
Structuring processes into abilities : an
information-oriented architecture for

autonomous robots

Arnaud Degroote and Simon Lacroix1,2

Abstract
This paper presents a framework to organize the various processes that endow a

robot with autonomy. The main objectives are to allow the achievement of a variety
of missions without an explicit writing of control schemes by the developer, and the
possibility to augment the robot capacities without any majorrewriting. The organi-
zation relies on the notion ofability, that encapsulates the means to produce various
informationwithin the complete system. The mechanisms that autonomously acti-
vate the various abilities are depicted, and illustrated inthe case of an autonomous
navigation mission.

Keywords. Decisional architecture, robot autonomy, supervision

1. Introduction

The robotics community has produced tremendous achievements in the wide spectrum
of processes required by autonomous operations: perception, planning, control, learning,
human-robot interactions... But it is theassemblyof these processes that leads to auton-
omy. This assembly, often referred to as “decisional architecture”, is in charge of con-
figuring, scheduling, triggering and monitoring the execution of the various processes. It
should be designed in order to endow the robot with(i) the capacity to achieve avariety
of high level missions, without manual configuration; and(ii) the capacity to cope with
a variety of events which are not necessarily a priori known,in a mostly unpredictable
world – these two capacities being essential characteristics of autonomy.

Related work. The most popular architectural paradigm for autonomous robots is prob-
ably the three layered architecture. In [5], E. Gatt argues that the consideration of the
internal state naturally yields the definition of three layers: an intermediate layer is nec-
essary to tie the functional layer, that has no or ephemeral internal state, with the deci-
sional layer, a symbolic planner that strongly relies on a long lasting internal state. Much
work has been devoted to this intermediate layer: in [5], it is called "sequencer", and
is in charge of translating the symbolic plan into a sequenceof elementary behaviours,
conditionally to the current situation. In the LAAS architecture [1], the layer called “ex-

1CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France
2Université de Toulouse ; UPS, INSA, INP, ISAE; LAAS; F-31077Toulouse, France

firstname.lastname@laas.fr

ecutive” is slightly different, in that it is only responsible tocontrol the proper execution
of the sequence of behaviours. A dedicated component in the decision layer is in charge
of decompositing of plans into an executable sequence, the “supervisor”, based on the
PRS language [6]. TheRemote Agentsystem [3] combines the translation of plans into
atomic tasks, execution control, event management and evenresource management. In
case of task execution failure, theEXEC layer can ask a recovery expert calledMIR (and
not the usual decisional layer). [7] presentsPLEXIL, an approach to tie the functional
and decisional layer that relies on a predictable and verifiable language to define a robust
executive layer.

Even if there are some differences between these approaches, they all rely on the
main idea that an intermediate layer is required to fill the gap between the functional
and symbolic worlds. This leads to different representations of plans, models and infor-
mation coexist in the different layers, that leads in turn todifficult diagnostics of plan
failures, because the planner does not have relevant information about the failure causes,
or inefficient plan executions, because the executive layerdoes not have a global view of
the plan. A first step to solve these issues has been done by theCLARAty system [4]: even
if there are still two different tools and representations for the decisional layer (CASPER)
and the executive layer (TDL), the system has some way to reflect changes from one rep-
resentation to another, and exploits heuristics to decide which subsystem will handle the
faults. IDEA [11] defines a two-layer architecture: the problem is partitioned into several
agents relying on thesame plan model, each one composed of a planner and an execution
layer. In this way, the planning and the execution phase are interleaved into a consistent
way. Moreover, during execution the different agents are synchronised to maintain a con-
sistency of the global plan. TheT-REX architecture [10] takes after theIDEA approach,
in that it uses a collection of agents, but it also introducessome systematic formulation
for exchanging states between these agents. This offers more guarantees on the coher-
ence of the global plan execution. Moreover,T-REX uses a systematic approach to drive
re-planning, based on state estimation.

