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Abstract—Wireless Sensor Networks (WSNs) plays an impor-
tant role for monitoring strategic and dangerous hi security
sites. Failure of some sensor nodes can lead to a failure of
hole system which causes losses such as economical, equipment
damage and even risks for human lives. Moreover, failures
are unavoidable in WSNs due to hardware constraints, hostile
environment, unattended deployment and limited resources. This
paper proposes a fully distributed approach, called Boundary
Node Failure Detection (BNFD), for an efficient boundary control
based on the determination of the WSN boundary. This one
is determined using an algorithm which has the property to
determine in each iteration the one-hop neighbor of the current
boundary sensor. Hence, each boundary sensor knows its direct
next boundary neighbor and can communicate with it in order
to periodically test its presence. When a situation of failure is
detected, a network restructuring will be launched to find a new
boundary and an alarm will be triggered. The proposed approach
has been implemented and simulated with the Castalia simulator.
The simulation results show that the proposed method is energy
efficient.

Index Terms—Failure Node Detection, Frontier, Wireless Sen-
sor Network, Reliability.

I. INTRODUCTION

Applications dedicated to the border surveillance of strategic
and dangerous sites (e.g., oil or nuclear sites, frontiers of
a country, etc.) are failure sensitive and require less energy
consumption. In such applications, the detected event must
be notified to the sink urgently, reliably and with low energy
consumption.

Wireless Sensor Networks have been emerging in the last
decade as a powerful tool for connecting the physical and
digital world [1]. Sensor networks often operate in potentially
hostile and harsh environments; most of the applications are
critical missions such as battlefield surveillance. For instance,
critical terrains can be rapidly covered with sensor networks
and closely overseen for the activities of the opposing forces.
As the operations evolve and new operational plans are
prepared, new sensor networks can be deployed anytime for
battlefield surveillance [2].

Moreover, WSNs have enabled several advanced monitoring
and control applications in environmental, bio-medical, and
several other domains. Boundary detection, as a fundamental
technique for such applications, has become crucial for the
functionality of WSNs [3].

For several years, energy-efficiency was the major design
criteria for many proposed WSN solutions. However, there are
still important efforts to accomplish especially with respect to
the detection of faulty nodes.

In [4], the authors proposed MANNA, a system for fault
detection in the network. Every node checks its energy level
and sends a message to managers or agents. When there is a
state change, the manager which is located at the external side
of the WSN performs a centralized fault detection based on the
analysis of gathered WSN data. However, the communication
cost is too expensive due to the communication between nodes
and the managers.

In [5] and [6], the authors proposed an algorithm to estimate
the time to failure of a battery by analyzing the battery
discharge curve and the current discharge rate.

In the FleGSens project [7], a wireless sensor network for
the surveillance of critical areas and properties is developed
which incorporates mechanisms to ensure information security.
The intended prototype consists of 200 sensor nodes for
monitoring a 500m long land strip. The system is focused
on ensuring the integrity and authenticity of generated alarms
as well as the availability in the presence of an attacker which
may use an optimal number of sensor nodes. Two protocols
were developed and presented: a tracking protocol to provide
secure detection of trespasses within the monitored area, and a
protocol for a secure detection of faulty nodes which ensures
the integrity of the sensor network and avoids any breach in
the coverage. This is done by selecting a random number of
nodes called buddies to listen to other nodes’ heartbeats.

In [8], a method to detect the sensor node failure or mal-
functioning with the help of confidence factors is presented.
The confidence factor of a roundtrip path in the network is
estimated by using the round trip delay (RTD) which is the
time required for a signal to travel from a specific source
node along a path containing other nodes and back again.
Confidence factors of all round trip paths are stored in look-up
tables. Then, by analyzing the status of the confidence factor of
all paths in the look-up tables, faulty sensor nodes are detected
easily.

The technique presented in [9] is based on calculating
periodically the throughput of a rectangular zone containing a
certain number of sensor nodes. The calculated throughput will



be compared to a predefined threshold. If it is less than this
threshold, the zone will then be divided into quadrants. The
throughput of each quadrant will be calculated and compared
to another threshold. If the throughput of a quadrant is less
than its corresponding threshold, it will be divided again into
another four quadrants. This process will be repeated until a
quadrant that contains only one sensor node is reached. The
node enclosed by that quadrant can be identified as a suspect
node based on its throughput which is low. After that, the
sleeping nodes around and near to the suspect one will be
waked up in order to test the suspect node.

