂2i + K1i(x1i − x̂1i)

˙̂x2i = fi(yi) + gi(yi)ui + K2i(x1i − x̂1i) (2)

yi = x̂1i

where K1i and K2i are positive matrix observer gains. By defining the observer error as

x̃i = [(x1i − x̂1i)
⊤, (x2i − x̂2i)

⊤]⊤

and subtracting (2) from (1), we have

x̃i = Aix̃i, Ai =

[

K1i I

K2i 0

]

(3)

It is direct to show that

|x̃i(t)| ≤ ϕi|x̃i(t0)|e
−σi(t−t0i) (4)

for some positive constants ϕi and σi, which implies that (2) is a global exponential observer of
(1). Therefore, in the following we will design the desired coordinated path following controllers
ui, based on the following system

ẋ1i = x̂2i + x̃2i

˙̂x2i = fi(yi) + gi(yi)ui + K2i(x1i − x̂1i) (5)

2.1 Path-following Controller

A solution to the path-following problem was given in [10] and can be formulated as follows:
Given an agent i and a desired path ydi(γi), design feedback controller laws for ui such that
all the closed-loop signals are bounded, the position of the agent converges to and remains in
desired path, and the vehicle travels at a desired speed assignment vri.
To prepare for the control law, we define the following variables

e1i = x1i − ydi(γi)

e2i = x̂2i − α1i (6)

eγ̇i
= γ̇i − vri(t)

where α1i is a virtual control to be specified later. Following the design in [10], we proceed in
two backstepping steps as follows:

Step I The time derivative of e1i along the solutions of (5) gives

ė1i = x̂2i + x̃2i − y
γi

di γ̇i

= x̂2i + x̃2i − y
γi

di(eγ̇i
+ vri) (7)

Define the following Lyapunov function

V1i = e⊤1iP1ie1i +
1

δ1i
x̃⊤

i Γix̃i (8)



where δ1i > 0, P1i and Γi are symmetric positive matrices. The time derivative of (8) is

V̇1i = 2e⊤1iP1i(e2i + α1i + x̃2i − y
γi

di(eγ̇i
+ vri)) −

2

δ1i
x̃⊤

i ΓiAix̃i (9)

Select the virtual control law as

α1i = A1ieei + y
γi

divri + αoi (10)

where αoi is a damping term to be determined later, and A1i satisfies A⊤
1iPi +PiA1i = −Qi, Qi >

0. Equation (9) rewrites

V̇1i = 2e⊤1iP1i(Aie1i + e2i + x̃2i − y
γi

dieγ̇i
+ αoi) −

1

δ1i
x̃⊤

i ΓiAix̃i

= −e⊤1iQie1i + 2e⊤1iP1ie2i + 2e⊤1iP1ix̃2i + µ1ieγ̇i

+2e⊤1iP1iαoi −
2

δ1i
x̃⊤

i ΓiAix̃i (11)

by completing the squares, we obtain the following

V̇1i ≤ −e⊤1iQie1i + 2e⊤1iP1ie2i + µ1ieγ̇i

+2e⊤1iP1i

[

αoi + ε1iP1i

]

e1i +
1

2ε1i
x̃⊤

2ix̃2i

−
2

δ1i
x̃⊤

i ΓiAix̃i (12)

where µi = 2e⊤1iP1iy
γi

di and ε1i is an arbitrary positive constant. Now pick αoi = −ε1iP1i and
chose Γi such that A⊤

i Γi + ΓiAi = −I, this gives

V̇1i ≤ −e⊤1iQie1i + 2e⊤1iP1ie2i + µ1ieγ̇i

+
1

2ε1i
x̃⊤

2ix̃2i −
1

δ1i
x̃⊤

i x̃i

≤ −e⊤1iQie1i + 2e⊤1iP1ie2i + µ1ieγ̇i

−κ1ix̃
⊤
i x̃i (13)

where 2κ1i = 1
δ1i

− 1
ε1i

> 0.

Step II The second step of the backstepping procedure will require the time derivative of the
stabilizing function α1i, to this end we define the following terms

χi = αx1i

1i ẋ1i + αt
1i, ϕ2i = α

γi

1i (14)

The time derivative of e2i along the solutions of the second equation of (2) and (10), gives

ė2i = fi(yi) + gi(yi)ui + K2i(x1i − x̂1i) − χi − ϕ2i(eγ̇i
+ vri) (15)

To ensure stability of e2i, we define the second candidate Lyapunov function

V2i = V1i +
1

2
e⊤2iP2ie2i +

1

δ2i
x̃⊤

i Γix̃i (16)

where δ2i > 0. The time derivative of (16) is

V̇2i = V̇1i + 2e⊤eiP2i(fi + giui − χi − ϕ2ivri)

