
Tag: Job Control in urbiscript

Jean-Christophe Baillie Akim Demaille Quentin Hocquet
Matthieu Nottale

May 7, 2010

Abstract

The Urbi software platform for the development of applications for robots relies heavily on concur-
rency. While concurrent programs have existed for decades, there is still no universal consensus for the
proper means to control the complexity of parallelism. This paper presents some innovating features of
Urbi: syntactic constructs to support concurrent jobs, and tags, used to control them.

Urbi SDK is a software platform used to develop portable applications for robotics and artificial intel-
ligence (Baillie, 2005). It is based on UObjects, a distributed component architecture, and on urbiscript,
a parallel and event-driven scripting language. It’s current architecture has already described elsewhere
(Baillie et al., 2008), this paper focuses on one specific feature of urbiscript: job control.

Today, any computer runs many programs concurrently. The Operating System is in charge of provid-
ing each process with the illusion of a fresh machine for it only, and of scheduling all these concurrent
processes. In robots, jobs not only run concurrently, they collaborate. Each process is a piece of a complex
behavior that emerges from the coordination/orchestration of these jobs.

The Urbi platform aims to provide the developers with a convenient framework to orchestrate concur-
rent, collaborating, tasks.

Outline Section 1 introduces some of the features of urbiscript for parallel programming; it concludes
on the common need for a high-level job control. Section 2 presents tags, the cornerstone of job control
in Urbi. A real world example is presented in Section 3: safe interruption of the Nao walk. Section 4
concludes.

1 Concurrency in urbiscript
Internally, to support concurrency, Urbi relies on coroutines. Coroutines are light threads (aka green
threads, or fibers) with their own stack and execution pointer implemented as a library. They are com-
monly used in modern interpreted languages such as Io (Dekorte, 2005). They allow the use of the Urbi
kernel on architectures (e.g., small robots) whose operating system does not provide support for multiple
processes or kernel threads.

This section presents some urbiscript constructs for concurrency. These features are also available to
user code written in some low-level compiled language such as C++. It requires to use the UObject API, and,
since coroutines are not preemptive, some collaboration with the Urbi scheduler. Alternatively, UObject
can be launched in their own thread.

1.1 Flow Control
Classical sequential programming languages, such as C or C++, provide a single statement separator, ‘;’:
a; b stands for “run a and then b”. urbiscript provides additional connectors. The ‘,’ connector launches
the first statement in background, and immediately proceeds to executing the next statements. Scopes

1

(statements enclosed in curly braces: { s1; s2, ...}), are boundaries: a compound statement “ends”
when all its components did. The following example demonstrates these points1.

{
{ sleep(2s); echo(2) },
{ sleep(1s); echo(1) },

};
echo(3);
[00001451] *** 1
[00002447] *** 2
[00002447] *** 3

The ‘&’ connector is similar to ‘,’ in that it launches jobs in parallel, yet, contrary to ‘,’, it “waits” for
all the statements to be known to start their concurrent execution. The difference is virtually insignificant
in scripts, but it is very noticeable in interactive sessions: entering echo(1), will immediately print 1,
while echo(1)&will wait for the right-hand side statement to be complete (i.e., to actually end with either
a ‘;’ or a ‘,’) to fire the execution of the compound statement.

Once concurrency-oriented statement-separators are introduced, some control flow constructs naturally
follow the same extension pattern. In particular loops, sequential by default, can be generalized to become
parallel. For instance, iterating over a collection comes in several flavors: for is sequential while for&
launches all the iterations concurrently (see below).

for (var i : [2, 1, 0])
{

echo("%s: start" % i);
sleep(i);
echo("%s: done" % i)

};
echo("done");
[00125189] *** 2: start
[00127190] *** 2: done
[00127190] *** 1: start
[00128192] *** 1: done
[00128192] *** 0: start
[00128193] *** 0: done
[00128194] *** done

for& (var i : [2, 1, 0])
{

echo("%s: start" % i);
sleep(i);
echo("%s: done" % i)

};
echo("done");
[00105789] *** 2: start
[00105789] *** 1: start
[00105789] *** 0: start
[00105793] *** 0: done
[00106793] *** 1: done
[00107793] *** 2: done
[00107795] *** done

These operators cover a large part of common needs to compose computations with sequential and/or
concurrent components. Yet they fall short when jobs must be created dynamically, or if, for instance, their
lifetime must escape the simple rules of scope nesting. To this end, urbiscript provides means to create new
jobs.

