——

THE FRENCH AEROSPACE LAB

sur innovation

www.onera.fr

== f Ww "
s . ..

A\
L IR ‘J_..;r A1

§ - W

A generic framework for anytime execution-driven
planning in robotics

Florent Teichteil-Konigsbuch, Charles Lesire, Guillaume Infantes

CAR 2011 — Grenoble, France — May 2011

I NERA

THE FREMNCH AEROSPACE LAB

Motivations Design principles Experiments
@000 [e]e]e]e]e]e) o]

» unknown environment

» map a rectangular zone and
quickly find a place to land

» candidate landing zones after
automated mapping

» candidate zones not necessary
landable!

» need for a long-term planning of
candidate landing zones to explore
in order to minimize the mission’s
duration

» Which contingent strategy to
apply depending on hazards?

CONERA

A generic framework for anytime execution-driven planning i 3 o i i

Motivations Design principles
[e]e]e]e]e]e)

0e00

» Huge state space due to many state variables:

> (on-ground)

(explored 7z - zone)
(landable 7z - zomne)

(at ?z - (either base zone))
(com)

(fuel-level)
(available-memory)

AARAVARR VAR VARR VARR v

» Modeled as a Markov Decision Process necessary solved on-line after image
processing

» Worst-case optimization time with an embedded computer running at 2
Ghz (assuming on-board memory is sufficient): 55 minutes with 5 zones
(540 years with 10 zones) but mission’s typical duration is about 15

minutes!

» Need for a (different) deterministic planner for generating exploration

paths in candidate landing zones genericity
' » Need to formally validate the safety of the entire mission validation

A generic framework for anytime execution-driven planning in robotic: —_—

Motivations Design principles Experiments
[e]e] e} 000000 o

Automated planning: definition

Automated planning: definition

Automated planning is a branch of artificial intelligence concerning the automatic
generation of strategies or action sequences that achieve a given objective knowing

an initial state and actions effects.)

Automated planning: features
» long-term and deliberative reasoning
» combinatorial explosion

» consumes memory and CPU time

Automated planning: challenges for robotics
» interaction with other functionalities (perception and action)
» real-time decisions

» validation of decisions w.r.t. the entire architecture

A generic framework for anytime execution-driven planning in rob: —_—

Motivations Design principles Experiments
[e]e]e]] 000000 o

Automated planning: a generic formalism

S set of states

Sz: set of initial states
Sg: set of goal states

A: set of actions

O: set of observations Classical Planning
T:S8 x A— 2°: transition T:SxA—=S

function

» R:Sx AxS — R: reward
function

> 0:SxA—29:
observation function

vVvyVvYyVvYyvyy

(Purpose: design a generic planning function based on the above concepts]

6/15 A generic framework for anytime execution-driven planning in roboti e

Motivations Design principles Experiments
[e]e]e]e} 000000 o

A single planning component, with a variabl

» Same interface for all

planners

PERSEUS -
» Same behavior for all

planners

» Behavior's code

e independent from the
planner used (classical, MDP,

POMDP)

» Reasoning data structures
owned by planners

» Facilitates reusability and
validation

CONERA

A generic framework for anytime execution-driven planning in robotic:]

Motivations Design principles Experiments
[e]e]e]e} 0@0000 o

Basic concepts: planning request & action req

Planning request (plan construction)

» set of initial states from which the planner must compute an
optimized action (knowing long-term requirements) ;

» time allocated to the plan construction ;
» algorithm used to construct the plan ;

» algorithm parameters.

Action request (plan execution)

An optimized action to apply in a given state.

state

action

8/15 A generic framework for anytime execution-driven planning in roboti]

Motivations Design principles Experiments
[e]e]e]e} [e]e] lelele) o

Anytime property, planning & action reque

plan from
50 -~ state sy
during 10 s.

Initial planning phase from the initial state (bootstrap)

CONERA

A generic framework for anytime execution-driven planning in roboti]

Motivations

Design principles
[e]e]e]e}

Experiments
000000

o

Anytime property, planning & action request |

s1 ~ modify plan from state s; during 2 s.
L4
Exen,
O ’
ol
L (4
X o . .
50 J= == @- - - > 52 ~ modify plan from state s during 2 s.
.2
~
Q
&~
KRN
hE
s3

- modify plan from state s3 during 2 s.

// Execution of the best action planned in sy, approximate execu-
tion time is 6 s.

// Planning from possible next states during 2 s. each.

A generic framework for anytime execution-driven planning in roboti

Experiments
(e}

Design principles

Motivations
[e]e] lelele)

Anytime property, planning & action request

-
s9

2y D @
E)(eo ' modify plan from
o(r modify plan from sg during 1 s.
®© s4 during 4 s. sg .
g \
————> 52 @ S
< %] S
\Q’: modify plan from ~ _
& e sg during 2 s. S
\)o ’ RS 510
A
s5

// Execution of the best action planned in current state sy, approxi-

mate execution time is 7 s.
// Planning from states of the most probable execution path.
[=]

A generic framework for anytime execution-driven planning in roboti

Motivations Design principles Experiments
[e]e]e]e} [o]e] le]ele] o

Anytime property, planning & action request

plan from s;

during 5's. or 56
default action in s; - 4
-
- s9
S1 > -7
S4 === === > s7 ,’1
< .
< .
~. .
< .
< .
~. -
SN B
S8

