
Automatic generation of
discrete handlers

of real-time continuous control tasks

Soufyane Aboubekr, Gwenaël Delaval, Roger Pissard-Gibollet,
Eric Rutten, Daniel Simon

INRIA Grenoble � LIG & GIPSA-Lab

CAR � May 2010

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Real-Time Operating Systems and reactive control

Programming control systems
continuous control loops ↔ tasks on RTOS
performance & quality ↔ periods, latencies

→ Orccad design environment

Discrete, reactive controllers
events, states, control modes ↔ automata (e.g., StateFlow)

model-based design ↔ synchronous languages
discrete control loops ↔ discrete controller synthesis (DCS)

→ BZR programming language

Contributions
Discrete control handlers of continuous control tasks

1 integration of DCS via BZR in Orccad
2 case study: robot arm controller

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Real-Time Operating Systems and reactive control

Programming control systems
continuous control loops ↔ tasks on RTOS
performance & quality ↔ periods, latencies

→ Orccad design environment

Discrete, reactive controllers
events, states, control modes ↔ automata (e.g., StateFlow)

model-based design ↔ synchronous languages
discrete control loops ↔ discrete controller synthesis (DCS)

→ BZR programming language

Contributions
Discrete control handlers of continuous control tasks

1 integration of DCS via BZR in Orccad
2 case study: robot arm controller

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Real-Time Operating Systems and reactive control

Programming control systems
continuous control loops ↔ tasks on RTOS
performance & quality ↔ periods, latencies

→ Orccad design environment

Discrete, reactive controllers
events, states, control modes ↔ automata (e.g., StateFlow)

model-based design ↔ synchronous languages
discrete control loops ↔ discrete controller synthesis (DCS)

→ BZR programming language

Contributions
Discrete control handlers of continuous control tasks

1 integration of DCS via BZR in Orccad
2 case study: robot arm controller

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Programming control systems in Orccad (continuous)

Orccad: design, validation, implementation of robotic applications

Real-time tasks for continuous control:

�xed-rate sampling,
or multi-rate

control/scheduling
co-design : periods,
latencies, gains

Robot-Task (RT):
encapsulation in a
reactive shell

Reactive shell

External view (Discrete events)

START

Drivers

Observer Observer

Control
Control

Control law (Discretized time)

T2_UnStableCam

STARTED
Good_End

T3_SENSOR_FAILED

ABORT

Timeout

Suspend

Resume

UnStableCam

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Programming control systems in Orccad (discrete)

Automata for task management

Generic control of RTs, with events for: synchronizations,
exceptions (3 types), pre & postconditions

Missions design: assembling RTs (abstracted to automata)
into hierarchical Robot Procedures (RPs)

Speci�cation and validation: Esterel synchronous language

Real-time execution machine for the synchronous automata

Position of the contribution in this work:

instead of programming then verifying,

use DCS to generate correct task controllers

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Programming control systems in Orccad (discrete)

Automata for task management

Generic control of RTs, with events for: synchronizations,
exceptions (3 types), pre & postconditions

Missions design: assembling RTs (abstracted to automata)
into hierarchical Robot Procedures (RPs)

Speci�cation and validation: Esterel synchronous language

Real-time execution machine for the synchronous automata

Position of the contribution in this work:

instead of programming then verifying,

use DCS to generate correct task controllers

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete

Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Examples of discrete computing modes

state ↔ con�guration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)

modes: algorithm variants for a
functionality (resource, QoS)

placement and migration: task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance: migration/rollback upon processor failure

architecture control: frequency, DVS, stand-by in MPSoC

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs

Computation of a controller, maximally permissive, such as the
controlled system satis�es Φ

tool: sigali (H. Marchand, INRIA Rennes)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Trans State Out
ZY

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs

Computation of a controller, maximally permissive, such as the
controlled system satis�es Φ

tool: sigali (H. Marchand, INRIA Rennes)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Y c

Y u Trans State Out
ZY

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs

Computation of a controller, maximally permissive, such as the
controlled system satis�es Φ

tool: sigali (H. Marchand, INRIA Rennes)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete controller synthesis: principle

Goal

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

Principle (on implicit equational representation)

