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Abstract
In this paper, we present a software platform (SoViN) dedicatedto visual memory management

and vision-based navigation of autonomous vehicles. This software allows to achieve navigation
tasks in large scale environments using natural landmarks.It has especially been designed to pro-
totype visual memory-based strategies. Such approaches have the major advantage that only key
views and related image descriptors are stored. This processis thus expected to be efficient by
means of 1) memory needed to store data and 2) computational cost. These points are crucial
issues for real-time navigation in large scale environment. We will see that SoViN allows to meet
these expectations.
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1 Introduction

Automatic navigation can be seen as a four steps process: 1) map building, 2) localization onto
the map, 3) path planning and 4) control to actually achieve the navigation task. Many works deal
with the problems of fuzzing steps 1) and 2) on a single stage (Simultaneous Localization And
Mapping; SLAM). Briefly, such an approach consists generallyon comparing current sensors data
to the predicted ones and then, to update both the map and the position of the robot. In that aim,
most of the strategies are based on visual sensors or on rangesensors. Unfortunately, even if com-
puters are more and more powerfull, those strategies are restricted to small environments since the
computational cost highly increases with the number of features integrated onto the map.
In this paper, we particularly focus on emerging navigationstrategies using visual sensors only. The
main idea is to represent the mobile robot environment with abounded quantity of images gathered
in a database (visual memory). For example, [10] proposes touse a sequence of images recorded
during a human teleoperated motion, and called View-Sequenced Route Reference. Such a strat-
egy is called “mapless” (refer to [4]). Indeed, any notion ofmap nor topology of the environment
appears, neither to build the reference set of images, nor for the automatic guidance of the mobile
robot. Similar approaches have been proposed for urban vehicles in [17, 5]. The visual memory
can also be topologically organized if images or sequence ofimages are linked to a notion of places
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as in [7]. Finally, such an approach may be enhanced by metricinformation such as the position
of 3D points reconstructed from the images (refer for example to [12]). Current applications of
these approaches are restricted to small scale environments (navigation task along trajectories no
longer than 500 meters) essentially, because of inefficientmemory management. In this paper, we
describe a Software for Visual navigation: SoViN. This software allows easy memory manage-
ment (upload, update, removal), memory visualisation and real-time navigation. This software is
sufficiently generic to allow the prototyping of different visual memory-based navigation methods.
In Section 2, four typical visual navigation strategies which can be implemented using SoViN are
described and Section 3 presents the Software architecture. Experimentation’s carried on with an
urban vehicle are finally presented in Section 4.

2 Visual navigation strategies

The considered vision-based navigation strategies rely ontwo steps. The first step consists on
building off-line the visual memory. The robot is first teleoperated along paths and video sequences
are acquired. Key images are extracted from the video sequences and stored (visual memory). The
second step is realized on-line. First, the robot localizesitself in the visual memory. A visual path
is then extracted from the visual memory in order to reach a desired key image from an initial one.
Finally, control outputs are computed to follow this visualpath. As examples, the different steps
of four approaches which can be implemented using SoViN are described in the sequel: in [7],
a wheel chair navigates in an indoor environment with an embedded omnidirectional camera. In
[12] and in [5], an urban vehicle follows a visual path. While a3D reconstruction of the full path
is computed in [12], only a local reconstruction is used in [5]. In [1, 2], a complete vision-based
navigation framework is proposed for indoor or outdoor environment, with a perspective or with an
omnidirectional camera.

2.1 Off-line memory building

In [12, 5, 2], a perspective camera is embedded onto the urbanvehicle and looks forward while in
[7] an omnidirectional camera pointing to the ceil is employed.

