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Abstract—We present a novel technique for design-
ing discrete, logical control loops, on top of continuous
control tasks, ensuring logical safety properties of the
tasks sequencings and mode changes. We define this new
handler on top of the real-time executives built with the
Orccad design environment for control systems, which is
applied, e.g. to robotics and real-time networked control.
It features structures of control tasks, each equipped
with a local automaton, used for the reactive, event-based
management of its activity and modes. The additional
discrete handler manages the interactions between tasks,
concerning, e.g., mutual exclusions, forbidden or imposed
sequences. We use a new reactive programming language,
with constructs for finite-state machines and data-flow
nodes, and a mechanism of behavioural contracts, which
involves discrete controller synthesis. The result is a
discrete control loop, on top of the continuous control
loops, all integrated in a coherent real-time architecture.
Our approach is illustrated and validated experimentally
with the case study of a robot arm.

keywords: real-time control, adaptive systems, reac-
tive programming, discrete controller synthesis

I. M OTIVATION : RTOSAND REACTIVE CONTROL

Control systems and their programming:A control
system is a heterogeneous collection of physical de-
vices, in continuous time, and information sub-systems,
with discrete time scales. The physical devices, e.g.
mechanical, electrical or chemical devices, are gov-
erned by the laws of physics and mechanics. Their
input/output transfer characteristics exhibit a complex
dynamic behaviour (e.g. due to inertia) described by dif-
ferential equations where time is a continuous variable.
For their control, their state is measured or estimated
using various sensors. Control theory provides a large
set of methods and algorithms to govern their behaviour
through closed-loop control, ensuring the respect of re-
quired performance and crucial properties like stability.

Control systems are often implemented as a set of
tasks running on top of a real-time operating system
(RTOS). Closed-loop digital control systems use com-
puters to cyclically sample sensors, compute a control
law and send control signals to the actuators of the
physical process. The performance of a control loop,
e.g. measured by the tracking error, and even more
importantly its stability, strongly relies on the values of

the sampling rates and sensor-to-actuator latencies [2].
A quite general rule states that smaller are the periods
and latencies, better is the control performance. Thus
it is essential that the implementation of the controller
respects a specified timing behaviour to meet the ex-
pected performance, i.e. the actual sampling periods and
latencies must be fit in ranges which are consistent with
the digital controller specification. Orccad is a design
environment dedicated to such control systems [5], as
briefly recalled in Section II.

Discrete, reactive controllers:Another level of
control systems is more related to events and states,
which define execution modes of the control system,
typically with changes of control law. Reactive lan-
guages based on finite state automata, like StateCharts
[11], or StateFlow in Matlab/Simulink [15], are widely
used for these aspects. Their underlying fundamental
model, transition systems, is the basic formalism for dis-
crete control theory, which studies closed-loop control
of discrete-event and logical aspects of control systems.

Different reactive languages exist, like StateCharts
mentioned before, and the languages of the synchronous
approach [4]: Lustre, Esterel or Lucid Synchrone. They
are used industrially in avionics and safety-critical em-
bedded applications design [16]. They offer a coherent
framework for specification languages, their compilers,
with functionalities for distributed code generation, test
generation and verification.

In the framework of discrete control theory, a basic
technique used for the design of control loops is supervi-
sory control, with Discrete Controller Synthesis (DCS)
algorithms [14], [6]. It consists in, from a controllable
system, and a behavioural property, computing a con-
straint on this system so that the composition of the
system and this constraint satisfies the property. There
also is a tool able of automated DCS [12], which is
concretely connected to reactive languages and has been
applied to the modelling of automatic generation of task
handlers [13].

More recently the BZR language has been defined
with a contract mechanism, which is a language-level
integration of DCS [1], [9]: the user specifies possible
behaviours of a component, as well as safety constraints,



and the compiler synthesises the necessary control to
enforce them. The programmer does not need to design
it explicitly, neither to know about the formal technicali-
ties of DCS, which is used in a completely encapsulated
way. It is briefly explained in Section III.

