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Abstract—We present a novel technique for design- the sampling rates and sensor-to-actuator latencies [2].
ing discrete, logical control loops, on top of continuous A quite general rule states that smaller are the periods
control tasks, ensuring logical safety properties of the 5n4 |atencies, better is the control performance. Thus

tha;rfsl:regﬁetgcsn(?fstﬁgdrergﬁﬂ;: h;(lgcisﬂ'v\é\éebdue”ftmvsitﬂq'fhgew it is essential that the implementation of the controller

Orccad design environment for control systems, which is eSpects a specified timing behaviour to meet the ex-
applied, e.g. to robotics and real-time networked control.  pected performance, i.e. the actual sampling periods and
It features structures of control tasks, each equipped |atencies must be fit in ranges which are consistent with
with a local automaton, used for the reactive, event-based the digital controller specification. Orccad is a design

management of its activity and modes. The additional . t dedicated t h trol ; 5
discrete handler manages the interactions between tasks, €nvironment dedicated to such control systems [5], as

concerning, e.g., mutual exclusions, forbidden or imposed briefly_recalled in S_ectioII]II.

sequences. We use a new reactive programming language, Discrete, reactive controllers:Another level of
with constructs for finite-state machines and data-flow  control systems is more related to events and states,
nodes, and a mechanism of behavioural contracts, which which define execution modes of the control system,

involves discrete controller synthesis. The result is a tvoicall ith ch f trol | Reactive |
discrete control loop, on top of the continuous control ypically with changes or control law. keaclive lan-

loops, all integrated in a coherent real-time architecture ~ guages based on finite state automata, like StateCharts
Our approach is illustrated and validated experimentally ~ [11], or StateFlow in Matlab/Simulink [15], are widely

with the case study of a robot arm. used for these aspects. Their underlying fundamental
keywords: real-time control, adaptive systems, reac- Model, transition system_s, is the_basicformalism for dis-
tive programming, discrete controller synthesis crete control theory, which studies closed-loop control
of discrete-event and logical aspects of control systems.

I. MOTIVATION: RTOSAND REACTIVE CONTROL Different reactive languages exist, like StateCharts

Control systems and their programming:control  mentioned before, and the languages of the synchronous
system is a heterogeneous collection of physical deapproach([4]: Lustre, Esterel or Lucid Synchrone. They
vices, in continuous time, and information sub-systemsare used industrially in avionics and safety-critical em-
with discrete time scales. The physical devices, e.gbedded applications design [16]. They offer a coherent
mechanical, electrical or chemical devices, are gov{framework for specification languages, their compilers,
erned by the laws of physics and mechanics. Theimwith functionalities for distributed code generation ttes
input/output transfer characteristics exhibit a complexgeneration and verification.
dynamic behaviour (e.g. due to inertia) described by dif- In the framework of discrete control theory, a basic
ferential equations where time is a continuous variabletechnique used for the design of control loops is supervi-
For their control, their state is measured or estimatedory control, with Discrete Controller Synthesis (DCS)
using various sensors. Control theory provides a largalgorithms [14], [[6]. It consists in, from a controllable
set of methods and algorithms to govern their behaviousystem, and a behavioural property, computing a con-
through closed-loop control, ensuring the respect of restraint on this system so that the composition of the
quired performance and crucial properties like stability.system and this constraint satisfies the property. There

Control systems are often implemented as a set oéilso is a tool able of automated DCS [12], which is
tasks running on top of a real-time operating systemconcretely connected to reactive languages and has been
(RTOS). Closed-loop digital control systems use com-applied to the modelling of automatic generation of task
puters to cyclically sample sensors, compute a controhandlers|[[13].
law and send control signals to the actuators of the More recently the BZR language has been defined
physical process. The performance of a control loopwith a contract mechanism, which is a language-level
e.g. measured by the tracking error, and even moréntegration of DCS[[1],[[9]: the user specifies possible
importantly its stability, strongly relies on the values of behaviours of a component, as well as safety constraints,



and the compiler synthesises the necessary control to Therefore robotic systems belong to the class of

enforce them. The programmer does not need to desighybrid reactive and real-time systems in which differ-

it explicitly, neither to know about the formal technicali- ent features require different programming and control

ties of DCS, which is used in a completely encapsulatednethods. The ®ccAD environmentis aimed to provide

way. It is briefly explained in Sectidn]Il. users with a set of coherent structures and tools to
Contributions of this paper:We design discrete develop, validate and encode robotic applications.

