
Temporal/Timed Formal
Verification of Autonomous Robots

Mohammed Foughali -LAAS-CNRS

Content

I. Problem Definition

II. Our Approach

III. Verification Results

IV. Conclusion & Improvements

Autonomous robots -> high level of complexity
 

A growing need of formal guarantees on the systems' reliability as the robots
are more and more involved in human environments and/or costly missions

I. Problem Definition

I. Problem Definition

Autonomous system software
levels:

● Decisional layer
➢Deals with high-level missions

such as planning, acting, etc.
➢Often formal

● Functional layer
➢Interacts directly with sensors and

actuators

➢Deployed via non formal
frameworks (GenoM, ROS, etc.)

➢Little has been done to formally
verify its components

Decisional Level

Acting Observing
Functional level

Battery

SpeedP3D

PosPOM

HueblobIm.
St.Stereo

VIAM Im. Pos RFLEX
PTU

(Pan-Tilt
Unit)

DTM Env

Aspect Obs

Laser
RF Scan

NDD Speed

Antenna Heating

Planning Monitoring

MODELS

Flat terrain
navigation

Rough terrain
navigation

I. Problem Definition

So far, roboticists rely heavily on simulation and tests
X Possibility to miss faulty execution paths => catastrophic damage to

the robot, to the environment and/or, more dramatically, to
humans.

Formal verification offers mathematical guarantees
X Highly complex systems imply a costly investment in their formal

modeling but also an explosion of the reachable state space
X Constrained formal frameworks (if used directly for specification)

I. Problem Definition

Examples of such limits on related works:
➡ Model Checking
• Espiau et al. (1995)

❖ Orccad -> ESTEREL -> Mauto (untimed verification)
❖ Orccad -> Timed Argos -> Kronos (timed verification)
X Properties verified on very simple examples under the threat of explosion
X The time-consuming and error-prone formal modeling step needs to be re-

done for every new example

➡ Compositional Verification
● GenoM/BIP experiments, Ingrand et al. (2005-2012)

❖ Over-approximation of the reachable state space (avoid explosion)
❖ GenoM -> BIP -> D-Finder
X Time constraints forgotten
X Can't decide on properties evaluated as false

II. Our Approach

Functional level : GenoM
Modules

Services (control flow)
Ports (data flow)

LAAS/RIS

Fiacre/TINA framework for  
time-constrained  
distributed/concurrent systems

LAAS/VerTICS

Model-Driven Software
Engineering

Formal Methods

}
}

Decisional Level

Acting Observing
Functional level

Battery

SpeedP3D

PosPOM

HueblobIm.
St.Stereo

VIAM Im. Pos RFLEX
PTU

(Pan-Tilt
Unit)

DTM Env

Aspect Obs

Laser
RF Scan

NDD Speed

Antenna Heating

Planning Monitoring

MODELS

Flat terrain
navigation

Rough terrain
navigation

Fiacre 

II. Our Approach

PORTS

Execution Tasks

Activities Service

IDS

Requests Reports

Control Task
Attribute and Function

Service

GenoM

Services (control flow)

Ports (data flow)

Activities (automata)

Control task

Execution tasks

II. Our Approach

Example

4 modules for robot
navigation

4 ports

4 control task and 5
execution tasks

>16 services

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

II. Our Approach

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

validate

start
gotoposStart
50ms
ports: pmap, ppos
ids: goal_pos, attempt

read_ports
gotoposReadPorts
50ms
ports: pmap, ppos
ids: pos, maps

compute_speed
gotoposComputeSpeed
200ms
ports:
ids: goal_pos, attempt,
 pos,speed

write_port
gotoposWritePort
50ms
ports: pspeed
ids: speed

end,stop
gotoposWritePortStop
50ms
ports: pspeed
ids: speed

path_blocked
gotoposPathBlocked
50ms
ports: pspeed
ids: speed

pause

Throw: INVALID_POSITION, INVALID_MAP, INVALID_GOAL, PATH_BLOCKED

GotoPostion Service Automata

ether

controlPosition
10ms
goto_pos

II. Our Approach

Template mechanism: GenoM provides a
template-based generator to translate a GenoM
specification into other representations

Modules can be generated for different
middleware (ROS-Com, PocoLibs, etc.)

