Structuring processes into abilities : an
Information-oriented architecture for
autonomous robots

Arnaud Degroote and Simon Lacroix -2

Abstract

This paper presents a framework to organize the various gsesehat endow a
robot with autonomy. The main objectives are to allow the adhieent of a variety
of missions without an explicit writing of control schemes hg tleveloper, and the
possibility to augment the robot capacities without any magairiting. The organi-
zation relies on the notion ability, that encapsulates the means to produce various
informationwithin the complete system. The mechanisms that autonomously act
vate the various abilities are depicted, and illustrateithécase of an autonomous
navigation mission.

Keywords. Decisional architecture, robot autonomy, supervision

1. Introduction

The robotics community has produced tremendous achievsnirethe wide spectrum
of processes required by autonomous operations: peraeptanning, control, learning,
human-robot interactions... But it is tlssemblyf these processes that leads to auton-
omy. This assembly, often referred to as “decisional aechitre”, is in charge of con-
figuring, scheduling, triggering and monitoring the exeémubf the various processes. It
should be designed in order to endow the robot \ijtthe capacity to achieve\ariety

of high level missions, without manual configuration; gidthe capacity to cope with

a variety of events which are not necessarily a priori knowrg mostly unpredictable
world — these two capacities being essential charactesisfiautonomy.

Related work. The most popular architectural paradigm for autonomousteois prob-

ably the three layered architecture. In [5], E. Gatt arghes the consideration of the
internal state naturally yields the definition of three layen intermediate layer is nec-
essary to tie the functional layer, that has no or ephemetaitrial state, with the deci-
sional layer, a symbolic planner that strongly relies onmngliasting internal state. Much
work has been devoted to this intermediate layer: in [5]s itélled "sequencer"”, and
is in charge of translating the symbolic plan into a sequericgdementary behaviours,
conditionally to the current situation. In the LAAS arcluitere [1], the layer called “ex-

1CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Touloused&ra
2Université de Toulouse ; UPS, INSA, INP, ISAE; LAAS; F-310ulouse, France
firstname.lastnameQlaas. fr

ecutive” is slightly different, in that it is only respong#to control the proper execution
of the sequence of behaviours. A dedicated component ingbigidn layer is in charge
of decompositing of plans into an executable sequence,sineetvisor”, based on the
PRS language [6]. ThRemote Agerdgystem [3] combines the translation of plans into
atomic tasks, execution control, event management andregenirce management. In
case of task execution failure, te&EC layer can ask a recovery expert calletk (and
not the usual decisional layer). [7] presertEXIL, an approach to tie the functional
and decisional layer that relies on a predictable and vbl#ilanguage to define a robust
executive layer.

Even if there are some differences between these approabkegsall rely on the
main idea that an intermediate layer is required to fill thp batween the functional
and symbolic worlds. This leads to different represeniatiof plans, models and infor-
mation coexist in the different layers, that leads in turrifficult diagnostics of plan
failures, because the planner does not have relevant iaf@mabout the failure causes,
or inefficient plan executions, because the executive ldges not have a global view of
the plan. A first step to solve these issues has been done by slraty system [4]: even
if there are still two different tools and representatiomsthe decisional layeldASPER
and the executive layer (TDL), the system has some way tatet@nges from one rep-
resentation to another, and exploits heuristics to decliewsubsystem will handle the
faults.IDEA [11] defines a two-layer architecture: the problem is partéd into several
agents relying on theame plan modeeach one composed of a planner and an execution
layer. In this way, the planning and the execution phaseraeeléaved into a consistent
way. Moreover, during execution the different agents anekgonised to maintain a con-
sistency of the global plan. TheREX architecture [10] takes after theeA approach,
in that it uses a collection of agents, but it also introdum@se systematic formulation
for exchanging states between these agents. This offers guarantees on the coher-
ence of the global plan execution. MoreoveREX uses a systematic approach to drive
re-planning, based on state estimation.