1.2 Dynamic Jobs
The detach function takes a single argument: a block of code that will be run in its own thread of
execution. It returns a handle to this job, which can be used to query the status of the job.

//#line 1 "foo.u"
var job = detach({ sleep(1s); echo(1) });
[00000214] Job<shell_5>

job.dumpState;
[00000219] *** Job: shell_5
[00000219] *** State: sleeping
[00000219] *** Tags:
[00000219] *** Tag<U0x1004043e0>
[00000221] *** Backtrace:

1In urbiscript interactive sessions there is no prompt: lines starting with a time stamp such as [00001451] are output by Urbi.
The other lines were entered by the user.

2

[00000221] *** foo.u:1.21-28: sleep
[00000221] *** foo.u:1.11-41: detach

sleep(1s);
[00001219] *** 1

job.dumpState;
[00001222] *** Job: shell_5
[00001222] *** State: terminated
[00001222] *** Tags:
[00001222] *** Tag<U0x1004043e0>
[00001225] *** Backtrace:
[00001225] *** foo.u:1.11-41: detach

This handle provides a first simple means to control the job.

//#line 1 "bar.u"
var job = detach({ sleep(1s); echo(1) });
[00000214] Job<shell_9>
job.terminate;
job.status;
[00008206] "terminated"
sleep(1s);
// Nothing printed, the job was killed.

But handles are not different from POSIX thread handles for instance. They are low-level, error prone
(Ousterhout, 1996), and provide few features.

1.3 Trajectory Generators
It is occasionally useful to continuously update a variable, sort of binding the variable to a function whose
value depend on time. This can be used to assign trajectories to motors, for instance to make the neck of
the robot oscillate to browse the world to look for a specific object, or simply to program a movement.

To this end, urbiscript provides trajectory gener-
ators. They look like “continuous” assignments:

var y = 0;
y = 0 sin:2s ampli:10,

means “repeatedly set x to the value of a sine cen-
tered on 0, with a period of 2 seconds, and an ampli-
tude of 10”. Since it is “continuous”, we use the ‘,’
separator in order to background this statement (see
the figure on the right-hand side).

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

Of course, some means must be provided to control this assignment, for instance to interrupt the oscil-
lation of the neck once the object of interest is found.

1.4 Event Watchers
urbiscript code —and actually even C++ user code managed by Urbi— supports event-driven programming.
Some specific constructs allow to arm event-watchers that remain idle until some condition is verified, in
which case they fire their attached code.

For instance, the at construct waits for some event to be triggered (using the ! operator in urbiscript)
to execute their body. Lengthy body executions can be concurrent (see the left-hand side of Figure 1).

In other frameworks, similar features are provided by callbacks, but their interface is cumbersome, and
they are typically poorly extensible: callbacks cannot be added freely from anywhere in the code, and

3

var e = Event.new;
[00094489] Event_0x109354cd0
at (e?(var x))
{

echo("%s: start" % x);
sleep(x);
echo("%s: done" % x);

};
e!(2);
[00094490] *** 2: start
e!(1);
[00094501] *** 1: start
sleep(2s);
[00095511] *** 1: done
[00096510] *** 2: done

var x = 0;
[00248475] 0
at (x == 1)

echo("x is one!");
x = 1;
[00266201] 1
[00266201] *** x is one!
x = 2;
[00272634] 2
x = 1;
[00275081] 1
[00275081] *** x is one!

Figure 1: Watching changes: events and expressions

they hardly can be attached to conditions that were not declared to be “events” beforehand. In urbiscript,
expressions can be watched too, without having to bless the used variables in any particular way (see the
right-hand side of Figure 1).