➡ Program templates to bridge GenoM with
V&V Tools and Frameworks

II. Our Approach

●Fiacre (Format Intermédiaire pour les Architectures de
Composants Répartis Embarqués)

○ Timed discrete-event systems coding based on Automata
and Time Petri Nets

○ Communication and synchronization through ports and
shared variables

○ Possibility to formulate LTL properties
○ Patterns: possibility to express timed properties

II. Our Approach

● Example of communicating Fiacre processes: The Fischer protocol

* Entry point for verification */
Main

/* Mutual exclusion */
property mutex is ltl [] not ((Main/1/state CriticalSection) and (Main/2/state
CriticalSection))

/* Processes */

process Proc (pid : id, &lock : lock) is
 states WaitLock, WaitLock2, SetLock,
TestLock, CriticalSection

 from WaitLock
 on (lock = 0);
 to WaitLock2

 from WaitLock2
 wait [0, 2];
 lock := pid;
 to SetLock

 from SetLock
 wait]2, ...[;
 to TestLock

from TestLock
 if lock = pid then
 to CriticalSection
 else
 to WaitLock
 end

from CriticalSection
 lock := 0;
 to WaitLock

/* Main component */
component Main is
 var lock : lock := 0
 par
 Proc (1, &lock)
 || Proc (2, &lock)
 end

II. Our Approach

●TINA (TIme Petri Net Analyzer)
●A toolbox for the editing and analysis of Time Petri

Nets and Time Transition Systems

➢LTL model-checking techniques
➢Fiacre specification compiler

❖FRAC (FiacRe to tinA Compiler)
✓ transform Fiacre specifications into Time Transition Systems

(formally verifiable by TINA)
✓Convert patterns into LTL properties

II. Our Approach

A template that produces the Fiacre model out of any
GenoM specification for the PocoLibs implementation

example: Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

process timer (&tick: bool) is
states start
from start
wait [0.5,0.5];
tick := true;
to start

process Manager (&tick: bool, ...) is
states start, manage
from start
wait [0,0];
on tick;
tick := false;
if (...) /* no active activity */
then to start
else to manage end
from manage
wait [0,0];
... /* execute one active activity */
if (...) /* no more activities */
then to start
else to manage end

II. Our Approach

Fiacre Model 
of the Funct. Level

GenoM
Models:
.idl & .gen

frac

Real-time  
properties

TINA tools

AnalysisFix the model

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

Fiacre/Model
template
(GenoM/Pocolibs
to Fiacre)

III. Verification Results

✓ Schedulability of execution tasks

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

process timer (&tick: bool) is
states start
from start
wait [0.5,0.5];
tick := true;
to start

process Manager (&tick: bool, ...) is
states start, manage
from start
wait [0,0];
on tick;
tick := false;
if (...) /* no active activity */
then to start
else to manage end
from manage
wait [0,0];
... /* execute one active activity */
if (...) /* no more activities */
then to start
else to manage end

property sched is always (navigation/robmap/manager/state manage) => not (navigation/robmap/manager/value tick)

Verification with TINA: FALSE

III. Verification Results

✓ Progress of activities

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

process timer (&tick: bool) is
states start
from start
wait [0.5,0.5];
tick := true;
to start

process Manager (&tick: bool, ...) is
states start, manage
from start
wait [0,0];
on tick;
tick := false;
if (...) /* no active activity */
then to start
else to manage end
from manage
wait [0,0];
... /* execute one active activity */
if (...) /* no more activities */
then to start
else to manage end

property no_block is (navigation/robmap/manager/state manage) leadsto (navigation/robmap/manager/state start)

Verification with TINA: TRUE

III. Verification Results

✓ Position port update

 bounded in time

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

140 ms max

event A leads to event B within I

where I is an interval of integers

III. Verification Results

✓ Position port update

 bounded in time

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

event A leads to event B within I

25 m
s m

ax
where I is an interval of integers

III. Verification Results

✓ Position port update

 bounded in time

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

event A leads to event B within I

where I is an interval of integers

Final result 1 second and 274 ms

III. Verification Results

✓ Service termination

 bounded in time

Functional Level

speed

robmotion

scan

roblaser

pos

robloco

robmap

map

Task:
map 50ms
Services:
Init
FuseMap
StopFuse

Task:
motion 500ms
Services:
Init
GotoPosition
Stop

Task:
scan 50ms
Services:
Init
StartScan
StopScan

Task:
odo 50ms
Services:
InitPort
GetPos
OdoStart
OdoStop
MonitorArea

Task:
track 50ms
Services:
TSStart
TSStop

If a Stop request is sent, the
service TSStart will end within I

Final result 72 ms

This leads to a null speed sent
to the controller

III. Verification Results

✓ The roboticist analyzes the results and acts
accordingly (if necessary)

➡Example:  
If the application is hard real-time, tune the
periods so as all tasks become schedulable.

e.g doubling the period does it for the task track..