controllers, ensuring safety properties on the interac-

_tions of underlying continuous control tasks, by apply- o  Real-time tasks for continuous control

ing DCS. Concretely:

1) We concretely integrate the automatically gener- Orccad provides a bottom-up approach in which a

ated task handlers in the Orccad real-time execfobot controller design begins with the design and
utives: we make the DCS formal method usableimplementation of specific control laws. Most feedback

by non-experts, as it is encapsulated in a programcontrol systems are essentially periodic, where the in-

ming language and compiler. puts (reading on sensors) and the outputs (posting on
2) We treat the case study of a realistic application:2ctuators) of the controller are sampled at a fixed rate.
a robot arm controller. While basic digital control theory deals with systems

The compilation performance is subject to the naturaS@Mpled at a single rate, it has been shown, lelg. [7], that
complexity of the exponential algorithms, but we claim the control performance of a closed-loop digital control

that it automatically generates an executable controfYStem can be improved using a multi-rate and multi-

solution, which is to be compared with manual program-taSKS controller : some parts of the control algorithm,
e.g. updating parameters or controlling slow modes,

ming, verification and debugging, which is even more

costly. The execution cost of the controller is very small€an Pe executed at a slower pace. Examples are hybrid

(see Sectiof VD). position/fprce control of_ a robot arm, visual seryoing
Outline of the paperThe next sections make brief ©f @ mobile robot following a wall or constant altitude
recalls, on the programming of control systems andSUrvey of the sea floor by an underwater vehicle.
the Orccad approach in Sectibn II, and in Secfioh 1l Reaching efficient control requires an adequate set-
on reactive programming with the BZR programming ting of periods, latencies and gains according to the
language involving DCS. Section IV describes ouravailable computing resource, e.g. as done through
contribution integrating the Orccad real-time executivecontrol/scheduling co-design approaches [3]. To this
and the BZR programming language. Section V thenend Orccad provides a set of design, programming and
illustrates the technique on the case study of a robofode generation tools allowing the control designer to
arm, and its different control tasks which have to bearbitrarily assign priorities and synchronisations to the

sequenced according to a reconfiguration strategy. ~ Set of control modules. Such a system can be analysed
through algebraic techniques and can be implemented

using the basic features of an off-the-shelf RTOS.
Orccad is an integrated design and programming Once control laws have been designed and tuned, they
environment dedicated to robotic systems. Robots of angre encapsulated in a so-called Robot-Task object (RT)
type interact with their physical environment. Although as depicted in Figurig 1. Different computation modules
this environment can be sensed by exteroceptive sensogge defined, that take care of the drivers of the sensors
like cameras or sonars, it is only partially known and cangnd actuators, of the various numerical computations
evolve because of robot actions or external causes. Thléhlculating the control values (which can have multiple
a robot will face different situations dUring the course rates, or be Suspended and resumed in certain phases), of
of a mission and must react to perceived events byhe observers which can produce diagnostic events (e.g.,
changing its behaviour according to corrective actionsthresholds, or th&nStableCam event in the example);
These abrupt changes in the system’s behaviour arg|| the modules are assembled in a data-flow fashion,

relevant of the theory of Discrete Events Systems.grthogonally to the logical behaviour, which is managed
Besides the logical correctness of computations theia discrete events, as we describe next.

efficiency and reliability of the system relies on many
temporal constraints. The performance of control law
strongly depend on the respect of sampling rates an
computing latencies. Their execution must cope with In ORccCAD, logical behaviour appears at two levels:
strong resource constraints. locally to RTs, and at a higher level in missions.

Il. PROGRAMMING CONTROL SYSTEMS INORCCAD

. Automata for task management



For example, a safety property specifically related with
control systems states that every physical actuator must
be always under control, by one and only one control
law. More specific properties can also be defined and
validated for various case studies.