Many Urbi features, including the ones presented in this section — concurrent flow control constructs,
dynamic jobs, trajectories, and event watchers — allow to launch concurrent tasks. Some features, such as
events or scopes, suffice to control them in common cases. Yet, similarly to exceptions that allow to disrupt
the execution flow of a sequential program, one needs high-level features to manage jobs. Urbi introduces
the concept of tag to this end.

2 Job Control in urbiscript
Section 1 introduced some of the means to perform concurrent tasks. This section describes how urbiscript
proposes to manage them.

2.1 Tags
2.1.1 Simple Tags

Tags are regular urbiscript objects: they must be created before being used: var t = Tag.new("sample").
Statements can be tagged: t : stm. Then tags can be used to manage the tasks; for instance t.stop
interrupts any running piece of code tagged by t. This is not unlike signals in Unix, but from the job point
of view, this corresponds to the raising of an exception.

var t = Tag.new;
[00000010] Tag<tag_8>

t : every (1s) echo("tick!"),
[00000019] *** tick!
sleep(0.5s);
t : every (1s) echo("tack!"),
[00000020] *** tack!
sleep(2s);
[00000021] *** tick!
[00000022] *** tack!
[00000023] *** tick!
[00000024] *** tack!
t.stop;
sleep(2s);
// Nothing else runs.

4

Tags can also be used on expressions (i.e., constructs that have a value), in which case, stop takes the
forced result as argument. Stopped tags can be used to label new jobs: the following example reuses the
previous t.

// A very long, erroneous, computation.
var large = { t: { sleep(2**1024); 51 } },
// A simpler computation.
var simple = { t: { sleep(0s); 6 * 7 } },

// Wait for the first of ‘simple’ and ‘large’ that has a value.
waituntil (!simple.isVoid || !large.isVoid);

// Force the result of all the still-running computations.
t.stop({if (!simple.isVoid) simple else large});
echo(large);
[00000222] *** 42

2.1.2 Hierarchical Tags

Tags can also be hierarchical: stopping a tag also stops the children tags. This enable to create hierarchical
behaviors, where you can control sub behaviors individually, or the whole behavior directly.

var party = Tag.new;
party.addChild("dance");
party.addChild("sing");

function robot.party()
{

party.dance: { /* dance behavior */ }
&
party.sing: { /* sing behavior */ }

};

party.dance.stop; // Stop dancing
party.sing.stop; // Stop singing
party.stop; // Stop both

2.2 Enter/leave
Another useful aspect of events is how they enable to run code upon entering and leaving the tagged block.

2.2.1 Usage

Every tag features the enter and leave events, fired when the “tag is entered or left”.

var tag = Tag.new;
at (tag.enter?)

echo("I’m in!");
at (tag.leave?)

echo("I’m out!");

tag: echo("I’m there!");
[00000000] *** I’m in!
[00000000] *** I’m there!
[00000000] *** I’m out!

This feature has two main pros over typing directly the enter and leave code around the tagged block.
First, it enables you to deport and factor a scoped behavior and reuse it:

var withGas = Tag.new;
at (tag.enter?)

turnGasOn();
at (tag.leave?)

5

turnGasOff();

withGas: bakeMeat();
withGas: cookPasta();

The other major advantage is that it guarantees that the exit code is run, in an exception, stop, flow
control, . . . safe way. In the following code, if we exit the function through the exception or the return
statement, we won’t shut the gas off as expected:

function cook()
{

turnGasOn();
{
if (!recipe)

throw Exception.new("Missing recipe!");
if (alreadyCooked)

return true;
doStuff();
return true;

};
turnGasOff();

};

On the other hand, using our tag prevents this problem. Leaving the scope through an exception or any
flow control construct will still run the leave behavior.

function cook()
{

withGas: // We’re safe
{
if (!recipe)

throw Exception.new("Missing recipe!");
if (alreadyCooked)

return true;
doStuff();
return true;

};
};

Even stopping a piece of code will run the leave behaviors. Note that the stop statement will
synchronously block until all tagged code has stopped, and thus until all leave behavior have been run.

at (tag.leave?)
{

sleep(2s);
echo("leave");
sleep(2s);

};

tag: sleep(10s);
echo("before");
tag.stop;
// The leave behavior is finished before reaching this line.
echo("stopped");
// See the timestamps.
[00000000] *** before
[00002000] *** leave
[00004000] *** stopped

Therefore we can safely stop our cooking process:

tag: cook(), // Note the comma: cook in the background.

sleep(10ms);
tag.stop;
// Here, we’re sure we’re done cooking and the gas is off.

