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Abstract

In this paper, we present a software platform (SoViN) dedicaiedsual memory management
and vision-based navigation of autonomous vehicles. Tdftsvare allows to achieve navigation
tasks in large scale environments using natural landmaltdsas especially been designed to pro-
totype visual memory-based strategies. Such approachestha major advantage that only key
views and related image descriptors are stored. This protefisus expected to be efficient by
means of 1) memory needed to store data and 2) computatiosal @hese points are crucial
issues for real-time navigation in large scale environmefe will see that SoViN allows to meet
these expectations.
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1 Introduction

Automatic navigation can be seen as a four steps processad pmiding, 2) localization onto
the map, 3) path planning and 4) control to actually achibeentavigation task. Many works deal
with the problems of fuzzing steps 1) and 2) on a single st&yayltaneous Localization And
Mapping; SLAM). Briefly, such an approach consists genei@ilzomparing current sensors data
to the predicted ones and then, to update both the map anasiteop of the robot. In that aim,
most of the strategies are based on visual sensors or onsangers. Unfortunately, even if com-
puters are more and more powerfull, those strategies arected to small environments since the
computational cost highly increases with the number ofuiest integrated onto the map.

In this paper, we particularly focus on emerging navigasivategies using visual sensors only. The
main idea is to represent the mobile robot environment wiitbunded quantity of images gathered
in a database (visual memory). For example, [10] proposeséa sequence of images recorded
during a human teleoperated motion, and called View-SerpeeRoute Reference. Such a strat-
egy is called “mapless” (refer to [4]). Indeed, any notiom@dp nor topology of the environment
appears, neither to build the reference set of images, méhéoautomatic guidance of the mobile
robot. Similar approaches have been proposed for urbawcleshin [17, 5]. The visual memory
can also be topologically organized if images or sequenceages are linked to a notion of places
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as in [7]. Finally, such an approach may be enhanced by mafaomation such as the position
of 3D points reconstructed from the images (refer for exampl[12]). Current applications of
these approaches are restricted to small scale envirosr(reatigation task along trajectories no
longer than 500 meters) essentially, because of inefficr@mhory management. In this paper, we
describe a Software for Visual navigation: SoViN. This s@ite allows easy memory manage-
ment (upload, update, removal), memory visualisation &ad-time navigation. This software is
sufficiently generic to allow the prototyping of differerisual memory-based navigation methods.
In Section 2, four typical visual navigation strategies ethcan be implemented using SoViN are
described and Section 3 presents the Software architedExggerimentation’s carried on with an
urban vehicle are finally presented in Section 4.

2 Visual navigation strategies

The considered vision-based navigation strategies retyvorsteps. The first step consists on
building off-line the visual memory. The robot is first tepewated along paths and video sequences
are acquired. Key images are extracted from the video segsemnd stored (visual memory). The
second step is realized on-line. First, the robot localizedf in the visual memory. A visual path
is then extracted from the visual memory in order to reachsirel@ key image from an initial one.
Finally, control outputs are computed to follow this vispath. As examples, the different steps
of four approaches which can be implemented using SoViN aseribed in the sequel: in [7],
a wheel chair navigates in an indoor environment with an eldée omnidirectional camera. In
[12] and in [5], an urban vehicle follows a visual path. Whil&8[@& reconstruction of the full path
is computed in [12], only a local reconstruction is used ij |8 [1, 2], a complete vision-based
navigation framework is proposed for indoor or outdoor emvinent, with a perspective or with an
omnidirectional camera.

2.1 Off-line memory building

In[12, 5, 2], a perspective camera is embedded onto the wddainle and looks forward while in
[7] an omnidirectional camera pointing to the ceil is emgdy

