
Rock - from Components to Systems

Sylvain Joyeux

DFKI Bremen - Forschungruppe Robotik
& Universität Bremen

Director: Prof. Dr. Frank Kirchner
www.dfki.de/robotics
robotics@dfki.de

1 The Robot Construction Kit

2 A note about embedded DSLs

3 From Components to Systems

4 Conclusion

The Robot Construction Kit

The Robot Construction Kit

Rock

Algorithms in Rock are developped in a framework-independent
way

RTT
C++ Component

Implementation

oroGen
Fast Component

Development

autoproj
Build

System orocos.rb

Startup and Monitoring

of components using

Ruby scripts

pocolog

Command-line tool

and Ruby library to

manipulate data log

files

data_logger
High-performance

data logging

component

Roby
Model-based

deployment and

system supervision

Implementing Running Data Display and Analysis

orocos.rb

Ruby library for

replaying log data to

components

typeGen
Standalone

Typekit Generation

vizkit

Robot control

and Data Display

UI, including offline

Rock - from Components to Systems
May 24, 2011 4/29

The Robot Construction Kit

RTT - Highlights

hard-realtime compatible
RTT core is “only” a component model and supporting
infrastructure
⇒ independent of any communication layer

“main” communication layer is CORBA. Near-full support
for data flow on ROS, YARP and POSIX message queues
can talk to multiple communication layers at the same time

Stopped Running

FatalError

RuntimeError

PreOperational

Output

ports

Input

ports

Properties

Rock - from Components to Systems
May 24, 2011 5/29

The Robot Construction Kit

Rock and RTT - Development chain

Logger

Logged datasets

Component development and execution

oroGen, orocos.rb, roby [tools in Ruby,

components in C++]

Type-safe, long-time access to logged data

pocolog [Ruby]

Log replay

orocos.rb [Ruby]

Live and/or offline

GUI design

and data display

vizkit [C++ and Ruby]

main component
functionality is C++
“glueing” done in a
dynamic language (ruby)
Ruby is used from the
low-level infrastructure to
the models !

⇒ use embedded DSLs !!!

Rock - from Components to Systems
May 24, 2011 6/29

The Robot Construction Kit

System Management

Design Principles
use the right tool for the job
coordination concerns must be left out of the components

⇒ how to easily define configurations ?
⇒ how to switch between these configurations ?

Rock - from Components to Systems
May 24, 2011 7/29

A note about embedded DSLs

A note about embedded DSLs

A note about “embedded DSLs”

reuse an existing programming language to provide a
domain-specific language

⇒ DSL files are actual programs from the host language

Turning an imperative syntax . . .

project = Project.new
task = project.task context ’BaseTask’
p = task.output port(’solution’, ’/gps/Solution’)
p.doc="the GPS solution as reported by the hardware"

p = task.output port(’position_samples’, ’/base/samples/RigidBodyState’)
p.doc="computed position in m"

task.error states :IO ERROR, :IO TIMEOUT
p = task.property("utm_zone", "int", 32)
p.doc="UTM zone for conversion of WGS84 to UTM"

Rock - from Components to Systems
May 24, 2011 9/29

A note about embedded DSLs

A note about “embedded DSLs”

reuse an existing programming language to provide a
domain-specific language

⇒ DSL files are actual programs from the host language

. . . into a declarative one

task context ’BaseTask’ do
output port(’solution’, ’/gps/Solution’).

doc "the GPS solution as reported by the hardware"

output port(’position_samples’, ’/base/samples/RigidBodyState’).
doc "computed position in m"

error states :IO ERROR, :IO TIMEOUT
property("utm_zone", "int", 32).

doc "UTM zone for conversion of WGS84 to UTM"

end

Rock - from Components to Systems
May 24, 2011 9/29

A note about embedded DSLs

eDSLs: advantages / disadvantages

Advantages

no need for a specialized parser
easy to extend for the tool developer and the tool “user”
allows to mix model and programs
⇒ results in highly reflexive systems

Disadvantages

can only go as far as the host language’s syntax stretches
⇒ result does not look as streamlined as with a custom parser

Rock - from Components to Systems
May 24, 2011 10/29

From Components to Systems

From Components to Systems

System Integration Process

oroGen

specification

task context

skeletons

C++ implementation

of state transitions

Data services &

compositions

specification

Implementation of Components

From Components to Systems

System

Requirements

Running

Component

Network

Rock - from Components to Systems
May 24, 2011 12/29

From Components to Systems

System Integration Process

the deployment engine is integrated into a plan
management framework
straightforward integration into plan-based reasoning
the functional layer is part of the system’s situation

Rock - from Components to Systems
May 24, 2011 13/29

From Components to Systems

Plan Management

“There’s more to life than making plans”

plan libraries
plan transformation
execution monitoring
high-level goal management
. . .

