
Lub
A language for Dynamic Context

Oriented Programming

Steven Costiou
Mickaël Kerboeuf, Glenn Cavarlé, Alain Plantec

UMR CNRS 6285, Lab-STICC/MOCS
Université de Bretagne Occidentale

▪ The drones are flying in close formation

▪ One of the drones loses its guidance system

▪ Assumption: the fail-safe behaviour for that case has
not been anticipated

▪ Possible solution: dynamically change the drone
fleet’s behaviour
• The faulty drone behaviour is changed to use the GPS of a mate

drone

The drone fleet example

1. Problematic: Dynamic behavior adaptation

2. Our proposition: Lub, a language for behavior adaptation
through dynamic lookup instrumentation

3. Evaluation with Pharo: The drone example experiment

● Autonomous systems need for dynamic behaviour
adaptation in case of unexpected Events

● The system must not be lost

● The mission must not be cancelled

Dynamic behavior adaptation

● The runtime system must be able to dynamically
updates its behavior

● One must be able to communicate with the system and
safely push the new behavior

Dynamic behavior adaptation

Existing approaches for dynamic behavior
update ?

● Adaptation through architectural reconfiguration

Navigation
ComponentComponent AGPS

Component B
Other

positioning
system

pinPoint()

pinPoint()

Component based solutions

● Many COP languages
▪ ContextL (Costanza and Hirschfeld 2005), ContextJ (Appeltauer et al.

2011), EventCj (Kamina et al. 2011), etc.
▪ Combination “per-instance” + “no-scope-limitation” hard to find

:navigation

pinPoint()

pinPoint()

pinPoint()
with LayerB { pinPoint() }

:positionTracker

LayerA

LayerB

LayerC
PositionTracker

instance of

Navigation

instance of

Context Oriented Programming (COP)

● Lookup delegated to a third party object
● Modifies the lookup semantics

:navigation:positionTracker

pinPoint()

Specify

Add

pinPoint()

Navigation

PositionTracker

instance of

instance of

Talents (Ressia 2014)

:talent

Comparisons of these approaches

1. Problematic: Dynamic behavior adaptation

2. Our proposition: Lub, a language for behavior
adaptation through dynamic lookup instrumentation

3. Evaluation with Pharo: The drone example experiment

Comparisons of these approaches

● Proposition: Changeable lookup base

● Lookup base
▪ The class where the lookup starts from

:a

A

MESSAGE SEND

A1

A2A2’

LOOKUP

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

Lookup base

● Implements changeable lookup base

● OO language, Class/Instance based

● Instance based adaptation at runtime

● Preserved self reference: structural links and states are
unchanged

● Two dedicated operators
▪ to change the lookup base
▪ to select methods impacted by the lookup base

change

The Lub language

The Lub metamodel

Lub adaptation example

Definition of a LookupBase
(LUB): references a class
where to perform the
lookup.

Lub adaptation example

Definition of a LookupBase
(LUB): references a class
where to perform the
lookup.

Instance of the LookupBase,
set as the current one of the
object to adapt.

Lub adaptation example

:a

A

MESSAGE SEND

A1

A2A2’

LOOKUP

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

Lookup mechanics extension

● Lookup base

:a

:lookupBase

A

MESSAGE SEND

A1

A2A2’

B

B1

B2B2’

LOOKUP

LOOKUP

START LOOKUP

LOOKUP FAILURE

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

Lookup mechanics extension

● Lookup base
● Lookup extension

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“Computes the drone’s position using the GPS of a mate drone”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {
class := PeerPositionTracker.

}

A Lub specification

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“Computes the drone’s position using the GPS of a mate drone”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {
class := PeerPositionTracker.

}

Definition of an adaptation:
dynamic adding of the
PeerPositionTracker class

A Lub specification

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“Computes the drone’s position using the GPS of a mate drone”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {
class := PeerPositionTracker.