−2e⊤eiP2iϕ2ieγ̇i
+ 2e⊤eiP2iK2i(x1i − x̂1i)

−
1

δ2i
x̃⊤

i x̃i (17)
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Using inequality (13), equation (17) rewrites

V̇2i ≤ V̇1i + 2e⊤2iP2i(fi + giui − χi − ϕ2ivri)

−2e⊤eiP2iϕ2ieγ̇i
+ 2e⊤2iP2iK2i(x1i − x̂1i)

−
1

δ2i
x̃⊤

i x̃i

≤ −e⊤i Qiei + 2e⊤2iP2i

(

P−1
2i P1ie1i + fi + giui

−χi − ϕ2ivri

)

+
(

µ1i − 2e⊤eiP2iϕ2i

)

eγ̇i

+2e⊤2iP2iK2i(x1i − x̂1i) − (κ1i +
1

δ2i
)x̃⊤

i x̃i

(18)

with ei = [e1i, e2i]
⊤ and Qi = diag{Q1i, Q2i}. Again applying the Young’s inequality to (18),

and select the control input ui as

ui = g−1
i (A2ie2i − fi + χi + ϕ2ivri − P−1

2i P1ie1i + αdi) (19)

where α1i is a damping term defined as

αdi = −ε2iK2iK
⊤
2iP2i (20)

where ε2i is an arbitrary positive constant. Inequality (18) re-writes

V̇2i ≤ −e⊤i Qiei + µ2ieγ̇i
− κ2ix̃

⊤
i x̃i, κ2i = κ1i +

1

δ2i
−

1

2κ2i
> 0 (21)

In this stage, in order to render (21) negative, the loop must be closed by speed assignment
design,i.e. (choosing an appropriate update for eγ̇i

). We modify the design in [10] in order to
solve the coordination path following problem. Set

vri = vL, vL > 0 (22)

where vL is a desired speed profile assigned to the formation. To achieve a coordination scheme,
we propose a decentralized feedback law for γ̇i as a function of the information obtained from
the neighboring agents, this will be developed in the following section.

3 COORDINATED CONTROLLER

This section details the development of the coordination controller subsystem. To this effect,
we first recall some key concepts from algebraic graph theory.

It is natural to model information exchange among vehicles by directed or undirected graphs.
A digraph (directed graph) consists of a pair (N , E), where N is a finite nonempty set of nodes,
and E ∈ N × N is a set of ordered pairs of nodes, called edges. An edge (i, j) in a digraph
denotes that vehicle j can obtain information from vehicle i, but not necessarily vice versa. In
contrast, the pairs of nodes in an undirected graph are unordered, where an edge (i, j) denotes
that vehicles i and j can obtain information from one another. Note that an undirected graph
can be considered a special case of a digraph, where an edge (i, j) in the undirected graph
corresponds to edges (i, j) and (j, i) in the digraph. If there is an edge from node i to node j in
a digraph, then i is the parent node, and j is the child node. A directed path is a sequence of
edges of the form (Vi1 ,Vi2), (Vi2 ,Vi3), . . . , where Vif ∈ N , in a digraph. An undirected path in



an undirected graph is defined analogously. In a digraph, a cycle is a directed path that starts
and ends at the same node. A digraph is strongly connected if there is a directed path from
every node to every other node. An undirected graph is connected if there is a path between
any distinct pair of nodes. A directed tree is a digraph, where every node has exactly one parent
except for one node, called the root, which has no parent, and the root has a directed path
to every other node. Note that in a directed tree, each edge has a natural orientation away
from the root, and no cycle exists. In the case of undirected graphs, a tree is a graph in which
every pair of nodes is connected by exactly one path. A directed spanning tree of a digraph is a
directed tree formed by graph edges that connect all of the nodes of the graph. A graph has or
contains a directed spanning tree if there exists a directed spanning tree being a subset of the
graph. Note that the condition that a digraph has a directed spanning tree is equivalent to the
case that there exists at least one node having a directed path to all of the other nodes. In the
case of undirected graphs, having an undirected spanning tree is equivalent to being connected.
However, in the case of directed graphs, having a directed spanning tree is a weaker condition
than being strongly connected.
The adjacency matrix A = [aij ] ∈ R

n×n of a digraph is defined as aii = 0 and aij > 0 if (j, i) ∈ E
where i 6= j. The adjacency matrix of an undirect graph is defined analogously except that
aij = aji,∀i 6= j, since (j, i) ∈ E implies (i, j) ∈ E . Let the matrix L = [lij ] ∈ R

n×n be defined
as lii =

∑

j 6=i aij and lij = −aij , where i 6= j. The matrix L satisfies the following conditions:

lij ≤ 0, i 6= j,

n
∑

j=1

lij = 0, i = 1, . . . , n (23)

For an undirected graph, L is called the Laplacian matrix [9], which is symmetric positive
semi-definite. However, L for a digraph does not have this property.