4) Execution machine for the automatBesides the
user-defined signals (pre and post-conditions, excep-
tions), Orccad also defines many signals used at run
time to spawn and manage all the real-time threads
necessary for the execution of the tasks and procedures.
The current @CCAD ESTEREL automata are compiled
into a transition function in C. Input and output func-
tions are associated to received and emitted signals,
which are used to interface the synchronous reactive
program with the asynchronous execution environment,
Figure 1.  Encapsulation of the control law in a reactive Ishel  j e, the RTOS. Numerical computations can be called

in linked libraries. The execution machine is in charge
of feeding the automaton with signals synthesised from
1) Generic control of RTsit involves these events: collected input events, running the automaton transition
« preconditions, associated with e.g., measurementsind exporting the output actions to the system. The

UngtableCam
Control law (Discretized time)

T2_UnS/t'/bIeCa
STARTED

External view (Discrete events)

ST,

3_SENSOR_FAILED

sensors and watchdogs; automaton and execution machine are further compiled

« events and exceptions of four types : into a real-time task and event queue glued with the rest
— synchronisations between RTs, e.g. w.r.t. statef the system, as depicted in sectlon IV-D. _
(e.g., in Figurdl, ever8TARTED): 5) Position of the contribution in this papetJntil

— type 1 exceptions, processed locally to the RT,"OW, in ORCCAD, the discrete events control code is
e.g. by tuning a parameter of the control law; designed as a computer programming work, written
— type 2 exceptions, ending the current RT, passmanually, then formally verified. One drawback is the
ing control to the upper level mission (e.g., difficulty for control engineers users of specifying the

eventT2_UnStableCam); discrete control without a methodology related to con-
— type 3 exceptions, fatal, stopping the whole trol theory, and the intrication of verification techniques
system (e.g., everit3_SENSOR_FAILED); Another is that static manual programming of all cases

. . . fails to encompass adaptive behaviour, with regulation
« postconditions, emitted upon RT successful termi- ) : :
. w.r.t. the system’s state and available resources. This
nation (e.g., eventood_End). : o :
papers addresses these issues by considering discrete

2) Missions design:The RT automaton gives an control loops on top of the continuous control loops.
abstract view which facilities their composition into

more complex actions: th&obot-Procedures (RPS). [ll. PROGRAMMING REACTIVE SYSTEMS INBZR

The RP paradigm is used to logically and hierarchically |n this section we briefly introduce first the basics of
compose RTs and RPs, designed to fulfil a basic goalhe Heptagon language, to program data-flow nodes and
through several possible modes, e.g, a mobile robot caRjerarchical parallel automatal[8]. As for the reactive
follow a wall using predefined motion planning, visual |Janguages introduced in Sectibin I, the basic execution
servoing, or acoustic servoing according to sensory datgcheme is that at each reaction a step function is
availability. RPs design is hierarchical so that commoncalled, taking input flows as parameters, computing the
structures and programming tools can be used fromransition to be taken, updating the state, triggering the
basic actions up to a full mission specification. appropriate actions, and emitting the output flows. We
3) Specification and validationThe original Orccad  then define the BZR language which extends Heptagon
framework uses Esterell[4] for each RT and RP logicalwith a new contract construdtl[1].][9].
behaviour design, verification and code generation. The
global behaviour is defined by the parallel composition”- Data-flow nodes and mode automata
of the automata. The synchronous technology enables Figure 2 shows a simple example of a Heptagon
the use of formal techniques for automatic verificationnode, for the control of a task that can be activated
of the behaviour, for liveness and safety propertiesby a requestr, and according to a control flowe,
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(a) Adaptive system. (b) BZR controller.

Figure 2. Example of a node in graphical syntax.