Key images selection In order to reduce the complexity of the images sequencésken views

are stored and indexed on a visual path. This step is reaieeulially or automatically. In almost

all the recent approaches, points are used as visual featlileey are detected and described by
a descriptor which is used to match points of two images. Tdwrol law is computed from
matched points between the current imdgecquired by the embedded camera and the desired
key image to reaclf,, ;. It is thus necessary to track those points from the key infage to the
following key imageZ,,. In [12, 2], points are detected with the Harris corner detef8]. The
matching scores between points of those two images are dechputh a Zero Normalized Cross
Correlation (ZNCC). This method is illumination invariant ait&lcomputational cost is small. A
new key imageZ, is selected if: a) there are as many images as possible beflyendZ,, i, b)
there are at leasVy point correspondences betwegén ; andZ,, and c) there are at leadf point
correspondences betwe&pn , andZ,. This criterion ensures that there are common matches at
least in three consecutive views. Finally, a partial 3D restauction using the epipolar geometry
is computed with the calibrated 5-point algorithm [11] clagpto RANSAC algorithm [6]. This
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last step allows to keep only robust matchings. In [5], Hacdrners are extracted in the key image
7,1 and initialize a modified Kanade-Lucas-Tomasi (KLT) feattwracker [13]. A partial 3D
reconstruction is realized with the 5-point algorithm [tbupled to MLESAC random sampling
algorithm [16]. A new key image is selected when the numbenafched points is low or when
the reconstruction error is high. In [7], rotation reduced aolor enhanced SIFT features [9] are
extracted in the firstimage. Those points are tracked weh<thr tracker.

Visual memory organisation The next step consists on organizing the key images. Thalvisu
memory can be organized as a single oriented edge (by an@dkg graph theory) containing the

successive key images or can be composed of multiple edgé#sisllast case, the visual memory
is organized as a graph, where each edge is defined as a séémfcdimages as proposed in [7, 2].
Some suplementaries informations are generally addedetsttited images: 2D points robustly

matched between two key images in [5, 2], robust 2D pointajed 3D coordinates and camera
poses in [12], 3D position of the visual features in [7].

2.2 On-line navigation

The on-line navigation can be divided on three main stepsalitocalization, path-planning and

path following. The localization consists on finding the keyage of the memory which best fits
the currentimage acquired by the embedded camera. A viatlaje. a succession of key images)
is extracted from the memory in order to link the initial keyage to a desired key image. Finally,
the robot is controlled imeal-timealong the visual path.

Initial localization  The initial localization is realized manually or automatly. In [5], the user
selects a reference image close to the robot’s currentitwcator automatic techniques, the initial
localization is obtained by comparing each key image to thieeat image. This step requires few
seconds but it is only performed once. In [12], this is achieley matching interest points between
the two images and computing a camera pose with RANSAC. Theglaaeed with the higher
number of inliers is considered as a good estimation of theeca pose for the firstimage. In [3], a
hierarchical localization process is proposed. In a fiegb,sbnly some key images are selected by
matching the global descriptor of the current image to tluball descriptors of every key image.
The computational cost of this step is low. To obtain thaahlbcalization, an approach similar to
[12] is then used, but only for the selected key images. Tétssd step increases the accuracy and
the robustness of the localization process.

Path-building The path building step consists on defining a path allowimgrtdbot to reach a
desired configuration from a current one. It can also cosigistfinding a set of images linking
the current to the desired images since in the considerethagipes the robot configurations are
associated to images. When the visual memory is composedrmajla edge, it is then straightfor-
ward to solve this problem. When many edges compose the visemlory, this step can be done
manually by selecting the edges to follow or automaticaylyibing efficient search algorithm such
as Dijkstra’s algorithm.
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Path following The path following step can be splitted in two main stages:ettimation of the
state of the robot (sometimes calledalizatior) and the computation of the control law. The state
Is estimated from the current image, the desired image ofm@ory and eventually the former
key image when 3 views are employed for 3D reconstructiopqses. In [12], the position and
orientation of the current camera frame is computed in anlatessframe related to the visual path.
The state of the robot is the position of the robot frame watpect to the trajectory the robot has
travelled along during the off-line step. Finally, a cohtea, adapted to the non-holonomy of the
vehicle is computed from this position. This control law &sbd on the chained system theory
[15]. In [3], the state is chosen as the scaled displacensmtden the current camera frame and
the desired camera key frame. A similar control law as thepyoposed [15] is used. In [5], the
state is defined as the error between the centroids of a seirdEpnatched in the current image
and the desired key image. The rotational velocity is théindd as proportional to the error on
centroids. In [7], a homing strategy is used.