Key images selection In order to reduce the complexity of the images sequences, only key views
are stored and indexed on a visual path. This step is realizedmanually or automatically. In almost
all the recent approaches, points are used as visual features. They are detected and described by
a descriptor which is used to match points of two images. The control law is computed from
matched points between the current imageIc acquired by the embedded camera and the desired
key image to reachIn+1. It is thus necessary to track those points from the key imageIn−1 to the
following key imageIn. In [12, 2], points are detected with the Harris corner detector [8]. The
matching scores between points of those two images are computed with a Zero Normalized Cross
Correlation (ZNCC). This method is illumination invariant andits computational cost is small. A
new key imageIn is selected if: a) there are as many images as possible between In andIn−1, b)
there are at leastN point correspondences betweenIn−1 andIn and c) there are at leastM point
correspondences betweenIn−2 andIn. This criterion ensures that there are common matches at
least in three consecutive views. Finally, a partial 3D reconstruction using the epipolar geometry
is computed with the calibrated 5-point algorithm [11] coupled to RANSAC algorithm [6]. This
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last step allows to keep only robust matchings. In [5], Harris corners are extracted in the key image
In−1 and initialize a modified Kanade-Lucas-Tomasi (KLT) feature tracker [13]. A partial 3D
reconstruction is realized with the 5-point algorithm [11]coupled to MLESAC random sampling
algorithm [16]. A new key image is selected when the number ofmatched points is low or when
the reconstruction error is high. In [7], rotation reduced and color enhanced SIFT features [9] are
extracted in the first image. Those points are tracked with the KLT tracker.

Visual memory organisation The next step consists on organizing the key images. The visual
memory can be organized as a single oriented edge (by analogyto the graph theory) containing the
successive key images or can be composed of multiple edges. In this last case, the visual memory
is organized as a graph, where each edge is defined as a set of ordered images as proposed in [7, 2].
Some suplementaries informations are generally added to the stored images: 2D points robustly
matched between two key images in [5, 2], robust 2D points, related 3D coordinates and camera
poses in [12], 3D position of the visual features in [7].

2.2 On-line navigation

The on-line navigation can be divided on three main steps: initial localization, path-planning and
path following. The localization consists on finding the keyimage of the memory which best fits
the current image acquired by the embedded camera. A visual path (i.e. a succession of key images)
is extracted from the memory in order to link the initial key image to a desired key image. Finally,
the robot is controlled inreal-timealong the visual path.

Initial localization The initial localization is realized manually or automatically. In [5], the user
selects a reference image close to the robot’s current location. For automatic techniques, the initial
localization is obtained by comparing each key image to the current image. This step requires few
seconds but it is only performed once. In [12], this is achieved by matching interest points between
the two images and computing a camera pose with RANSAC. The poseobtained with the higher
number of inliers is considered as a good estimation of the camera pose for the first image. In [3], a
hierarchical localization process is proposed. In a first step, only some key images are selected by
matching the global descriptor of the current image to the global descriptors of every key image.
The computational cost of this step is low. To obtain the initial localization, an approach similar to
[12] is then used, but only for the selected key images. This second step increases the accuracy and
the robustness of the localization process.

Path-building The path building step consists on defining a path allowing the robot to reach a
desired configuration from a current one. It can also consists on finding a set of images linking
the current to the desired images since in the considered approaches the robot configurations are
associated to images. When the visual memory is composed of a single edge, it is then straightfor-
ward to solve this problem. When many edges compose the visualmemory, this step can be done
manually by selecting the edges to follow or automatically by using efficient search algorithm such
as Dijkstra’s algorithm.
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Path following The path following step can be splitted in two main stages: the estimation of the
state of the robot (sometimes calledlocalization) and the computation of the control law. The state
is estimated from the current image, the desired image of thememory and eventually the former
key image when 3 views are employed for 3D reconstruction purposes. In [12], the position and
orientation of the current camera frame is computed in an absolute frame related to the visual path.
The state of the robot is the position of the robot frame with respect to the trajectory the robot has
travelled along during the off-line step. Finally, a control law, adapted to the non-holonomy of the
vehicle is computed from this position. This control law is based on the chained system theory
[15]. In [3], the state is chosen as the scaled displacement between the current camera frame and
the desired camera key frame. A similar control law as the oneproposed [15] is used. In [5], the
state is defined as the error between the centroids of a set of points matched in the current image
and the desired key image. The rotational velocity is then defined as proportional to the error on
centroids. In [7], a homing strategy is used.

2.3 Requirements

To achieve visual memory-based navigation tasks several more or less basic tools are necessary.
First, navigation tasks makes intensive use of image and data processing such as interest points
extraction, matching and tracking. It also employs automatic image selection from video sequences
(importation step) generally based on matching scores. 3D reconstruction algorithm can also be
usefull for robust matching as well as 3D localisation when needed. Those tools are used both in
on-line and off-line stages to select key images and estimate 2D points with their position and their
descriptors, 3D points, camera positions, etc. . . .