Figure 3. BZR programming of adaptation control.

put in a waiting state; inpué¢ signals the end of the

task. Its signature is defined first, with a name, a listproadly. In contrast, qualitative or logical aspects, as
of input flows (here, simple events which can be seemddressed by discrete control theory, have been con-
as Boolean flows), and outputs (here: the Boolean actkidered only recently for adaptive computing systems
which is true when the task is active. In the bOdy of [17] In our new approach’ DCS is encapsu|ated in the
this node we have a mode automaton : upon occurrenc€mpilation of BZR [1], [9]. Models of the possible

of inputs, each step consists of a transition according t&ehaviours of the managed system are specified in
their values; when no transition condition is satisfied,terms of mode automata, and adaptation policies are
the state remains the same. In the examptEe is  specified in terms of contracts, on invariance properties
the initial state. From there transitions can be takeng pe enforced. Compiling BZR yields a correct-by-
towards further states, upon the condition given by theconstruction controller, produced by DCS, as illustrated
eXpreSSion on inputs in the label. Here: whemand c in Figure@, in a user-frienc“y way: the programmer
are true then the control goes to statetive, until e does not need to know technicalities of DCS.

becomes true, upon which it goes backitile; if c is 2) Contract constructAs illustrated in Figurél4, we
false it goes towards statiait, until c becomes true. associate aontractto a node. It is itself a program,
This is a mode automatonl[8] in the sense that to eackyith its internal state, e.g., automata, observing traces,
state we associate equations to define the output ﬂOW%nd deﬁning states (for examp|e an error state Wh@re

In the example, the outputct is defined by different s false, to be kept outside an invariant subspace). It has

equation in each of the states. two outputs:e 4, assumptioron the node environment,
We can build hierarchical and parallel automata, asand e, to be guaranteed enforcedby the node. A
will be seen in the case study e.g., in Figlré 13 In thesetC' = {¢,,...,¢,} of local controllable variables will

parallel automaton, the global behaviour is defined frompe used for ensuring this objective. This contract means
the local ones: a global step is performed synchronouslythat the node will be controlled, i.e., that values will
by having each automaton making a local step, withinbe given tocy, ..., ¢, such that, given any input trace

the same logical instant. In the case of hierarchy, thgjielding e 4, the output trace will yield:. This will be
sub-automata define the behaviour of the node as longbtained automatically, at compilation, using DCS.

as the upper-level automaton remains in its state. Without giving details [[9] out of the scope of this
_ case study, we compile such a BZR contract node into a
B. Contracts in the BZR language DCS problem as in Figufd 5. The body and the contract

1) Motivation: With this new construct, the man- are each encoded into a state machine with transition

agement of dynamical adaptivity can be considered afunction (respI'rans andTrC), state (respState and
a control loop, on continuous or discrete criteria. It

is illustrated in Figure 3(®): on the basis of monitor TEn o) = Wi 0s)

information and of an internal representation of the assume e,

system, a control component enforces the adaptation enforce e

policy or strategy, by taking decisions w.r.t. the adapta- withci,..., ¢

tion or reconfiguration actions to be executed, forming

a closed control loop. The design of control loops with v = Al@s, s mnsenene)

known behaviour and properties is the classical object Yp = fo(T1,.. . Tn,C1,...,Cq)

of control theory. Applications of continuous control

theory to computing systems have been explored quite Figure 4. BZR contract node graphical syntax

4
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Figure 6. Development process for BZR with Orccad.

Figure 5. BZR contract node as DCS problem

mode changes. We contribute this new layer on top of
StC) and output function (respdut and OutC). The  the real-time executives built with the Orccad design
contract inputsX C' come from the node’s inpuX’ and  environment for control systems, by establishing the
the body’s outputd”, and it outputs: 4, ec. Assuming  connection with the BZR language and compiler, which
e produced by the contract program, DCS will obtain ais relying upon discrete controller synthesis techniques.
controllerCtrir for the objective of enforcingc (i.e., This is illustrated in Figur€l7 where, elaborating on
making invariant the sub-set of states whege= e¢ is the general Figur@)), we show how the physical
true), with controllable variables;, ...c,. The controller  system (a robot, with sensors giving values, and ac-
then takes the states of the body and the contract, thgiators taking commands) is in a closed loop with the
node inputsX and the contract outputss, e, and it continuous control layer of the computing system. The
computes the controllableX.. such that the resulting |atter is implemented on a RTOS, in the form of real-
behaviour satisfies the objective. time tasks in the Orccad approach .