2.3 Requirements

To achieve visual memory-based navigation tasks severed moless basic tools are necessary.
First, navigation tasks makes intensive use of image aral glaicessing such as interest points
extraction, matching and tracking. It also employs autacnatage selection from video sequences
(importation step) generally based on matching scores. eéebnstruction algorithm can also be
usefull for robust matching as well as 3D localisation wheeded. Those tools are used both in
on-line and off-line stages to select key images and esti@2atpoints with their position and their
descriptors, 3D points, camera positions,.etc

To be efficient, one have also to make use of specific toolsgairosation and management
of those data. When small environments are considered datbecdirectly downloaded in RAM
while it is not the case when offline and online steps occuifirdnt time or when the amount of
data is too important. Data have to be stored into a well 8irad data-base allowing fast reading.
Note that data uploading may occur in real-time during themamous navigation. As explained
before, the map is generally a graph of edges where each edgeres successive images acquired
by a camera. 2D points belong to an image and may correspoBD fwints if they have been
matched. The design of the database must agree this s&wtdrits access must be sufficiently
fast to allow real-time processing (near the video ratehaly, for debug purposes as well as to
check and interact in real-time with the navigation processiMI is necessary. In the sequel, the
software for Visual Navigation (SoViN) developed to fultiiose requirements is detailled.

3 Overview of SoViN architecture

The architecture of SoViN (Software for Visual Navigatios)summarized in Figure 1. Basi-
cally, it can be decomposed on three parts: a library fortdest@a access and management, a library
for processing and an Human Machine Interface. Those tlads are detailled in the sequel.

3.1 Data models

The database is structured using the full-integrated quiwetechnique MERISE. First the Con-
ceptual Data Model (CDM) has been designed in order to defiaedquired entities and their
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FIG. 1: SoViN is composed of three main parts: processing (libSovinBsotg), data storage access library
(libSovinBDD) and Human Machine Interface (SovinHMI).

relations. The physical model of SoVIN is then obtained frili CDM and used to design the
physical Sovin database. Finally, the object model, irstesgt to libSovinBDD library, has been
developed to manage this database.

A- Sovin Conceptual Data Model

The CDM represents a conceptual description of the data. mibdel was designed for SoViN to
fulfill the requirements of most of the vision-based navigaframeworks. In this model, entities
represent structured and organized data for storage inndat@gement systems. Each entity is
identified by a specific attribute called key or ’ID’. The rédms link different entities (n-ary rela-
tions orcardinality). This model with the entities, their major attributes ahd telations between
entities is presented in Fig. 2 and detailled in the sequel.

A TEST represents a set composed of several EDGEs (catgliGah) or paths. An EDGE
represents a path acquired during a teleoperated step.n lhaa none or n following EDGEs
(relation “Has for following Edge”). An EDGE contains one several NODEs (cardinality 1,n).
A NODE represents a position of the robot where an image wagsiiax. The position of a NODE
in an absolute reference frame is not necessary. Howeegists a relation between two successive
positions: a NODE has (or dot not have) a following NODE (tiela“Has for following Node”).
Note that an EDGE must be linked at least to one NODE sinceiitssand finishes in a NODE
(cardinality 1,1). As an example, let us consider an urbasr@mment. A TEST can represent a
district, an EDGE a street or a part of a street. From a siitegpossible to move to different other
streets. In a street, images are acquired at successive BIODE
Let consider that multiple cameras have been used for a TRESTNODE, an image or multiple
images are acquired by the sensors. Several images may beegcqt this NODE but those
images must be acquired by different sensors. This comdgifullfilled by the relation “Contains
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FIG. 2: Conceptual Data Model of Sovin Database

Image Acquired By”. The entity “IMAGE" has several attribatike positions and orientations
coordinates and contains the image.( the color or black and white picture acquired by the
camera).

An other important element is the image points (2DPOINTS) #re 3D points (3DPOINTS).
Those entities are part of the CDM. Each image can contain 2mgp(cardinality 0,n), and each
2D point may be or not the image of a single 3D point (cardip&ljl1).

In this model, the n-ary relations (with their cardinakjeare readable in both directions. For
example, a 3D point exists if and only if a 2D point is the ima§ié, but this 3D point may be the
origin of several 2D points (cardinality 1,n).