Contributions of this paper:We design discrete
controllers, ensuring safety properties on the interac-
tions of underlying continuous control tasks, by apply-
ing DCS. Concretely:

1) We concretely integrate the automatically gener-
ated task handlers in the Orccad real-time exec-
utives; we make the DCS formal method usable
by non-experts, as it is encapsulated in a program-
ming language and compiler.

2) We treat the case study of a realistic application:
a robot arm controller.

The compilation performance is subject to the natural
complexity of the exponential algorithms, but we claim
that it automatically generates an executable control
solution, which is to be compared with manual program-
ming, verification and debugging, which is even more
costly. The execution cost of the controller is very small
(see Section IV-D).

Outline of the paper:The next sections make brief
recalls, on the programming of control systems and
the Orccad approach in Section II, and in Section III
on reactive programming with the BZR programming
language involving DCS. Section IV describes our
contribution integrating the Orccad real-time executive
and the BZR programming language. Section V then
illustrates the technique on the case study of a robot
arm, and its different control tasks which have to be
sequenced according to a reconfiguration strategy.

II. PROGRAMMING CONTROL SYSTEMS INORCCAD

Orccad is an integrated design and programming
environment dedicated to robotic systems. Robots of any
type interact with their physical environment. Although
this environment can be sensed by exteroceptive sensors
like cameras or sonars, it is only partially known and can
evolve because of robot actions or external causes. Thus
a robot will face different situations during the course
of a mission and must react to perceived events by
changing its behaviour according to corrective actions.
These abrupt changes in the system’s behaviour are
relevant of the theory of Discrete Events Systems.
Besides the logical correctness of computations the
efficiency and reliability of the system relies on many
temporal constraints. The performance of control laws
strongly depend on the respect of sampling rates and
computing latencies. Their execution must cope with
strong resource constraints.

Therefore robotic systems belong to the class of
hybrid reactive and real-time systems in which differ-
ent features require different programming and control
methods. The ORCCAD environment is aimed to provide
users with a set of coherent structures and tools to
develop, validate and encode robotic applications.

A. Real-time tasks for continuous control

Orccad provides a bottom-up approach in which a
robot controller design begins with the design and
implementation of specific control laws. Most feedback
control systems are essentially periodic, where the in-
puts (reading on sensors) and the outputs (posting on
actuators) of the controller are sampled at a fixed rate.
While basic digital control theory deals with systems
sampled at a single rate, it has been shown, e.g. [7], that
the control performance of a closed-loop digital control
system can be improved using a multi-rate and multi-
tasks controller : some parts of the control algorithm,
e.g. updating parameters or controlling slow modes,
can be executed at a slower pace. Examples are hybrid
position/force control of a robot arm, visual servoing
of a mobile robot following a wall or constant altitude
survey of the sea floor by an underwater vehicle.

Reaching efficient control requires an adequate set-
ting of periods, latencies and gains according to the
available computing resource, e.g. as done through
control/scheduling co-design approaches [3]. To this
end Orccad provides a set of design, programming and
code generation tools allowing the control designer to
arbitrarily assign priorities and synchronisations to the
set of control modules. Such a system can be analysed
through algebraic techniques and can be implemented
using the basic features of an off-the-shelf RTOS.

Once control laws have been designed and tuned, they
are encapsulated in a so-called Robot-Task object (RT)
as depicted in Figure 1. Different computation modules
are defined, that take care of the drivers of the sensors
and actuators, of the various numerical computations
calculating the control values (which can have multiple
rates, or be suspended and resumed in certain phases), of
the observers which can produce diagnostic events (e.g.,
thresholds, or theUnStableCam event in the example);
all the modules are assembled in a data-flow fashion,
orthogonally to the logical behaviour, which is managed
via discrete events, as we describe next.