These tasks are provided with local controllers in
terms of reactive automata, that are interacting with the
real-time tasks typically through events corresponding
to activation of tasks, or their stopping, or exceptions

As announced in Sectiofl I, our first contribution to be handled. We will consider also application au-
is the integration of BZR reactive controllers, using tomata, which are describing the sequencings of tasks,
DCS, into the Orccad runtimes. The general scheme fojh reaction to internal events like task ends, or also
using BZR consists of a treatment of the control part,to external events from the controlled system. The
using our target-independent language and compiler, impplication automaton interacts with the local automata
derivation of the main system development process. Inypically through emitting starting events towards them,
its instantiation for the case of K& CAD, illustrated in  and receiving end or exception events. On the basis of

IV. DISCRETE CONTROL HANDLERS OF
CONTINUOUS CONTROL TASKS

A. Integration in a development process

Figure[®, one can see phases of: these automata, we build another layer of closed-loop
« extraction of control part from the adaptive system, control, in the computing system, this time on discrete
in the form of a BZR program; aspects modelled in these transition systems. We will

o BZR compilation: synchronous compilation to: use DCS to produce a controller that will enforce logical

— a Boolean equations form, with contracts com-

piled into DCS objectives; given to DCSto  __________________
BZR program

produce the constraint on controllables; ~5Cs cui
— a sequential C code for the automata; '\ discrete
both are then assembled into an executable involv- computing| | *’* . ) control loop
ing a resolution of the synthesised constraint; system | |exceptions, |
« re-linking of the latter into the global executive. | |steps__activations,
— real-time =— !
B. General architecture ' —=| tasks continuous
1) Discrete and continuous layer&he contribution ohysical ~I'sensors " actuators | control loop
of this paper is a novel method for designing discrete, system robot
logical control handlers, on top of continuous control | system [T

tasks. The goal is to ensure, by a discrete control loop,
|ogica| safety properties of the tasks sequencings andFigure 7. Discrete control handlers of continuous contasks.
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Figure 8. BZR/Heptagon programming of the generic taskrob@utomaton, in the case afmXcmove.

objectives on the allowed sequencings of tasks. goes into statefrap_Abort, where another sub-
2) Design and development procesdgure[6 shows automaton is executed, until the outgoing transition
that the particularities are in the interface between  takes the control back to; this happens upon the
Orccad and BZR, at the two levels of: language, to disjunction of two possible conditions: upon input
have the RT and RP automata of Orccad in BZR; and  reconf, thent2_reconf andt2_ArmXcmove are
executive, where the code generated by BZR is linked  emitted for the RP, or upon inpututwork, then

into the real-time executive generated by Orccad. goodEndCmove is emitted towards the RP, meaning
that the task ended with success.
C. Language-level integration This automaton constitutes the BZR/Heptagon encod-

1) RT automata: Figure [B illustrates the BZR/- ing of the behaviour described previously in Secfign II.

Heptagon programming of the generic automaton node 2) RP automatonThe RP behaviour could of course
associated to each task, in the caseAefiXcmove. P& programmed in automata as in classic@COAD.

Input and output signals are exchanged with three maif’Sing the special feature of BZR involves a change in
components of the architecture: specification style, because of the mixture between im-
the real-time tasks managed by the RTOS: tvpicall perative behaviours and declarative control objectives.
* d y - ypically Automaton of tasks sequencinti:describes pos-

to activate them, abort them, ... , : . i . :
. the controlled system, through sensors and mon;iSible behaviours, with alternatives leading to different

tors, as e.g., theOutbound input corresponding S(:]qgencmgts of the tagkts dup(')t?\ flncoI;mn? eventg. b'll'he.
to the target being outside of the robot work area;C olce points are associated with Iree Boolean variables,

signals with names featurirginX interact with the the intention is to use the latter as controllable variables

robot (2D simulator, see Sectibn VA2); in t?e I?(ihs The_ automatta can alf_o mv;)lve models of
« the application-level RP automaton, typically by p;\rs 0 ef _er:wrgn:jnenf, ol;:_glépa lon o resourfces, (ir
the start signal, or T2 and T3 exceptions. observers of intended or forbidden sequences of events.