® Y

- Model shift: state s; was actually reachable from so!
- Plan from current state s; during 5 s. (or default action)
- Keep s4 and its potential successors as very likely reachable

CONERA

A generic framework for anytime execution-driven planning in roboti

Motivations
[e]e]e]e}

On-line planning componen

Design principles
[e]e]e] lele)

load_problem

Loading
(Problem}
~

blocking

non-blocking

stop

~
~
~
~
~

Experiments
o]

state machine

Problem
__>(Loaded)

automatic transition when

processing done

framework for anyt

3senbas"uejd"ppe

remove_plan_?éuest
<

add_ 7pla¢{request

Motivations Design principles Experiments

[e]e]e]e] [o]e]e]e] Je] o

On-line planning component: requests mana

load_problem: « construct data Structures for planning problem P'» (P ANNER
<

get_actions: « which applicable actions in 's'? »

effects: « which effects when applying ‘a’in 's’? »

*[< >
>
~ remove_plan_request: « give up request ‘(s, t,a,p)’ » P M « ‘App(s)’ are applicable in ‘s’ »
<l
-

-~ add_plan_request
oo |y
=" « compute a plan from ‘s’ during ‘t’ sec- =

>
=
K 0 ror < « possible next states are “T(s,a)’ »
onds with algorithm ‘a’ and parameters ‘p’ » s
. . PP an
get_action: « which action in ‘s'? »f - g = &
-~ N I i1
< e T 3 1.
<€ - &) 5 —a solve_progress
« apply action [7(s)’ » = e it PioeT
\. \ J J

» No need to assume the planner’s code is thread-safe
» Only the locally-copied policy 7 is protected by mutex
» Default policy filtering action requests (validation & reactivity)

11/15 A generic framework for anytime exe driven planning in roboti

Motivations Design principles
[e]e]e]e} 00000e

Experiments
o

Variable planner as a template of the planning

Each planner is a class that must define the following embedded
types and methods.

class Planner {

c framework for anytime execut

(// Embedded types J void solve_begin(const state_set_type&)
class problem_type {...}; void solve_progress();
class state_type {...}; void solve_end();
class state_set_type {...}; bool converged() const;
class action_type {...}; bool plan_defined(const state_type&) const;
class action_set_type {...}; action_type get_action(const state_type&) const;
class policy_type {...}; action_type default_action(const state_type&) const;
typedef enum {...} algorithm_enum; algorithm_statistics_type get_statistics() const;
class algorithm_parameters_type {...}; void update_policy(policy_type&,
class algorithm_statistics_type {...}; const state_set_type&) const;
static bool plan_defined(const policy_type&,
p const state_type&);

// Member functions J static action_type get_action(const policy_type&,
void problem(const problem_type&); const state_type&);
void load_problem_begin(); action_set_type get_actions(const state_type&) const;
void load_problem_progress(); state_set_type get_effects(const state_type&,
bool problem_loaded() const; const action_type&) const;
void load_problem_end(); };
void algorithm(algorithm_enum,

const algorithm_parameters_type&);)

OMNER

Motivations Design principles Experiments
[e]e]e]e} 000000 L)

Search & rescue mission

.
-y
current

action

LY [aN N |
ot Stationary wif)
wA -» L% L
| 'l

' current
| waypoint |
! 1
1

end_mission

St

Scanning é
o b £ 3
' current e =
: waypoint 1 ' planning * N C i
o= launched ' \\; ’
1 P . ¢ e .
1 wB 1 N | =_if

A ! M [\ s
Zoning 1" “zones” T pausch Zones extracted after
1 extracted | Planning

Scanning + Zoning

Planning components used: PlanningComponent<HMDPPlanner>
PlanningComponent<AstarPlanner>

framework for anytime execu driven planning in robo > g

Motivations Design principles Experiments

[e]e]e]e]

000000 (e}

Conclusion and perspectives

14/15

» Design of a generic and reactive planning component for a

modular robotics architecture

» Provide immediate services on demand to other modules

» Separation between requests’ management (component) and
planning algorithms (planner)
= same requests’ management for all planners
= planners are (template) plugins of the component

» Implementation on the Orocos platform

» Experiments on a high dimensional search & rescue mission,
and random challenging benchmarks

» Close future: Validate the planning components’ behavior

> Validate the component (requests’ management) once and for

all, assuming satisfied properties on the planner side
> Validate all planners plugged to the planning component
> Validate the default policy for each mission

A generic framework for anytime execution-driven planning in roboti —

Motivations Design principles Experiments
[e]e]e]e} [e]e]e]e]e]e)

Questions?

Thank you for your attention :-)

External view

il Map

Ol_'ocos terminal

A generic framework for anytime execution-driven planning i

	Motivations
	Illustrative example: autonomous emergency landing
	Automated planning

	Design principles
	A single planning component, with a variable planner
	Basic concepts: planning request & action request
	Anytime property, planning & action request interleaving
	On-line planning component: state machine
	On-line planning component: requests management
	Variable planner as a template of the planning component

	Experiments
	Search & rescue mission

	Conclusion
	Conclusion and perspectives
	Questions