B- Sovin Physical Data Model

The physical data model (PDM) defines the implementatioheptysical structures of the database
(refer to Fig. 3). The PDM has been obtained from the conetpbodel.

Each entity of the conceptual model is expressed into a fabfehe physical model and each
attribute is converted into column of the table. An elemeham entity is stored as a row of
the corresponding table. As every row must be unique, anuenidentifying integer named
key (primary key) is created for each row of the table. Thenariy keys are integers with the
"AUTO_INCREMENT" property, allowing that the data managerngystem provides us a unique
key which increases progressively. Of course, primary keysiot be null. For instance, nodes
are saved in the tabODE and each node contains a KelPNODE. The expression of the n-ary
relations depends on the cardinalities. For simple calities the relationships between tables is
converted into foreign keys (which are keys from other tapléSome n-ary relations impose to
create intermediate physical tables. This is the case whsipossible to have multiple elements
of a table linked to the element of an other table (cardipdtin)). For example, a test contains
none or n edges. This condition imposes to create an inteatesehtity (table)Contains_Edgein
the physical model of Sovin Database. The elements of thaailge have to contain the key of the
element ofTest (I DTEST) and the key of the element &idge (I DEDGE).

lIn the sequel of this article, a table is written in bold font.
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FIG. 3: Physical Data Model of Sovin Database

Each table is composed of keys and attributes. Relationabdaé management systems support a
number of data types: numeric types (integer, float, doudalelean ...), date and time types (date,
datetime, time ...), and string types (varchar, text, blok.

For instance, th@DPOINT table has for attributes (or columns) the KepPO NT2D (integer)

but also the elements of a 2D point: the coordindtesdV (float), the neighbourhood descriptor
DESC (blob) and the key of the imageDl MAGE the point belongs to. It should be noticed that
table2DPOINT contains the key DI MAGE of the tablelMAGE because of the (1,1) cardinality
of the Contains 2D Pointrelation.

C- Sovin Database

Once the PDM has been designed, it is necessary to creatatditzade. Later, data will be added,
manipulated and selected. In that aim, SQL (Structuredyglagguage) is used. The SQL lan-
guage can be use to specify data definition and to manage detiputation. SQL scripts have
been generated from the physical model to create the dataBase the database is generated, the
SQL language is used to send requests to the database int@rdsert, select, update or delete
elements of the tables. The selection of data from one oraleabdles with some search criteria is
realized thanks to the 'SELECT’ statement. This kind of campkquests would be very difficult
to do with simple textual files while the SQL language managedsily.

A database language standard like SQL is appropriate fataaflbase management system. In
Sovin, the database management system MySql has been chidsersystem natively supports
different storage engines. This is an asset in our case bedas thus possible to choose the more
adapted storage engine for each table in order to optinsagse. As our applications require fast
readings ('SELECT’ queries), MylISAM has been chosen as geoeagine for all our tables.

2Blob: binary large object
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During a selection query, MySQL reads all the lines of thestdered table successively, and each
time, make the comparisons necessary to extract the relessumit. The larger the table is, the
more expensive research cost is. To speed up informatidinggé is possible to add indexes on
the keys of the tables. The indexes are used to find more guiekllting rows from a table given
a specific criteria. It is thus important to create the inddxgked to the selection criteria. When
the research is based on the key, then it is necessary todmuittiex on this key.

The SQL script written in List. 1 is executed to create thég@DPOINT. This script has been
generated from the physical model and indexes have beerdadlle recover the required pa-
rameters: the primary keyD2DPO NT cannot be null and is increased automatically by the data
management system, the key of the imagel (MAGE) cannot be null too, thanks to the cardinality
(1,1) of the relation "Contains 2D Point* and finally tB®POINT table keyl D3DPQO NT can be
null thanks to the cardinality (0,1) of the relation "Is Inea@f“. We chose the type Blob (binary
large object) for the descriptor of a 2D point, which allovgsta store an array of M floats. Using
the Blob type gives us more flexibility for the storage of theagrallowing us to save descriptors
with different size. In our experiment a descriptor of size1 is used whereas other applica-
tions using for example SIFT descriptors will have to sav&cdptors with size M=128. A typical
selection process with 2D points is the extraction of alldaéa of the points which belongs to a
given image of key DI MAGE=1. The SQL query is:

SELECT | D2DPO NT, U, V, DESC FROM 2DPO NT WHERE | DI MAGE=1. In order to
decrease the selection time, an indeXdpoint_idimageéhas been created onto th® MAGE at-
tribute (refer to line 14 of List. 1). This index is used by MYE for the former query.