. o It interacts with RT automata typically by sending them
For the two first classes, the automaton is inter-requests to start, and reacting from their end or ex-
faced with the real-time platform as described in Sec-eption signals. This automaton is naturally application
tion [V-DI _ _ specific; Figurd_13 illustrates one on the case study.
The hierarchical automaton is read as follows: Contracts and control objectivesThe properties
o The task is initially in the higher-level state called to be considered for controlling the tasks are coded as
Trap_T3. This state is exited upon occurrence BZR contracts. For a given set of tasks of a system to
of the condition T3, which is defined inside the be controlled, and application automaton, the contract
underlying mode as a disjunction of three in- specifies what properties must be invariantly enforced,
put signalsOutbound , Errtrack, Redbut. This  e.g. those mentioned in Sectibn 1[AB3. The controller
transition goes to the end statd, with emission obtained by DCS will enforce these, by restricting the
of T3_ArmXcmove towards the RP level. system to required behaviours, using the controllable
« at the lower level, inside statBrap_T3, the sub- variables for which the values are chosen in order to
automaton is initially in statd. Upon input sig- satisfy the properties. Figufe]13 gives an example of
nal start_ArmXcmove from the application, it such a RP, equipped with a contract.
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Figure 9. Complete BZR program (simplified).

3) Complete automatoriThe global automaton, rep- ||RoBouPiocedurenl
resenting the complete control part of the system, in
terms of Figuré B, is then obtained by the composition| Clocks [Parameters |

. . Generation
of the tasks automata, and of the application automaton|. ;
Figure[® illustrates this for the case study. Observers
. . . Output
D. Executive-level integration vipus
Controller ‘

At this level, we have to interface the code generated
by the BZR compiler, as shown in Figufd 6, with
the Orccad-generated real-time executive mentioned i %
Sectior 1I-B4. It implements the transition step function,
to be called at the appropriate pace, with appropriatq | [Ropot Task 1
input parameters, and handling of outputs. The imple-
mentation of this execution machine (i.e. of the dotted Controller
box in FigureY) is sketched as shown in Figlré 10.

A main task sets up the whole system. It spawns @4. e | | ™
all the real-time tasks and associated communicatior obs4
and synchronisation objects. In particular it generateq

the needed clocks used to trigger the cyclic calculation| | | robot Task 2

modules. Real-time threads are made cyclic by blocking

their first input port on a semaphore which is released %
by clock ticks. Otherwise they can be triggered by any

other event, such as a data production from anothef E« ™2 || TM3 |[TM
thread or a signal sent by a driver.

The automaton is the highest priority task : it is
awakened by the occurrence of input signals related
to the execution of the controllers, e.g. pre-conditions, Asynchranous
exceptions, and post-conditions issued by the feedback
controllers. All events are serialised and received on a  Figure 10.  Implementation of the execution machine.
FIFO input events queue. In reaction, the automaton
tells the RTOS what action must be taken by releasin
the corresponding semaphore. Thanks to the use of
model based approach all the glue code is automaticall
generated, while using only basic features of operating
systems make easier porting the tools for different e
targets (current targets are Linux/Posix threads and Description of the case study
Xenomai). 1) The ArmX robot arm modelWe define a robot

Although this automaton is crucial for a safe andarm, calledArmX, which is a two-link manipulator with
successful behaviour of the application, it spends mostotational joints (gq1,q2) shown on Figurel11. Each link i
of time doing nothing, just waiting for input events ([1,2]) has a point masses Mi ([1,2]) at the end of links.
during the cyclic execution of the control algorithms The dynamic model of the manipulator can be written
managed by the RTOS. Moreover its transitions taken the form:T = M(q)G+ V (q, ¢) + G(q) where M (q)

—

|| T™ ™
obs1 obs2

FIFO

EE=EE

Output

I I S et A

Interface Synchronous

qury short times (typically somesecs) so that the
gverhead due to discrete events control is negligible.

V. CASE STUDY OF A ROBOT ARM



Robot Simulation |

is the2 x 2 mass matrix of the manipulatd¥,(q, ¢) is
an2 x 1 vector of centrifugal an Coriolis term&;(q)

is an2 x 1 vector of gravity terms and the input
joint torque. For this simple manipulator all details of
calculation can be found in_[10].

ArmX is equipped with a robotic tool changer which
allows the robot to switch end effector. There are two
tools manipulated by the arm, one is used when the
target is inside the robot workspace (for example a
gripper) and the second is used outside of this spac
(for example a proximity sensor to point the target).

