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30-32, avenue de la République 94800 Villejuif, FRANCE

2 Vellore Institute of Technology
Vellore 632014, TamilNadu, India

rahulkanoi2006@vit.ac.in and cedric.hartland@efrei.fr

Abstract : The aim of this paper is to investigate the use of Reservoir Com-
puting for meta-sensor conception. In the recent years, complex and low cost
robots were designed, embedding larger amounts of various sensors, thus hinder-
ing the design of control architectures. In a similar fashion to sensor fusion or
smart sensors, our approach involves generating temporal meta-sensor based on
actual sensors. Those meta-sensors can be trained through evolution algorithms,
holding concise meanings thus easing the control architecture designer’s work.
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1 Introduction
A controller or its sub-parts are usually designed to consider specific low level sensor
values or high level perceptions, even though adequate perceptions may be hard to ob-
tain. One may wonder how will these control architecture’s design scale with increasing
number of different kinds of sensors. With simple robots, the question of whether a sen-
sor is of interest for a given action can appear as obvious but it will probably not remain
so in the future as robots complexity increases. In order to remain tractable, the design
of control architectures will require higher level informations, with less and less focus
on actual sensors.

This paper presents an approach based on Reservoir Computing (RC), involving Echo
State Networks (ESN) (Jaeger et al., 2007) to generate meta-sensor data, that might be
useful to design a control architecture out of many sensors. Compared to standard
neural networks, ESNs adds some memory capability, transforming sensors values an
some time to a new sensor taking past data into account. Those meta-sensors allow one
to keep the control architecture design tractable while relying on all possible sensors,



CAR’10

whatever their numbers. While such sensors may be high level (i.e. robot fall detector),
they might not be considered perceptions at all, depending on their nature.

2 Literature review
ESN involves a set of hidden neurons, referred to as reservoir, which are randomly con-
nected together. The connection matrix is controlled from a density parameter ρ. The
hidden neurons express several different dynamics due to random cycles from random
connections. The idea behind RC is that the desired output can be sought as a linear
combination of the hidden neurons. Formally, input and output neurons are fully con-
nected to the hidden neurons. Some other connections (from input to output neurons,
from output to reservoir neurons) can be used, but they are not considered in the present
research.

Memory saturation and lifespan can be controlled if the Echo State Property (ESP)
hold, i.e. the connection matrix maximal singular value σ, or damping, is below 1
(Jaeger, 2001).

The ESN training only considers the readout matrix (the weights on the connections
from the reservoir to the output neurons). In the case where the reservoir offers a suf-
ficiently rich catalogue of dynamics depending on the input sequence, the training task
is to approximate the desired dynamics as a linear combination of the reservoir neu-
rons. In the case where the output values are known, ESNs can be trained using linear
regression. The main difficulty lies in the stochasticity of the approach: the reservoir
dynamics cannot be predicted from the two hyper-parameters (density and damping).
In this paper, due to the large amount of data considered, stochastic based evolutionary
approach known as Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is
considered for the training on the readout matrix (Hansen & Ostermeier, 2001).

ESNs have been used for robotic control through literature but actual robotic appli-
cations remain rare and mainly focused on wheeled mobile robots. Ploger et al. (2003)
have been considering ESN for both differential mobile robot and motor control. ESNs
have been considered in the context of learning by demonstration from human super-
vision in Hartland & Bredeche (2007). An ESN controller is trained from non-reactive
behaviour samples demonstrated by the human supervisor. In Antonelo et al. (2007),
ESNs are trained so as to recognise specific patterns, enabling the mobile robot to lo-
calise to some extent. Environment pattern recognition is considered as well in Hartland
et al. (2009) in the context of evolutionary robotics. To our knowledge, ESNs were not
applied so far for humanoid robot control or sensor preprocessing.

3 Approach
The model works as follows : an ESN is embedded within the control software. This
ESN can be seen as a black box model taking as many sensors as possible as input. A
readout network is trained over data which represent some concept, involving one to
several outputs. After training, the readout is meant to represent this concept for new
given sensor inputs, providing the controller with new sensor information. One key
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interest is that the reservoir can be used for more than one concept. As it is randomly
generated at first and only the readout connections are trained, one may add new read-
out connections together with new outputs. Those new outputs will not impact on the
previously trained data. One bioinspired idea behind would be to use such ESNs as
local nerve, providing preprocessed data based on local sensors, toward the controller.

The human controller designer need a high level concept, not knowing which sensors
may be useful in order to extract such concept. Sensor data are recorded from the
robot in the situations where the concept is adequate. The human designer will label
the recorded data so as to represent the concept. The ESN model is then trained to
discriminate those different situations and will then provide some objective criterion
to assess or predict the given concept which can be included directly in the control
without having to focus on the required sensors. Adding new sensors may require for a
new training, but may lead to better precision for the meta-sensor.

Standard approach to training ESN involves linear regression algorithms, however, in
this paper, as the amount of training data is quite large, for practical reasons, CMA-ES
optimisation algorithm is used to train the ESN on the recorded data.

