
1

May 18th & 19th 2010, Douai

Soraya Arias
Florine Boudin

Roger Pissard-Gibollet
Daniel Simon

CAR' 2010

Orccad,

a Model Driven Architecture and

Environment for Robot Control

2

Orccad : status and motivations

Model:

• Control design oriented approach for robotics

• Mixed feedback and discrete events

Tools:

• Design & simulation/validation

• Real-time workshop

V4 modeling and software development:

• Aging version, based on proprietary tools

• Sound model & design approach

• Model Driven Architecture based on Eclipse Modeling Tools

• Open Source software

3

The Orccad model

RobotTasks
● Feedback Control
● Cyclic real-time data flow
● Event-based view

RobotProcedures
● Discrete Events Control
● Incremental design
● Exception processing
● Mission definition

Top-down requirements capture
Bottom-up design

4

Quadrotor networked control & diagnosis

Networked system
● CAN bus
● Distributed diagnosis
● Fault tolerant control
Flexible scheduling
● Varying sampling
● (m,k)-firm
● Dynamic priorities
Hardware-in-the-loop
● Linux simulation
● PPC embedded
V4 Runtime update

(SafeNecs ANR)

5

Drone control block-diagram

Networked system
● CAN bus
● Distributed diagnosis
● Fault tolerant control
Flexible scheduling
● Varying sampling
● (m,k)-firm
● Dynamic priorities
Hardware-in-the-loop
● Linux simulation
● PPC embedded
V4 Runtime update

6

Feedback control action
● Control algorithm definition
● Modular design
● Functional parameters
● Timing parameters

Event based behaviour
● Precondition
● Synchronization
● Exception

● Weak T1
● Strong T2
● Fatal T3

● Postcondition

Orccad components: RobotTask

7

Orccad components: Modules

Implement functions

Algorithmic
Phy_Resource (drivers)

Typed Input/Output ports
● Data
● Drivers
● Parameters
● Events

User defined C code

 init(inputs)
 forever{
 compute(inputs)
 }
 end()

8

● Task ID
● Modules ID
● Priority
● Synchronization

● Clock
● Output port
● Extern event

● Overrun policy
● Skip, Soft, Hard
● User's defined

● WCET
● CPU ID

Orccad components: Temporal Constraint

Real time threads

9

Orccad components: RobotProcedure

● Composition of control actions
● Incremental design
● From exception processing to mission definition
● Currently written in Esterel

See next talk!

10

Runtime

Code generation
● C++ classes
● Virtual system calls

Compilation
● Binding to real calls
● Link with specific runtime library

● Linux/Posix
● Xenomai/Native
● ...

11

MDA in Orccad

• Eclipse Modeling Project based on the idea of a Model (MetaModel)

• EMP offers different tools for different goals : EMF, GMF, Xpand...

• Principe of plug-in in the Eclipse Environment

Ecore

Java

XSD

UML

12

Orccad by Developer & User

Orccad
MetaModel

Software

As a Developer

13

Orccad by Developer & User

Orccad
metamodel

As a User

14

MDA : How it works

MetaModel

Model

Generator

The Metamodel defines how a model is made.
Made by the developer.

The Model is realized by the user.
It matches to the meta-model and its constraints.

It generates the source code from the model, using
templates defined by the developer .

15

MetaModel - an example

The graphical view is close to an UML model.

16

MetaModel - an example

Class

Code is generated in Java, we find Java properties in the Ecore model.

17

MetaModel - an example

Inheritance

Code generated in Java, we find Java properties in the Ecore model.

18

MetaModel - an example

References

19

EMF – Tree Editor

● A plugin developed in the Eclipse project

● From a metamodel, generates a Tree
Editor as a plugin

● For Eclipse
● RCP plugin

● Really useful to realize beta-version
● Constraints must be defined and filled at
this step.

20

EMF – Tree Editor

● Generation of Code
● Creation of a new Project (Plug-in)
● Packages by functions
● All the customization on eclipse plug-in

are allowed

● Generated code must be modified and/or
completed. With keyword, a re-generation of
the code is safe.

21

EMF – Tree Editor

22

GMF – Graphical Editor

● The Tree Editor must be generated before the
generation of the Graphical Editor.

● We specify through files
● Graphical representations of elements and

links
● Palette tool
● Mapping, the coherence between view,

ecore and palette.

● Then we can generate the Graphical Editor.

23

GMF – Graphical Editor

Graphical Interface Code :

- MVC design pattern

Model, Controller and View
are independent for a easier
maintenance.

24

GMF – Graphical Editor

Result of a quick Graphical Interface uncluttered -> customization !

25

GMF – Graphical Editor

Example of a simple customization

26

Xpand – The Code generator

➢ Xpand is proposed as a M2T (Model to
Text) technology in the Eclipse Modeling
Project

➢ It fits with the Ecore Metamodel

➢ Entirely customization for any type of file

➢ Templates have a simple syntax

➢ Code generator is independent from the
source code

Why Xpand ?

27

Xpand – The Code generator

Templates
.xpt

Meta
Model
.ecore

XPAND
files

● Source code

●Documentation

●Webpages

●Whatever you want
Model

28

Eclipse tooling assessment

● Advantages

✔ Eclipse Environment

✔ Model and Code independence

✔ Extensibility/scalability

✔ Fast when technology mastered

• Disadvantages

✗ Abandoned tools

✗ Choices

✗ Technology not easy to master

29

Questions ?

http://orccad.gforge.inria.fr

 Opening soon!

http://orccad.gforge.inria.fr/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