He

L2 Figure 12. The ArmX 2D simulation
Ye q2 . . . .
,—\ user can use keyboard to give information to the robot

or move a target (a white square) with the mouse.

So, from QrRCCAD or another application, this sim-
ulator is perceived like a real robot; we have functions
to initialise it, to put torque, to get joint position, etc.

Yb >q1 0 3) The application: The application designed is a
target following task. When the target is inside the robot
workspace, the effector follows the target. When it is
outside of the robot workspace the manipulator point
towards this target. This application must be safe and
so it is performed taking into account exceptions like
) o the tracking error is too high, joints limit are reached,
_ 2) _The Orccad Robot-Tasksn this appllcat|on, we o reconfiguration arm is required.
identify f_Ol_” control-laws, embedded in four RTs: The objective is that the arm automatically changes
the joint space control taskArmXjmove controls {5 the appropriate tool, according to the target being
the move in the joint space of the manipulator i.e., injnside or outside the workspace. The fact that the tool
terms of values of angles at the joints; change task is inserted automatically in function of the

the Cartesian space control taskrmXcmove con-  current situation makes it an adaptive system.
trols the move in the Cartesian space of the manipulator,

in terms of 3d coordinates; it is appropriate for aiming B. The tasks and their local RT control

at targetsnside the workspace. To each task corresponds an instance of the generic

the target aiming task:ArmXfmove controls the  task control automaton; for the case of themXcmove
pointing towards a point by trajectory following; it is task the automaton is shown in Figire 8. Each of the
appropriate for aiming at targetsitsidethe workspace.  three other tasks is associated with a similar one. All are

the tool change taskCT first brings the robot to featured in the global controller as shown in Figlile 9.
its initial position (¢1 = 0,¢2 = 0), in order to then
switch the end effector tool. C. The application RP and its global control

The Simulation environmenfs our case study is 1) Specification as a BZR contracie apply the
made in simulation, we need to simulate the dynamic8ZR programming methodology: first describe possi-
on the two-link manipulatoArmX modelled previously. ble behaviours, then specify control objectives in the
We use its inverse dynamic model to compute jointcontract. The application must launch robot tasks cor-
accelerationsj = M ~!(q)(r—V(q,4) —G(q)) and we  responding to the current state of the target (inside or
obtain the curren andg by a double Euler integration. outside the workspace) and change the tool arm to get

The simulation is animated through a X11 window the right tool for each task. So the control objective

like in Figure[I2. This window is interactive and the is first to ensure we have the right tool, and second,

Figure 11. The ArmX model.



node procRobot (goodEndCT,goodEndJImove,t2,outWork,inWi&l) returns( startC, startF, startJ, startCT :bodl)

goodtool = ( ActifCJ implies CTcj) & (ActifF implies CT1);

ex = ActifF xor ActifC] xor ActifCT;
assume (not (inWork & outWork))

enforce (goodtool & ex)

with (ok1,0k2,0k3:bool)

ActifCJ T2/ startd
)\

goodEndJmove / startC

okl / startF

T
|
|
outWork and not oki
|
|
|
|
|
|
|
|
|
|
|

inWork and ok2 / star

T
, goodEndCT
I 4 D
| @ a
|
Work and not ok2 J
: goodEndCT
R
|
X LA ok3 / startCT
| >
| @ Y
|
| J
ok2 / startC | goodEndCT

Figure 13.

to check the smooth running of the application, i.e.,
allowing at most task to be active at a time, and also
at least one, as mentioned in Section [FB3. A set
C = {okl,0k2,0k3} of local controllable variable
will be used for ensuring this objective. The contract
specifies that the node will be controlled, i.e., that
values will be given t@k;, oks, oks such that, given any
uncontrollable input trace, the output trace will satisfy
the two objectives.
2) The BZR node for the applicatiorit is named

procRobot, and illustrated in Figurg13.

PR automaton:It is composed of 4 parallel au-
tomata, described from left to right:

Global BZR node, with contract.

(top) is used to memorise the current tool of the
arm. It has two states corresponding to two tools
manipulated by the arm, the first one is used in the
workspace accessible by the arm, and the other in
outside. Every change of tool this automaton re-
ceives agoodEndCT signal from the RT automaton
to indicate that the task ended well.