State memory
Trans transition function
Out output function

Ctrlr Y c

Y u Trans State Out
ZY

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs

Computation of a controller, maximally permissive, such as the
controlled system satis�es Φ

tool: sigali (H. Marchand, INRIA Rennes)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)

contract construct :

assuming eA (on the environment), enforce objective eG

by constraining the additional controllable variables
c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES'10]

Motivation Orccad BZR Case study Discrete control handlers Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)

contract construct :

assuming eA (on the environment), enforce objective eG

by constraining the additional controllable variables
c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES'10]

Motivation Orccad BZR Case study Discrete control handlers Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)

contract construct :

assuming eA (on the environment), enforce objective eG

by constraining the additional controllable variables
c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES'10]

Motivation Orccad BZR Case study Discrete control handlers Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)

contract construct :

assuming eA (on the environment), enforce objective eG

by constraining the additional controllable variables
c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES'10]

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Compilation & implementation

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

...

(synchronous)
compiler

(synchronous)
compiler

objectives

contracts automata

transition
system

(synchronous)
DCS tool

controller
(constraint)

triangularize
transl. to eq.

controller
(function)

compose

controlled
automata

sequential code
JavaC

with
contracts

BZR speci�cation

extension

Development process:
integration in computing system

(here: Orccad):

constraint

generated C code

resolution)
(with constraint

executive
Real-time

Xenomai)
(C, Linux/

RT & RP
automata
& contract

BZR compiler

spec.

Orccad extract

link

synchronous
compiler

DCSseq. C code

Bool. eq.
& obj.

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Compilation & implementation

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

...

(synchronous)
compiler

(synchronous)
compiler

objectives

contracts automata

transition
system

(synchronous)
DCS tool

controller
(constraint)

triangularize
transl. to eq.

controller
(function)

compose

controlled
automata

sequential code
JavaC

with
contracts

BZR speci�cation

extension

Development process:
integration in computing system

(here: Orccad):

constraint

generated C code

resolution)
(with constraint

executive
Real-time

Xenomai)
(C, Linux/

RT & RP
automata
& contract

BZR compiler

spec.

Orccad extract

link

synchronous
compiler

DCSseq. C code

Bool. eq.
& obj.

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Case study: ArmX robot arm

two links
rotational joints (q1,q2)

robotic tool changer
two tools: gripper, pointer

application: when target is
inside workspace: follow
outside: point towards
with appropriate tool

Four RTs:

joint space move

cartesian space move

target aiming
(trajectory following)

tool change (at initial
position (q1 = 0, q2 = 0))

ArmX 2D simulation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Case study: ArmX robot arm

two links
rotational joints (q1,q2)

robotic tool changer
two tools: gripper, pointer

application: when target is
inside workspace: follow
outside: point towards
with appropriate tool

Four RTs:

joint space move

cartesian space move

target aiming
(trajectory following)

tool change (at initial
position (q1 = 0, q2 = 0))

ArmX 2D simulation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Case study: ArmX robot arm

two links
rotational joints (q1,q2)

robotic tool changer
two tools: gripper, pointer

application: when target is
inside workspace: follow
outside: point towards
with appropriate tool

Four RTs:

joint space move

cartesian space move

target aiming
(trajectory following)

tool change (at initial
position (q1 = 0, q2 = 0))

ArmX 2D simulation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Case study: ArmX robot arm

two links
rotational joints (q1,q2)

robotic tool changer
two tools: gripper, pointer

application: when target is
inside workspace: follow
outside: point towards
with appropriate tool

Four RTs:

joint space move

cartesian space move

target aiming
(trajectory following)

tool change (at initial
position (q1 = 0, q2 = 0))

ArmX 2D simulation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Case study: ArmX robot arm

two links
rotational joints (q1,q2)

robotic tool changer
two tools: gripper, pointer

application: when target is
inside workspace: follow
outside: point towards
with appropriate tool

Four RTs:

joint space move

cartesian space move

target aiming
(trajectory following)

tool change (at initial
position (q1 = 0, q2 = 0))

ArmX 2D simulation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete control handlers of continuous control tasks