Listing 1: SQL script for the creation of the tal2®POINT

create table 2DPOINT

1

2

3 ID2DPOINT int not null auto_increment,
4 IDIMAGE int not null,

5 ID3DPOINT int,

6 U float not null,

7 \ float not null,

8 DESC blob ,

©

primary key (ID2DPOINT)

)
type = MyISAM;

P
w N P O

create index i_2dpoint_idimage_id3dpoint on 2DPOINT(MAIGE, ID3DPOINT);
create index i_2dpoint_idimage on 2DPOINT(IDIMAGE);
create index i_2dpoint_id3dpoint on 2DPOINT(ID3DPOINT);

B
(IS

3.2 Database access and management library: LibSovinBDD

The Sovin software is written in C++. The Qt4 Library develdd®y Trolltech links the C++
code to MySql database. This library is free and has manytifumadities to communicate with
databases by using the Database Module. This module oftesses to access databases and send
SQL queries to the database server. Drivers for all majalieses like MySql are provided. Qt
has also been chosen because it contains useful tools asesl® build graphical interfaces.

The functionalities of the libSovinBDD are classified in difént directories (refer to Fig. 4). The
Databaseglirectory contains classes for low level requests on thiesadf the database and access
to the data. TheManagementirectory contains classes for the high level managememhef
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database. ThExceptionglirectory contains the exceptions raised in case of errbiewsccessing
the database. The properties of connection to the datalassoatained in a xml file and the
directoryXml contains the classes for the reading of this file.

The directoriePatabaseandManagemenare detailled in the following.

D
LibSovinBDD

1 1 —\4 1

<<Databases>> <<Management>> <<Exceptions>> <<Xml>>

FIG. 4: Directories of LibSovinBDD

Databases: Sovin contains several classes to communicate with thédsg¢sserver. Each table is
processed using two classes. The first class (called xTdi#eax is the name of the table) contains
the requests which have to be sent to the table. The secosxl(cllled xRecord) represents a row
of data (.e. one element of the table). This class is used to read or mddify.
For instance, the class Point2DTable contains a methodrteve all the 2D points (as a vector of
Point2DRecord) of an image knowing its key:

static void getVectorPoint2D (const int idlmage, QVect#eaint2DRecord> & v);

It is then possible to modify or get data of each Point2DRetwadks to the functions of this class
as:

const float & getU() const throw(SovininvalidDataExcepti);

void setU(const float value);

const int & getldimage () const throw(SovininvalidDataEgtion);

void setldlmage(const int id);
Note that the 'Table’ classes are interfaces allowing tasgreries to the table. Consequently, this
IS not necessary to have several instances of these cld&ge®esign, we have thus chosen to set
all the methods of these classes static. Moreover, withctiniéce there is no dynamic allocation,

which saves runtime.

Management : Managing data of Sovin is not a simple task. Each operatiodata must pre-
serve the integrity of the relational model. Several clasgere added to carry out this process.

A first process is the data importation (class 'Importatjorit requires low level operations to be
done along a correct order. For instance, when a new imag iesadded to an edge, it is first
necessary to create a node. This node is added to an edgestieifollowing node of the previ-
ously imported node. Then, the image is added and is linkélaetoode and to a sensor.

