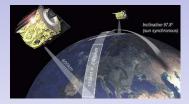


Coordination despite constrained communications: a satellite constellation case

Grégory Bonnet and Catherine Tessier

ONERA/DCSD - Toulouse


05/30/08

Introduction

Satellite constellation

- team of observation satellites;
- communicate when they meet;
- new tasks may arrive anytime;

Observation tasks

- asynchronous tasks
- various priorities;
- constrained by :
 - mutual exclusions;
 - composition of sub-tasks.

Introduction

What is our problem?

- Satellites (agents) must build a collective plan such as :
 - the number of realized tasks is maximal;
 - the number of realized observations is minimal;
 - observations are realized as soon as possible.
- Centralized planning is not considered because :
 - operating ground stations is costly;
 - users desire to implement on-board autonomy;
 - asynchronous requests prevent a reactive centralized planning.

What is our approach?

- agents plan individually;
- agents communicate in order to build a common knowledge;
- agents build coalitions that influence their individual plans.

ONER

Outline

- A multi-agent system
- How to communicate?
- Coordination via coalition formation
- Experiments and results

A multi-agent system

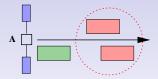
Constellation

Public knowledge

A constellation S is a triplet $\langle A, \mathbb{T}, Vicinity \rangle$ with :

- $\mathcal{A} = \{a_1 \dots a_n\}$ the set of *n* agents representing the *n* satellites;
- $\mathbb{T} \subset \mathbb{N}^+$ a set of dates defining a common clock ;
- Vicinity : A × T → 2^A a symmetric non transitive relation specifying for a given agent and a given date the set of agents with which it can communicate at that date (*acquaintance* model).

Each agent has a private knowledge:


- knows some tasks to realize;
- 2 plans tasks through intentions.

05/30/08- 6/28

Tasks

A task t is defined by:

- a priority prio(t);
- b_t a boolean specifying if t has been realized ;
- contraints : mutual exclusion and composition in sub-tasks.

What is a redundancy? Two agents that realize the same task.

What is a composition ? A task compound of many subtasks.

Intentions

Intentions $I_t^{a_i}$ of agent a_i towards task t

- proposal (\Diamond): a_i proposes to realize t;
- weak withdrawal $(\neg \Diamond)$: a_i does not propose to realize t;
- commitment (\Box) : a_i will realize t;
- strong withdrawal $(\neg \Box)$: a_i will not realize t.

Each intention is associated with :

- a realization date $rea(l_t^{a_i}) \in \mathbb{T} \cup \{\emptyset\}$;
- a download date $tel(I_t^{a_i}) \in \mathbb{T} \cup \{\emptyset\}$.

How to generate intentions?

- planned tasks generate proposals (\Diamond);
- unplanned tasks generate weak withdrawals (¬◊);
- others (\Box and $\neg \Box$) are generated through coordination.

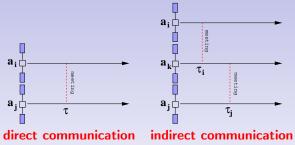
Knowledge

Tasks and intentions are captured through knowledge

A piece of knowledge $K_{a_i}^{\tau}$ of agent a_i at time τ is:

- a task t or an intention $I_t^{a_k}$ of a_k about t;
- $A_{K_{a_i}^{\tau}} \subseteq \mathcal{A}$ is the subset of agents knowing $K_{a_i}^{\tau}$;
- $\tau_{K_{\mathbf{a}_i}} \in \mathbb{T}$ is a temporal timestamp indicating the last update.

Knowledge is the information communicated by agents


How to communicate?

How to communicate?

There are two kinds of communications from a_i to a_i

Each communication is associated with $(\tau_i, \tau_j) \in \mathbb{T}^2$:

- τ_i is the emitting date of a_i ;
- τ_j is the receipt date of a_j

05/30/08- 11/28

ONERA

Communication

An epidemic protocol

- each agent a_i considers its own knowledge changes;
- 2 a_i communicates the changes to $a_j \in \text{Vicinity}(a_i, \tau)$;
- 3 a_j updates its own knowledge thanks to the timestamp $\tau_{K_{x}}$.

Aim

- build a common knowledge;
- define a trust notion about proposals.

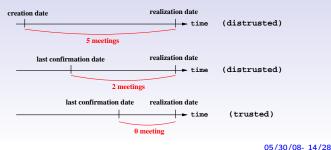
05/30/08- 12/28

Common knowledge

Common knowledge on an intention $I_t^{a_i}$ captured by $K_{a_i}^{\tau}$

- incremental building;
- based on $A_{K_{a_i}^{\tau}} \subseteq \mathcal{A}$ (agents knowing $K_{a_i}^{\tau}$);

At time τ , agent a_i knows that agent a_j knows $I_t^{a_i}$ iff:


- $a_j \in A_{K_{a_i}^\tau}$ or
- a_i communicated with a_j at (τ_i, τ_j) such as $\tau_{K_{a_i}^{\tau}} \leq \tau_i, \tau_j \leq \tau$.