Discrete control of tasks sequencings and mode changes

Discrete and continuous layers

tasks
real-time

robot
system

sensors actuators

DCS ctrlr

tasks automata
application &

computing
system

physical
system

control loop

continuous

discrete
control loop

exceptions,
stops activations

BZR program

Local task automata, coordinated by application automata
with discrete supervisor, enforcing logical objective

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Discrete control handlers of continuous control tasks

Discrete control of tasks sequencings and mode changes

Discrete and continuous layers

tasks
real-time

robot
system

sensors actuators

DCS ctrlr

tasks automata
application &

computing
system

physical
system

control loop

continuous

discrete
control loop

exceptions,
stops activations

BZR program

Local task automata, coordinated by application automata
with discrete supervisor, enforcing logical objective

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Language-level integration: Robot Tasks

BZR/Heptagon programming of the generic RT control automaton
Example of ArmXcmove:

t2_Reconf

activate_ArmXcmove_WinX

T3_ArmXcmove
Outbound

Outwork

ReadyToStart/ReadyToStart_WinX

FinTransite_WinX

/ActivateArmXcmove_WinX,Prev_rt_WinX

T3 = Errtrack or Outbound or Redbut

START_ArmXcmove

FinTransite_WinX

RS

A

Trap_Abort
AI

I

Trap_T3

Reconf

Errtrack

T3

T3 / T3_ArmXcmove

START_ArmXcmove / Started_ArmXcmove

readyToStart_WinX

prev_rt_WinX

Outwork / goodEndCmove

/t2_Reconf,t2_ArmXcmoveReconf
or

Redbut

started_ArmXcmove

goodEndCmove

t2_ArmXcmove

inputs & outputs: interaction with application level, and
from sensors and RTOS, to RTOS

behaviour: phases (initialization, control)
exceptions (T2, T3)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Language-level integration: Robot Tasks

BZR/Heptagon programming of the generic RT control automaton
Example of ArmXcmove:

t2_Reconf

activate_ArmXcmove_WinX

T3_ArmXcmove
Outbound

Outwork

ReadyToStart/ReadyToStart_WinX

FinTransite_WinX

/ActivateArmXcmove_WinX,Prev_rt_WinX

T3 = Errtrack or Outbound or Redbut

START_ArmXcmove

FinTransite_WinX

RS

A

Trap_Abort
AI

I

Trap_T3

Reconf

Errtrack

T3

T3 / T3_ArmXcmove

START_ArmXcmove / Started_ArmXcmove

readyToStart_WinX

prev_rt_WinX

Outwork / goodEndCmove

/t2_Reconf,t2_ArmXcmoveReconf
or

Redbut

started_ArmXcmove

goodEndCmove

t2_ArmXcmove

inputs & outputs: interaction with application level, and
from sensors and RTOS, to RTOS

behaviour: phases (initialization, control)
exceptions (T2, T3)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Language-level integration: Robot Tasks

BZR/Heptagon programming of the generic RT control automaton
Example of ArmXcmove:

t2_Reconf

activate_ArmXcmove_WinX

T3_ArmXcmove
Outbound

Outwork

ReadyToStart/ReadyToStart_WinX

FinTransite_WinX

/ActivateArmXcmove_WinX,Prev_rt_WinX

T3 = Errtrack or Outbound or Redbut

START_ArmXcmove

FinTransite_WinX

RS

A

Trap_Abort
AI

I

Trap_T3

Reconf

Errtrack

T3

T3 / T3_ArmXcmove

START_ArmXcmove / Started_ArmXcmove

readyToStart_WinX

prev_rt_WinX

Outwork / goodEndCmove

/t2_Reconf,t2_ArmXcmoveReconf
or

Redbut

started_ArmXcmove

goodEndCmove

t2_ArmXcmove

inputs & outputs: interaction with application level, and
from sensors and RTOS, to RTOS

behaviour: phases (initialization, control)
exceptions (T2, T3)

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Language-level integration: Robot Procedure

Global automaton: synchronous composition
of local task automata and application

Example: complete BZR program (simpli�ed).

application Task C Task CTTask FTask J
outWork

inWork

T2C

StartCTStartFStartJStartC

goodEndJmove goodEndCT

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Language-level integration: Robot Procedure

Global automaton: synchronous composition
of local task automata and application

Example: complete BZR program (simpli�ed).