Another issue of a three-level architecture is its scalgbiit can hardly handle
robots with numerous abilities or the realization of a vgrief missions. In such an
architecture, the decisional and execution layers are gparsite “monolithic” blocks,
without a fine granularity for information representatiardananipulation. Adding or
removing functionalities to deal with a new robot or new lsrod missions often leads to
heavy side effects in these layers, requiring a major rewlricreasing the functionalities
results in increasing the deliberation time, making theotdbss reactive to situation
changes. Mc Ganand al[9] state that having one big plan and one execution layer
not scalable on the long run, and conclude that the problesds® be portioned to be
efficiently handled: the use of different planning agenith different timing constraints,
partially solves the scalability issue.

The partition proposed in [9] is defined and constructed leyptogrammer, based
on the mission needs. If the nature of the mission changesylittole partition must be
accordingly reorganized: this kind of construction doetssaale well over a large variety
of missions, missing the objective of a versatile architexfor robots.

S

Objectives. The principle ofpartitioning the robot functionalities into a network of
components is essential to simplify the overall systemrocbnThis partition must be
carefully designed : in particular, it must allow the adafitior removal of some compo-
nents without breaking other parts of the framework. In pilierds, each component

and its interactions with the other components must be ditiyean abstract formal
description, thus yielding @omposabilityproperty of the whole system.

We mentioned that autonomy implies the capability to prlyp@act toa priori un-
known events or situations (though handling correathy situation remains a wishful
thinking): for the architecture to choose the most suitallategy tcadaptto unknown
situations, a formal internal model is required. Finallg gonsider that a good architec-
ture must bei) verifiable i.e. provide guarantees about the execution of each component
and about the interaction between the different componanparticular avoiding dead-
locks between different components, gyl robust to failure in case of a component
failure due to a logic or a programming error, the framewortstrpursue its operation,
using alternative strategies to handle the mission.

Approach. We propose in this paper the definition of a partition scheha tulfils
these requirements. We follow the decomposition prinagsjgloited inIDEA or T-REX .
But contrarily to these architectures in which the decoritjprsis defined according to a
set of tasks, we rely on the explicit definition of the varidysamic information that are
present in the system: information on the world, informatim the robot intentions (or
plans), and information on the robot internal statdhe relations between the various
information that we consider define a dynamic graph: the éwark is in charge of
maintaining this graph, ensuring that the different relagiare enforced. This is achieved
by constraint solvers associated to each information redetver tries to locally enforce
the constraints set on the associated information. In dasgossibility, the failure goes
back through the graph until it is solved by a defined poli®.g-by a call to a planner
or (in last resort) to a human operator. In this way, the fraork can handle a variety
of problems without changing the definition of each inforimanode: the system adapts
the information graph to handle the problem at hand, anditfexeht constraint solvers
locally schedule the access to information.

Outline. The next section provides an overview of the different congpas that define
the architecture, and how they interact. It also illussatee approach in the case of a
navigation mission handled with several motion modes.i&est3 and 4 respectively
describe formally the components and the mechanisms thrabch they interact, and
a discussion concludes the paper.

2. Overview
2.1. Abilities, tasks and recipes

Informationis a core concept of our framework. The means to produce atapgiven

information are encapsulated into a component cadlieitity. An ability does not ex-

pose directly the information it encapsulates: it exposagsao retrieve it (in read-only
mode), and a set of free variables that represent some sfdies associated informa-
tion, which can be constrained. For instance, such a constan be the date of the
information provided by a sensor, or a wished robot statehferinformation provided

by a planneri(e. a plan).

3The static information, that mainly represent the variousotatharacteristics and capacities, are mostly
used for planning and are not explicitly considered in tlaenfework.

Abilities can exchange asynchronous messages, which aefitstraints on the abil-
ities free variables. This communication uses a two-wayobhg so that the sender is
informed whether the receiver has handled or not the canstsaich messages imple-
ment the control flow among abilities. Another kind of comrization implements the
data flow: here a single-way asynchronous channel is usednsfér the information
between abilities (communications are depicted more fyrirasection 4.2).

When an ability receives a new constraint, it tries to enfatcEor that purpose,
each ability has a list of computational processes.tals&s with given pre- and post-
conditions. The ability chooses the right combination ak&to handle the received
constraints.

Recipeshandle the various possible strategies to fulfill a task yTdesal with basic
recovery error and internal details for one task. Similadytasks, recipes define pre-
conditions, which are used to select the one that is bestdstotthe current execution
context.