In [10], a tool called Sympathy is developed for detecting
and debugging failures in sensor networks. Sympathy cal-
culates metrics that allow to detect failures efficiently like
statistic packets generated by nodes and transmitted to the sink.
It includes an algorithm that root-causes failures and localizes
their sources in order to reduce overall failure notifications
and to point the user to a small number of probable causes.
Sympathy detects a failure and triggers localization when a
node generates less monitored traffic than expected.

In this paper, a new method for boundary failure detection
is presented. After deployment, the boundary nodes will be
determined using the algorithm presented in [11], where in
each iteration the next boundary node n;,; is determined by
the node that has the minimum angle ©.,in (-1, 74, Tit1)
formed by the edges (n;,n;—1) and (n;,n; 1) where n; is the
boundary node found in iteration ¢ and n;_; is the boundary
node found in the previous iteration ¢ — 1.

The reason of choosing this algorithm for this work is based
on the characteristic that each boundary node knows its two
boundary neighbors. In fact, once the boundary nodes are
determined, each such node will periodically send a message
to its next neighbor, which should respond. If a response
is not received, a situation of failure will be triggered and
a network restructuring will be carried out to find a new
boundary. The proposed approach requires a limited number
of simple local computations and it needs the information on
one-hop neighbors. The boundary nodes act as a sentinel with
high duty cycle while the nodes that are the neighbors of the
boundary nodes can have a low duty cycle. The other nodes
are used only to replace the faulty boundary nodes. We note
that our approach can be used to enclose a specific region such
as frontier nodes covering a pollution or volcanic area or to
detect an event such as a fire in a forest, etc.

The remainder of the paper is organized as follows. Sec-
tion II introduces the boundary determination (BD) algorithm.
In Section III, the proposed method of detecting the failure
nodes is described. Simulation results and performance anal-
ysis are detailed in Section IV. Finally, Section V concludes
the paper.

II. BOUNDARY DETERMINATION (BD) ALGORITHM

In this section we will present the main steps of the
algorithm to determine the boundary nodes in a WSN. This
algorithm is the distributed version of the algorithm presented

in [11]. First, we introduce some definitions and primitives.
Then we present our algorithm.

A. Definitions and primitives

We assume that any two sensor nodes can directly exchange
messages if their Euclidean distance is not greater than their
communication range R, and that a planar area can be covered
by a sensor node if their Euclidean distance is not greater than
the sensing range R. Consequently a WSN can be modeled as
an undirected graph G = (S, E), where S = {s1, 52, ..., S0}
is the set of sensor nodes, n =| S | is the total number of
the sensor nodes and FE is the set of the communication links.
The link between two nodes can be defined as follows:

0 — 1 if the node s; communicates with s; )
7771 0 otherwise

The neighbor nodes N (s;) of a given node s; are the nodes
that communicate with it:

N(SL) = {sj/eij = 17] = 17...771 and ] 35 Z} (2)

The location of each sensor node s; is denoted by (z;,y;).
For a better understanding of the proposed algorithm, we
define in Table I some primitives and their definitions. We
have chosen to make the following assumptions:

1) Identical nodes: All nodes are homogeneous in terms of

capacity of computation, memory size and radio range.
For the purpose of distinction, each node is attributed a
unique identifier id.

2) Localization: Every node knows its location in space
in term of (x,y) coordinates (we have possibly to use
the GPS to get node coordinates) and each pair of
coordinates (x;,y;) is allocated only once to every node
s;, which means that each node has a distinguished
location in the network and also knows the location of
the first node (a node with the smallest x-coordinate).

3) Mobility: In the beginning, the sensor nodes are assumed
to be static during the boundary detection.

4) Nature of the nodes: Let us consider the set S of all
sensor nodes and let B denote the set of the boundary
nodes, where B C S, |S| = n and |B| = h. In the
following we will define sﬁ-’,i = 1,...,h as a boundary
node, where s? is designated by the previous boundary
node s?_,. The next boundary node s’ is chosen by
s? from a set of its neighbor nodes N(s?) as the node
that forms the minimum angle with s? and s?_,.

