Time Domains in Hybrid Systems Modeling

Albert Benveniste ${ }^{1} \quad$ Timothy Bourke ${ }^{1} \quad$ Benoît Caillaud ${ }^{1}$ Marc Pouzet ${ }^{3}$

\author{

1. INRIA
}
2. École normale supérieure

Brest, July 2016

From Dynamical to Hybrid Systems, informally

Dynamical system: smooth dynamics

$$
x: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

solution of the IVP

$$
\left\{\begin{array}{l}
f(\dot{x}, x, t)=0 \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

Can we capture Hybrid Systems trajectories as $x: \mathbb{R} \rightarrow \mathbb{R}^{n}$?

From Dynamical to Hybrid Systems, informally

> Simple Hybrid Systems: smooth dynamics almost all the time, except for state jumps $x^{+}=g\left(x^{-}\right)$ at some discrete t.

$x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ still works.
How general is this?

From Dynamical to Hybrid Systems, informally

Non-Smooth
Dynamical

Systems: right-hand of differential equations is non-smooth.

- Filippov Differential Inclusions
- Complementarity Systems
- Siconos numerical library [Acary et al.]
$x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ still works.

However...

From Dynamical to Hybrid Systems, informally

In general, Hybrid Systems trajectory may have:

- Instantaneous cascades of state jumps
- Chattering

Can not be captured as:

$$
x: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

Need a Time Domain "denser" than \mathbb{R}

Semantics of Hybrid Systems Modelers

Instrumental to design:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Need for a precise mathematical semantics
Focus of this talk:

- Comparison of Time Domains used to the define the semantics of hybrid systems modelers
- Emphasis on compile-time analysis / simulation code generation

Our Cabinet of Curiosities. . .

Causality issue: the Simulink state port

The output of the state port is the same as the output of the block's standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block's standard output if the block had not been reset.
-Simulink Reference (2-685)

Causality issue: the Simulink state port

The output of the state port is the same as the output of the block's standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block's standard output if the block had not been reset.
-Simulink Reference (2-685)

Causality issue: the Simulink state port

The output of the state port is the same as the output of the block's standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block's standard output if the block had not been reset.
-Simulink Reference (2-685)

Causality issue: the Simulink state port

The output of the stat block's standard outpu

Excerpt of C code produced by RTW (release R2009)

```
static void mdlOutputs(SimStruct * S, int_T tid)
{ _rtX = (ssGetContStates(S));
    _rtB = (_ssGetBlockIO(S));
    _rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0; tains 'last' value
    _rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;
    if (ssIsMajorTimeStep (S))
        { ...
            if (zcEvent || ...)
            { (ssGetContStates (S))->Integrator0_CSTATE =
                _ssGetBlockIO (S))->B_0_1_0; }\quadx=-3\cdotlast y
            }
    (_ssGetBlockIO (S))->B_0_2_0 =
    (ssGetContStates (S))->Integrator0_CSTATE;
    _rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;
    if (ssIsMajorTimeStep (S))
    { ...
        if (zcEvent || ...)
            { (ssGetContStates (S))-> Integrator1_CSTATE = \longleftarrow
                        (ssGetBlockIO (S))->B_0_3_0; }\quady=-4\cdot
            }
        ... } ... }
                                So, }y\mathrm{ is updated with the new value of }
```

 There is a problem in the treatment of causality.

Causality: Modelica example

model scheduling
Real $\times($ start $=0)$;
Real $\mathrm{y}($ start $=0)$;
equation

$$
\begin{aligned}
& \operatorname{der}(x)=1 \\
& \operatorname{der}(y)=x
\end{aligned}
$$

when $x>=2$ then reinit $(x,-3 * y)$ end when;
when $x>=2$ then reinit $(y,-4 * x)$; end when;
end scheduling;

Causality: Modelica example

$$
\begin{aligned}
& \text { model scheduling } \\
& \quad \text { Real } \times(\text { start }=0) ; \\
& \text { Real } y(\text { start }=0) ; \\
& \text { equation } \\
& \begin{array}{l}
\operatorname{der}(x)=1 \\
\operatorname{der}(y)=x
\end{array}
\end{aligned}
$$

when $x>=2$ then reinit $(x,-3 * y)$ end when;
when $x>=2$ then reinit $(y,-4 * x)$; end when;
end scheduling;

Causality: Modelica example

model scheduling
Real $\times($ start $=0)$;
Real $y($ start $=0)$; equation

$$
\begin{aligned}
& \operatorname{der}(x)=1 \\
& \operatorname{der}(y)=x
\end{aligned}
$$

when $x>=2$ then

$$
\operatorname{reinit}(x,-3 * y)
$$

‘
end when;
when $x>=2$ then reinit $(y,-4 * x)$; end when;
end scheduling;

正

Causality: Modelica example (cont.)