IV. Conclusion & Improvements

✓ Summary:

Important properties (particularly timed)
successfully verified on a real-world example

Automatic generation of formal models out of
GenoM specifications

Manageable state spaces due to careful modeling
and verification choices

IV. Conclusion & Improvements

➡ Future work:

Express the properties in GenoM and translate
them automatically to Fiacre

Automatically interpret counterexamples given
by TINA to be easily understandable

Synthesize Fiacre models for different
middleware

IV. Conclusion & Improvements

➡ Future work:

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p0
2(z)

p1 p1 p1

p0
1

(a) Composite component representation.

compound type Sender

component Basic Send1
component Basic Send2
component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)
connector Max Max2(Max1.p3,Send3.p2)
connector Singleton Sing1 (Send1.p1)
connector Singleton Sing2 (Send2.p1)

export port Intport p�2 is Max2.p3
export port Intport p�1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using di�erent laguages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation,in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GeNoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

30

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get
[0 � x � +⇥]e

⇤
next
[100 � x � 120]d

{x}

q0

[0 � x � 50]d[50 � x � 60]d

q1

q2

encb

⇤⇤

enca

get next

atomic type Encoder
export port intPort get
export port intPort intPort next
port intPort enca compute
port intPort encb

clock x unit millisecond

place q0
place q1
place q2

initial to q0

on get from q0 to q1
when x in [0,-] eager
on enca from q1 to q2
when x in [50,60] delayable
on encb from q1 to q2
when x in [0,50] delayable
on next from q2 to q0
when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,�d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and �d is a
partial order that gives the priority order on a set of interactions A =

�
A� and d is the

delay of application of the priority.

For a1 ⇤ A and a2 ⇤ A, a priority rule is textually expressed as C ⇥ a1 �d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

74

CHAPTER 5. CORRECT IMPLEMENTATION OF REAL-TIME SYSTEMS

Encoder

get
[0 � x � +⇥]e

⇤
next
[100 � x � 120]d

{x}

q0

[0 � x � 50]d[50 � x � 60]d

q1

q2

encb

⇤⇤

enca

get next

atomic type Encoder
export port intPort get
export port intPort intPort next
port intPort enca compute
port intPort encb

clock x unit millisecond

place q0
place q1
place q2

initial to q0

on get from q0 to q1
when x in [0,-] eager
on enca from q1 to q2
when x in [50,60] delayable
on encb from q1 to q2
when x in [0,50] delayable
on next from q2 to q0
when x in [100,120] delayable
reset x

end

Figure 5.9: The encoder component declaration in BIP.

Priorities

Priorities are used for inhibiting an interaction, called the low interaction, whenever another
interaction, called the high interaction, is enabled. Priorities can be guarded by boolean
conditions, which depend on the value of variables. We can extend priorities with the notion
of time, by adding delays for the application of priority rules. A priority with a delay of d
means that its lower interaction is inhibited by its high interaction whenever the latter is
possible in d units of time.

Definition 25 (Priority Rule) A priority is a tuple (C,�d), where C is a state pred-
icate (boolean condition) characterizing the states where the priority applies and �d is a
partial order that gives the priority order on a set of interactions A =

�
A� and d is the

delay of application of the priority.

For a1 ⇤ A and a2 ⇤ A, a priority rule is textually expressed as C ⇥ a1 �d a2. When
the state predicate C is true and both interactions a1 and a2 specified in the priority rule
are enabled, the higher priority interaction, i.e., a2 is selected for execution with a delay of
d time units.

74

Time

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 :

r s2s1

⇥ = {s1.r, s2.r}

s2.r s1.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control sates of the
composed components S =

�n
i=1 Si.

• �⌅⇥ is a set of transitions of the form (q,�, g, f, q�), where :
– q = (q1, ..., qn), qi being a control state of the ith component.
– � is a feasible interaction in ⇥ associated with a guarded command (G�, F�),

such that there exists a subset J ⇤ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q�j)}j⇥J and � = {pj}j⇥J .