B. Automata for task management

In ORCCAD, logical behaviour appears at two levels:
locally to RTs, and at a higher level in missions.
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Figure 1. Encapsulation of the control law in a reactive shell

1) Generic control of RTs:It involves these events:

• preconditions, associated with e.g., measurements,
sensors and watchdogs;

• events and exceptions of four types :

– synchronisations between RTs, e.g. w.r.t. state
(e.g., in Figure 1, eventSTARTED);

– type 1 exceptions, processed locally to the RT,
e.g. by tuning a parameter of the control law;

– type 2 exceptions, ending the current RT, pass-
ing control to the upper level mission (e.g.,
eventT2_UnStableCam);

– type 3 exceptions, fatal, stopping the whole
system (e.g., eventT3_SENSOR_FAILED);

• postconditions, emitted upon RT successful termi-
nation (e.g., eventGood_End).

2) Missions design:The RT automaton gives an
abstract view which facilities their composition into
more complex actions: theRobot-Procedures (RPs).
The RP paradigm is used to logically and hierarchically
compose RTs and RPs, designed to fulfil a basic goal
through several possible modes, e.g, a mobile robot can
follow a wall using predefined motion planning, visual
servoing, or acoustic servoing according to sensory data
availability. RPs design is hierarchical so that common
structures and programming tools can be used from
basic actions up to a full mission specification.

3) Specification and validation:The original Orccad
framework uses Esterel [4] for each RT and RP logical
behaviour design, verification and code generation. The
global behaviour is defined by the parallel composition
of the automata. The synchronous technology enables
the use of formal techniques for automatic verification
of the behaviour, for liveness and safety properties.

For example, a safety property specifically related with
control systems states that every physical actuator must
be always under control, by one and only one control
law. More specific properties can also be defined and
validated for various case studies.

4) Execution machine for the automata:Besides the
user-defined signals (pre and post-conditions, excep-
tions), Orccad also defines many signals used at run
time to spawn and manage all the real-time threads
necessary for the execution of the tasks and procedures.
The current ORCCAD ESTEREL automata are compiled
into a transition function in C. Input and output func-
tions are associated to received and emitted signals,
which are used to interface the synchronous reactive
program with the asynchronous execution environment,
i.e. the RTOS. Numerical computations can be called
in linked libraries. The execution machine is in charge
of feeding the automaton with signals synthesised from
collected input events, running the automaton transition
and exporting the output actions to the system. The
automaton and execution machine are further compiled
into a real-time task and event queue glued with the rest
of the system, as depicted in section IV-D.

5) Position of the contribution in this paper:Until
now, in ORCCAD, the discrete events control code is
designed as a computer programming work, written
manually, then formally verified. One drawback is the
difficulty for control engineers users of specifying the
discrete control without a methodology related to con-
trol theory, and the intrication of verification techniques.
Another is that static manual programming of all cases
fails to encompass adaptive behaviour, with regulation
w.r.t. the system’s state and available resources. This
papers addresses these issues by considering discrete
control loops on top of the continuous control loops.

III. PROGRAMMING REACTIVE SYSTEMS INBZR

In this section we briefly introduce first the basics of
the Heptagon language, to program data-flow nodes and
hierarchical parallel automata [8]. As for the reactive
languages introduced in Section I, the basic execution
scheme is that at each reaction a step function is
called, taking input flows as parameters, computing the
transition to be taken, updating the state, triggering the
appropriate actions, and emitting the output flows. We
then define the BZR language which extends Heptagon
with a new contract construct [1], [9].

A. Data-flow nodes and mode automata

Figure 2 shows a simple example of a Heptagon
node, for the control of a task that can be activated
by a requestr, and according to a control flowc,

3



Idle Wait
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e

Activeact = true

act = false
r and not c

Figure 2. Example of a node in graphical syntax.

put in a waiting state; inpute signals the end of the
task. Its signature is defined first, with a name, a list
of input flows (here, simple events which can be seen
as Boolean flows), and outputs (here: the Boolean act),
which is true when the task is active. In the body of
this node we have a mode automaton : upon occurrence
of inputs, each step consists of a transition according to
their values; when no transition condition is satisfied,
the state remains the same. In the example,Idle is
the initial state. From there transitions can be taken
towards further states, upon the condition given by the
expression on inputs in the label. Here: whenr andc
are true then the control goes to stateActive, until e
becomes true, upon which it goes back toIdle; if c is
false it goes towards stateWait, until c becomes true.
This is a mode automaton [8] in the sense that to each
state we associate equations to define the output flows.
In the example, the outputact is defined by different
equation in each of the states.

