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Abstract: This paper describes the design of APM(Robot), a platform aiming to provide
meta-reasoning capabilities to robotic agents. Meta-reasoning could facilitate integration tasks
in robotic applications, involving heterogeneous modules or robotic systems. APM(Robot) is
based on APM, an agent-oriented library providing generic services for communication and
storage tasks. APM allows reifying communication concepts such as communication channels,
languages and contacts. It also allows carrying out distributed and event-based data stores.
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1 Introduction

Robotic applications involve many skills including software engineering, electronics or mechan-
ics. Each skill is in charge of several modules, each one with its own expertise. If we only
consider the software part, we could need algorithms from several domains: vision, localization,
goal planning, path planning, motion planning, etc. To build one single homogeneous appli-
cation, we need a platform able to integrate all those disparate reasoning modules. Moreover,
each module may have limitations that prevent it to optimally behave in the global system. We
think that meta-reasoning capabilities may bring significant improvements on the consistency
of robotic applications that involve modules from different sources. Following Pitrat’s point
of view ([Pit90]), we think that efforts should be made to use meta-reasoning everywhere it is
possible because it allows a system to adapt to many more situations than systems than do not
use introspection. It is especially important in the robotics field where developments are too
often ad hoc.

Next sections describe the foundations of a platform that can help achieve these goals.
We first describe APM, a general purpose agent oriented communication and (meta-)reasoning
library. APM reifies concepts like communication channels, communication languages and
contacts. It also offers several data history management mechanisms. Then, we introduce
APM(Robot), a robotic platform which uses the services of APM and proposes generic modules
used in robotics on which we can apply meta-reasoning.



2 APM

APM (Agent Platform for Meta-reasoning) is the foundation on which we base our robotic
platform. It currently provides support for two important concepts used in cognitive agents
applications: communication and memory management. Our interpretation of these concepts
is presented in the following sections.

2.1 Communication toolkit

Our communication toolkit is intended to be used in a large variety of applications. It is not a
complete communication framework that can be directly used in application. It only provides
generic concepts that can be extended or customized in a given distributed platform. The
toolkit contains several functionalities that ease the development of a concrete middleware. To
maximize its versatility, it is designed to allow most of its functionalities to be bypassed if it is
useless or senseless in a given context.

We reify three main concepts in this toolkit: contacts, communication channels and com-
munication languages. They are described in the following paragraphs.

2.1.1 Contacts

Basically, a contact can be seen as the way we represent the sender and the recipient of a
message. We do not enforce any representation for contacts, as it can vary upon applications.
Our contacts model is based on the human metaphor: a contact may be known with multiple
names and we can send it a message using different physical communication links. Contacts
information is kept in an address book where we put parameters used to init a communication
with a given physical link.

2.1.2 Communication channels

A communication channel is the common place where communication tasks take place. It
manages physical links between an entity of the system and other entities it exchanges messages
with. Physical links can be of any type: socket, Bluetooth, 12C, email, etc. Communication
languages are delinked from physical links. Thus, physical links can support any communication
language.

Message reception is asynchronous: physical links manage the low level details of the com-
munication, ask a communication language module to decode the incoming data stream and
put the resulting message objects in a mailbox. The incoming messages queue can be accessed
directly or can be processed by a dispatcher that routes messages to internal modules.

Messages can be sent synchronously or asynchronously. In the latter case, messages are
enqueued in the communication channel which uses customizable policies to try to send them
to the recipient. For instance, a policy can select the physical link that will be used and another
will try to send the message X times with a delay between retries. Errors raised during this
process generate messages that are placed in the mailbox.

2.1.3 Communication languages

We define a communication language upon the three following concepts:

e The signifiant of a word, i.e. the idea, the concept behind it.



e The signifier of a word, i.e. the way to represent it.
e The communication medium, i.e. a specific way to express words.

A communication language represents the links between signifiers and their signifiant, according
to the Ferdinand de Saussure’s model [dS16]. We define a communication process as the usage of
a communication language through a given communication medium with the right marshaller.
A marshaller provides the two following processes:

e A marshalling process of a word, which is the specific transformation of this word to
express it on a given communication medium, like a serialization process.

e An unmarshalling process of a word expressed on a communication medium, which is the
backward transformation of this word to its significant form, like a deserialization process.

The signifiers are specifically used here to identify signifiants during a communication process.
A marshaller can also coordinate chained marshallers in order to create a communication process
through multiple communication mediums.

2.2 Data store

A data store is the ”intelligent storage” module provided by our platform, mixing concepts of
producer-consumer and event-driven programming.

Presently, a data store can be seen as a -possibly distributed- blackboard. Several agents, or
several modules within an agent can add data, and subscribe for data changes in their area of
interest, in order to achieve a complex and common goal. Each area of interest is materialized
through an entity called ”data history”.

In the future, data stores are aimed to include meta-reasoning capabilities on manipulated
data.