– g =
⇥

j⇥J gj ⇧G�.
– f = F�; [fj]j⇥J . That is, the computation starts with the execution of F� followed

by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
conectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p�2 and p�1. Port p�2 results from the components
synchronizations through their p2 ports. Port p�1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

29

CHAPTER 3. THE BIP FRAMEWORK

Sender1 Sender2

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)
data int z
define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)
up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of thier values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a di◆erent structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

27

CHAPTER 3. THE BIP FRAMEWORK

Sender1 Sender2

p3(z)

p1(x) p2(y)

G : (p1.x > 0)&&(p2.y > 0)

Fup : z = Max(p1.x, p2.y)

Fdown : p1.x = p2.y = z

(a) Connector.

connector type Max (intPort p1, intPort p2)
data int z
define [p1p2]

on p1p2 provided (p1.x > 0) && (p2.y > 0)
up { z = Max (p1.x , p2.y);}
down { p1.x = p2.y = z ;}

export port intPort p3(z)

end

(b) Connector type definition code in BIP.

Figure 3.4: An example of a connector between two components in BIP

true. In the up function, the Max of the variables associated with the ports is calculated and
stored in the connector variable z. As a result of the data transfer, the variables associated
with the ports are set to the maximum of thier values, through the action down.

Hierarchical connectors

We have seen that a connector has an option to define a port and export it. This allows
a connector to be used as a port in other connectors, and create structured connectors. The
representation of structured connectors require connectors to be treated as expressions with
typing and other operations on groups of connectors. This led to a formalization of the
algebra of connectors defined in [25, 26]. The Algebra of Connectors is a compact notation
for algebric representation and manipulation of connectors and formalizes the concept of
connectors supported by the BIP component model.

Figure 3.5 shows two hierarchical connectors :

• The AtomicBroadcast (a) involves four ports s, r1, r2, r3. It represents a communica-
tion schema between a sender s and multiple reveivers ri, where either a message is
received by all the ri, or by none. Ports ri are strongly synchronized and the synchro-
nization with the trigger port s is done via an exported port. This means that either
s or interaction s.r1.r2.r3 is possible.

• The CausalChain (b) involves the same ports with a di◆erent structure. It represents
a communication schema in which if a message is received by ri, it has also to be
received by rj , for j < i.

27

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
InPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitily. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purpose.

Basic

x = assign−value ()

p1 p2(x)

empty full

p2

p1

[x > 0]

(a) An atomic component.

port type IntPort (int x)
port type ePort ()

atomic type Basic
data int x = 0
export port ePort p1() is p1
export port intPort p2(x) is p2

place empty
place full

initial to empty

on p1 from empty to full
do { x = assign-value();}

on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector � define sets of ports of atomic components Bi

wich can be involved in an interaction. It is formalized by � = (P� , A� , p[x]) where:

• P� is the support set of �, that is the set of ports that � may synchronize.
• A� ⇥ 2P� is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii�I , I ⇥ [1, n] that take part of an interaction a,
– Ga is the guard of a, a predicate defined on variables

�
pi�a Vpi ,

– Fa is the data transfer function of a, defined defined on variables
�

pi�a Vpi .

• p is the exported port of the connector �.

25

CHAPTER 3. THE BIP FRAMEWORK

code two types of ports. A pure event port ePort that does not have any associated vari-
ables, and provides the mechanism for event synchronization only. The port out is of type
InPort, which associates an integer variable with a port. A port in an atomic component
is not visible to its environment unless it is exported explicitily. In the above example, both
port p1 and p2 are exported. It is necessary to export a port if it has to be used in some
connector for synchronization purpose.

Basic

x = assign−value ()

p1 p2(x)

empty full

p2

p1

[x > 0]

(a) An atomic component.

port type IntPort (int x)
port type ePort ()

atomic type Basic
data int x = 0
export port ePort p1() is p1
export port intPort p2(x) is p2

place empty
place full

initial to empty

on p1 from empty to full
do { x = assign-value();}

on p2 provided [x > 0]
from full to empty

end

(b) BIP code of the atomic component.

Figure 3.2: An example of an open atomic component in BIP.

3.2 Connectors

Composition of components allows to build a system as a set of components that interact
by respecting constraints of an interaction model. Connectors are used to specify possible
interaction patterns between the ports of components.