We can build hierarchical and parallel automata, as
will be seen in the case study e.g., in Figure 13 In the
parallel automaton, the global behaviour is defined from
the local ones: a global step is performed synchronously,
by having each automaton making a local step, within
the same logical instant. In the case of hierarchy, the
sub-automata define the behaviour of the node as long
as the upper-level automaton remains in its state.

B. Contracts in the BZR language

1) Motivation: With this new construct, the man-
agement of dynamical adaptivity can be considered as
a control loop, on continuous or discrete criteria. It
is illustrated in Figure 3(a): on the basis of monitor
information and of an internal representation of the
system, a control component enforces the adaptation
policy or strategy, by taking decisions w.r.t. the adapta-
tion or reconfiguration actions to be executed, forming
a closed control loop. The design of control loops with
known behaviour and properties is the classical object
of control theory. Applications of continuous control
theory to computing systems have been explored quite

representation
system

system
managed

decision

policy / strategy

monitor execute

(a) Adaptive system.

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

(b) BZR controller.

Figure 3. BZR programming of adaptation control.

broadly. In contrast, qualitative or logical aspects, as
addressed by discrete control theory, have been con-
sidered only recently for adaptive computing systems
[17]. In our new approach, DCS is encapsulated in the
compilation of BZR [1], [9]. Models of the possible
behaviours of the managed system are specified in
terms of mode automata, and adaptation policies are
specified in terms of contracts, on invariance properties
to be enforced. Compiling BZR yields a correct-by-
construction controller, produced by DCS, as illustrated
in Figure 3(b), in a user-friendly way: the programmer
does not need to know technicalities of DCS.

2) Contract construct:As illustrated in Figure 4, we
associate acontract to a node. It is itself a program,
with its internal state, e.g., automata, observing traces,
and defining states (for example an error state whereeG

is false, to be kept outside an invariant subspace). It has
two outputs:eA, assumptionon the node environment,
and eG, to be guaranteed orenforcedby the node. A
setC = {c1, . . . , cq} of local controllable variables will
be used for ensuring this objective. This contract means
that the node will be controlled, i.e., that values will
be given toc1, . . . , cq such that, given any input trace
yielding eA, the output trace will yieldeG. This will be
obtained automatically, at compilation, using DCS.

Without giving details [9] out of the scope of this
case study, we compile such a BZR contract node into a
DCS problem as in Figure 5. The body and the contract
are each encoded into a state machine with transition
function (resp.Trans andTrC), state (resp.State and

f(x1, . . . , xn) = (y1, . . . , yp)
assume eA

enforce eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·

yp = fp(x1, . . . , xn, c1, . . . , cq)

Figure 4. BZR contract node graphical syntax
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Figure 5. BZR contract node as DCS problem

StC) and output function (resp.Out and OutC). The
contract inputsXC come from the node’s inputX and
the body’s outputsY , and it outputseA, eC . Assuming
eA produced by the contract program, DCS will obtain a
controllerCtrlr for the objective of enforcingeG (i.e.,
making invariant the sub-set of states whereeA ⇒ eG is
true), with controllable variablesc1, ...cq. The controller
then takes the states of the body and the contract, the
node inputsX and the contract outputseA, eG, and it
computes the controllablesXc such that the resulting
behaviour satisfies the objective.

IV. D ISCRETE CONTROL HANDLERS OF

CONTINUOUS CONTROL TASKS

A. Integration in a development process

As announced in Section I, our first contribution
is the integration of BZR reactive controllers, using
DCS, into the Orccad runtimes. The general scheme for
using BZR consists of a treatment of the control part,
using our target-independent language and compiler, in
derivation of the main system development process. In
its instantiation for the case of ORCCAD, illustrated in
Figure 6, one can see phases of:

• extraction of control part from the adaptive system,
in the form of a BZR program;

• BZR compilation: synchronous compilation to:

– a Boolean equations form, with contracts com-
piled into DCS objectives; given to DCS to
produce the constraint on controllables;

– a sequential C code for the automata;

both are then assembled into an executable involv-
ing a resolution of the synthesised constraint;

• re-linking of the latter into the global executive.

