
5th National Conference on Control Architecture for Robots (CAR) Douai, France 18-19 May 2010

Maintaining Connectivity in Multi-Robot Systems
Through Connectivity Awareness

Le Van Tuan1,2,3,4, Noury Bouraqadi1,2, Stinckwich3,4, Victor Moraru4, and Arnaud Doniec1,2

1: Université de Lille Nord de France
2: Ecole des Mines de Douai

3: GREYC–Université de Caen
4: IRD UMMISCO, Hanoï, Vietenam

contact: noury.bouraqadi@mines-douai.fr

Abstract

Maintaining the network connectivity in mobile Multi-Robot Systems (MRSs) is a key
issue in many robotic applications. In our view, the solution to this problem consists of
two main steps: (i) making robots aware of the network connectivity; and (ii), making use
of this knowledge in order to plan robots tasks without compromising connectivity. In this
paper, we present an application-independent distributed algorithm executed on individual
robots to build the connectivity awareness. So, robots can plan their motions while keeping
connected.

Keywords: Multi-Robot Systems - Coordination - Connectivity

1 Connectivity Awareness Basic idea
Our basic idea in maintaining the network connectivity in MRSs is the following: each robot Ri

in the MRS, while performing its task, has to keep in touch with at least one neighboring robot
Rj from which a communication path to a reference robot can be established. Concretely, in the
system shown in figure 1, R5 has to maintain the connection with R1, and R6 has to stay in touch
with R5. Similarly, R2 is responsible for maintaining the communication link with R1. R3 and
R4 should move around in such a way that the links between them and R2 will not be broken.
For R7, there are two different paths to R1, it needs to maintain at least one link with either R3

or R4. So R7 has more choice to move while taking the connectivity into account. If the robots
are all successful as such, then the connectivity of the whole system will be ensured.

R3

R7
R2

R4

R1

R5

R6 Rx Robot

Communication
links

Figure 1: A Networked Robotics System

1



(a) Robot 3
Access Robots Access Paths

R2 (R1)

(b) Robot 7
Access Robots Access Paths

R3 (R2, R1)
R4 (R2, R1)

Table 1: Example of access robots and access paths for some robots of figure 1

Definition 1 (Access Robot and Access Path) Given reference robot Rr, and two different robots
Ri and Rj ∈ V (i 6= j), Rj is called an access robot for Ri iff there exist an edge {Ri, Rj} ∈ E
(i.e. Ri and Rj are neighbors) and there exist a path p(Rj, Rr) such that Ri 6∈ p. We call p an
access path.

Based on definition 1, the maintenance of connectivity can be interpreted as following: given a
reference robot, for preserving the network connectivity, robots need to maintain the communi-
cation links with one of their access robots while performing their tasks.

2 Connectivity Table
A connectivity-awareness for a given robot is materialized as a connectivity table containing a set
of access paths. These paths represent a partial view of the network connectivity. For example,
the connectivity table of the robot R7 in the network in figure 1 might looks like the table 1.
The table has two access paths corresponding to two access robots R3 and R4. Based on this
knowledge, robots know which neighbors they should depend on for maintaining the connectivity
with the whole network. This section presents our algorithm to build the connectivity table, and
to maintain its consistence in presence of the mobility.

We assume that at the beginning of a mission, robots are close to each other and form a
network; therefore, they can communicate and rely on a Mobile Ad Hoc Network (MANET)
[Per01] routing protocol for message transmission. We also assume that a message sent by a
node is received correctly within a finite period of time (a step) by all its neighbors, and that
every robots has a unique ID. The main concerns in making robots network connectivity-aware
now turn out to be selecting the reference robot, and building the connectivity tables.

3 Building the Connectivity Table
The choice of a reference node can be application-dependent and might involve multiple criteria
such as the energy level, the number of neighbors, hardware requirements, etc. A generalized
approach is to employ a market-like bidding mechanism to select the node that will be the refer-
ence.

2



Algorithm 1: Algorithm performed by every robot on the
reception of newAccessPath message

Input: The New-Access-Path Message M
Output: The connectivity table T of the robot is updated
begin1

p← M.accessPath();2

if this.id() 6∈ p then3

s← M.getSender();4

p.addFirst(s.id());5

T.add(p);6

if T.isInternallyDisjointWith(p) then7

M.setSender(this);8

M.setNewPath(p);9

this.oneHopBroadcast(M);10

end11

end12

end13

Consider the robot network of the figure 1. Suppose that R1 is chosen to be the reference
robot, it will then broadcast to all its one-hop neighbors a New-Access-Path Message. Such
a message encodes the sender’s ID, and the new access path. Since the sender here is also the
reference node, the ID is R1 and the access path is empty. R2 and R5 will receive the message
and process it according to algorithm 1. Since they have not received this message before and
their connectivity tables are still empty, R2 and R5 modify the path by adding R1’ID in the
path’s head, and then add the path into their respective tables. Last, the modified messages are
forwarded. Note that, the algorithm allows forwarding only paths that are internally disjoint to
those already in the table. A path p1 is said to be internally disjoint to another path p2, if they
share no robot, except may be the first and the last robot. For example, paths (R3, R2, R1) and
(R6, R5, R1) are internally disjoint. Also, (R4, R5, R1) and (R4, R6, R1) are internally disjoint.
Conversely, paths (R3, R2, R1) and (R4, R2, R1) are not internally disjoint, since they do share
R2.