B. The proposed algorithm

The boundary determination algorithm presented above
starts from the node s} having the smallest x-coordinate. The
main steps of this algorithm, executed by each sensor node,
can be described as follows:

o Step I: This step is not executed by s3. The boundary
node slz-’,i > 0, receives a packet from the previous
boundary node s?_; and updates its boundary node table
t; and the coordinates of the previous boundary node
coordP;;



TABLE I
PRIMITIVES AND THEIR DEFINITIONS

[ Primitive name | Definition

Si The i*" sensor node of S
s? The " boundary node of B
id; The identifier of a sensor node
38 The boundary node that starts the algorithm
N(s;) The set of neighbors of the node s;
coordC; The coordinates of the current sensor node s;
coordP; The coordinates of the sensor node previous
to the current boundary node s;
coordNj, The list of the coordinates of the sensor node following
j € N(s;) the current boundary node s;
t; The table of boundary nodes of the sensor node s;
AC Ask for a coordinates packet
CS Sending of coordinate packet
SN Select Node packet

o Step 2: sb sends a broadcast AC packet to its neighbors
N(s?) to ask for their coordinates. This is done by
sending a packet formed by its identifier id; and the AC
primitive: [id;| AC];

e Step 3: Each neighbor node s; € N(s?), which receives
the AC packet, sends a CS packet to the boundary node s?
with a CS packet containing its identifier, its CS primitive
and its coordinates: [id;|C'S|coordC}l;

o Step 4: The boundary node s will calculate the angle
formed by the previous boundary node s’ , with itself
and with each one of its neighbor nodes s;. This is done
using the coordinates coordP;, coordC; and coordN; in
order to calculate the angle ¢, ;. as follows:

argmin  {p(coordP;, coordC;, coordNj)}

je{k/skEN(s?)}

% —
Pmin —

Let us consider s; the neighbor node that forms the
minimum angle ¢, . . This node will then be considered
as the next boundary node of s?. Therefore, s, = s
Note, that especially for the starting node sf, its previous
boundary node is assumed as a fictive node with an x-
coordinate smaller than the x-coordinate of s} and the
same y-coordinate.

e Step 5: The boundary node s? will send an SN packet to
the new boundary node sﬁ’ 1 with the updated table of
the sensor nodes ;1 = {t;} U {s%}, where tq = (). This
is done by sending the packet formed by its identifier id;,
the SN primitive, its coordinates and the table of sensor
nodes t;1:[id;|SN|coordC;|t;i1];

e Step 6: The next boundary node s’ 1 will perform the
same procedure from Step I on. The procedure stops as
soon as the next boundary node is equal to the starting
node sj.

To explain more clearly how this algorithm works, we will
use the example of Figure 1 which represents a graph of a
WSN with eight sensor nodes. Let us consider the set S =
{51,552, ..., 58} of these nodes and the set B of the boundary
nodes which is initially empty.

First (Step 2), we start from the node having the smallest
x-coordinate, which is sg = S1. This node will be considered
as the first boundary node. Then, the boundary set is updated
to B = {S1}. The node S1 sends a broadcast AC packet
to its neighbors N(S1) = {52,53,54,57} to ask for their
coordinates. This is done by sending a packet formed by its
identifier 1 and the AC primitive: [1|AC] (cf. Figure 1(a)).

Next (Step 3), each neighbor node S2, 53,54 and S7 which
receives the AC packet sends a CS packet to the boundary
node S1 with a CS packet containing its identifier, the CS
primitive and its coordinates (cf. Figure 1(b)): [S2|CS|2,4],
[S3]|CS|4,8], [S4|CS|7,7] and [ST7|CS|3, 3];

Next (Step 4), the boundary node S1 will calculate the angle
formed by the fictive node S1’, with itself and with each
one of its neighbor nodes 52,53,54 and S7. This is done
using the coordinates coordP; = (0,5), coordCy = (1,5)
and coordNy = (2,4), coordN3 = (4,8), coordNy = (7,7)
and coordN7 = (3, 3) in order to calculate the angle @) . as
follows:

1
Pmin

argmin {@(coordPy, coordCh, coordN;)}
je{2,3,4,7}

@(coordPy, coordCt, coordNs)

which means that the next boundary node is S3. This situation
is illustrated by Figure 1(c).