B. General architecture

1) Discrete and continuous layers:The contribution
of this paper is a novel method for designing discrete,
logical control handlers, on top of continuous control
tasks. The goal is to ensure, by a discrete control loop,
logical safety properties of the tasks sequencings and

constraint

generated C code

resolution)
(with constraint

executive
Real-time

Xenomai)
(C, Linux/

RT & RP
automata

& contract

BZR compiler

spec.

Orccad extract

link

synchronous
compiler

DCSseq. C code

Bool. eq.
& obj.

Figure 6. Development process for BZR with Orccad.

mode changes. We contribute this new layer on top of
the real-time executives built with the Orccad design
environment for control systems, by establishing the
connection with the BZR language and compiler, which
is relying upon discrete controller synthesis techniques.

This is illustrated in Figure 7 where, elaborating on
the general Figure 3(b), we show how the physical
system (a robot, with sensors giving values, and ac-
tuators taking commands) is in a closed loop with the
continuous control layer of the computing system. The
latter is implemented on a RTOS, in the form of real-
time tasks in the Orccad approach .

These tasks are provided with local controllers in
terms of reactive automata, that are interacting with the
real-time tasks typically through events corresponding
to activation of tasks, or their stopping, or exceptions
to be handled. We will consider also application au-
tomata, which are describing the sequencings of tasks,
in reaction to internal events like task ends, or also
to external events from the controlled system. The
application automaton interacts with the local automata
typically through emitting starting events towards them,
and receiving end or exception events. On the basis of
these automata, we build another layer of closed-loop
control, in the computing system, this time on discrete
aspects modelled in these transition systems. We will
use DCS to produce a controller that will enforce logical

tasks
real-time

robot
system

sensors actuators

DCS ctrlr

tasks automata
application &

computing
system

physical
system

control loop

continuous

discrete
control loop

exceptions,
stops activations

BZR program

Figure 7. Discrete control handlers of continuous control tasks.
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Figure 8. BZR/Heptagon programming of the generic task control automaton, in the case ofArmXcmove.

objectives on the allowed sequencings of tasks.
2) Design and development process:Figure 6 shows

that the particularities are in the interface between
Orccad and BZR, at the two levels of: language, to
have the RT and RP automata of Orccad in BZR; and
executive, where the code generated by BZR is linked
into the real-time executive generated by Orccad.

C. Language-level integration

1) RT automata: Figure 8 illustrates the BZR/-
Heptagon programming of the generic automaton node
associated to each task, in the case ofArmXcmove.
Input and output signals are exchanged with three main
components of the architecture:

• the real-time tasks managed by the RTOS: typically
to activate them, abort them, ...

• the controlled system, through sensors and moni-
tors, as e.g., theOutbound input corresponding
to the target being outside of the robot work area;
signals with names featuringWinX interact with the
robot (2D simulator, see Section V-A2);

• the application-level RP automaton, typically by
the start signal, or T2 and T3 exceptions.

For the two first classes, the automaton is inter-
faced with the real-time platform as described in Sec-
tion IV-D.

The hierarchical automaton is read as follows:

• The task is initially in the higher-level state called
Trap_T3. This state is exited upon occurrence
of the condition T3, which is defined inside the
underlying mode as a disjunction of three in-
put signals:Outbound , Errtrack, Redbut. This
transition goes to the end stateT3, with emission
of T3_ArmXcmove towards the RP level.

• at the lower level, inside stateTrap_T3, the sub-
automaton is initially in stateI. Upon input sig-
nal start_ArmXcmove from the application, it

goes into stateTrap_Abort, where another sub-
automaton is executed, until the outgoing transition
takes the control back toI; this happens upon the
disjunction of two possible conditions: upon input
reconf, thent2_reconf andt2_ArmXcmove are
emitted for the RP, or upon inputoutwork, then
goodEndCmove is emitted towards the RP, meaning
that the task ended with success.

