
An Overview of the

MOOS-IvP Middleware
Abstract for the SHARC 2016 conference

Simon Rohou

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, France, Brest

simon.rohou@gmail.com

Abstract

MOOS-IvP is a set of open source modules for providing autonomy
on robotic platforms, in particular autonomous marine vehicles [1]. It is
composed of open-source projects dedicated to robot software architecture
and autonomy tools, namely: the MOOS middleware [3], a cross platform
middleware for robotics research and the IvP part based on MOOS and
dedicated to a set of tools implemented to form a full marine autonomy
suite known as MOOS-IvP. Mainly developed by the Oxford University
for the MOOS part and the MIT LAMSS Laboratory for the IvP part, this
software is nowadays widely used in the community of marine robotics.

1 Introduction

Today’s robotic systems are becoming increasingly complex while being more
and more connected with each other. The use of a trusted software base is
essential to ensure reliable behaviors of a robot during complex missions and
simplify inter-processes communications. Such software tools already exist and
are known as middlewares.

In the field of robotics, a middleware is a software setting up a communica-
tion network between several processes – also called applications. It allows to
break down the whole software part of a robot into several and well identified
processes. Theses processes can be launched simultaneously or sequentially at
the beginning of a mission.

Hence, the main advantages of a middleware are:

– to clearly separate the processes and thus clarify work distribution inside
a development team ;

– to easily run processes in parallel and thus benefit from available com-
puter’s cores ;

– to distribute the processes over several machines connected to a common
server ;

– to playback missions, because all variables updates can easily be logged ;
– to reuse already implemented applications meeting the needs.

1



Popular middlewares such as ROS, MOOS, YARP, MIRA, LCM, ... already
provide these features. This presentation will give an overview of the MOOS-IvP
middleware: the MOOS enhanced with the IvP software dedicated to autonomy
features. Section 2 gives a brief presentation of the MOOS middleware. Section
3 presents the IvP part with the Helm and the behaviors framework. Section 4
concludes this abstract.

2 The MOOS

MOOS [3], a Mission Oriented Operating Suite, is a middleware based on a
publish-subscribe architecture. Created by Paul Newman (Oxford University),
MOOS is nowadays widely used by the research community especially in the
field of marine robotics, embedded on Unmanned Surface Vehicles (USV) and
Autonomous Underwater Vehicles (AUV). It can be used in C++ or in Python.

2.1 Publish-Subscribe architecture

This architecture depicts how the different processes communicate inside a given
community. To understand this notion, let us take the example of an Au-
tonomous Underwater Vehicle performing a wall following, see Fig. 1.

Figure 1: a community onboard of an AUV

The robot is equipped with a sonar and propelled by some thrusters. This
represents the hardware part of the AUV and dedicated applications will be used
as an interface between this hardware and the rest of the robot’s software (see in-
terfaces, Fig. 1), namely: iSonar and iThrusters. The processing of sonar data
and the controller (PID) are pure processes: pLocalization and pMarinePID.
The high-level dedicated to robot’s behavior is held by pWallFollowing. It
aims at deciding a direction based on the estimated localization.

These processes form a chain. In a publish-subscribe architecture, all the
communications are centralized within a database. In the context of a MOOS

2



Community, we speak about a MOOSApp (for processes) and a MOOSDB (for
the database). See Fig. 2.

Figure 2: a publish-subscribe MOOS community

A Community, defined by a MOOSDB, is referenced by an IP address and
a port. Some MOOSApps take place inside a community and exchange data
through shared memory when running on a single machine or using UDP in the
case of a distributed architecture.

When a MOOSApp A has to communicate a MOOSVar c to an other MOOS-
App B, the following process is executed: B subscribes to possible changes on
c in the MOOSDB. Then A publishes a new value for c, stored in the databse.
Finally B receives a notification and can read c’s new value.

Thus, all communications occur through the MOOSDB, which is useful to
log data exchanges. MOOS provides tools (dedicated MOOSApps) to log and
playback these communications.

2.2 Implementation

The developer will implement a MOOSApp in C++ or Python, based on the
inheritance of a MOOSApp class. The user will then configure the MOOS-
App with a .moos file, specifying community’s parameters (IP, port) and some
custom options.

3



3 MOOS-IvP

The MOOS-IvP autonomy software [2], based on the MOOS middleware, is a
C++ open source project providing a full marine autonomy suite, in particular:
a behavior-based application for decision making, called the helm, and addi-
tional tools for simulation, viewing, inter-communities communications, marine
controllers, etc. Created by the LAMSS1 (MIT), this software is nowadays well
used in the field of marine robotics and gathers a community of researchers and
industries.