To be efficient, one have also to make use of specific tools for organisation and management
of those data. When small environments are considered data can be directly downloaded in RAM
while it is not the case when offline and online steps occur at different time or when the amount of
data is too important. Data have to be stored into a well structured data-base allowing fast reading.
Note that data uploading may occur in real-time during the autonomous navigation. As explained
before, the map is generally a graph of edges where each edge contains successive images acquired
by a camera. 2D points belong to an image and may correspond to3D points if they have been
matched. The design of the database must agree this structure and its access must be sufficiently
fast to allow real-time processing (near the video rate). Finally, for debug purposes as well as to
check and interact in real-time with the navigation processan HMI is necessary. In the sequel, the
software for Visual Navigation (SoViN) developed to fulfillthose requirements is detailled.

3 Overview of SoViN architecture

The architecture of SoViN (Software for Visual Navigation)is summarized in Figure 1. Basi-
cally, it can be decomposed on three parts: a library for database access and management, a library
for processing and an Human Machine Interface. Those three parts are detailled in the sequel.

3.1 Data models

The database is structured using the full-integrated conception technique MERISE. First the Con-
ceptual Data Model (CDM) has been designed in order to define the required entities and their
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FIG. 1: SoViN is composed of three main parts: processing (libSovinProcessing), data storage access library
(libSovinBDD) and Human Machine Interface (SovinHMI).

relations. The physical model of SoViN is then obtained fromthe CDM and used to design the
physical Sovin database. Finally, the object model, integrated to libSovinBDD library, has been
developed to manage this database.

A- Sovin Conceptual Data Model

The CDM represents a conceptual description of the data. Thismodel was designed for SoViN to
fulfill the requirements of most of the vision-based navigation frameworks. In this model, entities
represent structured and organized data for storage in datamanagement systems. Each entity is
identified by a specific attribute called key or ’ID’. The relations link different entities (n-ary rela-
tions orcardinality). This model with the entities, their major attributes and the relations between
entities is presented in Fig. 2 and detailled in the sequel.

A TEST represents a set composed of several EDGEs (cardinality 0,n) or paths. An EDGE
represents a path acquired during a teleoperated step. It can have none or n following EDGEs
(relation “Has for following Edge”). An EDGE contains one orseveral NODEs (cardinality 1,n).
A NODE represents a position of the robot where an image was acquired. The position of a NODE
in an absolute reference frame is not necessary. However, itexists a relation between two successive
positions: a NODE has (or dot not have) a following NODE (relation “Has for following Node”).
Note that an EDGE must be linked at least to one NODE since it starts and finishes in a NODE
(cardinality 1,1). As an example, let us consider an urban environment. A TEST can represent a
district, an EDGE a street or a part of a street. From a street,it is possible to move to different other
streets. In a street, images are acquired at successive NODEs.
Let consider that multiple cameras have been used for a TEST.At a NODE, an image or multiple
images are acquired by the sensors. Several images may be acquired at this NODE but those
images must be acquired by different sensors. This condition is fullfilled by the relation “Contains
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FIG. 2: Conceptual Data Model of Sovin Database

Image Acquired By”. The entity “IMAGE“ has several attributes like positions and orientations
coordinates and contains the image (i.e. the color or black and white picture acquired by the
camera).
An other important element is the image points (2DPOINTS) and the 3D points (3DPOINTS).
Those entities are part of the CDM. Each image can contain 2D points (cardinality 0,n), and each
2D point may be or not the image of a single 3D point (cardinality 0,1).
In this model, the n-ary relations (with their cardinalities) are readable in both directions. For
example, a 3D point exists if and only if a 2D point is the imageof it, but this 3D point may be the
origin of several 2D points (cardinality 1,n).