This automaton constitutes the BZR/Heptagon encod-
ing of the behaviour described previously in Section II.

2) RP automaton:The RP behaviour could of course
be programmed in automata as in classical ORCCAD.
Using the special feature of BZR involves a change in
specification style, because of the mixture between im-
perative behaviours and declarative control objectives.

Automaton of tasks sequencing:It describes pos-
sible behaviours, with alternatives leading to different
sequencings of the tasks upon incoming events. The
choice points are associated with free Boolean variables;
the intention is to use the latter as controllable variables
in the DCS. The automata can also involve models of
parts of the environment, occupation of resources, or
observers of intended or forbidden sequences of events.
It interacts with RT automata typically by sending them
requests to start, and reacting from their end or ex-
ception signals. This automaton is naturally application
specific; Figure 13 illustrates one on the case study.

Contracts and control objectives:The properties
to be considered for controlling the tasks are coded as
BZR contracts. For a given set of tasks of a system to
be controlled, and application automaton, the contract
specifies what properties must be invariantly enforced,
e.g. those mentioned in Section II-B3. The controller
obtained by DCS will enforce these, by restricting the
system to required behaviours, using the controllable
variables for which the values are chosen in order to
satisfy the properties. Figure 13 gives an example of
such a RP, equipped with a contract.
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T2C
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Figure 9. Complete BZR program (simplified).

3) Complete automaton:The global automaton, rep-
resenting the complete control part of the system, in
terms of Figure 6, is then obtained by the composition
of the tasks automata, and of the application automaton.
Figure 9 illustrates this for the case study.

D. Executive-level integration

At this level, we have to interface the code generated
by the BZR compiler, as shown in Figure 6, with
the Orccad-generated real-time executive mentioned in
Section II-B4. It implements the transition step function,
to be called at the appropriate pace, with appropriate
input parameters, and handling of outputs. The imple-
mentation of this execution machine (i.e. of the dotted
box in Figure 7) is sketched as shown in Figure 10.

A main task sets up the whole system. It spawns
all the real-time tasks and associated communication
and synchronisation objects. In particular it generates
the needed clocks used to trigger the cyclic calculation
modules. Real-time threads are made cyclic by blocking
their first input port on a semaphore which is released
by clock ticks. Otherwise they can be triggered by any
other event, such as a data production from another
thread or a signal sent by a driver.

The automaton is the highest priority task : it is
awakened by the occurrence of input signals related
to the execution of the controllers, e.g. pre-conditions,
exceptions, and post-conditions issued by the feedback
controllers. All events are serialised and received on a
FIFO input events queue. In reaction, the automaton
tells the RTOS what action must be taken by releasing
the corresponding semaphore. Thanks to the use of a
model based approach all the glue code is automatically
generated, while using only basic features of operating
systems make easier porting the tools for different
targets (current targets are Linux/Posix threads and
Xenomai).

Although this automaton is crucial for a safe and
successful behaviour of the application, it spends most
of time doing nothing, just waiting for input events
during the cyclic execution of the control algorithms
managed by the RTOS. Moreover its transitions take
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Robot_Task 1

Robot_Task 2

.

.

.

Observers

TM
obs3

TM
obs2

TM
obs1

TM1

TM2

Controller
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obs4

FIFO

Manager

Automaton

Asynchronous SynchronousInterface

Logical signals

Control signals

Controller

Sémaphore

Output

Outputs

Inputs

Parameters

Parameters

Parameters

Parameters

Clocks
Generation

Figure 10. Implementation of the execution machine.

very short times (typically someµsecs) so that the
overhead due to discrete events control is negligible.

