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» unknown environment

» map a rectangular zone and
quickly find a place to land

» candidate landing zones after
automated mapping

» candidate zones not necessary
landable!

» need for a long-term planning of
candidate landing zones to explore
in order to minimize the mission’s
duration

» Which contingent strategy to
apply depending on hazards?
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» Huge state space due to many state variables:

> (on-ground)

(explored 7z - zone)
(landable 7z - zomne)

(at ?z - (either base zone))
(com)

(fuel-level)
(available-memory)

AARAVARR VAR VARR VARR v

» Modeled as a Markov Decision Process necessary solved on-line after image
processing

» Worst-case optimization time with an embedded computer running at 2
Ghz (assuming on-board memory is sufficient): 55 minutes with 5 zones
(540 years with 10 zones) but mission’s typical duration is about 15

minutes!

» Need for a (different) deterministic planner for generating exploration

paths in candidate landing zones genericity
' » Need to formally validate the safety of the entire mission validation

A generic framework for anytime execution-driven planning in robotic: —_—
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Automated planning: definition

Automated planning: definition

Automated planning is a branch of artificial intelligence concerning the automatic
generation of strategies or action sequences that achieve a given objective knowing

an initial state and actions effects. )

Automated planning: features
» long-term and deliberative reasoning
» combinatorial explosion

» consumes memory and CPU time

Automated planning: challenges for robotics
» interaction with other functionalities (perception and action)
» real-time decisions

» validation of decisions w.r.t. the entire architecture

A generic framework for anytime execution-driven planning in rob: —_—
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Automated planning: a generic formalism

S set of states

Sz: set of initial states
Sg: set of goal states

A: set of actions

O: set of observations Classical Planning
T:S8 x A— 2°: transition T:SxA—=S

function

» R:Sx AxS — R: reward
function

> 0:SxA—29:
observation function

vVvyVvYyVvYyvyy

(Purpose: design a generic planning function based on the above concepts]
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A single planning component, with a variabl

» Same interface for all

planners

PERSEUS -
» Same behavior for all

planners

» Behavior's code

e independent from the
planner used (classical, MDP,

POMDP)

» Reasoning data structures
owned by planners

» Facilitates reusability and
validation

CONERA
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Basic concepts: planning request & action req

Planning request (plan construction)

» set of initial states from which the planner must compute an
optimized action (knowing long-term requirements) ;

» time allocated to the plan construction ;
» algorithm used to construct the plan ;

» algorithm parameters.

Action request (plan execution)

An optimized action to apply in a given state.

state

action
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Anytime property, planning & action reque

plan from
50 -~ state sy
during 10 s.

Initial planning phase from the initial state (bootstrap)

CONERA
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Anytime property, planning & action request |

s1 ~ modify plan from state s; during 2 s.
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- modify plan from state s3 during 2 s.

// Execution of the best action planned in sy, approximate execu-
tion time is 6 s.

// Planning from possible next states during 2 s. each.

A generic framework for anytime execution-driven planning in roboti
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Anytime property, planning & action request

-
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// Execution of the best action planned in current state sy, approxi-

mate execution time is 7 s.
// Planning from states of the most probable execution path.
[=]

A generic framework for anytime execution-driven planning in roboti




Motivations Design principles Experiments
[e]e]e]e} [o]e] le]ele] o

Anytime property, planning & action request

plan from s;

during 5's. or 56
default action in s; - 4
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- Model shift: state s; was actually reachable from so!
- Plan from current state s; during 5 s. (or default action)
- Keep s4 and its potential successors as very likely reachable

CONERA
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On-line planning componen
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load_problem

Loading
(Problem}
~

blocking

non-blocking

stop

~
~
~
~
~

Experiments
o]

state machine

Problem
__>( Loaded )

automatic transition when

processing done

framework for anyt
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On-line planning component: requests mana

load_problem: « construct data Structures for planning problem P'» (P ANNER
<

get_actions: « which applicable actions in 's'? »

effects: « which effects when applying ‘a’in 's’? »

*[ < >
>
~ remove_plan_request: « give up request ‘(s, t,a,p)’ » P M « ‘App(s)’ are applicable in ‘s’ »
<l
-

-~ add_plan_request
oo |y
=" « compute a plan from ‘s’ during ‘t’ sec- =

>
=
K 0 ror < « possible next states are “T(s,a)’ »
onds with algorithm ‘a’ and parameters ‘p’ » s
. . PP an
get_action: « which action in ‘s'? »f - g = &
-~ N I i1
< e T 3 1.
<€ - &) 5 —a solve_progress
« apply action [7(s)’ » = e it PioeT
\. \ J J

» No need to assume the planner’s code is thread-safe
» Only the locally-copied policy 7 is protected by mutex
» Default policy filtering action requests (validation & reactivity)
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Variable planner as a template of the planning

Each planner is a class that must define the following embedded
types and methods.

class Planner {

c framework for anytime execut

( // Embedded types J void solve_begin(const state_set_type&)
class problem_type {...}; void solve_progress();
class state_type {...}; void solve_end();
class state_set_type {...}; bool converged() const;
class action_type {...}; bool plan_defined(const state_type&) const;
class action_set_type {...}; action_type get_action(const state_type&) const;
class policy_type {...}; action_type default_action(const state_type&) const;
typedef enum {...} algorithm_enum; algorithm_statistics_type get_statistics() const;
class algorithm_parameters_type {...}; void update_policy(policy_type&,
class algorithm_statistics_type {...}; const state_set_type&) const;
static bool plan_defined(const policy_type&,
p const state_type&);

// Member functions J static action_type get_action(const policy_type&,
void problem(const problem_type&); const state_type&);
void load_problem_begin(); action_set_type get_actions(const state_type&) const;
void load_problem_progress(); state_set_type get_effects(const state_type&,
bool problem_loaded() const; const action_type&) const;
void load_problem_end(); };
void algorithm(algorithm_enum,

const algorithm_parameters_type&); )

OMNER
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Search & rescue mission
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Planning components used: PlanningComponent<HMDPPlanner>
PlanningComponent<AstarPlanner>
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Conclusion and perspectives

14/15

» Design of a generic and reactive planning component for a

modular robotics architecture

» Provide immediate services on demand to other modules

» Separation between requests’ management (component) and
planning algorithms (planner)
= same requests’ management for all planners
= planners are (template) plugins of the component

» Implementation on the Orocos platform

» Experiments on a high dimensional search & rescue mission,
and random challenging benchmarks

» Close future: Validate the planning components’ behavior

> Validate the component (requests’ management) once and for

all, assuming satisfied properties on the planner side
> Validate all planners plugged to the planning component
> Validate the default policy for each mission

A generic framework for anytime execution-driven planning in roboti —
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Questions?

Thank you for your attention :-)

External view

il Map

Ol_'ocos terminal

A generic framework for anytime execution-driven planning i
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