Figure 3: a Bluefin Autonomous Underwater Vehicle powered with MOOS-IvP

3.1 Autonomy with the IvP Helm

The autonomy, held by the helm, takes place in a dedicated MOOSApp called
pHelmIvP, see Fig. 4.

Figure 4: the helm taking place in pHelmIvP

The helm presents a behavior-based architecture in which several behaviors
can be added according to mission’s needs. During the mission and depending

1LAMSS: Laboratory for Autonomous Marine Sensing Systems, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139

4



on the context, some behaviors can be triggered while other can stay disabled.
This ensures an appropriate answer to the environment’s conditions.

Each behavior can be seen as a software library. Subscribing to some data
(MOOSVars, e.g. the estimated position), the library will propose a behavior
(MOOSVars for instructions, such as a desired speed or a bearing to follow).
Several behaviors can run simultaneously. The strong point of the helm is that
each behavior will only propose a solution: it is the solver’s role to determine the
final behavior, based on the computed options. Hence, behaviors are competing
for influence of the robot, see Fig. 5.

Figure 5: the helm presenting a behavior-based architecture

This gives the opportunity to have smooth and adaptive attitudes during a
mission. For instance, if a robot has to follow a path while avoiding another
robot, the helm will give an appropriate weight to each behavior: an increas-
ingly strong one for the obstacle avoidance when the robot will approach the
object and a constant one for the path following.

Figure 6: example of an IvP function used to propose a bearing decision (from
0◦ to 360◦). A behavior outputs several IvP functions giving preferences over
a variable domain such as the speed, the bearing, the depth. In the figure, the
hottest a point is, the better its chances of selection by the solver, according to
concurrent IvP functions.

5



3.2 Overview of already existing behaviors

Some behaviors are freely available:

– Waypoint: the robot will follow a defined path

– AvoirCollision: to avoid collisions between moving vehicles

– PeriodicSurface: when an AUV has to surface on a regular basis

– ConstantDepth: to maintain a desired depth

– ...

3.3 Additional provided tools

Some MOOSApps devoted to marine applications are provided with the helm:

– uSimCurrent: simulation of currents based on models or data files

– uSimMarine: simulation of a marine robot’s physical behavior

– uTimerScript: to script the publication of MOOSVar custom values

– pMarineViewer: a graphical user interface to monitor robots and objects
on a map, control MOOSVar, publish values, etc.

– ...

4 Conclusion

The MOOS-IvP software is one of the major tools in the field of marine robotics.
Its autonomy framework provides a reliable behavior based architecture accom-
panied by ready-to-use behaviors. Other robotic fields could take advantage of
this software.

The presentation will be illustrated with robotics examples such as the sim-
ulation of an autonomous boat performing a mission in the Anse du Moulin
Blanc (Brest) or the concrete demonstration of a semi-autonomous boat on
Polytechnique’s lake, see Fig. 7.

6



Figure 7: demonstration on Polytechnique’s lake with ENSTA Bretagne’s au-
tonomous boat, powered by MOOS-IvP – the boat had to stay in its viability
kernel : controlled by humans, the boat becomes autonomous when leaving its
safety area (represented by two polygons) in order to come back to a safe state.
A dedicated behavior has been implemented to manage this attitude. The be-
havior was only triggered when the viability kernel was about to be left.

References

[1] Michael R. Benjamin, Henrik Schmidt, Paul M. Newman, and John J.
Leonard. MOOS-IvP: a set of open source modules for providing au-
tonomy on robotic platforms, in particular autonomous marine vehicles.
http://www.moos-ivp.org.

[2] Michael R. Benjamin, Henrik Schmidt, Paul M. Newman, and John J.
Leonard. Nested autonomy for unmanned marine vehicles with MOOS-IvP,
2010.

[3] Paul M. Newman. MOOS: Mission oriented operating suite, a cross platform
middleware for robotics research. http://www.robots.ox.ac.uk/~mobile/
MOOS/wiki/pmwiki.php.

7

http://www.moos-ivp.org
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php

	Introduction
	The MOOS
	Publish-Subscribe architecture
	Implementation

	MOOS-IvP
	Autonomy with the IvP Helm
	Overview of already existing behaviors
	Additional provided tools

	Conclusion