Then we run Step 5. As shown by Figure 1(d) the boundary
node S1 will send an SN packet to the new boundary node
S3 with the updated table of the sensor nodes t; = T3
{to} U{S1}, where tg = () (cf. Figure 1(e)). This is done by
sending the packet formed by its identifier 1, the SN primitive,
its coordinates and the table of sensor nodes t1:[1|SN|1, 5|T5].

After that (Step 6), the next boundary node s} S3
will perform the same procedure from Step I. The boundary
node S3 receives a message from the previous boundary node
S1 and updates its boundary node table ¢ty = 73 and the
coordinates of the previous boundary node coordP; and so
on. The procedure stops when the next boundary node is equal
to the starting node S1. Figure 1(f) shows the final iteration
of the boundary determination algorithm BD.

III. FAILURE NODE DETECTION

In this section, we will present the proposed method of
Boundary Node Failure Detection (BNFD) using the BD
algorithm presented above. The main steps of this method are
presented by the flowchart of Figure 3. First, the BD algorithm
will be run on a given WSN. As an example, Figure 2 shows
a WSN with 11 sensor nodes and its boundary nodes (i.e.,
S1, .52, 53, 54, 55, 56 and S7). During the execution of this
algorithm and in each iteration, each boundary node stores
locally the ¢d of its direct next boundary neighbor, which
represents the node selected to be the next boundary node.
Once the border is completely determined, each boundary node
S; starts sending periodically a testing message A “Are you
there?” in order to test the presence of its boundary neighbor
as it is shown by Figure 2(a). Note that in this figure, the A-
messages are sent by each node at the same time. However,
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Fig. 1. Boundary Determination (BD) algorithm example.
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Fig. 2. Border Monitoring Algorithm.

in reality, these messages will be sent sequentially in order to
avoid collisions, just as described by the flowchart of Figure 3.
Once an A-message is sent, the transmitter will wait, for a
limited time, for an answer B-"Yes, I am”-message from its
next boundary neighbor, which is represented by red arrows
in Figures 2(b) and (d). If the neighbor is failing then it
cannot answer. Therefore, once the limited time is reached,
and no answer is received any more from the neighbor (see
Figure 2(c)), then the next neighbor will be declared as a
failure node (see Figure 2(d)). In this case, the BD algorithm
will be re-executed and an alarm will be triggered.

Algorithm 1 shows the pseudocode of the presence testing
procedure, where each node sends the message A’ to its next
border neighbor nid (cf. lines 2 and 3) once the boundary
nodes are determined. Then, each node will wait a given time
period t; for an answer message ‘B’ from its next neighbor

Failure detection |¢

A: Are you there? B: Yes |
eslam
S3 is faulty

It cannot
answer

»S3

Run the BD algorithm
Boundary Nodes determined

The node S; asks for the presence of its

next neighbor S, <7

NO Response

received from
Sin

YES

Fig. 3. The BNFD approach.
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(cf. line 4). If the node does not receive any message during
this period than its neighbor will be declared as a failure node
(cf. lines 5 and 6). In this case, the BD algorithm will be
re-executed again in order to find the new border node and
an alarm will be triggered. Otherwise, if a node receives the
message 'A’ from its previous neighbor pid than it has to
answer by the message 'B’ in order to confirm that it is not a
failure node (cf. lines 10, 11 and 12). Receiving the message
"B’ from its next neighbor nid means that the node nid is not
faulty (cf. lines 14 and 15). This algorithm is repeated every
to seconds.

Algorithm 1 Presence Testing algorithm

1: while (true) do

2: p = cid+”|"+”A”;
3 send(p, nid);

4: n = read(t1);

5: if (n=="") then
6.

7

8

A failure is detected: run the BD algorithm;

break();

: else
9: type = read();
10: if (type==A) then
11: p = cid+”|’+"B”;
12: send(p, pid);
13: end if
14: if (type==B) then
15: No failure detected: do nothing;
16: end if
17: end if

18: wait(tz);
19: end while

IV. PERFORMANCE EVALUATION

The objective of this section is to evaluate the robustness
of the proposed method and its energy efficiency. To do this,
we have used the Castalia-3.3 framework [12] which is based
on the OMNeT++ 4.6 simulator. It provides advanced channel
and radio models and contains a realistic power consumption
profiling.