4 Experiments

As an illustration for the implementation of the model, we consider the problem of an-
ticipating and detecting falls during a walk during which humanoid robots tend to fall1.
Detecting falls can prove a challenging problem depending on the available sensors and
expertise. The goal of the experiment is to provide the controller with a new sensor
which task is to provide fall prediction from the many available sensors.

The experiments involve the Nao humanoid robot (Gouaillier et al., 2009), embed-
ding many sensors. We consider a non dynamic walk straight function available on the
robot API and 15 sensor2. Data are recorded while the robot is walking and labelled
accordingly to the final state of the robot (Fig. 1 and 2). If the walk was stable enough,
the robot usually does not fall, if not, it tends to fall. With the meta-sensor trained over
those data, the ultimate goal is to provide the controller with precise stability trends
through many sensors so as to take quick decision to avoid falls.

The experiments involve training a model from training data and assess it over test
data. The proposed fitness function F is the average squared sum error between the
model output and the desired output from the training data S = {(x0, u0), . . . , (xn, un)} :
F = 1

n

∑n
i=0 ‖esn(xi)− ui‖2 where esn(xi) is the output produced by the ESN. The

desired output is the final state observed over a given sequence. The model is trained
using CMA-ES optimisation method.

1One can take the example of robotic football competition involving humanoid robots during which many
robots keep on falling.

21) one three-axis accelerometer, 2) two one-axis gyrometer, 3) torso angles and 4) eight foot pressure
sensors (4 sensors distributed on the front-back-left-right for each foot, making 8 pressure sensors).



CAR’10

Figure 1: Top sequence displays a typical fine walk pattern on the robot. The bottom
sequence shows a situation in which the robot ends falling for the same walk command.

4.1 Results

Results are provided in section 6. In the figure 3, for the target concept (green line), a
0 value indicates a no movement stable state of the robot, 0.5 is a stable walk and −0.5
indicates instability leading to fall. While learning robot has been trained to predict the
no movement state as a stable state, it hence produce an output of 0.5. The plot however
considers a 0 value so as to help distinguish different walk samples.

One among the best models obtained is displayed in figure 3. The model is assessed
over 16 walk samples, up to 4000 points plotted3.

For stable samples ESN provides negative output at very few points; ESN has detected
instability in the walk patterns which are otherwise marked stable. This indicates the
fact that though there did exist minor instabilities in that particular walk but the robot
eventually did not fall and completed its walk of 0.5 meters. For the fall samples, ESN
does not immediately classify a data as ”Fall”. This indicates the fact that the robot did
completed few steps successfully before the fall.

The output value does not jump directly from +0.5 to −0.5; it can be seen more
clearly from the figure 4. This is the most important part of observation as we can
notice few intermediate values indicating the unstable phase. This gives us the chance
to predict a fall in advance and we have almost half a second to initiate an action to
avoid or manage the fall to ensure minimum damage to the robot hardware. Observing
the actual robot behaviour, it is evident from the plot that high instability occurs in the
walks which lead to fall, and sometimes instability is also observed in the walks where

310 points per seconds making around 400 s of walk recorded in segments of 0.5 meter each, or less if the
robot fell.
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the robot did not fall. Particularly for walk 2 (seconds 30 to 55) and walk 5 (seconds
115 to 140), high instability is recorded but eventually no fall occurred.

5 Conclusion
The presented paper investigated the practical applicability of meta-sensors through
ESN implementation. The goal was to define higher level concept out of many row
sensor data from within a simple training framework.

Models trained showed able to provide useful hints toward the robot status in the
context of fall detections together with a low error rate, leading to classification success
around 0.77 seconds. The model did scale on-line and proved accurate in detecting un-
stable patterns possibly leading to robot falls while walking. We were able to generate
a new meta-sensor based on the many available on the robot so as to provide useful new
information.

Future works will focus on data labelling, including intermediate labels rather than
just fall/not fall. Considering the training difficulties, several trails are to be investi-
gated, including reservoir/readout pruning and reservoir fine tuning. A complete walk-
ing task (including turning or side-walking) could also be investigated so as to ensure
generality of the approach.
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JAEGER H., MAASS W. & PRÍNCIPE J. C. (2007). Special issue on echo state networks
and liquid state machines. Neural Networks, 20(3), 287–289.

PLOGER P., ARGHIR A., GUNTHER T. & HOSSEINY R. (2003). Echo state networks
for mobile robot modeling and control. In In Proc. RoboCup, p. 157–168.



CAR’10

6 Annexe

Training error Test error
Mininum average + std Mininum average + std

0.21 0.23± 0.1× 10−1 0.18 0.22± 0.2× 10−1

Table 1: The table provide the best model (with the lower error rate) and the average er-
ror rate over the evolution processes for each best model found. Evaluation is performed
on training data (left) and test data (right).
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Figure 2: On top figure, we observe the value of one foot force sensor during part the
walk samples during which the robot falls (sec 140). On the bottom figure, the same
sample seen with one of the accelerometers on the robot.
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Figure 3: The desired output together with the predicted output of the trained ESN over
test data.
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Figure 4: Zoomed in version of figure 3 on data from seconds 250 to 350, showing
representative cases where the robot end-up falling.