« the automaton for the CT task (bottom) is mod-
elling the fact that it can be triggered by the
controller that will be synthesised. Using control-
lable variableok3, the controller can force the tool
change by sendingtartCT.

This parallel automaton describes the possible se-

. the automaton for the F task: it can start thequencings of the tasks. It can be noted that it does not
ArmXfmove task, by emittingstartF, when it  explicitly care for their exclusion, or for managing the
receives the signadutWork and obtains the per- appropriateness of the tool. This is shown next in the
mission of the controller by the flowk1; if ok1is  declarative contract, and compiled with DCS.
false, then it goes to staait, until okl becomes Contract: It can be seen in the upper part of Figure
true. It models the choice to delay the starting of[T3: it is itself a program, with its own equations. Three
F, and corresponds to the delayable tasks pattergontrollable variables, defined in theith part, will be
illustrated in Figuré . used for ensuring two objectives:

« the automaton for the C and J tasks: it is hierar-
chical with two levels. The upper level is also an
instance of the delayable task pattern; the Boolean
ok2 is used to mark the choice point.

The sub-automaton is in the ActifCJ state man-
ages the alternation between C and J tasks. Upon
occurrence of an exception of type T2 in task C, it
gives control to the task J. This is a way of handling
singularities, which are points that can’t be reached
by using the control laws of task C: in this case
control is given to task J, by sendirgrart], to
reposition the arm to reach this point. At its end
a signalgoodEndJmove is received from the RT,
then task C is started again.

« the right tool for the right task: a Boolean variable
goodtool is defined, as the conjunction of two
implications: they state that when a task is active
(ActifCJ, respectiveActifF), it implies that the
arm carries the right toolcTcj, respectively}CT£).

« Mutual exclusion and default control: an equation
definesex, which is the exclusive disjunction of
active states for the tasks. it means actually two
things: that there is at most one active task, and also
at least one, so that the arm is always controlled,
as mentioned in Sectidn 1I-B3.

The contract is that, assuming that the target can not

be inside and outside of the workspace at the same time,

« the automaton observing the current tool statecontrol enforces that the two Boolean are true.



D. Simulation and typical scenario

Here is a typical scenario showing the intervention of

(3]

the controller on the system, so that control objectives

are preserved. At some point the tasknove is active,

[4]

and the target inside the workspace, and the tool carried

by the arm corresponds to stai&cj. Then, the user

clicks outside of the workspace, so the application

receives theoutlWork input. This causes the automaton [5]

for CJ to move by a transition to its initial state.

It also causes the automaton for task F to quit its
initial state; here, we have a choice point conditioned [g]

by ok1. Due to the first contract propertgoodtool

must be kept true, so given that the current tool state
is CTcj the controller can not allow the transition

to ActifF, and must give the valudalse to okl.
Hence task F goes intBait state. Due to the other

contract propertyex must be kept true, which forces the

[7]

(8]

controller to maintain at least one active state. Therefore

it launches the taskT using the controllable variable

ok3, which will change the tool. At the end of the
task CT, the goodEndCT event allows the automaton

observing the current tool to pass in the staté. Thus

we have the right tool for task F, and the controller can

releaseF from Wait to ActifF, by giving valuetrue
to controllable variableok1. This shows how mutual

[9]

(10]

exclusion, and insertion of reconfiguration tasks can be

obtained declaratively.

VI. CONCLUSION AND PERSPECTIVES

We propose a novel technique to design discrete con:,
trol loops on top of continuous control tasks, ensuring

(11]

(12]

logical safety properties of the tasks sequencings and

mode changes. Its implementation integratescOAD,

a real-time control executives design environment, an

the BZR reactive language, encapsulating in a user-
friendly way the formal DCS technique in its compi-

lation. A case of a robot arm is studied. It constitutes
a concrete approach to implementing hybrid systems
Further work includes consolidating the integration of
ORrccAD and BZR beyond this case study, enriching the
models with more quantitative aspectsi[13], defining li-

13]

(14]

braries of control models and contracts, and considerinél5]

the more involving example of a Mars rover.
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