application Task C Task CTTask FTask J
outWork

inWork

T2C

StartCTStartFStartJStartC

goodEndJmove goodEndCT

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Global BZR node, with contract

node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

BZR programming methodology:

possible behaviors

: 4 automata in ‖ : 1 observer, 3 task mgrs
Tasks F and C/J can be delayed by control (ok1, ok2)
Task CT can be triggered by control (ok3)

declarative contract

: (with assumption)

right tool for right task: goodtool

mutual exclusion and default control: ex

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Global BZR node, with contract

node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

BZR programming methodology:

possible behaviors: 4 automata in ‖ : 1 observer, 3 task mgrs
Tasks F and C/J can be delayed by control (ok1, ok2)
Task CT can be triggered by control (ok3)

declarative contract

: (with assumption)

right tool for right task: goodtool

mutual exclusion and default control: ex

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Global BZR node, with contract

node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

BZR programming methodology:

possible behaviors: 4 automata in ‖ : 1 observer, 3 task mgrs
Tasks F and C/J can be delayed by control (ok1, ok2)
Task CT can be triggered by control (ok3)

declarative contract: (with assumption)

right tool for right task: goodtool

mutual exclusion and default control: ex

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Global BZR node, with contract

node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool & ex)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

BZR programming methodology:

possible behaviors: 4 automata in ‖ : 1 observer, 3 task mgrs
Tasks F and C/J can be delayed by control (ok1, ok2)
Task CT can be triggered by control (ok3)

declarative contract: (with assumption)

right tool for right task: goodtool
mutual exclusion and default control: ex

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Typical scenario
node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool & ex)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

CJmove is Active (F or CT not), tool observer is in CTcj.

the user clicks outside of the workspace → input outWork
transition: CJ to its initial state; F quits initial, condition ok1
contract goodtool: ⇒ ok1 = false: F to Wait;
contract ex: ⇒ ok3 = true: CT to Active
CT ends (no inWork) → input GoodEndCT
transition: CT to Init; tool observer to CTf

contracts ex and goodtool: ⇒ ok1 = true: F to Active

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Typical scenario
node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool & ex)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

CJmove is Active (F or CT not), tool observer is in CTcj.
the user clicks outside of the workspace → input outWork
transition: CJ to its initial state; F quits initial, condition ok1
contract goodtool: ⇒ ok1 = false: F to Wait;
contract ex: ⇒ ok3 = true: CT to Active

CT ends (no inWork) → input GoodEndCT
transition: CT to Init; tool observer to CTf

contracts ex and goodtool: ⇒ ok1 = true: F to Active

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Typical scenario
node procRobot (goodEndCT,goodEndJmove,t2,outWork,inWork:bool)

returns (startC, startF, startJ, startCT:bool)

goodtool = (ActifCJ implies CTcj) & (ActifF implies CTf);

ex = ActifF xor ActifCJ xor ActifCT;

assume (not (inWork & outWork))

enforce (goodtool & ex)

with (ok1,ok2,ok3:bool)

ActifJActifC

Init
inWork and not ok2inWork and ok2 / startC

Wait

ok2 / startC

goodEndJmove / startC

T2 / startJActifCJ

outWork outWork
ok3 / startCT

Init ActifCT

goodEndCT

goodEndCT

CTfCTcj

goodEndCT

Wait

Init

inWorkinWork

ActifF

ok1 / startF
outWork and

ok1 / startF

outWork and not ok1

CJmove is Active (F or CT not), tool observer is in CTcj.
the user clicks outside of the workspace → input outWork
transition: CJ to its initial state; F quits initial, condition ok1
contract goodtool: ⇒ ok1 = false: F to Wait;
contract ex: ⇒ ok3 = true: CT to Active
CT ends (no inWork) → input GoodEndCT
transition: CT to Init; tool observer to CTf

contracts ex and goodtool: ⇒ ok1 = true: F to Active

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Executive-level integration

Implementation of the execution
machine:

real-time threads,
triggered by clocks

automaton:

highest-priority task
events received through
FIFO
fast transition (µsecs)

Linux/Posix threads,
Xenomai

Robot_Procedure

Robot_Task 1

Robot_Task 2

.

.

.