A second process is the deletion of data (class 'Suppressidrhis is a complex task: it requires
several low level operations described in 'Databasestcthrg (functionsdel et e in the classes
xTable) as well as a more complex process in order to keeptithetgre valid. In that aim, spe-
cific functions have been designed in a class Suppressiodgligting each element while keeping
a valid structure. As an example, the deletion of an imagdi@spnany changes in the struc-
ture (refer to List. 2). The image must be deleted from théetbhage. It has to be deleted in
the tableContains Image Acquired Bytoo. Then, the 2D points associated to this image must
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be deleted (cardinality (1,1) of relation Contains2DPointhis suppression process needs func-
tions of the Databases directory to retrieve elements dfahie with the classes Point2DTable and
Point3DTable, to get data of those elements with the clagstHoRecord. The classes xTable
are also used to delete the element given by its id in the (a@eletePoint3D, deletePoint2D). Of
course, when removing a 2D point, the linked 3D point - if its¢X - has to be removed if and only
if this 3D point is not associated with another 2D point (refeList. 3 for the deletion of a 2D
point).

Some very useful functionalities needed by the experintemte been added. The 'Building’ class

Listing 2: Suppression of an image (and structure update)

1 void Suppressions::deletelmagelnDepth(const int & idoed
2
3 /| search 2D points key linked to the image
4 QVector<int> vecldPoint2D;
5 ImageTable:: getVectorldPoint2D (idlmage , vecldPointp,D
7 /I delete all the 2D points with 'deletePoint2DInDepth’ nhed
8 for(int i=0;i<vecldPoint2D.size ();i++)
9 deletePoint2DInDepth (vecldPoint2D[i]);
11 /I delete the Image contained in 'Contains Image Acquired Bable
12 /I use of low level method of class ’'ImageTable’ in 'Databasedirectory
13 ImageTable :: deletelmageAcquiredBy (idimage);
15 /I delete the image
16 /I use of low level method of class ’'ImageTable’ in 'Databasedirectory
17 ImageTable:: deletelmage (idimage);
18 }
Listing 3: Suppression of a 2D point (and structure update)
1 void Suppressions::deletePoint2DInDepth(const int & odRt2d)
2 {
3 /I search 2D point by the key idPoint2d
4 Point2DRecord point2d;
5 Point2DTable :: getPoint2DRecord (idPoint2d , point2d);
7 // if 2D point is linked to a 3D point
8 if (point2d . hasldPoint3D ())
9
10 Il get the key of this 3D point
11 int idPoint3D=point2d.getldPoint3D ();
13 /1 if this 3D point is not associated with another 2D point
14 if (Point3DTable :: getNbPoint2D_HavingPoint3D (idPoBI)==1)
15 {
16 /Il delete the 3D point
17 Point3DTable :: deletePoint3D (idPoint3D);
18 }
19 }
21 /I detete the 2D point
22 Point2DTable :: deletePoint2D (idPoint2d);
24 }

is dedicated to these operations. For example, a functimoves nodes at the start or the end of
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FIG. 5: Directories of LibSovinProcessing

an edge. Sometimes, it is required to cut an edge at a specdiEto make a crossroad or to start
a new edge at this node. In that aim, a function cuts an edgeviat edges.

3.3 LibSovin Processing

Processing are composed of three main parts (refer to Eig.h®)first one contains usefull classes:
MathUtils (for processing functionalities) and DataComsven (for conversion of data between
Qt+libSovinBDD objects and low level visual processing algg. The second one directory classes
for the processing Importate and Localize. Finally, thedlone contains the classes used during
the on-line navigation step such as the visual path buildimdjthe visual path following processes.

The computation of the number of 2D points matchings betvageimage of the database and
a current image (refer to List. 4) is a typical example of gssing function. It contains low-level
functions to access the database, image processing far(@tion the visual processing library),
data conversion functions and processing functions dpeelan LibSovinProcessing in order to
manipulate the LibSovinBDD objects.

Listing 4: Matching of a current image to an image of the dasab

int getNbMatchingsBetweenIlmages(const int idMemlmage Chdrimage Currentlmage)
HarrisDetector Detector;

vector<points2d > vecPoints2D;

QVector<Point2DRecord> vecCurrent2DPoints;

QVector<Point2DRecord> vecKey2DPoints;

/I Detecte points in the current image

Detector.Detect(Currentimage ,vecPoints2D);

/!l Convert into LibSovinBDD object
DataConversion::convert2DPointsToVecPoint2DRec (veieRs2D ,vecCurrent2DPoints);