V. CASE STUDY OF A ROBOT ARM

A. Description of the case study

1) The ArmX robot arm model:We define a robot
arm, calledArmX, which is a two-link manipulator with
rotational joints (q1,q2) shown on Figure 11. Each link i
([1,2]) has a point masses Mi ([1,2]) at the end of links.
The dynamic model of the manipulator can be written
in the form:τ = M(q)q̈ + V (q, q̇)+ G(q) whereM(q)
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is the2 × 2 mass matrix of the manipulator,V (q, q̇) is
an 2 × 1 vector of centrifugal an Coriolis terms,G(q)
is an 2 × 1 vector of gravity terms andτ the input
joint torque. For this simple manipulator all details of
calculation can be found in [10].
ArmX is equipped with a robotic tool changer which

allows the robot to switch end effector. There are two
tools manipulated by the arm, one is used when the
target is inside the robot workspace (for example a
gripper) and the second is used outside of this space
(for example a proximity sensor to point the target).

Figure 11. The ArmX model.

2) The Orccad Robot-Tasks:In this application, we
identify four control-laws, embedded in four RTs:

the joint space control task:ArmXjmove controls
the move in the joint space of the manipulator i.e., in
terms of values of angles at the joints;

the Cartesian space control task:ArmXcmove con-
trols the move in the Cartesian space of the manipulator,
in terms of 3d coordinates; it is appropriate for aiming
at targetsinside the workspace.

the target aiming task:ArmXfmove controls the
pointing towards a point by trajectory following; it is
appropriate for aiming at targetsoutsidethe workspace.

the tool change task:CT first brings the robot to
its initial position (q1 = 0, q2 = 0), in order to then
switch the end effector tool.

The Simulation environment:As our case study is
made in simulation, we need to simulate the dynamics
on the two-link manipulatorArmX modelled previously.
We use its inverse dynamic model to compute joint
accelerations:̈q = M−1(q)(τ −V (q, q̇)−G(q)) and we
obtain the currentq andq̇ by a double Euler integration.

The simulation is animated through a X11 window
like in Figure 12. This window is interactive and the

Figure 12. The ArmX 2D simulation

user can use keyboard to give information to the robot
or move a target (a white square) with the mouse.

So, from ORCCAD or another application, this sim-
ulator is perceived like a real robot; we have functions
to initialise it, to put torque, to get joint position, etc.

3) The application: The application designed is a
target following task. When the target is inside the robot
workspace, the effector follows the target. When it is
outside of the robot workspace the manipulator point
towards this target. This application must be safe and
so it is performed taking into account exceptions like
the tracking error is too high, joints limit are reached,
or reconfiguration arm is required.

The objective is that the arm automatically changes
to the appropriate tool, according to the target being
inside or outside the workspace. The fact that the tool
change task is inserted automatically in function of the
current situation makes it an adaptive system.

B. The tasks and their local RT control

To each task corresponds an instance of the generic
task control automaton; for the case of theArmXcmove
task the automaton is shown in Figure 8. Each of the
three other tasks is associated with a similar one. All are
featured in the global controller as shown in Figure 9.

C. The application RP and its global control

1) Specification as a BZR contract:We apply the
BZR programming methodology: first describe possi-
ble behaviours, then specify control objectives in the
contract. The application must launch robot tasks cor-
responding to the current state of the target (inside or
outside the workspace) and change the tool arm to get
the right tool for each task. So the control objective
is first to ensure we have the right tool, and second,

8



node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool) returns( startC, startF, startJ, startCT :bool)
goodtool = ( ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork)) enforce (goodtool & ex)
with (ok1,ok2,ok3:bool)

ActifJActifC

Init inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

Figure 13. Global BZR node, with contract.

to check the smooth running of the application, i.e.,
allowing at most task to be active at a time, and also
at least one, as mentioned in Section II-B3. A set
C = {ok1, ok2, ok3} of local controllable variable
will be used for ensuring this objective. The contract
specifies that the node will be controlled, i.e., that
values will be given took1, ok2, ok3 such that, given any
uncontrollable input trace, the output trace will satisfy
the two objectives.

2) The BZR node for the application:It is named
procRobot, and illustrated in Figure 13.

PR automaton:It is composed of 4 parallel au-
tomata, described from left to right:

• the automaton for the F task: it can start the
ArmXfmove task, by emittingstartF, when it
receives the signaloutWork and obtains the per-
mission of the controller by the flowok1; if ok1 is
false, then it goes to stateWait, until ok1 becomes
true. It models the choice to delay the starting of
F, and corresponds to the delayable tasks pattern
illustrated in Figure 2.