At step 3, R6 receives the message broadcasted by R5. At the same step, R3 and R4 receive
the message sent by R2, they both modify the message, add the modified path to their table, and
then forward the updated messages. Note that R1 receives also messages from R2 and R5, but it
ignores them because R1’s ID is already in the path. Loops are thus filtered out.

At step 4, R6 continues to forward the message, but R5 ignores it because R5’s ID is already
in the path (filtering out loops). Similarly, message sent by R3 reaches R7 and R2, but only R7

proceeds and add the path into its table. At the last step (step 5), there is only R7 which attempts
to forward a message. Consider the message that reaches R7 after passing through R2 and R3.

3



Robot Connectivity Table
R1 ()
R2 (R1)
R3 (R2, R1)
R4 (R2, R1), (R7, R3, R2, R1)
R5 (R1)
R6 (R5, R1)
R7 (R3, R2, R1), (R4, R2, R1)

Table 2: Connectivity tables for robots of figure 1 built by algorithm 1

After updating this message and storing the modified path, R7 will broadcast it. So, R4 and
R3 will receive this updated version. R3 will ignore it because R3’s ID is already in the path.
R4 will add it to its connectivity table, but it does not forward it because the message path is
not internally disjoint with the other path already stored in R4. Indeed, the path in the message
just received by R4 is (R7, R3, R2, R1), while the path already in the connectivity table of R4 is
(R2, R1). These two access paths are not internally disjoint, since they share robot R2.

At step 4 also, a message is broadcasted by R4 with path (R4, R2, R1). R2 ignores it because
it is already in the access path. R7 does add it to its access table. However, since R7 already has
a path going through R2

1, it does not forward the message. The process finisheses, as there is no
message sent over the network.

This process of building the connectivity table is loop-free, since robots store and propagate
only access paths that are internally disjoints i.e. paths that do not share any robot except the
access robot. For the same reason, this construction terminates within l steps, where l is the
length in term of hop-count of the longest access path in the network.

Regarding the performance of the algorithm, let d̄ be the average number of neighbors per
robot. The memory complexity for saving a connectivity table is O(2d̄) entries. The total mes-
sages complexity is O(2nd̄). A full proof is given in [LBS+09].

4 Updating the Connectivity Table
Since the environment is subject to change, and that the robots move during their mission, the
network topology can change over time. This poses a problem of ensuring the coherence of the
connectivity table with the actual situation of the network. There are two situations that might
make the information in the connectivity table obsolete: a robot “meets” new neighbors or it is
out of reach of an access robot.

When a robot detects a breakage of a link to a neighbor, it will remove all the access
paths going through this link in its connectivity table. Then it broadcasts a Link-Broken
message to its neighbors. The message contains the edge composing the id of the sender and of
disconnected neighbor robot. Any robot receiving a Link-Broken message will remove from

1We make here the assumption that R7 processes the message from R3 before the one sent by R4.

4



its connectivity table any access paths through the broken link. If a path is deleted, the robot
forwards the Link-Broken message to its neighbors. Therefore, all robots that might use the
broken link be notified, and then update their connectivity tables.

When robots meet new neighbors, they will exchange their connectivity table to each other.
Algorithm 1 will be executed on each robots to detect, store new access paths and notify neigh-
bors about updates.

5 Conclusion
We presented in this paper a distributed algorithm that makes mobile robots in a multi-robot
system aware of the network connectivity. This awareness is a separated concern that can be
reused in various robotic applications with different application-dependent strategies for connec-
tivity maintenance. This work was presented in detail at conference ICRA2009 [LBS+09]. We
showed that our solution allows checking the robotic network biconnectivity, i.e. that each robot
is connected to the network through at least two different access paths with a complexity, in the
worst case, of O(4n2) messages, whereas the state of the art [AS06a, AS06b] requires O(2n!)
messages.

We also developped a more efficient variant of our connectivity table construction algorithm.
The main idea of this result we presented in the RIVF2009 conference [LBSM09], is that a robot
stores all access paths it receives but forwards only two of them which significantly reduces
the amount of messages broadcasted over the network. Indeed, the message complexity for
constructing connectivity tables drops to O(2n) for n robots.

References
[AS06a] Mazda Ahmadi and Peter Stone. A distributed biconnectivity check. In proceed-

ing of the 8th International Symposium on Distributed Autonomous Robotic Systems
(DARS’06), 2006.

[AS06b] Mazda Ahmadi and Peter Stone. Keeping in touch: Maintaining biconnected struc-
ture by homogeneous robots. In proceeding of the 21st National Conference on
Artificial Intelligence (AAAI), 2006.

[LBS+09] Van Tuan Le, Noury Bouraqadi, Serge Stinckwich, Victor Moraru, and Arnaud
Doniec. Making networked robot connectivity-aware. In Proceedings of ICRA (In-
ternational Conference on Robotics and Automation), Kobe, Japan, May 2009.

[LBSM09] Van Tuan Le, Noury Bouraqadi, Serge Stinckwich, and Victor Moraru. Connectivity
awareness in networked robotic systems. In Proceedings of IEEE-RIVF Interna-
tional Conference on Computing and Communication Technologies, Da Nang City,
Vietnam, July 2009.

[Per01] C. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

5