The objective of the decomposition fasksandrecipesis twofold: (i) reduce the
complexity to select the action to perform in ahility, and so reduce the time to make
this choice, andii) provide multiple strategies to achieve a transition frore etate to
another state — in particular, one can stack differentesjias to handle different robots
capabilities. In other words, this decomposition improtresreactivity of the system,
and its portability over different robotic platforms.

Figure lillustrates the relations between the three estébilities, tasks and recipes.
An ability may have one or more task running at each time, aieti éask, when running,
executes one (and only one) recipe.

Ability

Task A (running)' Task B (not running) | = Task C (running)
2:2;:;2 Q Recipe A Recipe A
Recipe C <- Hecipel Recipe B <
Recipe D | Recipe C Recipe C

Figurel. Abilities, tasks and recipes

2.2. Internal mechanisms

Our framework manages a network of abilities. Abilities leaaege mainly some con-
straints on their free variables, througl@ammunicationnterface(figure 2(a)). When an
ability receives such a constraint, it is directed to its dwagic Engine Its Logic Engine
is in charge of selecting the appropriate combination dfdde execute, on the basis
of the defined tasks for this ability, the currently runniagks, the current constraints,
and the newly received constraints — those informationgppart of itsAbility Context
Next, itsTask Manageis responsible to monitor the execution of the tasks seldnyets
Logic Engine checking in particular the tasks pre- and post-conditidask execution
failures are handled through a dialogue betweematk Manageand itsLogic engine
in order to find another combination of tasks that solves thestraints.

Tasks, when activated withinTask Managerhas a quite similar design. Each task has
its own Task contextvhich contains private variables for the task, to handleefcaam-
ple local errors — it can be empty. Each task also contalmsgéc Enginewhich selects
the appropriate recipe (a single one), on the basis of iteeggrand aRecipe Manager

which ensures the proper execution of the selected recimade of failure or if changes
occur in the task context, itsogic Enginechooses another recipe to execute. A correct
transition is ensured by its owiransaction Managemwhich records constraint on other
abilities set by the recipe. This component is also resjpiasd lazily handle conjunc-
tions or disjunctions of constraints. Figure 2(b) illuststhe interaction between these

different blocks.
Ability context aRlbAcontEa:
Task context
| manager
Task manag!‘ |

(a) Ability mechanisms (b) Tasks mechanisms

Figure 2. Internal mechanisms description

2.3. Supporting example

We consider an outdoor robot endowed with autonomous nigetgeapacities, adapted
to the current context [8]:

e Inrather flat or easy terrains, the navigation mode is bpitiruobstacle detection
by a laser scanner. The mode is instantiated by a sensoy-ioop defined by
four functional componentSick SegsAvoidandControl, that respectively gather
the data from the laser scanner, fuse the data within a 2D esgtgAbased binary
obstacle map, determine instantaneous translation aatamtspeeds to avoid
obstacles, and drive the robot according to the defined speed

e In rather difficult terrains, the navigation mode is builompBD modelling of the
terrain and path finding within this model. The associatelis defined by the
Stereq DTM, 3DPathandControl components, that respectively gather 3D data,
fuse them into a digital terrain map, select an elementajgdtory corresponding
to a pair of translation and rotation speeds (arc of a cirelell drive the robot
accordingly.

Another component\ay, is in charge of selecting the best suited navigation mode,
on the basis of a dedicat@daversability magbuilt upon stereovision data that assesses
the terrain difficulty. This can be seen as a higher level robibop, defined by the
assembly of th&tereg TravMapandNavcomponents.

Localization is handled by a position manager compone@t\]), that gathers and
fuses all the available localisation information (nam@gometry visual odometryi-
sOdomandSLAMprocesses, the two latter relying on stereovision).

Finally, the destination can be either specified as cootelinar a visually detected
target, in which case the two following components that oglgtereovision are required:
detectTargeandtrackTarget The related information is encapsulated in the abilay-
getPos

U hwWNRE

Figure 3 exhibits the various abilities defined by such a getion solution. An
example of the behaviour of our architecture is depicteaatisn 4.5.

Tracking

TargetPos l '

. Localisati

Stereo

Pos

Figure3. Abilities defined for an adaptive navigation system (yelldacks, full line). The big blocks (dotted
lines) are not explicited in the framework, and are showedfoetter understanding: they exhibit in particular
the possible resource conflicts on control and stereo infiloma

3. Formal description

Section 2 provided an overview of how information and actiamne organised in the
framework. We now enter into a more categorical descriptioeach component of the
architecture.