}

Definition of an adaptation:
dynamic adding of the
PeerPositionTracker class

Definition of a Lookup
Base: references the
PeerPositionTracker
class

A Lub specification

tracker := (simulation agentNamed: ‘dr2’) positionTracker.
tracker lookupBase: PeerTrackerLookupBase

Change of dr2’s LookupBase

A Lub specification

1. Problematic: Dynamic behavior adaptation

2. Our proposition: Lub, a language for behavior adaptation
through dynamic lookup instrumentation

3. Evaluation with Pharo: The drone example experiment

dr2

dr1

target

GPS LOSS

BEHAVIOR
ADAPTATION

Drone fleet example simulation

t2

t1

t3

t4

t = 2
Accessing Tracker 1 [dr1 : GPSMobileDrone] this is dr1 at (90@39)
Accessing Tracker 2 [dr2 : GPSMobileDrone] No pinpoint device available.
Tracker 2 updating lookup base with : PeerTrackerLookupBase

t = 3
Accessing Tracker 1 [dr1 : GPSMobileDrone] this is dr1 at (89@40)
Accessing Adapted tracker (dr2 requesting dr1 position: Accessing Tracker 1)
[dr2 : GPSMobileDrone] this is dr2 at (175@81)

t = 4
Accessing Tracker 1 [dr1 : GPSMobileDrone] this is dr1 at (88@41)
Accessing Adapted tracker (dr2 requesting dr1 position: Accessing Tracker 1)
[dr2 : GPSMobileDrone] this is dr2 at (174@84)

Simulation log after adaptation

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“computations”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {

class := PeerPositionTracker.
} :a

:lookupBase

A

A1

A2A2’

B

B1

B2B2’

LOOKUP

LOOKUP

START LOOKUP

LOOKUP FAILURE

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

Operator selection

:a

:lookupBase

A

A1

A2A2’

B

B1

B2B2’

LOOKUP

LOOKUP

START LOOKUP

LOOKUP FAILURE

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

pinPoint:

Operator selection

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“computations”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {

class := PeerPositionTracker.
with { pinPoint: }

}

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“computations”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {

class := PeerPositionTracker.
with { pinPoint: }

}
:a

:lookupBase

A

A1

A2A2’

B

B1

B2B2’

LOOKUP

LOOKUP

START LOOKUP

LOOKUP FAILURE

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

printTracker
pinPoint:

Operator selection

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“computations”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {

class := PeerPositionTracker.
with { pinPoint: }

}
:a

:lookupBase

A

A1

A2A2’

B

B1

B2B2’

LOOKUP

LOOKUP

START LOOKUP

LOOKUP FAILURE

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

printTracker
pinPoint:

Operator selection

class PeerPositionTracker {

attributes { }
operations {

pinPoint: drone
“computations”

printTracker
^’Adapted Tracker’

}
}

LookupBase PeerTrackerLookupBase {

class := PeerPositionTracker.
with { pinPoint: }

}
:a

:lookupBase

A

A1

A2A2’

B

B1

B2B2’

LOOKUP

LOOKUP

START LOOKUP

LOOKUP FAILURE

START LOOKUP

LOOKUP FAILUREdoesNotUnderstand:

printTracker
pinPoint:

Operator selection

t = 2
Accessing Tracker 1 [dr1 : GPSMobileDrone] this is dr1 at (90@39)
Accessing Tracker 2 [dr2 : GPSMobileDrone] No pinpoint device available.
Tracker 2 updating lookup base with : PeerTrackerLookupBase

t = 3
Accessing Tracker 1 [dr1 : GPSMobileDrone] this is dr1 at (89@40)
Accessing Tracker 2 (dr2 requesting dr1 position: Accessing Tracker 1)
[dr2 : GPSMobileDrone] this is dr2 at (175@81)

t = 4
Accessing Tracker 1 [dr1 : GPSMobileDrone] this is dr1 at (88@41)
Accessing Tracker 2 (dr2 requesting dr1 position: Accessing Tracker 1)
[dr2 : GPSMobileDrone] this is dr2 at (174@84)

Simulation log after pinPoint: adaptation

● Vérification/validation

● Validation on a physical device
▪ Reproducing the GPS drone example adaptation

● Investigate the communication problem
▪ How to communicate and to push new behaviors ?
▪ Nickolaos Papoulias thesis (2013): “remote

debugging and reflection in resource constrained
devices”

Perspectives

Lub
A language for Dynamic Context

Oriented Programming

Steven Costiou
Mickaël Kerboeuf, Glenn Cavarlé, Alain Plantec

UMR CNRS 6285, Lab-STICC/MOCS
Université de Bretagne Occidentale

Lub runtime model