Another issue of a three-level architecture is its scalability: it can hardly handle
robots with numerous abilities or the realization of a variety of missions. In such an
architecture, the decisional and execution layers are two separate “monolithic” blocks,
without a fine granularity for information representation and manipulation. Adding or
removing functionalities to deal with a new robot or new kinds of missions often leads to
heavy side effects in these layers, requiring a major rewrite. Increasing the functionalities
results in increasing the deliberation time, making the robot less reactive to situation
changes. Mc Gannand al [9] state that having one big plan and one execution layer is
not scalable on the long run, and conclude that the problem needs to be portioned to be
efficiently handled: the use of different planning agents, with different timing constraints,
partially solves the scalability issue.

The partition proposed in [9] is defined and constructed by the programmer, based
on the mission needs. If the nature of the mission changes, the whole partition must be
accordingly reorganized: this kind of construction does not scale well over a large variety
of missions, missing the objective of a versatile architecture for robots.

Objectives. The principle ofpartitioning the robot functionalities into a network of
components is essential to simplify the overall system control. This partition must be
carefully designed : in particular, it must allow the addition or removal of some compo-
nents without breaking other parts of the framework. In other words, each component

and its interactions with the other components must be defined by an abstract formal
description, thus yielding acomposabilityproperty of the whole system.

We mentioned that autonomy implies the capability to properly react toa priori un-
known events or situations (though handling correctlyany situation remains a wishful
thinking): for the architecture to choose the most suitablestrategy toadaptto unknown
situations, a formal internal model is required. Finally, we consider that a good architec-
ture must be(i) verifiable, i.e.provide guarantees about the execution of each component
and about the interaction between the different components, in particular avoiding dead-
locks between different components, and(ii) robust to failure: in case of a component
failure due to a logic or a programming error, the framework must pursue its operation,
using alternative strategies to handle the mission.

Approach. We propose in this paper the definition of a partition scheme that fulfils
these requirements. We follow the decomposition principleexploited inIDEA or T-REX .
But contrarily to these architectures in which the decomposition is defined according to a
set of tasks, we rely on the explicit definition of the variousdynamic information that are
present in the system: information on the world, information on the robot intentions (or
plans), and information on the robot internal states3. The relations between the various
information that we consider define a dynamic graph: the framework is in charge of
maintaining this graph, ensuring that the different relations are enforced. This is achieved
by constraint solvers associated to each information node:a solver tries to locally enforce
the constraints set on the associated information. In case of impossibility, the failure goes
back through the graph until it is solved by a defined policy –e.g.by a call to a planner
or (in last resort) to a human operator. In this way, the framework can handle a variety
of problems without changing the definition of each information node: the system adapts
the information graph to handle the problem at hand, and the different constraint solvers
locally schedule the access to information.

Outline. The next section provides an overview of the different components that define
the architecture, and how they interact. It also illustrates the approach in the case of a
navigation mission handled with several motion modes. Sections 3 and 4 respectively
describe formally the components and the mechanisms through which they interact, and
a discussion concludes the paper.

2. Overview

2.1. Abilities, tasks and recipes

Informationis a core concept of our framework. The means to produce or update a given
information are encapsulated into a component calledability. An ability does not ex-
pose directly the information it encapsulates: it exposes ways to retrieve it (in read-only
mode), and a set of free variables that represent some statesof the associated informa-
tion, which can be constrained. For instance, such a constraint can be the date of the
information provided by a sensor, or a wished robot state forthe information provided
by a planner (i.e.a plan).

3The static information, that mainly represent the various robot characteristics and capacities, are mostly
used for planning and are not explicitly considered in the framework.

Abilities can exchange asynchronous messages, which defineconstraints on the abil-
ities free variables. This communication uses a two-way channel, so that the sender is
informed whether the receiver has handled or not the constraint: such messages imple-
ment the control flow among abilities. Another kind of communication implements the
data flow: here a single-way asynchronous channel is used to transfer the information
between abilities (communications are depicted more formally in section 4.2).

When an ability receives a new constraint, it tries to enforceit. For that purpose,
each ability has a list of computational processes, thetasks, with given pre- and post-
conditions. The ability chooses the right combination of tasks to handle the received
constraints.

Recipeshandle the various possible strategies to fulfill a task. They deal with basic
recovery error and internal details for one task. Similarlyto tasks, recipes define pre-
conditions, which are used to select the one that is best suited to the current execution
context.