- A causal version (i.e., reinit($\mathrm{x},-3 *$ pre y) is scheduled properly. Normally, everything works correctly.
- But the non-causal program is accepted and the result is not well defined.
What is the semantics of this program?
- It's not about forbidding algebraic loops, but the expressions here are clocked and not relational.
Should the solver be left to resolve the non-determinism?
- Such problems are certainly not easy to solve, but the semantics of a model must not depend on its layout
- Studying causality is needed to understand the interactions between discrete and continuous-time behaviors.

Background: Synchronous Languages

Syntax of a simple synchronous language (\approx Lustre)

$$
\begin{aligned}
& d::=\operatorname{let} x=e \mid \text { let } f(p)=e \text { where } E \mid d ; d \\
& e::=x|v| \text { op }(e) \mid \text { efby } e|\operatorname{pre}(e)| f(e) \mid(e, e) \\
& p::=(p, p) \mid x \\
& E::=() \mid E \text { and } E|x=e| \\
& \quad \mid \text { if } e \text { then } E \text { else } E
\end{aligned}
$$

Examples

let $\min _\max (x, y)=(a, b)$ where
if $x<y$
then $\mathrm{a}=\mathrm{x}$ and $\mathrm{b}=\mathrm{y}$
else $a=y$ and $b=x$
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where $\mathrm{cpt}=(0$ fby pre(cpt) $)+x$

Background: Semantics of Synhronous Languages

Chronograms

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	3	6	5	1	1	9
$\min _\max (x, y)$	$=$	$(2,3)$	$(4,6)$	$(2,5)$	$(1,1)$	$(1,2)$	$(3,9)$
$\operatorname{pre}(x)$	$=$	nil	2	4	2	1	2
x fby y	$=$	2	6	5	1	1	9
$\operatorname{sum}(x)$	$=$	2	6	8	9	11	14

Examples
let min_max $(x, y)=(a, b)$ where
if $x<y$
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
then $\mathrm{a}=\mathrm{x}$ and $\mathrm{b}=\mathrm{y}$
$\mathrm{cpt}=(0 \mathrm{fby}$ pre(cpt)$)+\mathrm{x}$
else $a=y$ and $b=x$

Background: Synchronous Languages

Chronograms

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	3	6	5	1	1	9
$\min _\max (x, y)$	$=$	$(2,3)$	$(4,6)$	$(2,5)$	$(1,1)$	$(1,2)$	$(3,9)$
pre (x)	$=$	nil	2	4	2	1	2
x fby y	$=$	2	6	5	1	1	9
$\operatorname{sum}(x)$	$=$	2	6	8	9	11	14

Main features

- A signal is a sequence of values or stream
- A system is function from streams to streams.
- Operations apply pointwise to their arguments.
- All streams progress synchronously.

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	\perp	\perp	\perp
y	$=$	nil	2	6	\perp	\perp	\perp
z	$=$	0	2	6	\perp	\perp	\perp
$c p t$	$=$	2	6	8	\perp	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	\perp	\perp
y	$=$	nil	2	6	8	\perp	\perp
z	$=$	0	2	6	\perp	\perp	\perp
$c p t$	$=$	2	6	8	\perp	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	\perp	\perp
y	$=$	nil	2	6	8	\perp	\perp
z	$=$	0	2	6	8	\perp	\perp
$c p t$	$=$	2	6	8	\perp	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	\perp	\perp
y	$=$	$n i l$	2	6	8	\perp	\perp
z	$=$	0	2	6	8	\perp	\perp
$c p t$	$=$	2	6	8	9	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	\perp
y	$=$	$n i l$	2	6	8	9	\perp
z	$=$	0	2	6	8	\perp	\perp
$c p t$	$=$	2	6	8	9	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	\perp
y	$=$	nil	2	6	8	9	\perp
z	$=$	0	2	6	8	9	\perp
$c p t$	$=$	2	6	8	9	\perp	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	\perp
y	$=$	nil	2	6	8	9	\perp
z	$=$	0	2	6	8	9	\perp
$c p t$	$=$	2	6	8	9	11	\perp

