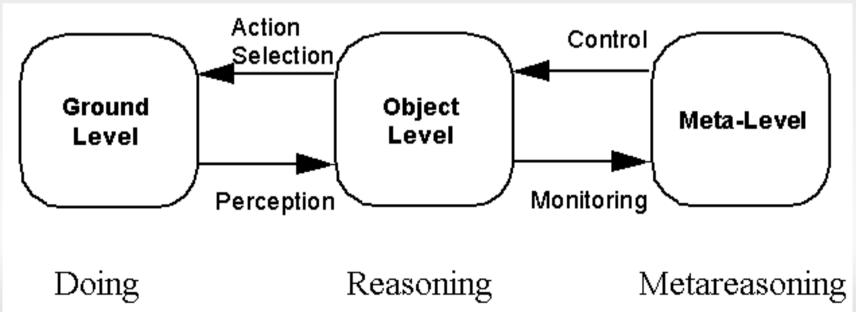


APM(Robot)

Towards a platform for meta-reasoning in robotic applications


Cédric Dinont, François Gaillard and Michaël Soulignac

Computer Science Department ISEN Lille

APM(Robot): Towards a platform for meta-reasoning in robotic applications

Introduction:

- We want to integrate several technics in robotics
- We need a middleware between robots
- We want to manage the operations in the robots
- We need knowledge about these operations
 - → We need Meta-Reasoning on robots modules (Pitrat 90)
 - → One program with different behaviors depending on the robot configuration

APM(Robot): Towards a platform for meta-reasoning in robotic applications

Plan:

- 1) APM: An Agent Platform for Meta-reasoning
- 2) APM(Robot): Instance of APM for robotic applications

Key Points:

An agent oriented platform
Abstract communication concepts
Abstract memory management concepts
Meta reasoning

An agent platform

Why:

- We need a middleware
- Reuse of our platform for several applications:
 - Robots
 - ORB
 - Simulation
- We want to separate behavior and execution

- We use agent concepts:
 - Communication
 - Memory management

A platform based on abstract communication concepts

Why:

- Communication for adaptation
- Communication autonomy for our agents
- Genericity of information exchanged between agents

- Contacts information as meta-data on system entities
- Physical Links
- Communication manager
- Communication languages

A platform based on abstract communication concepts

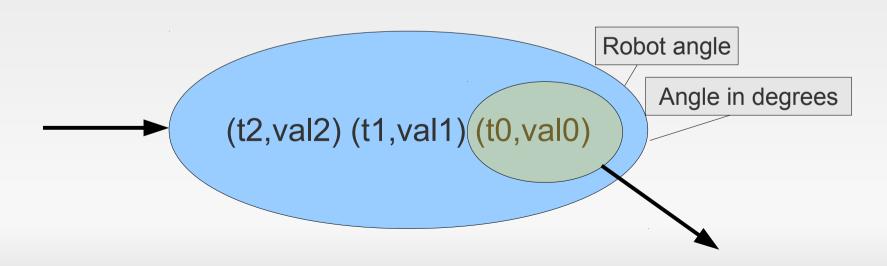
- Contacts
 - Represents an entity and the different ways to send messages to it
 - Noury Bouraqadi Agent
 - Mail: bouraqadi@ensm-douai.fr
 - Tel: 06xxxxxxxx
- Physical Links
 - More general than OSI physical and data link layers
 - Ex: IP, Socket, bus I2C, Bluetooth, Mail, HTTP
- Duality between synchronous and asynchronous communication:
 - Synchronous: Telephone
 - Asynchronous: Mail

A platform based on abstract communication concepts

- Communication manager
 - Outbox
 - Automatic selection of physical links
 - Sending strategies
 - Inbox
 - Messages storage
 - Dispatcher module

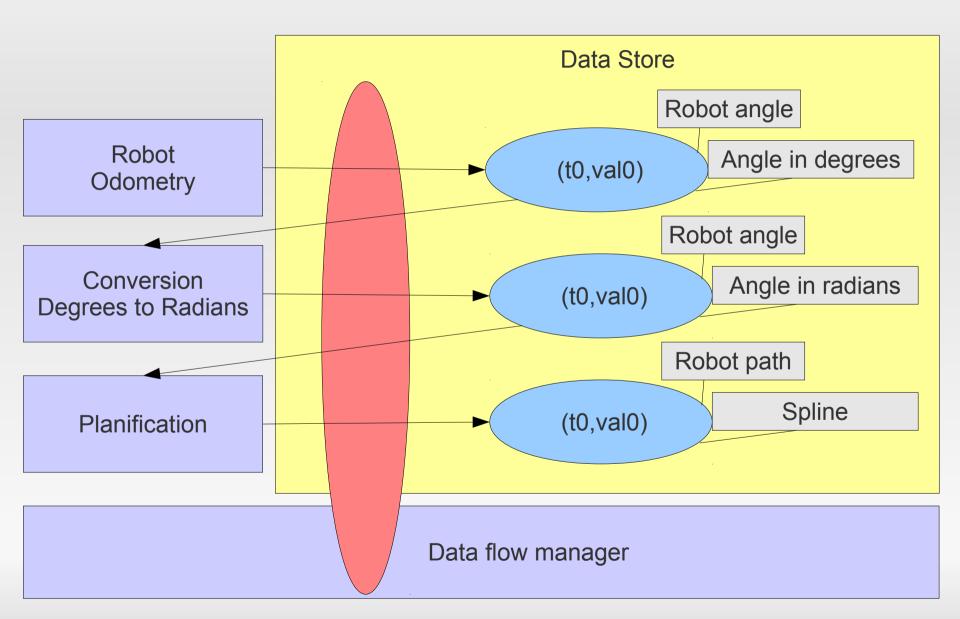
A platform based on abstract communication concepts How:

- Communication languages based on: (Ferdinand de Saussure 1916)
 - Messages:
 - Signifiant (the object)
 - Signifier (the way to represent it)
 - Marshallers:
 - Implement different ways to serialize/deserialize a message on a physical link
 - Can be chained


A platform based on abstract memory management concepts

Why:

- A proactive use of knowledge
- Independence of information and their usage


A platform based on abstract memory management concepts

- Data history
 - Timed tagged data
 - Attached meta-data
 - Policy to delete outdated values

A platform based on abstract memory management concepts

- Data store
 - An "intelligent module" that manages data histories
 - Producer/Consumer and event based models
 - Events on data or types of data value added, value deleted, meta-data added, meta-data deleted
- Data processing modules
 - Data flow generated by events
 - Modules can manage data flows (Meta Modules)

Abstract meta-reasoning capabilities

Why:

- An entity aware of its knowledge and its skills
- An entity able to modify its functions

- Meta-data on modules
- Meta-data on information → Data histories

Summary:

- · APM provides abstract concepts for:
 - · Communication
 - Memory management
 - Meta-data and meta-reasoning
- · APM is not a complete platform!
- · APM is an abstract platform for the design of concrete platforms
- · APM helps to create interoperability modules between platforms

APM(Robot): Towards a platform for meta-reasoning in robotic applications

Plan:

- 1) APM: An Agent Platform for Meta-reasoning
- 2) APM(Robot): An APM instance for robotic applications

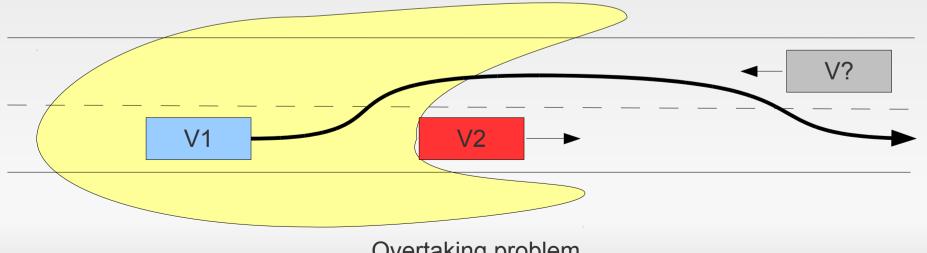
Key Points:

Why meta-reasoning in robotic applications?

Agent vs Object Oriented Platform

Basic modules: Sensors manager, Localization, Planning

Environment representation


Why meta-reasoning in robotic applications?

We want to solve this kind of problem

- Limited perception radius
- Limited motion abilities

We want to reason on

- Sensors
- The way to plan motion

Agent vs Object Oriented Platform

- Object oriented platform: genericity for execution
 - → we mask robot operations
- Agent oriented platform: genericity for robot operations management
 - → we want to know how the robot works

Existing platforms:

- <u>Player Stage</u>: genericity on control and sensors
- <u>Urbi:</u> parallel control of sensors/controllers
- Robot Operating System: Meta on operating system, hardware abstraction and distributed execution of familiar modules in robotics

Agent vs Object Oriented Platform

→ A robot application should: discover its own software modules discover its own hardware weave its behavior thanks to these modules

Sensors manager

- Description of each sensor connected to the robot
- Generated data put into data store with attached meta-data
- Events on these data for attached modules

Localization

- Two main approaches:
 - Chained data fusion
 - Integrated data fusion (Kalman, Particles) → more Efficient
- Adaptation of sensors operations in order to improve efficiency of localization

Planning

Why:

- Complexity of interactions between planning levels: Goal Planning, Path Planning, Motion planning
- Heterogeneous technics and problem representations
- We want a robot able to adapt its planning strategies to the situation

- Meta-reasoning on:
 - Inputs, outputs and inner parameters of planning algorithms
 Ex: Discrete/Continuous data shared between path and motion planning
 Meaning of a point in a discrete path
 as an input for motion planning?

Abstract concepts for environment representation

Why:

- Several representations for each modules
- No generic representation adapted for each needs
- Adaptation to simulation or real execution

- Several models of the environment
 - Continuous, discrete,...
- Several views for the same entity
 - Geometrical shape, picture, ...
 - Versatile layer-based GUI
- Incoherent representations are supported

APM(Robot): Towards a platform for meta-reasoning in robotic applications

Conclusion

- APM provides abstract agent concepts for meta-reasoning:
 - Communication and Memory management
- APM(Robot) instantiates APM concepts in robotics context
- APM(Robot) can be used for:
 - Design, simulation and analysis of robotic algorithms
 - Execution on real robots

Perspectives:

- First meta-reasoning:
 - Getting unknown information on the environment...
 - ... to improve robot motion planning