Consider now the coordination control problem with a communication topology defined by
a graph (N , E). Using a Lyapunov-based design, we propose a decentralized feedback law for
γ̇i. Consider the following Lyapunov function

V1 =
∑

i∈I

V2i (24)

according to (21), the time derivative of (24) is given as

V̇1 ≤ µ⊤eγ̇ −
∑

i∈I

e⊤i Qiei + κ2ix̃
⊤
i x̃i (25)

where µ = [µ2i]i∈I and eγ̇ = [eγ̇i
]i∈I . We assume that communication between robots are

bi-directional and there is no losses or time delay in communication. We let

eγ̇ = π −K−1
1 (Lγ − µ) (26)

where L is the Laplacian matrix of the underlying communication graph as described above and
π is an auxiliary state governed by

π̇ = −(K1 + K2)π + Lγ + µ (27)

where γ = [γi]i∈I , K1 and K2 are diagonal positive definite matrices. The closed loop coordi-
nation system is given by

γ̇ = vL + π − K−1
1 Lγ − K−1

1 µ

π̇ = −(K1 + K2)π + Lγ + µ

(28)
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Using the backstepping procedure results for path following controller, the properties of the
communication system described above, and applying (28) we conclude the following result.

Theorem 1. The feedback laws ui for each agent given by (19) together with (28) solve the
coordinated path following problem if and only if the communication graph defined by the graph
(N , E) is connected. In particular, the path following error, the coordination errors |γi − γj|,
and the speed tracking errors |γi − vL| converge asymptotically to 0 as t → ∞.

Proof. Consider the augmented Lyapunov function given by

V2 = V1 + 0.5(ξ⊤ξ + π⊤π) (29)

where ξ = M⊤s, with M being the incident matrix of the graph. The time derivative of (29)
along the solutions of (28) gives

V̇2 ≤ −e⊤γ̇ K1eγ̇ − π⊤K2π −
∑

i∈I

e⊤i Qiei + κ2ix̃
⊤
i x̃i

≤ −e⊤γ̇ K1eγ̇ − π⊤K2π −
∑

i∈I

qmi|ei|
2 + κ2i|x̃i|

2

(30)

where we have used the property that M⊤1 = 0, with 1 = [1]i∈I . Using Barbalat Lemma [7] ,
we conclude that states (eγ̇ , π, ei, x̃i) are bounded and the following limits hold

lim
t→∞

(ei, x̃i)
⊤ = [0i]1×2

lim
t→∞

π = [0i]i∈I (31)

lim
t→∞

eγ̇ = [0i]i∈I

and consequently we have that γ̇i → vri(t) = vL, by construction it is straightforward to see
that µ vanishes as t → ∞, then since π = eγ̇ + K−1

1 (Lγ − µ), therefore Lγ → [0i]i∈I , in another
words |γi − γj | → 0 as t → ∞, which completes the proof.

4 CASE STUDY: FORMATION OF A FLEET OF AUVS

It is realized that multiple autonomous agents can be used to carry out more complicated jobs
for single agent hard to finish. The recent advances in sensing, communication and compu-
tation enable the conduct of cooperative missions. Multiple, highly autonomous systems are
envisioned because they are capable of higher performance, lower cost, better fault tolerance,
reconfigurability and upgradability. So the problem of coordinate control of multi-agents is
emergent, among which the formation control of the multiple autonomous system has been the
hot topic in the areas of distributed system and computer science during the past few years.
As the oil and gas industry moves production to greater depths, the need for more underwater
autonomous control increases. One envisioned task is inspection of underwater pipelines see
Figure. 1. A formation of AUVs can be utilized to construct 3D images of the pipeline or even
take time-synchronized snapshots covering a large spatial area of the seabed This will increase
the probability of discovering abnormalities in a pipeline.