B- Sovin Physical Data Model

The physical data model (PDM) defines the implementation of the physical structures of the database
(refer to Fig. 3). The PDM has been obtained from the conceptual model.
Each entity of the conceptual model is expressed into a table1 of the physical model and each

attribute is converted into column of the table. An element of an entity is stored as a row of
the corresponding table. As every row must be unique, an unique identifying integer named
key (primary key) is created for each row of the table. The primary keys are integers with the
”AUTO_INCREMENT“ property, allowing that the data management system provides us a unique
key which increases progressively. Of course, primary keyscannot be null. For instance, nodes
are saved in the tableNODE and each node contains a keyIDNODE. The expression of the n-ary
relations depends on the cardinalities. For simple cardinalities, the relationships between tables is
converted into foreign keys (which are keys from other tables). Some n-ary relations impose to
create intermediate physical tables. This is the case when it is possible to have multiple elements
of a table linked to the element of an other table (cardinality (*,n)). For example, a test contains
none or n edges. This condition imposes to create an intermediate entity (table)Contains_Edgein
the physical model of Sovin Database. The elements of the newtable have to contain the key of the
element ofTest (IDTEST) and the key of the element ofEdge(IDEDGE).

1In the sequel of this article, a table is written in bold font.
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FIG. 3: Physical Data Model of Sovin Database

Each table is composed of keys and attributes. Relational database management systems support a
number of data types: numeric types (integer, float, double,boolean ...), date and time types (date,
datetime, time ...), and string types (varchar, text, blob2 ...).
For instance, the2DPOINT table has for attributes (or columns) the keyIDPOINT2D (integer)
but also the elements of a 2D point: the coordinatesU andV (float), the neighbourhood descriptor
DESC (blob) and the key of the imageIDIMAGE the point belongs to. It should be noticed that
table2DPOINT contains the keyIDIMAGE of the tableIMAGE because of the (1,1) cardinality
of theContains 2D Pointrelation.

C- Sovin Database

Once the PDM has been designed, it is necessary to create the database. Later, data will be added,
manipulated and selected. In that aim, SQL (Structured query language) is used. The SQL lan-
guage can be use to specify data definition and to manage data manipulation. SQL scripts have
been generated from the physical model to create the database. Once the database is generated, the
SQL language is used to send requests to the database in orderto insert, select, update or delete
elements of the tables. The selection of data from one or several tables with some search criteria is
realized thanks to the ’SELECT’ statement. This kind of complex requests would be very difficult
to do with simple textual files while the SQL language managedit easily.
A database language standard like SQL is appropriate for alldatabase management system. In
Sovin, the database management system MySql has been chosen. This system natively supports
different storage engines. This is an asset in our case because it is thus possible to choose the more
adapted storage engine for each table in order to optimize its use. As our applications require fast
readings (’SELECT’ queries), MyISAM has been chosen as storage engine for all our tables.

2Blob: binary large object



3rd National Conference on “Control Architectures of Robots” Bourges, May 29-30, 2008

During a selection query, MySQL reads all the lines of the considered table successively, and each
time, make the comparisons necessary to extract the relevant result. The larger the table is, the
more expensive research cost is. To speed up information seeking, it is possible to add indexes on
the keys of the tables. The indexes are used to find more quickly resulting rows from a table given
a specific criteria. It is thus important to create the indexes linked to the selection criteria. When
the research is based on the key, then it is necessary to buildan index on this key.
The SQL script written in List. 1 is executed to create the table 2DPOINT. This script has been
generated from the physical model and indexes have been added. We recover the required pa-
rameters: the primary keyID2DPOINT cannot be null and is increased automatically by the data
management system, the key of the image (IDIMAGE) cannot be null too, thanks to the cardinality
(1,1) of the relation ”Contains 2D Point“ and finally the3DPOINT table keyID3DPOINT can be
null thanks to the cardinality (0,1) of the relation ”Is Image Of“. We chose the type Blob (binary
large object) for the descriptor of a 2D point, which allows us to store an array of M floats. Using
the Blob type gives us more flexibility for the storage of the array, allowing us to save descriptors
with different size. In our experiment a descriptor of size M=121 is used whereas other applica-
tions using for example SIFT descriptors will have to save descriptors with size M=128. A typical
selection process with 2D points is the extraction of all thedata of the points which belongs to a
given image of keyIDIMAGE=1. The SQL query is:
SELECT ID2DPOINT, U, V, DESC FROM 2DPOINT WHERE IDIMAGE=1. In order to
decrease the selection time, an indexi_2dpoint_idimagehas been created onto theIDIMAGE at-
tribute (refer to line 14 of List. 1). This index is used by MySQL for the former query.