• the automaton for the C and J tasks: it is hierar-
chical with two levels. The upper level is also an
instance of the delayable task pattern; the Boolean
ok2 is used to mark the choice point.
The sub-automaton is in the ActifCJ state man-
ages the alternation between C and J tasks. Upon
occurrence of an exception of type T2 in task C, it
gives control to the task J. This is a way of handling
singularities, which are points that can’t be reached
by using the control laws of task C: in this case
control is given to task J, by sendingstartJ, to
reposition the arm to reach this point. At its end
a signalgoodEndJmove is received from the RT,
then task C is started again.

• the automaton observing the current tool state

(top) is used to memorise the current tool of the
arm. It has two states corresponding to two tools
manipulated by the arm, the first one is used in the
workspace accessible by the arm, and the other in
outside. Every change of tool this automaton re-
ceives agoodEndCT signal from the RT automaton
to indicate that the task ended well.

• the automaton for the CT task (bottom) is mod-
elling the fact that it can be triggered by the
controller that will be synthesised. Using control-
lable variableok3, the controller can force the tool
change by sendingstartCT.

This parallel automaton describes the possible se-
quencings of the tasks. It can be noted that it does not
explicitly care for their exclusion, or for managing the
appropriateness of the tool. This is shown next in the
declarative contract, and compiled with DCS.

Contract: It can be seen in the upper part of Figure
13: it is itself a program, with its own equations. Three
controllable variables, defined in thewith part, will be
used for ensuring two objectives:

• the right tool for the right task: a Boolean variable
goodtool is defined, as the conjunction of two
implications: they state that when a task is active
(ActifCJ, respectivelyActifF), it implies that the
arm carries the right tool (CTcj, respectivelyCTf).

• Mutual exclusion and default control: an equation
definesex, which is the exclusive disjunction of
active states for the tasks. it means actually two
things: that there is at most one active task, and also
at least one, so that the arm is always controlled,
as mentioned in Section II-B3.

The contract is that, assuming that the target can not
be inside and outside of the workspace at the same time,
control enforces that the two Boolean are true.
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D. Simulation and typical scenario

Here is a typical scenario showing the intervention of
the controller on the system, so that control objectives
are preserved. At some point the taskCJmove is active,
and the target inside the workspace, and the tool carried
by the arm corresponds to stateCTcj. Then, the user
clicks outside of the workspace, so the application
receives theoutWork input. This causes the automaton
for CJ to move by a transition to its initial state.

It also causes the automaton for task F to quit its
initial state; here, we have a choice point conditioned
by ok1. Due to the first contract property,goodtool
must be kept true, so given that the current tool state
is CTcj the controller can not allow the transition
to ActifF, and must give the valuefalse to ok1.
Hence task F goes intoWait state. Due to the other
contract property,exmust be kept true, which forces the
controller to maintain at least one active state. Therefore
it launches the taskCT using the controllable variable
ok3, which will change the tool. At the end of the
task CT, the goodEndCT event allows the automaton
observing the current tool to pass in the stateCtf. Thus
we have the right tool for task F, and the controller can
releaseF from Wait to ActifF, by giving valuetrue
to controllable variableok1. This shows how mutual
exclusion, and insertion of reconfiguration tasks can be
obtained declaratively.

VI. CONCLUSION AND PERSPECTIVES

We propose a novel technique to design discrete con-
trol loops on top of continuous control tasks, ensuring
logical safety properties of the tasks sequencings and
mode changes. Its implementation integrates ORCCAD,
a real-time control executives design environment, and
the BZR reactive language, encapsulating in a user-
friendly way the formal DCS technique in its compi-
lation. A case of a robot arm is studied. It constitutes
a concrete approach to implementing hybrid systems.
Further work includes consolidating the integration of
ORCCAD and BZR beyond this case study, enriching the
models with more quantitative aspects [13], defining li-
braries of control models and contracts, and considering
the more involving example of a Mars rover.
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