6

2.2.2 An application: Mutual Exclusion

An application of this feature is the definition of easy to use, safe mutexes. In Urbi, mutexes are actually
tags (that use a semaphore internally). Tagging a block will lock/unlock the mutex when entering/leaving
it.

var mtx = Mutex.new;

// Ensure critical sections are mutually exclusive.
every (200ms)

mtx: criticalSection1();
at (someEvent?)

mtx: criticalSection2();

This provides an elegant and concise way to use mutexes. Moreover, it ensures the mutex is unlocked
when leaving the critical section, even through exceptions or flow control, thus avoiding stray locks and
resulting dead locks. As an additional feature, since mutexes are tags, anyone can use mtx.stop to make
any code currently holding the mutex release it.

3 Application: Controlling Nao Walk
An application of this concept is used in Urbi for Naoqi: the Urbi interface provides a robot.walk
function, which makes the robot walk the given distance forward. The call is synchronous: it returns only
when the robot is done moving. This enables to easily chain actions:

// Walk 10 meters, then say ‘Hi’.
robot.walk(10);
robot.say("Hi!");

However, in the Urbian way, you should be able to change your mind and stop any behavior, including a
currently running walk. However, the walk should not be abruptly stopped, leaving the robot in an unstable
position, since it would certainly fall. To address this, we can use tags to run a behavior when the walk
function is stopped.

{
var movement = Tag.new;
at (movement.leave?)
{
// Ask Naoqi backend to reset current movement.
motion.ClearFootSteps;
// Wait for Nao to be immobile.
motion.WaitUntilWalkIsFinished;

}

function robot.walk(distance)
{
movement: {

// Ask Naoqi backend to move forward.
motion.walkTo(distance, 0, 0);
motion.WaitUntilWalkIsFinished;

}
}

}

tag: robot.walk(1000),
sleep(10s);
tag.stop;

// When this line is reached, we have the guaranty Nao is stopped, and
// stable on its feet.

Another question is, what to do if two incompatible orders are given? For instance:

7

robot.walk(1),
sleep(500ms);
robot.walk(-1);

If we want the second order to wait until any previous movement is finished, we can simply change
our movement tag into a Mutex. If we want the second order to override any current movement, we can
simply call movement.stop at the beginning of our walk function, thus stopping any currently running
movement.

4 Conclusion
This paper presented some urbiscript constructs for concurrency. It describes how controlling concurrency
is achieved using tags, which are far more than job ids, or job groups: they are a high-level means to
specific how jobs can interact (for instance to implement mutual exclusion), in addition to providing simple
job control.

References
Baillie, J.-C. (2005). URBI: Towards a universal robotic low-level programming language. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05), pages 820–825.

Baillie, J.-C., Demaille, A., Hocquet, Q., Nottale, M., and Tardieu, S. (2008). The Urbi universal platform
for robotics. In Noda, I., editor, First International Workshop on Standards and Common Platform for
Robotics.

Dekorte, S. (2005). Io: a small programming language. In Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications (OOPSLA’05), pages
166–167, New York, NY, USA. ACM.

Ousterhout, J. K. (1996). Why threads are a bad idea (for most purposes).

8

	1 Concurrency in urbiscript
	1.1 Flow Control
	1.2 Dynamic Jobs
	1.3 Trajectory Generators
	1.4 Event Watchers

	2 Job Control in urbiscript
	2.1 Tags
	2.1.1 Simple Tags
	2.1.2 Hierarchical Tags

	2.2 Enter/leave
	2.2.1 Usage
	2.2.2 An application: Mutual Exclusion

	3 Application: Controlling Nao Walk
	4 Conclusion