Consider a simplified system consisting of n AUVs, each being described by the following
dynamic equations

ẋi = ui

ẏi = vi

u̇i = τxi − 2ui (32)

v̇i = τyi − 2vi



Figure 1: A formation of two AUVs

where xi, yi and ui, vi are the position and velocity of the i-th AUV in the direction of x and y

axes respectively, τxi and τyi are the control input for each AUV to be designed. Rewrite system
(31) in the form of system (1). Let :

pi =

[

xi

yi

]

, qi =

[

ui

vi

]

, Fi =

[

τxi

τyi

]

(33)

the dynamic equation of each AUV can be described more compactly as follows

ṗi = qi

q̇i = −2qi + Fi (34)

Assume that only position measurement are available so an observer is needed to reconstruct
the velocity states. Proceeding like in section II, we propose an observer for (34) as follows

˙̂pi = q̂i + K1i(pi − p̂i)

˙̂qi = −2q̂i + Fi + K2i(pi − p̂i) (35)

yi = p̂i

Define the observer error x̃i = [pi − p̂i, qi − q̂i]
⊤, then subtracting (35) from (34) yields

x̃i = Aix̃i, Ai =

[

−K1i I

−K2i −2I

]

(36)

The observer error vector x̃i is exponentially staple if and only if K1i and K2i are chosen such
that the matrix Ai is Hurwitz.

We next, propose to coordinate three AUVs to keep a formation pattern that consists of
having them aligned along a common vertical line. To describe the communication between the
AUVs in the formation, we use an undirected graph G = (N , E) (see Figure. 2 for an example
of a communication graph).

Applying the three steps design of the coordinated path following previously detailed in
sections II and III, to system (34) with unmeasured states qi, we obtain the following control
laws

ui = (A2ie2i + 2q̂i + χi + ϕ2ivL − P−1
2i P1ie1i + αdi)

γ̇ = vL + π − K−1
1 Lγ − K−1

1 µ (37)

π̇ = −(K1 + K2)π + Lγ + µ
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Figure 2: A bidirectional communication topology

The resulting ei-dynamics is

ėi = Aiei + ϕieγi
+ Bix̃i

˙̃x = Aix̃i (38)

eγ̇i
= γ̇i − vL

where

Ai =

[

A1i − ε1iP1i I

−P−1
2i P1i A2i − ε2iK2iK

⊤
2iP2i

]

ϕi =

[

ϕ1i

ϕ2i

]

, B =

[

0 I

K2i 0

]

The architecture for the coordinated path-following control system proposed for the fleet of
AUVs is shown in Figure. 3. It consists of three interconnected subsystems: i) The navigation
system uses the position measurements to estimate the unavailable states, and feed this to the
path following controller (PFC). ii) The Path Following Controller PFC a dynamical system
whose inputs are a desired path ydi, a desired speed profile vri = vL that is common to all AUV.
Its output is the AUV’s input ui, computed so as to make it follow the path at the assigned
speed. iii) The Coordinated Path Following Controller CPFC a dynamical system whose inputs
are the generated desired path, speed profile for the AUV the generalized path-variable γj from
the neighboring AUV of the group. Its output is the an updated law for the generalized variable
γi for the actual AUV.

State observer AUV System

Path following

Coordinated

controller

x̃i

ui

+

ydi

vri

γi
γi

γj γi

–

desired

path/speed

PFC

CPFC

Figure 3: Coordinated path-following control system architecture



5 SIMULATION RESULTS

This section contains the results of simulations that illustrate the performance obtained with the
coordinated path following control laws developed in the paper. In the simulations, the AUV
are restricted to communicate on the way specified by the following graph.

Figure 4: Communication topology of three AUV

The Laplacien Matrix for graph of Figure.4 is given by

L =





2 −1 −1
−1 1 0
−1 0 1





which means that AUV 1 is allowed to communicate with AUV 2 and 3, but the last two do not
communicate between themselves directly. It is required that AUVs keep a formation pattern
that consists of having them aligned along a common vertical line. Specifically, the desired paths
are parameterized as xpi = 20 tanh(γi) + ξi and ypi = γi, with ξi∈{1,2,3} ∈ {10m, 0m,−10m} is
the offset between each AUVs trajectories. Figure 5 illustrates the transient behavior of the

−10 0 10 20 30 40 50 60

−10

0

10

20

30

40

50

60

Y [m]

X
 [m

]

Figure 5: In-line formation of 3 AUVs

formation AUVs as they assemble and maintain a vertical line formation. Figure 6-(a) and
Figure 6-(b) show the coordination errors γ1 − γ2, γ1 − γ3 and γ2 − γ3. Figure 7 plots the
exponential convergence of the estimated velocity of a single AUV to its desired value.

6 CONCLUSION

A coordinating output-feedback control design method is proposed for a general class in strict
feedback form. The decentralized solution adopted for coordinating agents does not require the
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Figure 6: Coordination error

concept of a leader and applies to a very general class of paths. The theoretical tools used
for coordinating path following control brought together the backsteping technique and graph
theory. As a case study, a coordination control law for formation of a simplified model of AUVs
has been designed, and simulated to demonstrate and validate the theoretical results.
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Figure 7: Convergence of the estimated state q̂1 to its real value q1
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