© 00 N O A WN P

I
N P O

/! load the points of the image of the memory
ImageTable :: Load2DPointsFromldimage (idMemimage, vegRDPoints);

e
a s~ w

/! launch the points matching process
16 int nb_matching=Match(vecCurrent2DPoints ,
vecKey2DPoints);

i
]

3.4 Human Machine Interface

A module for visualisation and high level actions controMbihas also been developed. It consists
on a main window which is a MDI (Multiple Document Interfac@he selection of the objects to
visualize has been constrained in order to follow the stinecof our model. It allows the graphical



34 National Conference on “Control Architectures of Robots” Boeis, May 29-30, 2008

X BDD Navigation - LASMEA

Voir  Qutils

NOEUD (131 lignels) )

IDNOEUD | IDARC IDESPACELId:I r

__| Voir Images
[Localiser Avec capteur|
[ Supprimer Noeud

x Localisation d'une image I E 5] 6

Capteurs [Camere cycab , id=1 ‘v

J
[ Choisir une image l I Localiser 1 S

] Modifier Arc | | Supprimer| Tous les Capteurs

| CAMERA_CENTRALE - Camera cycab, id=1 [7]

Image a Localiser Image Localisee

IDCAPTEUR [

NOM | Camera cycab

PARAMETRESEXTERNES [ 2.2-0.0-1.0-90-80-0

|
J
PARAMETRESINTERNES l682.17679.7'400.07302.871‘61 ‘
]
|

=5/ (3 lignels) ) AVEC POINTY

Supprimer Capteur

Localisation relative ‘ l Fermer

=3 W B i - i - e . ~[Trave - .
T _i ‘i“ \_&;\ D3lphin [2] X SovinlHM [2] @8 courbon@Antares: ~/Trava _J QL‘J iTi 08:26 ,L!v
= L - £ Kongueror [2] w2 Interface -file;//homelco & connexions testml- Kate @ fe=>) ’@:{, @ 11/03/2008

FIG. 6: Overview of the Human Machine Interface of Sovin

management (update, delete ...) and representation ofathbake content (low level actions) as
well as high level actions such as the localization of a giveage in the images of the database.
The design of the graphical part of this module has beentteitl by the use of the Qt library. The
module uses the functionalities developed in the LibSoviBBihd LibSovinProcessing libraries.
The main utility is the visualization of the information damed in the database (refer to Fig.
6). The HMI also allows the visualisation of a Test as a graymadically generated (using the
GraphViz library). This graph represents the edges of aslestd in Sovin database and a node of
this graph represents an intersection between two edgead¢ted from the tablelas for following
edge (refer to Fig. 7). It also allows to easily check the featdetection and feature matchings
algorithms results and to modify the database contentsn&ance edge cutting (refer to Fig. 8)).

4 Experimentations

Our experimental vehicle is an urban electric car, named Babumanufactured by Robosoft
Company. It is depicted on Figure 9. Currently, RobuCab servegeaslopment products in
several French laboratories. The 4 DC motors are powere@dwy-acid batteries, providing 2
hours autonomy. Vision and guidance algorithms are impigetein C** language on a laptop
using RTAI-Linux OS with a 2GHz Centrino Duo processor. Thégran fisheye lens, mounted
onto a Marlin F131B camera, has a field-of-view1db deg and has been calibrated. The image
resolution in the experiments wa80 x 600 pixels. The camera, looking forward, is situated at
approximately 80cm from the ground. The parameters of thiel transformation between the
camera and the robot control frames are roughly estimatedy [Bvel images are acquired at a
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FIG. 8: Importing data and cutting edge windows

rate of 15fps. Communications between the embedded PC, thkel@hcomputer which controls
the RobuCab and its sensors are performed using the real-tchgegture Aroccam [14]. The
RobuCab was manually driven along several paths onto our nsitaey campus.

4.1 Map building

The images acquired along all paths have been first stored.edeh of the selected paths, an
importation step is performed. This step consists on bwjdin edge, selecting the key images,
extracting the 500 relevant image points of each key imagealoustly matching two successive
images points. The data are stored into the database. Séoneation about the entire database
are detailled in Tab. 1 with the number of data and the memaeyanto the disk for some of the
main tables. This database containsx3.@° data, which results to an amount of 4 255 MB onto
the disk. The tabléMAGE represents 65% of the entire memory size and the 2DROINT
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FIG. 9: RobuCab vehicle with the embedded camera.