Rock - from Components to Systems
May 24, 2011 14/29

From Components to Systems

Plan Management

usually done by having multiple tools talk to each other
⇒ segregates information, missing the “big picture”

sometimes mitigated using one common planning model
(IDEA, T-REX)
⇒ constrained to what can be represented in these models

even sometimes targetting an “only planning” system
implementations usually assumes that the functional layer
“mostly works fine”
problem with stability when revising plans

Rock - from Components to Systems
May 24, 2011 15/29

From Components to Systems

Architecture

Controller

External

events

executes

executes

Decision

Control

Plan

Generation

Tools

Modifies

interacts

Interaction

for online

decision

and

planning/execution

conflict resolution

Builds or

repairs

Other robots

Functional layer

User

Rock - from Components to Systems
May 24, 2011 16/29

From Components to Systems

Plan Management

Roby
A software framework which . . .

has a model designed to represent the system’s situation
and its evolution
can integrate planning-generated plans there
⇒ but also other plan generators

uses the fact that, during execution, “expensive” algorithms
are fine
⇒ you don’t have to run them often

Rock - from Components to Systems
May 24, 2011 17/29

From Components to Systems

Reuses a software engineering approach

Need to manipulate group of components as components
themselves
⇒ compositions

Contributions

does it with sharing
little system requirements are needed to deploy a full
system
adds dynamic reconfiguration
adds flexible means of adapting the specification to the
component’s needs to promote reusability

Rock - from Components to Systems
May 24, 2011 18/29

From Components to Systems

Compositions

Represent a functional block. Provide a context
for connections
for dependencies/constraints between tasks

Compositions::ControlLoop

Abstract

controller[Srv::ActuatorController]

actuator_command command

actuators[Srv::Actuators]

status

command[Srv::Command]

Rock - from Components to Systems
May 24, 2011 19/29

From Components to Systems

Specialization

Mean of adapting the base composition model to specific
components / services: new constraints, new connections

Compositions::ControlLoop/[actuators.is_a?(Hbridge::Task)]

command[DataServices::AUVMotionCommand]

command

command

controller[DataServices::AUVMotionController]

actuator_command command

actuators[DataServices::Actuators]

status

controller[Srv::ActuatorController]

actuator_command

can_in

command

actuators[Srv::Actuators,Hbridge::Task]

can_out

errors

state

status

command[Srv::Command]

Compositions::ControlLoop/[

 command.is_a?(DataServices::AUVMotionCommand),

 controller.is_a?(DataServices::AUVMotionController)]

Rock - from Components to Systems
May 24, 2011 20/29

From Components to Systems

System Deployment

Assumptions
A component’s behaviour only depends on

its configuration
its inputs

Key idea
inject dependencies and constraints locally
. . . but remove redundancies afterwards (and check validity
of the resulting network)
devices can’t be instantiated more than once (obviously)
deployment can be verified offline

Rock - from Components to Systems
May 24, 2011 21/29

From Components to Systems

System Deployment

Apply

Transaction

Deploy

Remaining

Tasks

Running Plan

Merge

Generated Network

with Running Network

Composition/service models

Robot definition file

System requirements

System Network Generation

Merge

Redundant

Subsystems

Instanciate

Required

Components

Rock - from Components to Systems
May 24, 2011 22/29

From Components to Systems

Dynamic Management

changing system: representation of requirements in the
plan itself (as tasks)
reconfiguration: components are scheduled for
reconfiguration in step 3 if needed.
try to minimize component restart cycles (do not restart
unless really needed)

Rock - from Components to Systems
May 24, 2011 23/29

From Components to Systems

Modality Selection

StateEstimator::Task

XsensImu::Task

Dsp3000::Task

SonarDriver::Micron

RearSonarDistanceEstimator::Task

Cmp::GroundDistanceEstimation

Compositions::OrientationEstimator

ModalitySelectionTask

Srv::NavigationMode

LowLevelDriver::LowLevelTask

Rock - from Components to Systems
May 24, 2011 24/29

From Components to Systems

Modality Selection

AvalonControl::MotionControlTask

AuvRelPosController::Task

CameraProsilica::Task

OffshorePipelineDetector::Task

Canbus::Task

Cmp::PipelineFollower

Cmp::ControlLoop

ModalitySelectionTask

success stop

Hbridge::Task

StateEstimator::Task

XsensImu::Task

Dsp3000::Task

SonarDriver::Micron

RearSonarDistanceEstimator::Task

Cmp::GroundDistanceEstimation

Cmp::OrientationEstimator

LowLevelDriver::LowLevelTask

Rock - from Components to Systems
May 24, 2011 25/29

Conclusion

Conclusion

Conclusion

The approach we presented runs on 4 very different systems:
an autonomous navigation platform
a reconfigurable rover system
two very different AUVs (with different missions / sensor
sets / requirements)
ran at Sauc-E 2010, will run on Sauc-E 2011

Rock - from Components to Systems
May 24, 2011 27/29

Conclusion

Summary

Presented Rock
A complete, flexible robot development chain that offers
framework-independent algorithms, integrated components,
post-mortem analysis tools and advanced system deployment
tools.

Presented Rock’s system deployment approach

promotes reusability of models and monitoring code
integrated into plan management: can execute, monitor
and adapt running systems

Rock - from Components to Systems
May 24, 2011 28/29

Thank you for your attention

http://rock-robotics.org

Prerelease: end of June 2011
Release: September 2011

http://rock-robotics.org

	The Robot Construction Kit
	A note about embedded DSLs
	From Components to Systems
	Conclusion

