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Orccad : status and motivations

Model:

• Control design oriented approach for robotics

• Mixed feedback and discrete events

Tools:

• Design & simulation/validation 

• Real-time workshop

V4 modeling and software development:

• Aging version, based on proprietary tools

• Sound model & design approach

• Model Driven Architecture based on Eclipse Modeling Tools

• Open Source software
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The Orccad model

RobotTasks
● Feedback Control
● Cyclic real-time data flow
● Event-based view

RobotProcedures
● Discrete Events Control
● Incremental design
● Exception processing
● Mission definition

Top-down requirements capture
Bottom-up design
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Quadrotor  networked control & diagnosis

Networked system 
● CAN bus
● Distributed diagnosis
● Fault tolerant control
Flexible scheduling
● Varying sampling
● (m,k)-firm
● Dynamic priorities
Hardware-in-the-loop
● Linux simulation
● PPC embedded
V4 Runtime update

(SafeNecs ANR)
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Drone control block-diagram

Networked system 
● CAN bus
● Distributed diagnosis
● Fault tolerant control
Flexible scheduling
● Varying sampling
● (m,k)-firm
● Dynamic priorities
Hardware-in-the-loop
● Linux simulation
● PPC embedded
V4 Runtime update
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Feedback control action
● Control algorithm definition
● Modular design
● Functional parameters
● Timing parameters

Event based behaviour
● Precondition
● Synchronization
● Exception

● Weak T1
● Strong T2
● Fatal T3

● Postcondition

Orccad components: RobotTask



7

Orccad components: Modules

Implement functions

Algorithmic
Phy_Resource (drivers)

Typed Input/Output ports
● Data
● Drivers
● Parameters
● Events

User defined C code

 init(inputs)
 forever{
 compute(inputs)
             }
 end()
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● Task ID
● Modules ID
● Priority
● Synchronization

●  Clock
●  Output port
●  Extern event

● Overrun policy
●  Skip, Soft, Hard
●  User's defined

● WCET
● CPU ID

Orccad components: Temporal Constraint

Real time threads
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Orccad components: RobotProcedure

● Composition of control actions
● Incremental design
● From exception processing to mission definition
● Currently written in Esterel

See next talk!



10

Runtime

Code generation
● C++ classes
● Virtual system calls

Compilation
● Binding to real calls
● Link with specific runtime library

● Linux/Posix
● Xenomai/Native
● ...
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MDA in Orccad

• Eclipse Modeling Project based on the idea of a Model (MetaModel)

• EMP offers different tools for different goals : EMF, GMF, Xpand...

• Principe of plug-in in the Eclipse Environment

Ecore

Java

XSD

UML
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Orccad by Developer & User

Orccad
MetaModel

Software

As a Developer
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Orccad by Developer & User

Orccad
metamodel

As a User
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MDA : How it works

MetaModel

Model

Generator

The Metamodel defines how a model is made. 
Made by the developer.

The Model is realized by the user.
It matches to the meta-model and its constraints.

It generates the source code from the model, using 
templates defined by the developer .
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MetaModel -  an example

The graphical view is close to an UML model.
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MetaModel -  an example

Class

Code is generated in Java, we find Java properties in the Ecore model.
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MetaModel -  an example

Inheritance

Code generated in Java, we find Java properties in the Ecore model.
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MetaModel -  an example

References
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EMF – Tree Editor

● A plugin developed in the Eclipse project

● From a metamodel, generates a Tree 
Editor as a plugin

● For Eclipse
● RCP plugin

● Really useful to realize beta-version
● Constraints must be defined and filled at 
this step.
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EMF – Tree Editor

● Generation of Code
● Creation of a new Project (Plug-in)
● Packages by functions
● All the customization on eclipse plug-in 

are allowed

● Generated code must be modified and/or  
completed. With keyword, a re-generation of 
the code is safe.
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EMF – Tree Editor
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GMF – Graphical Editor

● The Tree Editor must be generated before the 
generation of the Graphical Editor.

● We specify through files 
● Graphical representations of elements and 

links
● Palette tool
● Mapping, the coherence between view, 

ecore and palette.

● Then we can generate the Graphical Editor.
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GMF – Graphical Editor

Graphical Interface Code :

- MVC design pattern

Model, Controller and View 
are independent for a easier 
maintenance.
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GMF – Graphical Editor

Result of a quick Graphical Interface uncluttered -> customization !
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GMF – Graphical Editor

Example of a simple customization
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Xpand – The Code generator

➢ Xpand is proposed as a M2T (Model to 
Text ) technology in the Eclipse Modeling 
Project

➢ It fits with the Ecore Metamodel

➢ Entirely customization for any type of file

➢ Templates have a simple syntax

➢ Code generator is independent from the 
source code

Why Xpand ?
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Xpand – The Code generator

Templates
.xpt

Meta
Model
.ecore

XPAND
files

● Source code

●Documentation

●Webpages

●Whatever you want
Model
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Eclipse tooling assessment

● Advantages

✔ Eclipse Environment

✔ Model and Code independence

✔ Extensibility/scalability

✔ Fast when technology mastered

• Disadvantages

✗ Abandoned tools

✗ Choices

✗ Technology not easy to master
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Questions ?

http://orccad.gforge.inria.fr

         Opening soon!

http://orccad.gforge.inria.fr/
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