3.1. Ability description

Abilities are the main brick of the architecture. An abilityan information-centered
structure, it maps one specific information. Each abilitgesined by (refer to the exam-
ple listing 1):

1. Its identifier, denoted by 4 (lines 1 and 12)

2. Its context: it is decomposed in three different péitthe readable variables.,
which expose the information around which the ability is wledi (line 16) (ii)
the writable variables',,, which are used to control the behaviour of the ability
(lines 14-15), andiii) the internal variables$;, not exposed to other abilities
(line 17).

3. The tasks: it is composed of two pafifsa set of task identifiers denoted By,
(line 20) and(ii) a set of relations between these tasks, in particular inatitrip
tasksS,.; (lines 21-23)

4. The programming environment: it is composed of two p@)ta set of exported
typesSt (in sense of computer science type, lines 6-7) @ha set of functions
which can manipulate these types, and their logic relatidesoted bySx (line
10). This programming environment is used in the recipe @mantation and the
tasks pre / post-condition definition.

Listing 1: Description of the abilities “pos” and “dtm”

Pos = ability {
Cont ext
{ currentPosition } { } {}

Type
{ Distance = newtype doubl e;

7

9

11
12
13
14
15
16
17
18
19
20
21
22
23
24

ENNAN NN

Position = struct { double x, y, yaw }}

Functi on

{ conputeDistance :: Position -> Position -> Distance }
}
Dtm= ability {

Cont ext

{ Pos::Position |astMerged

bool isEnpty }
{ Port map }
{ Pos::Distance threshold }

Tasks
{ clear, nerge, panoram cView }
{ clear <> nerge

cl ear <> panoram cVi ew

nmerge <> panoram cVi ew }

3.2. Task description

A task represents a computational procégsa process which takes some input, does
some computation on the input and gives back an output — oe samor. It can be
represented categoricallyasatupl® 1, St, F, Succ>,whereSisa start point,

| an input channelSt a stop pointF a failure point, andSucc a success point. Both
andSucc can have an associated output channel. Figure 4 illustita¢emsk execution
model.

=
'3
V2
'a
' s
'3
'3
)

yogqy

Output channel

Jauueyd Jou3

<-------.

Figure4. Computation model for a task

Listing 2 illustrates how a task is described. A task has atifler N referenced
by the ability that describes it (line 4 and 10), and is dématiby pre-conditiorPre
(lines 5 and 11) and post-conditi¢tost(lines 6 and 12-13). These are logic formulas,
constructed on the basis of predicates and with the cld€icde logical operators OR,
AND and NOT. Predicates are based on equality or comparisoembers of the ability
context, or function calls defined by the ability programg@nvironment. Finally, each
task has a set of recipe identifiers, which can handle theetesstution in different cases
(lines 7, 14 and 21), denoted B;....

Listing 2: Description of three tasks “clear”, “merge”, ‘iparamicView” associated to
the “dtm” ability (“panoramicView” is applied when the map eémpty and scans the
environment around the robot).

Dim= ability { ...

clear = task {
pre = {{isEnpty == fal se}}

w~N o U

11
12
13
14
15
16

18
19
20
21

post = {{isEnpty == true}}
reci pes = {cl ear Map}

nerge = task {
pre = {{isEnpty == false}}
post ={{isEnpty == fal se}
{ Pos::conputeDistance(l ast Merged, Pos::currentPosition) < threshold)}}
reci pes = {nom nal Merge, nol magel nf or mati on}

panor ami cVi ew = task {
pre = {{isEnpty == true}}
post = {{ isEnpty == false}}
{ Pos::conputeDistance(l ast Merged, Pos::currentPosition) < threshold)}}
reci pes = {nom nal Vi ew, nol magel nf or mat i on}

3.3. Recipe description

A recipe is an implementation of a task. There are three itapbiparts to describe a
recipe (i) its identifier N, previously referenced by the associated tagk., (ii) its
context callj.e. its associated prd?re and post-conditionBost built on the same model
than tasks one, an(ii) its body or the real implementatia. The implementation is
constructed on top of a specific language, which specificasi@ut of the scope of this
paper.