Listing 1: SQL script for the creation of the table2DPOINT
1 c r e a t e t a b l e 2DPOINT
2 (
3 ID2DPOINT i n t no t n u l l au to_ inc remen t ,
4 IDIMAGE i n t no t n u l l ,
5 ID3DPOINT i n t ,
6 U f l o a t no t n u l l ,
7 V f l o a t no t n u l l ,
8 DESC blob ,
9 pr imary key ( ID2DPOINT )

10 )
11 t ype = MyISAM;
12

13 c r e a t e index i _ 2 d p o i n t _ i d i m a g e _ i d 3 d p o i n t on 2DPOINT( IDIMAGE , ID3DPOINT ) ;
14 c r e a t e index i _ 2 d p o i n t _ i d i m a g e on 2DPOINT( IDIMAGE ) ;
15 c r e a t e index i _ 2 d p o i n t _ i d 3 d p o i n t on 2DPOINT( ID3DPOINT ) ;

3.2 Database access and management library: LibSovinBDD

The Sovin software is written in C++. The Qt4 Library developed by Trolltech links the C++
code to MySql database. This library is free and has many functionalities to communicate with
databases by using the Database Module. This module offers classes to access databases and send
SQL queries to the database server. Drivers for all major databases like MySql are provided. Qt
has also been chosen because it contains useful tools and classes to build graphical interfaces.
The functionalities of the libSovinBDD are classified in different directories (refer to Fig. 4). The
Databasesdirectory contains classes for low level requests on the tables of the database and access
to the data. TheManagementdirectory contains classes for the high level management ofthe
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database. TheExceptionsdirectory contains the exceptions raised in case of errors while accessing
the database. The properties of connection to the database are contained in a xml file and the
directoryXml contains the classes for the reading of this file.
The directoriesDatabasesandManagementare detailled in the following.

FIG. 4: Directories of LibSovinBDD

Databases : Sovin contains several classes to communicate with the database server. Each table is
processed using two classes. The first class (called xTable where x is the name of the table) contains
the requests which have to be sent to the table. The second class (called xRecord) represents a row
of data (i.e. one element of the table). This class is used to read or modifydata.
For instance, the class Point2DTable contains a method to retrieve all the 2D points (as a vector of
Point2DRecord) of an image knowing its key:

s t a t i c vo id ge tVec to rPo in t2D ( c o n s t i n t idImage , QVector <Point2DRecord > & v ) ;

It is then possible to modify or get data of each Point2DRecordthanks to the functions of this class
as:

c o n s t f l o a t & getU ( ) c o n s t throw ( S o v i n I n v a l i d D a t a E x c e p t io n ) ;
vo id setU ( c o n s t f l o a t v a l u e ) ;
c o n s t i n t & ge t Id Image ( ) c o n s t throw ( S o v i n I n v a l i d D a t a E x ce p t i o n ) ;
vo id s e t I d I m a g e ( c o n s t i n t i d ) ;

Note that the ’Table’ classes are interfaces allowing to send queries to the table. Consequently, this
is not necessary to have several instances of these classes.By design, we have thus chosen to set
all the methods of these classes static. Moreover, with thischoice there is no dynamic allocation,
which saves runtime.

Management : Managing data of Sovin is not a simple task. Each operation ondata must pre-
serve the integrity of the relational model. Several classes were added to carry out this process.
A first process is the data importation (class ’Importation’). It requires low level operations to be
done along a correct order. For instance, when a new image hasto be added to an edge, it is first
necessary to create a node. This node is added to an edge and itis the following node of the previ-
ously imported node. Then, the image is added and is linked tothe node and to a sensor.
A second process is the deletion of data (class ’Suppressions’). This is a complex task: it requires
several low level operations described in ’Databases’ directory (functionsdelete in the classes
xTable) as well as a more complex process in order to keep the structure valid. In that aim, spe-
cific functions have been designed in a class Suppressions for deleting each element while keeping
a valid structure. As an example, the deletion of an image implies many changes in the struc-
ture (refer to List. 2). The image must be deleted from the table Image. It has to be deleted in
the tableContains Image Acquired By too. Then, the 2D points associated to this image must
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be deleted (cardinality (1,1) of relation Contains2DPoint). This suppression process needs func-
tions of the Databases directory to retrieve elements of thetable with the classes Point2DTable and
Point3DTable, to get data of those elements with the class Point2DRecord. The classes xTable
are also used to delete the element given by its id in the table(deletePoint3D, deletePoint2D). Of
course, when removing a 2D point, the linked 3D point - if it exists - has to be removed if and only
if this 3D point is not associated with another 2D point (refer to List. 3 for the deletion of a 2D
point).
Some very useful functionalities needed by the experimentshave been added. The ’Building’ class

