Rock - from Components to Systems

Sylvain Joyeux

DFKI Bremen - Forschungruppe Robotik
& Universitat Bremen

Director: Prof. Dr. Frank Kirchner

www.dfki.de/robotics

robotics@dfki.de

@ Universitat Bremen

@ The Robot Construction Kit
@ A note about embedded DSLs
© From Components to Systems

e Conclusion

The Robot Construction Kit

The Robot Construction Kit

Rock

Algorithms in Rock are developped in a framework-independent

way
Implementing Running Data Display and Analysis
i Build Startup and Monitoring High-performance 0
] System orocos.rb of components using data_logger data logging
Ruby scripts component
RTT C++ Component ~
Implementation Model-based (Ruby library for
e —— Roby deployment and orocos.rb replaying log data to
system supervision components
[OrOGen Development] A 2
t Command-line tool)
[typeGen Slemilons] and Ruby library to
Typekit Generation pocolog S e
L files)
(Robot control
vizkit and Data Display

@ Universitat Bremen

AN

Ul, including offline)

Rock - from Components to Systems
May 24, 2011

4/29

The Robot Construction Kit ’ - b 4

RTT - Highlights 8

@ hard-realtime compatible
@ RTT core is “only” a component model and supporting
infrastructure
= independent of any communication layer
@ “main” communication layer is CORBA. Near-full support
for data flow on ROS, YARP and POSIX message queues

@ can talk to multiple communication layers at the same time

Output

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 5/29

The Robot Construction Kit my>
' A

Rock and RTT - Development chain

Component development and execution
oroGen, orocos.rb, roby [tools in Ruby,
components in C++]

e N

d

@ main component
functionality is C++

@ “glueing” done in a
dynamic language (ruby)

@ Ruby is used from the
low-level infrastructure to

Live and/or offline
GUI design
and data display
izkit [C++ and Ruby]

Log replay

Logger
L) orocos.rb [Ruby] the mOdeIS |
(" Logged datasets) = use embedded DSLs !!!
Type-safe, long-time access to logged data
pocolog [Ruby]

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 6/29

The Robot Construction Kit my
System Management . o X

Design Principles

@ use the right tool for the job
@ coordination concerns must be left out of the components

= how to easily define configurations ?
= how to switch between these configurations ?

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 7/29

A note about embedded DSLs

A note about “embedded DSLs”

A note about embedded DSLs my
' A
I

@ reuse an existing programming language to provide a
domain-specific language
= DSL files are actual programs from the host language

Turning an imperative syntax . ..

project = Project.new

task = project.task_context ’BaseTask’

p = task.output_port(’solution’, ’/gps/Solution’)
p.doc="the GPS solution as reported by the hardware"
p = task.output_port(’position_samples’, ’/base/samples/RigidBodyState?)
p.doc="computed position in m"

task.error_states :IO_ERROR, :IO_TIMEOQUT

p = task.property("utm_zone", "int", 32)

p.doc="UTM zone for conversion of WGS84 to UTM"

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 9/29

A note about “embedded DSLs”

A note about embedded DSLs my
' A
I

@ reuse an existing programming language to provide a
domain-specific language
= DSL files are actual programs from the host language

...into a declarative one

task_context ’BaseTask’ do
output_port(’solution’, ’/gps/Solution’).
doc "the GPS solution as reported by the hardware"
output_port(’position_samples’, ’/base/samples/RigidBodyState’).
doc "computed position in m"
error_states :IO_ERROR, :IO_TIMEOUT
property("utm_zone", "int", 32).
doc "UTM zone for conversion of WGS84 to UTM"
end

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 9/29

A note about embedded DSLs m>
eDSLs: advantages / disadvantages ’ <

Advantages

@ no need for a specialized parser
@ easy to extend for the tool developer and the tool “user”

@ allows to mix model and programs
= results in highly reflexive systems

Disadvantages

@ can only go as far as the host language’s syntax stretches
= result does not look as streamlined as with a custom parser

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 10/29

From Components to Systems

From Components to Systems

System Integration Process

Implementation of Components

[

oroGen
specification

S

C++ implementation

task context
skeletons

Data services &

@ Universitat Bremen

of state transitions Z%Zg;zglt?;:
Running
> » Component
Network

System
Requirements

From Components to Systems

Rock - from Components to Systems
May 24, 2011

12/29

From Components to Systems W
System Integration Process ' u kl

@ the deployment engine is integrated into a plan
management framework

@ straightforward integration into plan-based reasoning
@ the functional layer is part of the system’s situation

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 13/29

From Components to Systems >
Plan Management ' o L

“There’s more to life than making plans”

@ plan libraries

@ plan transformation

@ execution monitoring

@ high-level goal management
° ...

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 14/29

From Components to Systems |
Plan Management ' <

@ usually done by having multiple tools talk to each other
= segregates information, missing the “big picture”
@ sometimes mitigated using one common planning model
(IDEA, T-REX)
= constrained to what can be represented in these models
@ even sometimes targetting an “only planning” system

e implementations usually assumes that the functional layer
“mostly works fine”
e problem with stability when revising plans

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 15/29

From Components to Systems

Architecture

)=

Interaction
for online
decision
and
planning/execution
conflict resolution

Other robots

) External
Functional layer _—

events
User

@ Universitat Bremen

Decision
Control

interacts

Builds or
repairs

Plan
Generation
Tools

.