4. Internal mechanisms
4.1. Framework runtime

Each ability is implemented as a separate process and staeg to theframework
runtime The use of separate processes mitigate the failure (crasfirate loop) of an
ability as it does not impact the other abilities. Thuatimehas three main purpose§).
tell how to communicate with another abilityga nameserver function(jj) give the list
of currently usable activities to an ability, in order to olse a strategy an@i) monitor
the different abilities, using a ping protocol. When thiatimenotices an ability failure
(i.e the ability does not answer to ping) , it broadcasts the médion to all other abilities
which can react in consequence.

4.2. Communications

Communication between abilities are essential in the freonie. The basic constructs
are based on asynchronous constrgetsdandreceive similarly to the Erlang concepts
[2] — that shows in particular that these two primitives arffisient to build any commu-
nication protocol, synchronous or asynchronous.

Building on theses concepts, we introduce a higher levesttoatsend_constraint
This function sends a constraint message wsihd waits asynchronously for an ac-
knowledgement from the receiver or fails after a timeouteAfeceiving the acknowl-
edgement, the system expects two possible answ@ran OK message, which states
that the constraint has been enforced by the receiveridralFAILURE message, with
additional information about the failure: error in the logingine, conflict with another
constraint on the system with the information about offagdionstraint, ...

On top of this function, we define a synchronous constnugke which asks and
waits for an answer about the enforcement of one constrgiank@bility.

To read the information associated to a remote variable, sgeproxy representation
for this variable in the current ability. The proxy varialieinitially fed using an asyn-
chronous request/reply, then, the system uses a pubBshsgriber interface to update
it.

4.3. Logic Engines

The Logic Engine is the component in charge of adapting theNdeur of an ability with
respect to its current environment and the constraintiei to enforce. The logic engine
for an ability is only called in two different casg$; when receiving a new constraint, or
(i) when a task fails, in which case the logic engine tries to fimatlzer task combination
to enforce the constraint.

To match a constraint with a pre or post-condition, a unificaprocess is used along
with a comparison with a set of logic rules. The set of logiesus selected depending
on the type of data manipulated (this is similactmceptnotion in C++0x ortypeclass
notion in Haskell). Currently, we introduce the followingriable types :

e Equalable: the only predicate available on variables of this kinekigand natu-
rally #).

e Comparable: this type of variables can be compared with(and other deriva-
tives). AComparabléype is of cours&qualable and can be compared to arange
of values. Date or duration are two variables of this type.

e Set: one can test the membership to a set, and all the classierdtigns on a set
(union, intersection, etc...). A basic example is the @bditype.

For functions, only the geometric type is considered for.nowo this family, there
are various relations between the functions. For examptme has the two functions
isInCircle (Center, RadiusgndisinSquare (Center, Sizeé3InSquareémpliesisinCircle
if CenterSquare = CenterClircle andRadius >= Size X g) One can define rules
for each specific domain with similar mechanisms.

Using this mechanism to match a rule with pre and post-cimmdit classical search
and backtrack processes are used to select an ordered ssksftd execute. At each
stepi, the engine searches for all the combination of tasks whist-pondition match
the new constraint, removing the ones contradicting thesatlly running ones (accord-
ing to S,.; specification). The combination of tasKs is sorted using three criteriéj):
number of pre-condition not fulfille¢ii) number of tasks involvelii) number of tasks
not runnable fromsS,.,. The algorithm stops when all pre-conditions are fulfillédhot,
the algorithm continues with the pre-condition not fulfillef the first element of;. It
backtracks ifS; is empty, removing the first entry froifi;_,, and searching with the
new first element fron%,; ;. The result of the algorithm is an ordered set of tasks, where
tasks from a same levékan be run in parallel.

The Logic Engine used in each task to select the recipe ty aels a similar match-
ing mechanism. However, there is no backtrack processingsti searches the recipe
matching the current environment. If there are no availabidategy for this situation,

ENNAN NN

the task fails, and the constraint has to be enforced in anethy, using if possible an-
other task combination. If no other combination is possitiie ability can not fulfill the
constraint.