Listing 2: Suppression of an image (and structure update)
1 vo id S u p p r e s s i o n s : : d e l e t e I mag e I n Dep th ( c o n s t i n t & id Image )
2 {
3 / / s e a r c h 2D p o i n t s key l i n k e d t o t h e image
4 QVector < i n t > vec IdPo in t2D ;
5 ImageTable : : g e t V e c t o r I d P o i n t 2 D ( idImage , vec IdPo in t2D) ;

7 / / d e l e t e a l l t h e 2D p o i n t s w i th ’ de le tePo in t2D InDep th ’ method
8 f o r ( i n t i =0; i < vec IdPo in t2D . s i z e ( ) ; i ++)
9 d e l e t e P o i n t 2 D I n D e p t h ( vec IdPo in t2D [ i ] ) ;

11 / / d e l e t e t h e Image c o n t a i n e d i n ’ Con ta i ns Image Acqu i red By’ t a b l e
12 / / use o f low l e v e l method of c l a s s ’ ImageTable ’ i n ’ Databases ’ d i r e c t o r y
13 ImageTable : : de le te ImageAcqu i redBy ( id Image ) ;

15 / / d e l e t e t h e image
16 / / use o f low l e v e l method of c l a s s ’ ImageTable ’ i n ’ Databases ’ d i r e c t o r y
17 ImageTable : : d e l e t e I m a g e ( id Image ) ;
18 }

Listing 3: Suppression of a 2D point (and structure update)
1 vo id S u p p r e s s i o n s : : d e l e t e P o i n t 2 D I n D e p t h ( c o n s t i n t & i d Po i n t 2 d )
2 {
3 / / s e a r c h 2D p o i n t by t h e key i d P o i n t 2 d
4 Point2DRecord p o i n t 2 d ;
5 Poin t2DTab le : : ge tPo in t2DRecord ( i dPo in t2d , p o i n t 2 d ) ;

7 / / i f 2D p o i n t i s l i n k e d t o a 3D p o i n t
8 i f ( p o i n t 2 d . has IdPo in t3D ( ) )
9 {

10 / / g e t t h e key o f t h i s 3D p o i n t
11 i n t i dPo in t3D = p o i n t 2 d . g e t I d Po in t3 D ( ) ;

13 / / i f t h i s 3D p o i n t i s no t a s s o c i a t e d wi th a n o t h e r 2D p o i n t
14 i f ( Po in t3DTab le : : getNbPoint2D_HavingPoint3D ( idPo in t3D )==1)
15 {
16 / / d e l e t e t h e 3D p o i n t
17 Poin t3DTab le : : d e l e t e P o i n t 3 D ( idPo in t3D ) ;
18 }
19 }

21 / / d e t e t e t h e 2D p o i n t
22 Poin t2DTab le : : d e l e t e P o i n t 2 D ( i d P o i n t 2 d ) ;

24 }

is dedicated to these operations. For example, a function removes nodes at the start or the end of
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FIG. 5: Directories of LibSovinProcessing

an edge. Sometimes, it is required to cut an edge at a specific node to make a crossroad or to start
a new edge at this node. In that aim, a function cuts an edge into two edges.

3.3 LibSovin Processing

Processing are composed of three main parts (refer to Fig. 5). The first one contains usefull classes:
MathUtils (for processing functionalities) and DataConversion (for conversion of data between
Qt+libSovinBDD objects and low level visual processing objects). The second one directory classes
for the processing Importate and Localize. Finally, the third one contains the classes used during
the on-line navigation step such as the visual path buildingand the visual path following processes.