The objective of the decomposition intasksandrecipesis twofold: (i) reduce the
complexity to select the action to perform in anability, and so reduce the time to make
this choice, and(ii) provide multiple strategies to achieve a transition from one state to
another state – in particular, one can stack different strategies to handle different robots
capabilities. In other words, this decomposition improvesthe reactivity of the system,
and its portability over different robotic platforms.

Figure 1 illustrates the relations between the three entities abilities, tasks and recipes.
An ability may have one or more task running at each time, and each task, when running,
executes one (and only one) recipe.

Figure 1. Abilities, tasks and recipes

2.2. Internal mechanisms

Our framework manages a network of abilities. Abilities exchange mainly some con-
straints on their free variables, through aCommunicationinterface(figure 2(a)). When an
ability receives such a constraint, it is directed to its ownLogic Engine. Its Logic Engine
is in charge of selecting the appropriate combination of tasks to execute, on the basis
of the defined tasks for this ability, the currently running tasks, the current constraints,
and the newly received constraints – those information being part of itsAbility Context.
Next, itsTask Manageris responsible to monitor the execution of the tasks selected by its
Logic Engine, checking in particular the tasks pre- and post-conditions. Task execution
failures are handled through a dialogue between itsTask Managerand itsLogic engine,
in order to find another combination of tasks that solves the constraints.

Tasks, when activated within aTask Manager, has a quite similar design. Each task has
its own Task contextwhich contains private variables for the task, to handle forexam-
ple local errors – it can be empty. Each task also contains aLogic Engine,which selects
the appropriate recipe (a single one), on the basis of its context, and aRecipe Manager,

which ensures the proper execution of the selected recipe. In case of failure or if changes
occur in the task context, itsLogic Enginechooses another recipe to execute. A correct
transition is ensured by its ownTransaction Manager, which records constraint on other
abilities set by the recipe. This component is also responsible to lazily handle conjunc-
tions or disjunctions of constraints. Figure 2(b) illustrates the interaction between these
different blocks.

(a) Ability mechanisms (b) Tasks mechanisms

Figure 2. Internal mechanisms description

2.3. Supporting example

We consider an outdoor robot endowed with autonomous navigation capacities, adapted
to the current context [8]:

• In rather flat or easy terrains, the navigation mode is built upon obstacle detection
by a laser scanner. The mode is instantiated by a sensory-motor loop defined by
four functional componentsSick, Segs, AvoidandControl, that respectively gather
the data from the laser scanner, fuse the data within a 2D segments-based binary
obstacle map, determine instantaneous translation and rotation speeds to avoid
obstacles, and drive the robot according to the defined speeds.

• In rather difficult terrains, the navigation mode is built upon 3D modelling of the
terrain and path finding within this model. The associated loop is defined by the
Stereo, DTM, 3DPathandControl components, that respectively gather 3D data,
fuse them into a digital terrain map, select an elementary trajectory corresponding
to a pair of translation and rotation speeds (arc of a circle), and drive the robot
accordingly.

Another component,Nav, is in charge of selecting the best suited navigation mode,
on the basis of a dedicatedTraversability mapbuilt upon stereovision data that assesses
the terrain difficulty. This can be seen as a higher level control loop, defined by the
assembly of theStereo, TravMapandNavcomponents.

Localization is handled by a position manager component (POM), that gathers and
fuses all the available localisation information (namelyOdometry, visual odometryVi-
sOdomandSLAMprocesses, the two latter relying on stereovision).

Finally, the destination can be either specified as coordinates, or a visually detected
target, in which case the two following components that relyon stereovision are required:
detectTargetandtrackTarget. The related information is encapsulated in the abilityTar-
getPos.

Figure 3 exhibits the various abilities defined by such a navigation solution. An
example of the behaviour of our architecture is depicted in section 4.5.

Figure 3. Abilities defined for an adaptive navigation system (yellowblocks, full line). The big blocks (dotted
lines) are not explicited in the framework, and are showed fora better understanding: they exhibit in particular
the possible resource conflicts on control and stereo information.