4.4. Transaction Manager

The last important element of the architecture is the tretitsa manager. As stated in
section 2.2, it has two main purpose§):handle correctly disjunction and conjunction
of conditions andjii) handle correctly transitions from one recipe to another.

The makeconstruction tries to enforce a constraint on a remote tgbih a syn-
chronous way. It is extended to an arbitrary complex conthinaf constraints, in par-
ticular to handle a conjunction or a disjunction lazily: feclause fails in the conjunc-
tion case, or is satisfied in the disjunction case, the otlagises can be aborted, as their
results will have no further impact.

The extendednakeis implemented with a call to the transaction manager. Tdestr
action manager references the operation and useseti? constrainto send the indi-
vidual constraint. On reception of an answer, it tries taidthe logic expression, abort-
ing the clauses that are not anymore necessary. If the esxpneis reduced t@'rue or
False, the transaction manager gives the answer to the recipe agditional informa-
tion in case of failure.

The other purpose of the transaction manager is to handisiti@ns from one recipe
to another recipe. In particular, one recipe does not knoatwécipe previously runs
for one task, and so does not know which constraints has lesprested. It can lead
to dangling constraints on the system. To deal with thisastheTransaction Manager
registers all the constraints requested by the recipe. @se slution is to clear all the
registered constraints, when switching. However, in soase it is not a really efficient
solution because the two recipes are really similar, anésdenefit from the previously
requested constraints (and it is often the case when twpeageire the incarnation of the
same strategy, but deals with different error case). Indhse, the best solution is to not
clear anything: when the recipe asks for an already regidteonstraint, the transaction
manager does not send anything, and just waits for answes podvious request.

To achieve this, each recipe is classified into a family. ka ¢thse of a transition
between two recipes of the same family, the transactioe ialviot cleared. In other case,
it is cleared to have a clean environment.

4.5, lllustration
This part illustrates the behaviour of the framework for acfic task, the navigation on
difficult terrain, as presented in section 2.3. For this psgy we use the recipes described

in listing 3. The constructioensureis a continuousnake in that it continues to enforce
the constraint as long as it is not aborted.

Listing 3: two recipes for navigation on difficult terrain

3DPat h_reach_goal = recipe {
Pre = {{no_failure == true}}
Body = {

ensure (pos::conputeDi stance(Dtm :|astMerged, Pos::currentPosition) < threshold)

w~N o U

11
12
13
14
15
16
17
18
19
20
21

&& 3DPat h: : goal == current Goal
&& Control::tracker == 3DPath:: pl an)
wai t (pos: : conput eDi st ance(goal , Pos::currentPosition) < goal Threshol d))
}
}

3DPat h_handl e_failure = recipe {

Pre = {{ 3DPathFailure == true }}

Body = {

/* Get some new information */

neke (pos::conputeDi stance(Dtm: | ast Merged, pos::currentPostion) == 0.0) }

/* Restart the classic processing */

ensure (pos::conputeDi stance(Dtm : | astMerged, Pos::currentPosition) < threshold)
&& 3DPat h: : goal == current Goal
&% Control ::tracker == 3DPath:: pl an)

wai t (pos: : conput eDi st ance(goal , Pos::currentPosition) < goal Threshol d))

The 3DPath_reach_goatecipe is applied to reach a goal. The constructosure
leads to a call to th@&ransaction Managewith the associated conjunction of constraints,
which asks in parallel the three abiliti&tm, 3DPathand Control to enforce their re-
spective constraint. Let us check what happenbtim (see listing 2 for task descrip-
tion): depending on whether the map is empty or notDtra logic engine launches the
panoramicViewor the mergetask, because both fill the constraint. The choice has no
consequence, as the only important thing is that the maped fih a regular basis.

The processes pursue, adldPathfails to plan a way to go to goal. THeansaction
Managerreceives a failure and tries to reduce the expression: #iiga pure conjunc-
tion, the result of the full expression is false. So it abthestwo remaining constraints,
and marks in the task context that 3DPath failed:ltbgic Enginedecides to execute the
3DPath_handling_failureecipe.

Now theDtm component fails. Unfortunately, no more strategy are atsg!to han-
dle this case, so the task fails. A possible solution is tomatea new global plan using
Navplanner, and then to try to enforce the new computed path...