The computation of the number of 2D points matchings betweenan image of the database and
a current image (refer to List. 4) is a typical example of processing function. It contains low-level
functions to access the database, image processing function (from the visual processing library),
data conversion functions and processing functions developed in LibSovinProcessing in order to
manipulate the LibSovinBDD objects.

Listing 4: Matching of a current image to an image of the database
1 i n t getNbMatch ingsBetweenImages ( c o n s t i n t idMemImage , MCharImage Cur ren t Image )
2 H a r r i s D e t e c t o r D e t e c t o r ;
3 vec to r < po in t s2d > vecPo in ts2D ;
4 QVector <Point2DRecord > v ecC u r r en t2 DPo in t s ;
5 QVector <Point2DRecord > vecKey2DPoints ;
6

7 / / D e t e c t e p o i n t s i n t h e c u r r e n t image
8 D e t e c t o r . D e t e c t ( Cur rent Image , vecPo in ts2D ) ;
9 / / Conver t i n t o LibSovinBDD o b j e c t

10 DataConvers ion : : conver t2DPoin tsToVecPoin t2DRec ( vecPoin ts2D , v ecC u r r en t2 DPo in t s ) ;
11

12 / / l oad t h e p o i n t s o f t h e image of t h e memory
13 ImageTable : : Load2DPointsFromIdImage ( idMemImage , vecKey2DPoints ) ;
14

15 / / l aunch t h e p o i n t s match ing p r o c e s s
16 i n t nb_match ing=Match ( vecCur ren t2DPo in ts ,
17 vecKey2DPoints ) ;

3.4 Human Machine Interface

A module for visualisation and high level actions control (HMI) has also been developed. It consists
on a main window which is a MDI (Multiple Document Interface). The selection of the objects to
visualize has been constrained in order to follow the structure of our model. It allows the graphical
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FIG. 6: Overview of the Human Machine Interface of Sovin

management (update, delete ...) and representation of the database content (low level actions) as
well as high level actions such as the localization of a givenimage in the images of the database.
The design of the graphical part of this module has been facilitated by the use of the Qt library. The
module uses the functionalities developed in the LibSovinBDD and LibSovinProcessing libraries.
The main utility is the visualization of the information contained in the database (refer to Fig.
6). The HMI also allows the visualisation of a Test as a graph dynamically generated (using the
GraphViz library). This graph represents the edges of a Teststored in Sovin database and a node of
this graph represents an intersection between two edges (extracted from the tableHas for following
edge) (refer to Fig. 7). It also allows to easily check the featuredetection and feature matchings
algorithms results and to modify the database contents (forinstance edge cutting (refer to Fig. 8)).

4 Experimentations

Our experimental vehicle is an urban electric car, named RobuCab, manufactured by Robosoft
Company. It is depicted on Figure 9. Currently, RobuCab serves asdevelopment products in
several French laboratories. The 4 DC motors are powered by lead-acid batteries, providing 2
hours autonomy. Vision and guidance algorithms are implemented inC++ language on a laptop
using RTAI-Linux OS with a 2GHz Centrino Duo processor. The Fujinon fisheye lens, mounted
onto a Marlin F131B camera, has a field-of-view of185 deg and has been calibrated. The image
resolution in the experiments was800 × 600 pixels. The camera, looking forward, is situated at
approximately 80cm from the ground. The parameters of the rigid transformation between the
camera and the robot control frames are roughly estimated. Grey level images are acquired at a
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FIG. 7: Part of the graph representing the visual memory of a test of SoViN

FIG. 8: Importing data and cutting edge windows

rate of 15fps. Communications between the embedded PC, the low-level computer which controls
the RobuCab and its sensors are performed using the real-time architecture Aroccam [14]. The
RobuCab was manually driven along several paths onto our universitary campus.

4.1 Map building

The images acquired along all paths have been first stored. For each of the selected paths, an
importation step is performed. This step consists on building an edge, selecting the key images,
extracting the 500 relevant image points of each key image and robustly matching two successive
images points. The data are stored into the database. Some information about the entire database
are detailled in Tab. 1 with the number of data and the memory size onto the disk for some of the
main tables. This database contains 3.2×106 data, which results to an amount of 4 255 MB onto
the disk. The tableIMAGE represents 65% of the entire memory size and the table2DPOINT
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FIG. 9: RobuCab vehicle with the embedded camera.