Controller

object
instances

object

graphs

application
code

executes

Models

> application
code
object

models

| S

I—L\\

Main plan

|

Modifies -

Rock - from Components to Systems
May 24, 2011

16/29

From Components to Systems m
Plan Management ' o

A software framework which . ..
@ has a model designed to represent the system’s situation
and its evolution
@ can integrate planning-generated plans there
= but also other plan generators

@ uses the fact that, during execution, “expensive” algorithms
are fine

= you don’t have to run them often

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 17/29

From Components to Systems m
Reuses a software engineering approach ' o X

Need to manipulate group of components as components
themselves

= compositions
Contributions

@ does it with sharing

@ little system requirements are needed to deploy a full
system

@ adds dynamic reconfiguration

@ adds flexible means of adapting the specification to the
component’s needs to promote reusability

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 18/29

From Components to Systems

Compositions

Represent a functional block. Provide a context

@ for connections

@ for dependencies/constraints between tasks

command[Srv::Command]

Compositions::ControlLoop
Abstract

controller[Srv::ActuatorController]

actuator_command

command

actuators[Srv::Actuators]

status

@ Universitat Bremen Rock - from Components to Systems

May 24, 2011

19/29

From Components to Systems W
' \

Specialization

Mean of adapting the base composition model to specific
components / services: new constraints, new connections

J

C ontroll is_a?(Hbridge::Task)]
(commanasry ~ommane —
‘ controller[Srv::ActuatorController] ‘ can_in
| actuator_command] command
actuators[Srv::Actuators,Hbridge::Task]
can_out
errors
state
status
Compositions::ControlLoop/[
‘ - " ‘ is_a?(D: vices::AUVI
controller.is_a?(D; vices::AUVMoti oller)]
| command |

command
I i i 1
actuator_command — command

actuators[DataServices::Actuators]

status

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011

20/29

From Components to Systems ' m

System Deployment o X

A component’s behaviour only depends on
@ its configuration
@ its inputs

@ inject dependencies and constraints /ocally
@ ...but remove redundancies afterwards (and check validity
of the resulting network)

@ devices can’t be instantiated more than once (obviously)
@ deployment can be verified offline

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 21/29

From Components to Systems |
System Deployment ' <

System Network Generation

4) lRunning Plan
Instanciate Merge Merge Deploy
Required —» Redundant —#% Generated Network —%» Remaining
Components/ | Subsystems with Running Network Tasks
Composition/service models *
Robot definition file Apply
System requirements Transaction
- /

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 29/29

From Components to Systems

;|
Dynamic Management ' A

@ changing system: representation of requirements in the
plan itself (as tasks)

@ reconfiguration: components are scheduled for
reconfiguration in step 3 if needed.

@ try to minimize component restart cycles (do not restart
unless really needed)

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 23/29

From Components to Systems ' D |

Modality Selection

‘/CUW Oriehﬂfstl

StateEstimator::Task
Dsp3000::Task i |stan\§Estimation

SonarDriver::Micron

Xsenslmu::Task

LowLevelDriver::LowLevelTask
RearSonarDistanceEstimator::Task

Srv::N?(gationMode

ModalitySelectionTask

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 24/29

From Components to Systems

Modality Selection

W success stop

ModalitySelectionTask

CameraProsilica::Task l

OffshorePipelineDetector::Ta

Cmp::ControlLoop

R

Hbridgi

Canbus::Task

AvalonControl::MotionContr:

AuvRelPosController::Task

Cmp::

\‘ Cmp::GroundDistanceEstimation

Dsp3000::Task >

SonarDriver::Micron

rientationEstimator

StateEstimator::Task

XsensImu::Task

LowLevelDriver::LowLevelTask
RearSonarDistanceEstimator::Task

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011

25/29

Conclusion

Conclusion -
Conclusion ' - :I

The approach we presented runs on 4 very different systems:
@ an autonomous navigation platform

@ a reconfigurable rover system

@ two very different AUVs (with different missions / sensor
sets / requirements)

@ ran at Sauc-E 2010, will run on Sauc-E 2011

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 57/29

Conclusion =T <
Summary ’ <

Presented Rock
A complete, flexible robot development chain that offers
framework-independent algorithms, integrated components,
post-mortem analysis tools and advanced system deployment
tools.

Presented Rock’s system deployment approach

@ promotes reusability of models and monitoring code

@ integrated into plan management: can execute, monitor
and adapt running systems

A P Rock - from Components to Systems
@ Universitat Bremen May 24, 2011 28/29

Thank you for your attention

http://rock-robotics.org
Prerelease: end of June 2011
Release: September 2011

http://rock-robotics.org

	The Robot Construction Kit
	A note about embedded DSLs
	From Components to Systems
	Conclusion