05/30/08- 13/28

Trusting a proposal

Why trusting?

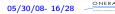
- agents may revise their plans when new tasks arrive;
- as communications are delayed, a proposal may become obsolete;
- we propose dynamic and local trust computing.
- How a_i computes trust about a proposal $I_t^{a_j}$? a_i computes :
 - the last confirmation date of the proposal;
 - 2 the number of meetings between this date and the realization date;
 - if the proposal can be trusted or not.

ONERA

Coordination via coalition formation

The collaboration model

What is our approach?


- building a common knowledge;
- generating coalitions tacitly and locally;
- refining proposals (◊) in commitments (□).

What are coalitions?

- a set of goals (a task and its sub-tasks);
- a set of members;
- a power : the set of goal tasks it members intend to realize.

Each agent :

- generates the potential coalition structure;
- 2 checks if it is incited to join a coalition;
- Schecks if it can withraw from a coalition to minimize it.

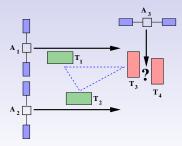
Generating the coalition structure

Coalition structure

- generated individually by each agent;
- based on current knowledge of agents;
- the potential coalition structure is not the same for each agent;
- agents communicate to fix some part of the structure.

Each agent :

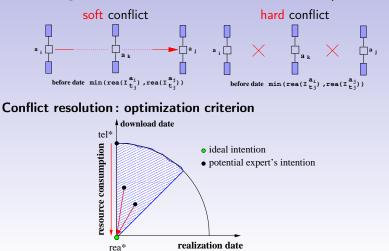
- **Q** partitionates the set of tasks $T_{a_i}^{\tau}$ in $\{T_1 \dots T_h\}$ according to the composition constraint;
- Output the coalition members for subset T_i are the agents that intend to realize a subset of T_i;
- 3 the power of each coalition is this subset of T_i .


Incentive

The mechanism is based on :

- the aim is to angle the planning process towards collective goals;
- these goals are the sub-tasks of a coalition goal;
- task priorities are modified in the individual planning process.

Exemple :


- *O* : goals ;
- P : planned tasks;
- Incentive: $\forall t \in O, \text{ prio}'(t) \leftarrow \frac{\text{prio}(t)}{1+|P|}$

Minimization (1)

Conflict : agents that intend to realize the same task (redundancy)

05/30/08- 19/28

Minimization (2)

Soft conflict

- expert agent commits (\Box) ;
- Inon expert agents:
 - keep their proposal (◊) if they don't trust the expert;
 - else they withdraw strongly $(\Box \neg)$.

Hard conflict

- agents unaware of the conflict keep their proposal (◊);
- aware agents:
 - keep their proposal (◊) if they don't trust unaware agents;
 - else they withdraw strongly $(\Box \neg)$.

ONERA

Experiments and results

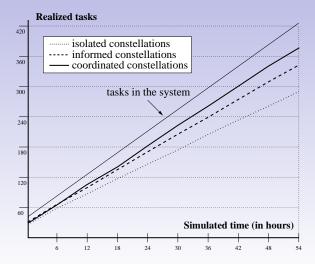
Experiments

Scenario 1: performance

- 54-hours of simulated time;
- every 6th-hours 40 new tasks (with sub-tasks) are generated ;
- 3 satellites;
- metrics : realized tasks with and without redundancy.

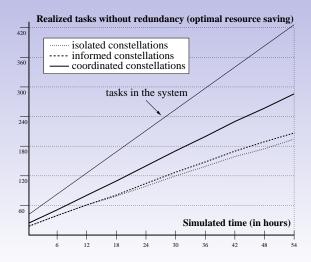
Scenario 2: scalability

- 500 initial tasks to be realized (no time bound);
- 1 to 16 satellites;
- metrics : swiftness and efficiency.


Three kinds of constellations

- isolated constellations;
- informed constellations;
- coordinated constellations.

05/30/08- 22/28

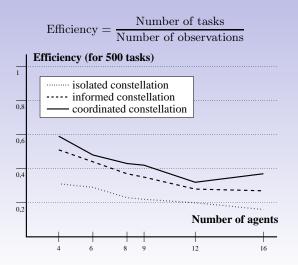

Scenario 1

05/30/08- 23/28

ONERA

Scenario 1

05/30/08- 24/28


Scenario 2

05/30/08- 25/28

Scenario 2

05/30/08- 26/28

Conclusion

Application

- constellation of communicating satellites;
- new tasks arrive as time passes.

Coordination model

- agents build individual plans through intentions;
- they share their knowledge and build a common knowledge;
- from its knowledge, each agent builds the potential coalition structure;
- coalitions are refined through incentive and minimization ;
- the coalition structure is adapted as new knowledge arrives.

Experiments

- the incremental process allows to realize more tasks;
- efficient reduction of the resource consumption ;
- coordination allows important reduction of the number of satellites.

ONERA

Thank you for your attention