3. Formal description

Section 2 provided an overview of how information and actions are organised in the
framework. We now enter into a more categorical descriptionof each component of the
architecture.

3.1. Ability description

Abilities are the main brick of the architecture. An abilityis an information-centered
structure, it maps one specific information. Each ability isdefined by (refer to the exam-
ple listing 1):

1. Its identifier, denoted byNA (lines 1 and 12)
2. Its context: it is decomposed in three different parts(i) the readable variablesSr,

which expose the information around which the ability is defined (line 16),(ii)
the writable variablesSw, which are used to control the behaviour of the ability
(lines 14-15), and(iii) the internal variablesSI , not exposed to other abilities
(line 17).

3. The tasks: it is composed of two parts(i) a set of task identifiers denoted bySTa,
(line 20) and(ii) a set of relations between these tasks, in particular incompatible
tasksSrt (lines 21-23)

4. The programming environment: it is composed of two parts(i) a set of exported
typesST (in sense of computer science type, lines 6-7) and(ii) a set of functions
which can manipulate these types, and their logic relations, denoted bySF (line
10). This programming environment is used in the recipe implementation and the
tasks pre / post-condition definition.

Listing 1: Description of the abilities “pos” and “dtm”
1 Pos = ability {
2 Context
3 { currentPosition } { } {}
4
5 Type
6 { Distance = newtype double;

7 Position = struct { double x, y, yaw;}}
8
9 Function

10 { computeDistance :: Position -> Position -> Distance }
11 }
12 Dtm = ability {
13 Context
14 { Pos::Position lastMerged
15 bool isEmpty }
16 { Port map }
17 { Pos::Distance threshold }
18
19 Tasks
20 { clear, merge, panoramicView }
21 { clear <> merge
22 clear <> panoramicView
23 merge <> panoramicView }
24 }

3.2. Task description

A task represents a computational process,i.e. a process which takes some input, does
some computation on the input and gives back an output – or some error. It can be
represented categorically as a tuple<S, I, St, F, Succ>, whereS is a start point,
I an input channel,St a stop point,F a failure point, andSucc a success point. BothF
andSucc can have an associated output channel. Figure 4 illustratesthe task execution
model.

Figure 4. Computation model for a task

Listing 2 illustrates how a task is described. A task has a identifier NT referenced
by the ability that describes it (line 4 and 10), and is described by pre-conditionPre
(lines 5 and 11) and post-conditionPost (lines 6 and 12-13). These are logic formulas,
constructed on the basis of predicates and with the classical Boole logical operators OR,
AND and NOT. Predicates are based on equality or comparison of members of the ability
context, or function calls defined by the ability programming environment. Finally, each
task has a set of recipe identifiers, which can handle the taskexecution in different cases
(lines 7, 14 and 21), denoted bySRec.

Listing 2: Description of three tasks “clear”, “merge”, “panoramicView” associated to
the “dtm” ability (“panoramicView” is applied when the map is empty and scans the
environment around the robot).

1 Dtm = ability { ...
2
3 clear = task {
4 pre = {{isEmpty == false}}

5 post = {{isEmpty == true}}
6 recipes = {clearMap}
7 }
8
9 merge = task {

10 pre = {{isEmpty == false}}
11 post ={{isEmpty == false}
12 { Pos::computeDistance(lastMerged, Pos::currentPosition) < threshold)}}
13 recipes = {nominalMerge, noImageInformation}
14 }
15
16 panoramicView = task {
17 pre = {{isEmpty == true}}
18 post = {{ isEmpty == false}}
19 { Pos::computeDistance(lastMerged, Pos::currentPosition) < threshold)}}
20 recipes = {nominalView, noImageInformation}
21 }

3.3. Recipe description

A recipe is an implementation of a task. There are three important parts to describe a
recipe(i) its identifierNR, previously referenced by the associated taskSRec, (ii) its
context call,i.e. its associated pre-Preand post-conditionsPost, built on the same model
than tasks one, and(iii) its body or the real implementationB. The implementation is
constructed on top of a specific language, which specification is out of the scope of this
paper.