A. The case study

In the considered scenario, N sensor nodes are deployed
uniformly so that to obtain the maximum coverage of the
considered region. The transmission power level of all the
sensor nodes is fixed to —5 dBm, the radio hardware model
used by all the sensor nodes is the TelosB equiped with the
CC2420 radio modules based on the 802.15.4 standard.

Figure 4 shows the deployment scenario for N = 9 sensor
nodes in a rectangular area of 30 x 30 meters. By applying
the BD algorithm we have obtained the following boundary
nodes: B = {NQ, Ng, N67 N7, ]\/vg7 N5, NQ, Nl}

Figure 5 and Figure 6 show the energy consumed by
each boundary node using the BD and the BNFD algorithm,
respectively. The energy consumed by each node is given
by the sum of the consumption in transmission, reception,
listening and sleeping modes. As we can see, the BD algorithm
consumes an average energy of 0.368 Joules, which represents

Fig. 4. Network Deployment and Connectivity.

0.002% of the initial battery capacity used in the Castalia
framework and which is equal to 18720 Joules (i.e., a capacity
of two AA batteries). Therefore, it can be executed around
50869 times until the battery’s depletion. If we assume that
one execution of the algorithm takes around 30 minutes, then
on one day this algorithm can be executed 48 times. Thus,
one battery can be used for 50869/48 ~ 1060 days (i.e., 3
years).

0.37

0.968 - BD Algorithm =7

0.366
0.364

0.362

Energy consumption (J)

0.358 +

0.356

NO N1 N2 N3 N4 N5 N6 N7 N8
Node position

Fig. 5. Energy Consumption per Node (BD Algorithm).

In the same way, for the case of the BNFD algorithm, as
shown by Figure 6, each node consumes an average energy of
0.18 Joules, which represents 0.001% from the initial battery
capacity. Therefore, it can be executed 104 - 10® times until
the battery’s depletion. If we assume that one execution of
the algorithm takes around 10 minutes, then on one day this
algorithm can be executed 144 times. Thus, one battery can
be used for 104000/144 =~ 722 days (i.e., 2 years).

Therefore, as shown by Figure 7, the total mean energy
consumed by both BD and BNFD algorithms is equal to 0.548
Joules, which represents 0.003% of the total energy of one
battery. Therefore, it can be executed 18720 times until the
battery’s depletion. Based on assumptions given above, i.e.,
one execution of the algorithm takes around 40 = (30 + 10)
minutes, then on one day these two algorithms can be executed
36 times. Thus, one battery can be used for 18720/36 ~ 520
days (i.e., 1.5 years).

To study the impact of the size of the network on the energy
consumption, we vary the number of the sensor nodes from 9
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Fig. 7. Energy Consumption per Node (BD+BNFD Algorithms).

to 1000 and measure the average of the energy consumption
of the BD and BNFD algorithms. Figure 8 plots the energy
consumption under different network sizes. It shows that when
the number of nodes deployed in the field of interest increases,
the average of energy consumption also increases. In fact, this
is an expected result because all nodes are involved in the
communication process. Indeed, in our case we are interested
in monitoring a sensitive site and in detecting failure nodes on
the boundary. Thus, if we deploy sensor nodes only around
the boundary, the energy consumption decreases due to the
reduction by the number of nodes that are inside the network.

“r BD! 1
BD + BNFD ===

Average energy consumption (J)

9 100 200 300 400 500 1000
Network size

Fig. 8. Energy consumption (BD and BD+BNFD Algorithms).
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Finally, it is possible to improve the energy consumption
using the proposed approach by executing the BD algorithm
only when a node fails instead of executing it periodically as
mentioned above.

V. CONCLUSION

In this paper we have proposed a distributed approach to
detect failure nodes in Wireless Sensor Networks (WSN). Our
new approach finds the WSN boundary nodes and monitors
a sensitive area with the nodes situated on the boundary.
Through extensive simulations with the Castalia simulator, we
have evaluated the performance of our scheme under various
conditions and we could show its energy efficiency. In this
approach, the number of exchanged messages to identify the
faulty sensors is small and a substantial amount of energy
can be saved by the sensor nodes. Moreover, the proposed ap-
proach outperforms previous ones by providing high detection
accuracy. As future work we intend to analyze our approach in
terms of resilience to changes in the set of failures by injecting
faults into the network, to study the network performance in
this case and how to immediately deliver failure notifications
through the network.
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