Definition 8 (Connector) A connector � define sets of ports of atomic components Bi

wich can be involved in an interaction. It is formalized by � = (P� , A� , p[x]) where:

• P� is the support set of �, that is the set of ports that � may synchronize.
• A� ⇥ 2P� is a set of interactions a each labeled by the triple (Pa, Ga, Fa) where:

– Pa is the set of ports pii�I , I ⇥ [1, n] that take part of an interaction a,
– Ga is the guard of a, a predicate defined on variables

�
pi�a Vpi ,

– Fa is the data transfer function of a, defined defined on variables
�

pi�a Vpi .

• p is the exported port of the connector �.

25

Behavior

Interaction

Priority

CHAPTER 3. THE BIP FRAMEWORK

Max1 Max2

Max2 : < Max1 :

r s2s1

⇥ = {s1.r, s2.r}

s2.r s1.r

(a) An Example of a priority
relation.

connector Max1 (s1, r)
connector Max2 (s2, r)

priority maximal if (s1.x > s2.x)
Max2 < Max1

(b) BIP code of the priority relation.

Figure 3.6: An example of priorities in BIP.

• Q is a set of states, which is the cartesian product of the sets of control sates of the
composed components S =

�n
i=1 Si.

• �⌅⇥ is a set of transitions of the form (q,�, g, f, q�), where :
– q = (q1, ..., qn), qi being a control state of the ith component.
– � is a feasible interaction in ⇥ associated with a guarded command (G�, F�),

such that there exists a subset J ⇤ {1, ..., n} of components with transitions
{(qj , pj , gj , fj , q�j)}j⇥J and � = {pj}j⇥J .

– g =
⇥

j⇥J gj ⇧G�.
– f = F�; [fj]j⇥J . That is, the computation starts with the execution of F� followed

by by the execution of all the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint sets of variables.

• P is a set of exported ports. Indeed, a connector can be associated with exported ports.
This allows a connector to be used as a port in other connectors, and create structured
conectors. Those ports allow also to build compound components.

Example 7 Figure 3.7(a) shows a compound component Sender consisting of three com-
ponents, Send1, Send2 and Send3 of type Basic (described in Figure 3.2). They interact
by using connectors of type Max described in Figure 3.4 to compute the maximal value pro-
duced by the components. It exports two ports p�2 and p�1. Port p�2 results from the components
synchronizations through their p2 ports. Port p�1 is the exported port p1 of the Send3 com-
ponent. Ports p1 of Send1, Send2 are wrapped into singleton connectors since they are
neither exported by the compound component nor involved in any interaction. Figure 3.7(b)
presents the corresponding BIP code.

29

CHAPTER 3. THE BIP FRAMEWORK

Sender

Send1 Send2 Send3

Max1

Max2

Sing1 Sing2

p2(x) p2(x)

p3(z)

p2(x)

p3(z)

p0
2(z)

p1 p1 p1

p0
1

(a) Composite component representation.

compound type Sender

component Basic Send1
component Basic Send2
component Basic Send3

connector Max Max1(Sender1.p2,Send2.p2)
connector Max Max2(Max1.p3,Send3.p2)
connector Singleton Sing1 (Send1.p1)
connector Singleton Sing2 (Send2.p1)

export port Intport p�2 is Max2.p3
export port Intport p�1 is Send3.p1

end

(b) BIP code of the compound component.

Figure 3.7: An example of compound component in BIP.

4 The BIP Tool-Chain

This section presents the implementation of the BIP framework, formally described in the
previous sections, in the form of a tool-chain called the BIP tool-chain. The BIP Tool-chain
provides a complete implementation, with a rich set of tools for the modeling, the execution
and the verification (both static and on-the-fly) of BIP models.

4.1 General Overview

The overview of the BIP tool-chain is shown in figure 3.8. It includes the following tools:

• The BIP language. It is used to build models using components, connectors and
priorities and describes components architecture. It is used for the BIP description
source.

• Source-to-source transformation tools. They are used to transform various program-
ming models, using di�erent laguages, into BIP models. The translation of a pro-
gramming model into a BIP model allows its representation,in a rigorous semantic
framework. There exist several translations, including LUSTRE, MATLAB/Simulink,
AADL, GeNoM applications, NesC/TinyOS applications, C software and DOL sys-
tems.

30

IV. Conclusion & Improvements

–Mohammed

Thanks for your attention

Special thanks to
 

LAAS/RIS: Félix Ingrand, Anthony Mallet  
LAAS/VerTICS: Bernard Berthomieu, Silvano Dal Zilio

Part of this work is funded by the  
H2020 European project CPSE Labs
under grant agreement No 644400