2.2.1 Data histories

A data store manages data histories, which are containers for the successive values of a given
data (simple or compound) upon time. We can attach meta-data to data histories. They can
be used to find data histories in the data store or to reason about them.

Several policies can be associated to data histories:

e A policy that manages how values are deleted from the history when time passes. This
is used to forget data when they are no longer needed.

e Software modules can register themselves to receive events generated by data histories
(value added, value deleted, meta-data added, data-data deleted). Customizable policies
are used to indicate how and when events are generated.

A data history can be seamlessly manipulated locally or remotely, thanks to a set of meta-
data that describe the link between a fake local data history and a real remote data history.



2.2.2 Meta-reasoning

Meta-reasoning capabilities are not implemented yet. Our goal is to allow adding generic meta-
data to data histories and reasoning modules manipulating them. By this way, data stores
could be able to automatically identify the modules or agents which are appropriate to achieve
a given goal, and organize the collaboration between them.

The data store we propose has similarities with self-organizing systems, such as modular
robots [ArRS*07]. The main difference is that modules and/or agents could be strongly het-
erogeneous. This is an important feature because we want our platform to ease the integration
and collaboration between heterogeneous Al and signal processing technics.

3 APM(Robot)

APM(Robot) constitutes the foundation of our robotic software platform. It provides general
purpose modules that can be used in robotic applications. Entry points are given to implement
low level parts that are specific to chosen robots.

3.1 Object versus agent oriented programming

Almost all robotic platforms are based on object oriented programming, like Player ([GVHO3,
CMO05]), or service oriented programming, like Microsoft Robotics Studio. We think that these
approaches, although allowing to write applications that can be executed on several robots
without any change, are not suitable for our needs. Indeed, we want to reason about the
specific capabilities of robots, which are hidden by object or services models. Cognitive agent
paradigms are more appropriate to our point of view. If we reason on a declarative model of
robots (their hardware components and software modules), we will be able to write high level
programs that will automatically adapt their behavior to robots they run on.

3.2 Sensors manager

The sensors manager module has a description of the sensors connected to the robot. It sched-
ules capture requests on every sensor and send generated data into the data store. The event
system is then used to wake up the modules that consume sensors data. In the future, the
sensors manager will be able to dynamically adapt sensors capture requests schedule to the real
needs of the robot (see next paragraph).

3.3 Localization

We think that the meta-reasoning capabilities of our platform are useless for the integration
of different localization algorithms in an application because data fusion from different local-
ization modules does not usually give good results. APM(Robot) will only be used with fully
integrated localization approaches like the ones that use Kalman filters [HA06] or particles
systems [FTBD00, CMH"08]. Meta-reasoning will be used to analyze the usage made of the
sensors data by the localization module and to provide the results to the sensors manager that
will eventually change its capture policy.



3.4 Planning

Based on the top-down model established by [Rey99], we can distinguish three planning levels
in robotic applications: goal planning, path planning and motion planning.

The interactions between these levels are the concern of hybrid motion planning ([Kha86],
[LKO1] or [BKV02]). It mixes both path planning and motion planning levels in order to
create more efficient motion planning strategies. Hybrid motion planning especially aims the
mix of the respect of physical constraints in motion planning and the efficiency of specific
path planning. In order to automaticaly build overall motion planning strategies, we see these
planning levels as planning modules. Then, we want to apply meta-reasoning on:

e The inputs and outputs of motion planning levels, i.e. which kind of data are exchanged
between them.

e The inner reasoning, i.e. how the planning level works; we want to identify sub-reasoning
specific to this planning level and use them as further planning modules.

Our goal is then to find the most efficient motion planning strategy regarding the situation of
the robot by weaving the more appropriate planning modules.

3.5 Environment representation

As our platform is intended to integrate modules from different sources, we need to provide a
common way to represent data shared between modules. The environment representation is an
important part of this shared data. To achieve this goal, we cannot arbitrarily choose a data
structure, because each module needs a specific representation. Thus, we propose a module
that can manage multiple representations for every element of the environment. We provide a
visualization module for the environment that allows to superimpose, thanks a system of layers,
differents views of the same environment.
Our multiple representations model allows to observe, for instance:

e Several models of the environment: continuous, discrete (grid, visibility map), potentially
with different granularities.

e Several views for the same entity: geometrical shape (polygon, circle, etc), picture, etc.

e For a same model and view: a set of hypotheses for an entity.

This last point allows representation, for instance, of different hypotheses for the state of
the robot, resulting from different localization modules while comparing them on a particular
situation before choosing the one that will be used in an application.

4 Conclusion and perspectives

Our still in progress platform called APM aims to gather reasoning upon its own heteroge-
nous modules. APM will provide meta-reasoning on the capabilities of its support. Our first
implementation is used in APM(Robots), which provides meta-reasoning about robots tasks:
planning, sensors management or localization. We wish to reduce the gap between each mod-
ules: how they work and how they interact. Our next goal is to reason about the motions which
provide information about environment places out of the perception radius of the robot. Then,
we should be able to provide new robots languages, with the view to manage their motion
policies.
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