4. Internal mechanisms

4.1. Framework runtime

Each ability is implemented as a separate process and is registered to theframework
runtime. The use of separate processes mitigate the failure (crash or infinite loop) of an
ability as it does not impact the other abilities. Theruntimehas three main purposes :(i)
tell how to communicate with another ability (i.ea nameserver function),(ii) give the list
of currently usable activities to an ability, in order to choose a strategy and(iii) monitor
the different abilities, using a ping protocol. When theruntimenotices an ability failure
(i.e the ability does not answer to ping) , it broadcasts the information to all other abilities
which can react in consequence.

4.2. Communications

Communication between abilities are essential in the framework. The basic constructs
are based on asynchronous constructssendandreceive, similarly to the Erlang concepts
[2] – that shows in particular that these two primitives are sufficient to build any commu-
nication protocol, synchronous or asynchronous.

Building on theses concepts, we introduce a higher level constructsend_constraint.
This function sends a constraint message withsend, waits asynchronously for an ac-
knowledgement from the receiver or fails after a timeout. After receiving the acknowl-
edgement, the system expects two possible answers :(i) an OK message, which states
that the constraint has been enforced by the receiver, and(ii) a FAILURE message, with
additional information about the failure: error in the logic engine, conflict with another
constraint on the system with the information about offending constraint, ...

On top of this function, we define a synchronous constructmake, which asks and
waits for an answer about the enforcement of one constraint by an ability.

To read the information associated to a remote variable, we use a proxy representation
for this variable in the current ability. The proxy variableis initially fed using an asyn-
chronous request/reply, then, the system uses a publisher/subscriber interface to update
it.

4.3. Logic Engines

The Logic Engine is the component in charge of adapting the behaviour of an ability with
respect to its current environment and the constraints it tries to enforce. The logic engine
for an ability is only called in two different cases:(i) when receiving a new constraint, or
(ii) when a task fails, in which case the logic engine tries to find another task combination
to enforce the constraint.

To match a constraint with a pre or post-condition, a unification process is used along
with a comparison with a set of logic rules. The set of logic rules is selected depending
on the type of data manipulated (this is similar toconceptnotion in C++0x ortypeclass
notion in Haskell). Currently, we introduce the following variable types :

• Equalable: the only predicate available on variables of this kind is= (and natu-
rally 6=).

• Comparable: this type of variables can be compared with< (and other deriva-
tives). AComparabletype is of courseEqualable, and can be compared to a range
of values. Date or duration are two variables of this type.

• Set: one can test the membership to a set, and all the classical operations on a set
(union, intersection, etc...). A basic example is the abilities type.

For functions, only the geometric type is considered for now. Into this family, there
are various relations between the functions. For example, if one has the two functions
isInCircle (Center, Radius)andisInSquare (Center, Size), isInSquareimpliesisInCircle
if CenterSquare = CenterCircle andRadius >= Size×

√

2

2
). One can define rules

for each specific domain with similar mechanisms.

Using this mechanism to match a rule with pre and post-conditions, classical search
and backtrack processes are used to select an ordered set of tasks to execute. At each
stepi, the engine searches for all the combination of tasks which post-condition match
the new constraint, removing the ones contradicting the currently running ones (accord-
ing to Srt specification). The combination of tasksSi is sorted using three criteria:(i):
number of pre-condition not fulfilled(ii) number of tasks involved(iii) number of tasks
not runnable fromSrt. The algorithm stops when all pre-conditions are fulfilled.If not,
the algorithm continues with the pre-condition not fulfilled of the first element ofSi. It
backtracks ifSi is empty, removing the first entry fromSi−1, and searching with the
new first element fromSi−1. The result of the algorithm is an ordered set of tasks, where
tasks from a same leveli can be run in parallel.

The Logic Engine used in each task to select the recipe to apply uses a similar match-
ing mechanism. However, there is no backtrack processing, it just searches the recipe
matching the current environment. If there are no availablestrategy for this situation,

the task fails, and the constraint has to be enforced in another way, using if possible an-
other task combination. If no other combination is possible, the ability can not fulfill the
constraint.

4.4. Transaction Manager

The last important element of the architecture is the transaction manager. As stated in
section 2.2, it has two main purposes :(i) handle correctly disjunction and conjunction
of conditions and(ii) handle correctly transitions from one recipe to another.