Observers

TM
obs3

TM
obs2

TM
obs1

TM1

TM2

Controller

Controller

Controller

TM3

TM
obs4

FIFO

Manager

Automaton

Asynchronous SynchronousInterface

Logical signals

Control signals

Controller

Sémaphore

Output

Outputs

Inputs

Parameters

Parameters

Parameters

Parameters

Clocks
Generation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Executive-level integration

Implementation of the execution
machine:

real-time threads,
triggered by clocks

automaton:

highest-priority task
events received through
FIFO
fast transition (µsecs)

Linux/Posix threads,
Xenomai

Robot_Procedure

Robot_Task 1

Robot_Task 2

.

.

.

Observers

TM
obs3

TM
obs2

TM
obs1

TM1

TM2

Controller

Controller

Controller

TM3

TM
obs4

FIFO

Manager

Automaton

Asynchronous SynchronousInterface

Logical signals

Control signals

Controller

Sémaphore

Output

Outputs

Inputs

Parameters

Parameters

Parameters

Parameters

Clocks
Generation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Executive-level integration

Implementation of the execution
machine:

real-time threads,
triggered by clocks

automaton:

highest-priority task
events received through
FIFO
fast transition (µsecs)

Linux/Posix threads,
Xenomai

Robot_Procedure

Robot_Task 1

Robot_Task 2

.

.

.

Observers

TM
obs3

TM
obs2

TM
obs1

TM1

TM2

Controller

Controller

Controller

TM3

TM
obs4

FIFO

Manager

Automaton

Asynchronous SynchronousInterface

Logical signals

Control signals

Controller

Sémaphore

Output

Outputs

Inputs

Parameters

Parameters

Parameters

Parameters

Clocks
Generation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Executive-level integration

Implementation of the execution
machine:

real-time threads,
triggered by clocks

automaton:

highest-priority task
events received through
FIFO
fast transition (µsecs)

Linux/Posix threads,
Xenomai

Robot_Procedure

Robot_Task 1

Robot_Task 2

.

.

.

Observers

TM
obs3

TM
obs2

TM
obs1

TM1

TM2

Controller

Controller

Controller

TM3

TM
obs4

FIFO

Manager

Automaton

Asynchronous SynchronousInterface

Logical signals

Control signals

Controller

Sémaphore

Output

Outputs

Inputs

Parameters

Parameters

Parameters

Parameters

Clocks
Generation

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Conclusion & Perspectives

Conclusions

Discrete control of real-time continuous control tasks

application of DCS to computing system

Integration of tools

BZR synchronous language & Orccad design environment

Case study Robot arm, speci�cation & simulation

Perspectives

more integration designing controllable runtime executives

more elaborate models

�ner grain, e.g. fault tolerance [FMSD09]

more DCS costs on paths, reachability, dynamical controllers

more applications e.g. GreenIT (sustainable IT)
Green4IT: energy/power consumption models

for sensor networks, servers and parallel computing
IT4Green: applying control programming techniques

to program e.g., "intelligent" buildings

Motivation Orccad BZR Case study Discrete control handlers Perspectives

Conclusion & Perspectives

Conclusions

Discrete control of real-time continuous control tasks

application of DCS to computing system

Integration of tools

BZR synchronous language & Orccad design environment

Case study Robot arm, speci�cation & simulation

Perspectives

more integration designing controllable runtime executives

more elaborate models

�ner grain, e.g. fault tolerance [FMSD09]

more DCS costs on paths, reachability, dynamical controllers

more applications e.g. GreenIT (sustainable IT)
Green4IT: energy/power consumption models

for sensor networks, servers and parallel computing
IT4Green: applying control programming techniques

to program e.g., "intelligent" buildings

	Motivation
	Real-Time Operating System and reactive control

	Orccad
	Programming control systems in Orccad (i)
	Programming control systems in Orccad (ii)

	BZR
	Discrete Control Techniques for Adaptive Computing
	Examples of discrete modes
	BZR language
	Discrete Controller Synthesis
	BZR principles
	Implementation

	Case study
	Case study

	Discrete control handlers of continuous control tasks
	Discrete control handlers of continuous control tasks
	Language-level integration
	Language-level integration (ii)
	Case study (ii)
	Case study (iii)
	Executive-level integration

	Perspectives
	Conclusion