34%.
Table Number of data Memory Size
EDGE 84 2900B
NODE 6 067 53 KB
IMAGE 6 067 2777 MB
2DPOINT 3 x10° 1473 MB
3DPOINT 230 300 3.7 MB

Table 1: Database contents during the autonomous navigatio

4.2 Visual localization

The vehicle is assumed to be on a known edge. It can be giverehyser or by an external sensor
such as a GPS. Firstly, the application requires the extraof the keys of all images, acquired by
a given camera, which belong to this edge. For conveniehedjages are ordered with respect
to the positions of the nodes along the path. Secondly, tteifation is a local strategy which
requires the loading of the 2D points of the key images. Duthe importation step, for each
key image, 500 2D points have been stored with their descaptFor each key image, the 500
points are loaded and matched to the current points. Therkage with the smallest distance is
considered as the current localization in the visual membing mean time to load the points of an
image is 19 ms by image (mean obtained by loading the pointsifonages of all edges).

Finally, the full localization process takes approximat@h ms by key image of the edge.

Note that the time to load a grey-level image of size 800x6@6Ip from the database (time to
execute the request and to transform it in an image objdatsth6 ms.
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4.3 Autonomous navigation
4.3.1 Localization step

The autonomous navigation begins at Start position (reférg. 10). The current image is grabbed
(Fig. 11 (a)) and the localization process starts. Aftergbeds, the image is localized into the
first edge (Fig. 11 (b)). 337 points are matched. Note thatden these two images, illumination
conditions have changed as well as the contents (for exagnie disappear, and some objects are
different).

FIG. 10: Some paths of the campus (used in the experimentation) with the medniaieetories. Edges
are represented with their extremity nodes. Images acquired in thoseareddso drawn.

S 4 \

(a) (b)
FIG. 11: Leftimage: currentimage acquired at Start position. Right imaggrest key image into the edge.

The autonomous navigation consists on followingthe §ath C& D& F e F'a F?¢ G @
G'2. Edges with a prime denote edges taken during other dayshledirst paths. The node$5s
and N6 (refer to Fig. 10) are linked by the eddebut also by the succession 8f' and F'? and
the nodesV6 andN'7 are linked by the edg€ but also by the succession@f! andG'2. This path
contains 7 edges and 396 key images. The total length of thagpmore than 400 m (obtained by
odometric measures).
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4.3.2 Autonomous navigation

The speed of the vehicle is set to 0.8 m/s. Grey level imagesize 800x600, are acquired at
15fps. At each frame, points are extracted and matched hétdeésired key image. Robust match-
ing allows us to keep only the valid matchings. From thesechiagjs, the epipolar geometry is
computed and the lateral errgand the angular errérare estimated. The control law is computed
and sent to the RobuCab controller. The average computatieis 70 ms for each current im-
age. This time also includes data loading related to the resiretl key image when the former
is reached. Our vehicle successfully follows the visuahpdthe errors in the images (the mean
of the distances between the matched points) decreaseataiziéérreaching a key image (refer to
Fig. 12). In the figures small crosses denote that a new kegenmreached, diamonds that a
new edge begins. Some reached images (with the corresgpkelynimages of the memory) are
shown in Fig. 14. Note that illumination conditions have rged between the memorization and
the autonomous steps as well as the contents but the visisedmavigation strategy succeeds. The
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FIG. 12: Errors in the images versus time (s).

lateral and angular errors are also well regulated to zefer(to Fig. 13).
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FIG. 13: Angular and lateral errors and control input versus time (s).

5 Conclusion

In this paper, a software for autonomous navigation has pezsented. The software platform
(SoVin) is more particularly dedicated to visual memory agement and vision-based navigation.
It allows to achieve navigation tasks in large scale envirents using natural landmarks. Prelimi-
nary experiments obtained with SoViN have shown promisasgiits. Future works will be devoted
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FIG. 14: Some of the current imag&$ where the key images;, have been reached (s the key of the
image in the database).

to intensively experiments the software in various configjons and using different vision-based
navigation strategies as the one proposed in [12].
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