The makeconstruction tries to enforce a constraint on a remote ability, in a syn-
chronous way. It is extended to an arbitrary complex combination of constraints, in par-
ticular to handle a conjunction or a disjunction lazily: if one clause fails in the conjunc-
tion case, or is satisfied in the disjunction case, the other clauses can be aborted, as their
results will have no further impact.

The extendedmakeis implemented with a call to the transaction manager. The trans-
action manager references the operation and uses thesend_constraintto send the indi-
vidual constraint. On reception of an answer, it tries to reduce the logic expression, abort-
ing the clauses that are not anymore necessary. If the expression is reduced toTrue or
False, the transaction manager gives the answer to the recipe, with additional informa-
tion in case of failure.

The other purpose of the transaction manager is to handle transitions from one recipe
to another recipe. In particular, one recipe does not know what recipe previously runs
for one task, and so does not know which constraints has been requested. It can lead
to dangling constraints on the system. To deal with this issue, theTransaction Manager
registers all the constraints requested by the recipe. One easy solution is to clear all the
registered constraints, when switching. However, in some case, it is not a really efficient
solution because the two recipes are really similar, and so can benefit from the previously
requested constraints (and it is often the case when two recipes are the incarnation of the
same strategy, but deals with different error case). In thiscase, the best solution is to not
clear anything: when the recipe asks for an already registered constraint, the transaction
manager does not send anything, and just waits for answer to its previous request.

To achieve this, each recipe is classified into a family. In the case of a transition
between two recipes of the same family, the transaction table is not cleared. In other case,
it is cleared to have a clean environment.

4.5. Illustration

This part illustrates the behaviour of the framework for a specific task, the navigation on
difficult terrain, as presented in section 2.3. For this purpose, we use the recipes described
in listing 3. The constructionensureis a continuousmake, in that it continues to enforce
the constraint as long as it is not aborted.

Listing 3: two recipes for navigation on difficult terrain

1 3DPath_reach_goal = recipe {
2 Pre = {{no_failure == true}}
3 Body = {
4 ensure (pos::computeDistance(Dtm::lastMerged, Pos::currentPosition) < threshold)

5 && 3DPath::goal == currentGoal
6 && Control::tracker == 3DPath::plan)
7 wait(pos::computeDistance(goal, Pos::currentPosition) < goalThreshold))
8 }
9 }

10
11 3DPath_handle_failure = recipe {
12 Pre = {{ 3DPathFailure == true }}
13 Body = {
14 /* Get some new information */
15 make (pos::computeDistance(Dtm::lastMerged, pos::currentPostion) == 0.0) }
16 /* Restart the classic processing */
17 ensure (pos::computeDistance(Dtm::lastMerged, Pos::currentPosition) < threshold)
18 && 3DPath::goal == currentGoal
19 && Control::tracker == 3DPath::plan)
20 wait(pos::computeDistance(goal, Pos::currentPosition) < goalThreshold))
21 }

The 3DPath_reach_goalrecipe is applied to reach a goal. The constructionensure
leads to a call to theTransaction Managerwith the associated conjunction of constraints,
which asks in parallel the three abilitiesDtm, 3DPathandControl to enforce their re-
spective constraint. Let us check what happens inDtm (see listing 2 for task descrip-
tion): depending on whether the map is empty or not, theDtm logic engine launches the
panoramicViewor themergetask, because both fill the constraint. The choice has no
consequence, as the only important thing is that the map is filled on a regular basis.

The processes pursue, and3DPathfails to plan a way to go to goal. TheTransaction
Managerreceives a failure and tries to reduce the expression: sinceit is a pure conjunc-
tion, the result of the full expression is false. So it abortsthe two remaining constraints,
and marks in the task context that 3DPath failed: theLogic Enginedecides to execute the
3DPath_handling_failurerecipe.

Now theDtmcomponent fails. Unfortunately, no more strategy are available to han-
dle this case, so the task fails. A possible solution is to compute a new global plan using
Navplanner, and then to try to enforce the new computed path...

