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Motivation Orccad BZR Case study Discrete control handlers Perspectives

Real-Time Operating Systems and reactive control

Programming control systems
continuous control loops ↔ tasks on RTOS
performance & quality ↔ periods, latencies

→ Orccad design environment

Discrete, reactive controllers
events, states, control modes ↔ automata (e.g., StateFlow)

model-based design ↔ synchronous languages
discrete control loops ↔ discrete controller synthesis (DCS)

→ BZR programming language

Contributions
Discrete control handlers of continuous control tasks

1 integration of DCS via BZR in Orccad
2 case study: robot arm controller
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Programming control systems in Orccad (continuous)

Orccad: design, validation, implementation of robotic applications

Real-time tasks for continuous control:

�xed-rate sampling,
or multi-rate

control/scheduling
co-design : periods,
latencies, gains

Robot-Task (RT):
encapsulation in a
reactive shell

Reactive shell

External view (Discrete events)

START

Drivers

Observer Observer

Control
Control

Control law (Discretized time)

T2_UnStableCam

STARTED
Good_End

T3_SENSOR_FAILED

ABORT

Timeout

Suspend

Resume

UnStableCam
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Programming control systems in Orccad (discrete)

Automata for task management

Generic control of RTs, with events for: synchronizations,
exceptions (3 types), pre & postconditions

Missions design: assembling RTs (abstracted to automata)
into hierarchical Robot Procedures (RPs)

Speci�cation and validation: Esterel synchronous language

Real-time execution machine for the synchronous automata

Position of the contribution in this work:

instead of programming then verifying,

use DCS to generate correct task controllers
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Discrete

Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr
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Examples of discrete computing modes

state ↔ con�guration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)

modes: algorithm variants for a
functionality (resource, QoS)

placement and migration: task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance: migration/rollback upon processor failure

architecture control: frequency, DVS, stand-by in MPSoC
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Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs

Computation of a controller, maximally permissive, such as the
controlled system satis�es Φ

tool: sigali (H. Marchand, INRIA Rennes)
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BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)

contract construct :

assuming eA (on the environment), enforce objective eG

by constraining the additional controllable variables
c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES'10]
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Compilation & implementation
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...

(synchronous)
compiler

(synchronous)
compiler

objectives

contracts automata

transition
system

(synchronous)
DCS tool

controller
(constraint)

triangularize
transl. to eq.

controller
(function)

compose

controlled
automata

sequential code
JavaC

with
contracts

BZR speci�cation

extension

Development process:
integration in computing system

(here: Orccad):

constraint

generated C code

resolution)
(with constraint

executive
Real-time

Xenomai)
(C, Linux/

RT & RP
automata
& contract

BZR compiler

spec.

Orccad extract

link

synchronous
compiler

DCSseq. C code

Bool. eq.
& obj.
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Case study: ArmX robot arm

two links
rotational joints (q1,q2)

robotic tool changer
two tools: gripper, pointer

application: when target is
inside workspace: follow
outside: point towards
with appropriate tool

Four RTs:

joint space move

cartesian space move

target aiming
(trajectory following)

tool change (at initial
position (q1 = 0, q2 = 0))

ArmX 2D simulation
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Discrete control handlers of continuous control tasks

Discrete control of tasks sequencings and mode changes

Discrete and continuous layers

tasks
real-time

robot
system

sensors actuators

DCS ctrlr

tasks automata
application &

computing
system

physical
system

control loop

continuous

discrete
control loop

exceptions,
stops activations

BZR program

Local task automata, coordinated by application automata
with discrete supervisor, enforcing logical objective
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Language-level integration: Robot Tasks

BZR/Heptagon programming of the generic RT control automaton
Example of ArmXcmove:

t2_Reconf

activate_ArmXcmove_WinX

T3_ArmXcmove
Outbound

Outwork

ReadyToStart/ReadyToStart_WinX

FinTransite_WinX

/ActivateArmXcmove_WinX,Prev_rt_WinX

T3 = Errtrack or Outbound or Redbut

START_ArmXcmove

FinTransite_WinX

RS

A

Trap_Abort
AI

I

Trap_T3

Reconf

Errtrack

T3

T3 / T3_ArmXcmove

START_ArmXcmove / Started_ArmXcmove

readyToStart_WinX

prev_rt_WinX

Outwork / goodEndCmove

/t2_Reconf,t2_ArmXcmoveReconf
or

Redbut

started_ArmXcmove

goodEndCmove

t2_ArmXcmove

inputs & outputs: interaction with application level, and
from sensors and RTOS, to RTOS

behaviour: phases (initialization, control)
exceptions (T2, T3)
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Language-level integration: Robot Procedure

Global automaton: synchronous composition
of local task automata and application

Example: complete BZR program (simpli�ed).

application Task C Task CTTask FTask J
outWork

inWork

T2C

StartCTStartFStartJStartC

goodEndJmove goodEndCT
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Global BZR node, with contract

node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns ( startC, startF, startJ, startCT:bool)

goodtool = ( ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

BZR programming methodology:

possible behaviors

: 4 automata in ‖ : 1 observer, 3 task mgrs
Tasks F and C/J can be delayed by control (ok1, ok2)
Task CT can be triggered by control (ok3)

declarative contract

: (with assumption)

right tool for right task: goodtool

mutual exclusion and default control: ex
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Typical scenario
node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns ( startC, startF, startJ, startCT:bool)

goodtool = ( ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool & ex)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj
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