It is possible to write such a process control script by h&d.it is hardly tractable
(i) to write it correctly, as the complexity explodes with therdmnatorial of the variable
number, andii) to maintain and extend it to deal with new robot capabilit®s the
contrary, the proposed framework is declarative and coatglesone does not need to
know the internal status of a task, nor the exact sequen@sks that must be executed.
The programmer only describes the relations between toenvation, and the different
part of the framework enforces, as showed, the proper behaf/ithe system.

5. Discussion

We have presented the design of a framework to control conmpletic systems, that
exhibits several important features. First, the decontiposdf the system in abilities
centered on information is not domain-specific: if the ndesdf a robot changes, there
is no need to rewrite the whole system, but only to introduew mformation or new
relations between the information, without breaking thistaxg ones. Second, the strict
interface of each ability and the use of logic engines allosafe exploitation of each
information: in a general way, the developer does not ne¢dki® care about the inter-
nals, but to just declare the required information for thiéitgband the system provides
it if possible. Moreover, logic engines allow the system émdile various situations and

resource conflicts, without explicit handling by the deyao Finally, the framework is
quite robust with respect to component failures. Using awnegss by ability, the failure
of an ability does not lead to a complete failure, but to a nfigaration of the frame-
work, considering the offending one as “not-available”.

Even though the proposed concepts have been illustrateg asover navigation case,
the decomposition into abilities is relevant for other ribenissions. In particular, the
fact that the decomposition is centered on information redékelevant folinteractions:

e In human / robot interactions, the robot must be aware of thraam situation,
actions or will. These information are required for varidusnan / robot tasks,
to plan the robot motions considering human activities,l&m physical interac-
tion to exchange objects... This requires a fine granularitgformation decom-
position, and a good handling of conflicting information deewe believe the
proposed framework is well suited for these requirements.

e In multi-robot systems, the decomposition into abilitiemde a sound basis
to allocate tasks among the robotsg within a market based approach). A
straightforward extension of the framework would be to em@orobot with the
knowledge of the others’ abilities, thus yielding the eBgliment of cooperating
schemes in a rather transparent way.

Ongoing work include a more robust implementation of theentrframework, and
putting efforts on making it more verifiable and applicafdertulti-robots scenarios.

References

(1
[2]
[3]
[4]

[5]
(6]

(7]
(8]

19
(10]

[11]

R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingranh architecture for autonomyrhe Inter-
national Journal of Robotics Researdv, 1998.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Mikelli&ins. Concurrent programming in
erlang - second edition, 1996.

D.E. et al. Bernard. Design of the Remote Agent experimentspacecraft autonomy. IHEEE
Aerospace Conferenc£998.

T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Eligedt, and S. Chien. Decision-making in a
robotic architecture for autonomy. Froceedings of the International Symposium on Artificiaé i
gence, Robotics, and Automation in Spe2@01.

Erann Gat. On three-layer architectures. Arificial intelligence and mobile robotpages 195-210.
AAAI Press, 1997.

Francois Félix Ingrand, Raja Chatila, Rachid Alami, améd€ric Robert. PRS: A high level supervision
and control language for autonomous mobile robotdnIiEEE International Conference on Robotics
and Automation, Mineapolig996.

A. Jonsson, Vandi Verma, Corina Pasareanu, and Michéalila. Universal Executive and PLEXIL:
Engine and Language for Robust Spacecraft Control and GpesaInAIAA Space Conferenc2006.

S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleu}. Herrb, and R. Chatila. Autonomous rover
navigation on unknown terrains: Functions and integratinternational Journal of Robotics Reseaych
21(10-11):917-942, Oct-Nov. 2002.

C McGann, F. Py, K. Rajan, and A. G. Olaya. Integrated Rilagn and Execution for Robotic Explo-
ration. Ininternational Workshop on Hybrid Control of Autonomoust&ys 2009.

C McGann, F. Py, K. Rajan, Hans Thomas, Richard Hentraord,Rob Mcewen. A Deliberative Archi-
tecture for AUV Control. INEEE International Conference on Robotics and AutomatRiD8.

N. Muscettola, G.A. Dorais, C.F.R. Levinson, and C.uPfa IDEA: Planning at the Core of Autonomous
Reactive Agents. linternational NASA Workshop on Planning and Schedulingfeaice 2002.