It is possible to write such a process control script by hand.But it is hardly tractable
(i) to write it correctly, as the complexity explodes with the combinatorial of the variable
number, and(ii) to maintain and extend it to deal with new robot capabilities. On the
contrary, the proposed framework is declarative and composable: one does not need to
know the internal status of a task, nor the exact sequence of tasks that must be executed.
The programmer only describes the relations between the information, and the different
part of the framework enforces, as showed, the proper behavior of the system.

5. Discussion

We have presented the design of a framework to control complex robotic systems, that
exhibits several important features. First, the decomposition of the system in abilities
centered on information is not domain-specific: if the mission of a robot changes, there
is no need to rewrite the whole system, but only to introduce new information or new
relations between the information, without breaking the existing ones. Second, the strict
interface of each ability and the use of logic engines allow asafe exploitation of each
information: in a general way, the developer does not need totake care about the inter-
nals, but to just declare the required information for the ability, and the system provides
it if possible. Moreover, logic engines allow the system to handle various situations and

resource conflicts, without explicit handling by the developer. Finally, the framework is
quite robust with respect to component failures. Using one process by ability, the failure
of an ability does not lead to a complete failure, but to a reconfiguration of the frame-
work, considering the offending one as “not-available”.

Even though the proposed concepts have been illustrated using a rover navigation case,
the decomposition into abilities is relevant for other robotic missions. In particular, the
fact that the decomposition is centered on information makes it relevant forinteractions:

• In human / robot interactions, the robot must be aware of the human situation,
actions or will. These information are required for varioushuman / robot tasks,
to plan the robot motions considering human activities, to plan physical interac-
tion to exchange objects... This requires a fine granularityin information decom-
position, and a good handling of conflicting information needs: we believe the
proposed framework is well suited for these requirements.

• In multi-robot systems, the decomposition into abilities can be a sound basis
to allocate tasks among the robots (e.g. within a market based approach). A
straightforward extension of the framework would be to endow a robot with the
knowledge of the others’ abilities, thus yielding the establishment of cooperating
schemes in a rather transparent way.

Ongoing work include a more robust implementation of the current framework, and
putting efforts on making it more verifiable and applicable to multi-robots scenarios.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for autonomy.The Inter-
national Journal of Robotics Research, 17, 1998.

[2] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent programming in
erlang - second edition, 1996.

[3] D.E. et al. Bernard. Design of the Remote Agent experiment for spacecraft autonomy. InIEEE
Aerospace Conference, 1998.

[4] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and S. Chien. Decision-making in a
robotic architecture for autonomy. InProceedings of the International Symposium on Artificial Intelli-
gence, Robotics, and Automation in Space, 2001.

[5] Erann Gat. On three-layer architectures. InArtificial intelligence and mobile robots, pages 195–210.
AAAI Press, 1997.

[6] François Félix Ingrand, Raja Chatila, Rachid Alami, and Frédéric Robert. PRS: A high level supervision
and control language for autonomous mobile robots. InIn IEEE International Conference on Robotics
and Automation, Mineapolis, 1996.

[7] A. Jonsson, Vandi Verma, Corina Pasareanu, and Michael Iatauro. Universal Executive and PLEXIL:
Engine and Language for Robust Spacecraft Control and Operations. InAIAA Space Conference, 2006.

[8] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and R. Chatila. Autonomous rover
navigation on unknown terrains: Functions and integration. International Journal of Robotics Research,
21(10-11):917–942, Oct-Nov. 2002.

[9] C McGann, F. Py, K. Rajan, and A. G. Olaya. Integrated Planning and Execution for Robotic Explo-
ration. InInternational Workshop on Hybrid Control of Autonomous Systems, 2009.

[10] C McGann, F. Py, K. Rajan, Hans Thomas, Richard Henthorn,and Rob Mcewen. A Deliberative Archi-
tecture for AUV Control. InIEEE International Conference on Robotics and Automation, 2008.

[11] N. Muscettola, G.A. Dorais, C.F.R. Levinson, and C. Plaunt. IDEA: Planning at the Core of Autonomous
Reactive Agents. InInternational NASA Workshop on Planning and Scheduling forSpace, 2002.