34%.

Table Number of data Memory Size
EDGE 84 2 900 B
NODE 6 067 53 KB
IMAGE 6 067 2 777 MB

2DPOINT 3×106 1 473 MB
3DPOINT 230 300 3.7 MB

Table 1: Database contents during the autonomous navigation.

4.2 Visual localization

The vehicle is assumed to be on a known edge. It can be given by the user or by an external sensor
such as a GPS. Firstly, the application requires the extraction of the keys of all images, acquired by
a given camera, which belong to this edge. For convenience, the images are ordered with respect
to the positions of the nodes along the path. Secondly, the localization is a local strategy which
requires the loading of the 2D points of the key images. During the importation step, for each
key image, 500 2D points have been stored with their descriptors. For each key image, the 500
points are loaded and matched to the current points. The key image with the smallest distance is
considered as the current localization in the visual memory. The mean time to load the points of an
image is 19 ms by image (mean obtained by loading the points for all images of all edges).
Finally, the full localization process takes approximately 35 ms by key image of the edge.
Note that the time to load a grey-level image of size 800x600 pixels from the database (time to
execute the request and to transform it in an image object) takes 16 ms.
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4.3 Autonomous navigation

4.3.1 Localization step

The autonomous navigation begins at Start position (refer to Fig. 10). The current image is grabbed
(Fig. 11 (a)) and the localization process starts. After 7 seconds, the image is localized into the
first edge (Fig. 11 (b)). 337 points are matched. Note that between these two images, illumination
conditions have changed as well as the contents (for example, cars disappear, and some objects are
different).
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N1

N2

N3

N4

N6

N5

N7

G

START

END
100m

FIG. 10: Some paths of the campus (used in the experimentation) with the memorized trajectories. Edges
are represented with their extremity nodes. Images acquired in those nodesare also drawn.

(a) (b)

FIG. 11: Left image: current image acquired at Start position. Right image: nearest key image into the edge.

The autonomous navigation consists on following the pathΨ = C⊕D⊕E⊕F
′1⊕F

′2⊕G
′1⊕

G
′2. Edges with a prime denote edges taken during other days thanthe first paths. The nodesN5

andN6 (refer to Fig. 10) are linked by the edgeF but also by the succession ofF
′1 andF

′2 and
the nodesN6 andN7 are linked by the edgeG but also by the succession ofG

′1 andG
′2. This path

contains 7 edges and 396 key images. The total length of the path is more than 400 m (obtained by
odometric measures).
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4.3.2 Autonomous navigation

The speed of the vehicle is set to 0.8 m/s. Grey level images, of size 800x600, are acquired at
15fps. At each frame, points are extracted and matched with the desired key image. Robust match-
ing allows us to keep only the valid matchings. From these matchings, the epipolar geometry is
computed and the lateral errory and the angular errorθ are estimated. The control law is computed
and sent to the RobuCab controller. The average computation time is 70 ms for each current im-
age. This time also includes data loading related to the new desired key image when the former
is reached. Our vehicle successfully follows the visual path. The errors in the images (the mean
of the distances between the matched points) decrease to zero until reaching a key image (refer to
Fig. 12). In the figures small crosses denote that a new key image is reached, diamonds that a
new edge begins. Some reached images (with the corresponding key images of the memory) are
shown in Fig. 14. Note that illumination conditions have changed between the memorization and
the autonomous steps as well as the contents but the vision-based navigation strategy succeeds. The
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FIG. 12: Errors in the images versus time (s).

lateral and angular errors are also well regulated to zero (refer to Fig. 13).
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FIG. 13: Angular and lateral errors and control input versus time (s).

5 Conclusion

In this paper, a software for autonomous navigation has beenpresented. The software platform
(SoVin) is more particularly dedicated to visual memory management and vision-based navigation.
It allows to achieve navigation tasks in large scale environments using natural landmarks. Prelimi-
nary experiments obtained with SoViN have shown promising results. Future works will be devoted
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FIG. 14: Some of the current imagesIr

k
where the key imagesIk have been reached (k is the key of the

image in the database).

to intensively experiments the software in various configurations and using different vision-based
navigation strategies as the one proposed in [12].
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