Program
let $\operatorname{sum}(x)=\mathrm{cpt}$ where $y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	nil	2	6	8	9	11
z	$=$	0	2	6	8	9	\perp
$c p t$	$=$	2	6	8	9	11	\perp

Program
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
$y=\operatorname{pre}(c p t)$
and $z=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	nil	2	6	8	9	11
z	$=$	0	2	6	8	9	11
$c p t$	$=$	2	6	8	9	11	\perp

Program
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
$y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators (one for each equation) [Berry 1999]

Step-by-step execution

time	$=$	0	1	2	3	4	5
x	$=$	2	4	2	1	2	3
y	$=$	nil	2	6	8	9	11
z	$=$	0	2	6	8	9	11
$c p t$	$=$	2	6	8	9	11	14

Program
let $\operatorname{sum}(\mathrm{x})=\mathrm{cpt}$ where
$y=\operatorname{pre}(c p t)$
and $\mathrm{z}=0$ fby y
and $\mathrm{cpt}=\mathrm{z}+\mathrm{x}$

Extended domains and streams

- $t \in \mathbb{N}$ dicrete time
- $v \in V \uplus\{\perp\}: \perp$ if undefined, $\perp<v \in V$
- $S(V)=\mathbb{N} \rightarrow(V \uplus\{\perp\})$

Requirements on Semantics

Recall, semantics to help designing:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:

- Every well-typed program E should have a semantics $\llbracket E \rrbracket$
- The semantics should be structural, i.e., roughly speaking:

- The alternative is informal "mytool" semantics

Requirements on Semantics

Recall, semantics to help designing:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:

- Every well-typed program E should have a semantics 【E』
- The semantics should be structural, i.e., roughly speaking:

$$
\begin{aligned}
\llbracket E_{1} \text { and } E_{2} \rrbracket & =\left\{\llbracket E_{1} \rrbracket ; \llbracket E_{2} \rrbracket\right\} \\
\llbracket \text { if } e \text { then } E_{1} \text { else } E_{2} \rrbracket & =\text { if } \llbracket e \rrbracket \text { then } \llbracket E_{1} \rrbracket \text { else } \llbracket E_{2} \rrbracket, \text { etc. }
\end{aligned}
$$

- The alternative is informal "mytool" semantics

Time Domains

Phases of continuous dynamics interleaved with cascades of instantaneous state-jumps

However:

- Cascades may be complex or even unbounded
- The Time Domain should be such that time may progress during cascades of state-jumps

Time Domains

> Superdense Model of Time:
> $\mathbb{T}=\mathbb{R}_{+} \times \mathbb{N}$
> $[$ Pnueli et al. 1992]
> $[$ Lee et al. 2005]
\mathbb{T} is equipped with lexicographic order (as shown on the figure).
Two approaches for capturing signals with finite cascades of changes:

1. $x(t, n)$ defined for $0 \leq n \leq m_{t}$ and undefined for $n>m_{t} \quad$ [the figure]
2. $x(t, n)$ defined for every n but $x(t, n)=x\left(t, m_{t}\right)$ for $n>m_{t}$ where m_{t} is the number of changes at time t.

In the figure: $m_{t}=2, m_{u}=0, m_{v}=3$.

Time Domains

Superdense Model of Time:
$\mathbb{T}=\mathbb{R}_{+} \times \mathbb{N}$
[Pnueli et al. 1992]
[Lee et al. 2005]

[Lee 2014]:
Such piecewise-continuous signals coexist nicely with standard ODE solvers. At the time of discontinuity or discrete event, the final value signal provides the initial boundary condition for the solver. [...]

Time Domains

Superdense Model of Time $\mathbb{T}=\mathbb{R}_{+} \times \mathbb{N}$
[Pnueli et al. 1992]
[Lee et al. 2005]

Nonstandard Model of Time $\mathbb{T}=\{n \partial \mid n \in \mathbb{N}\}$
[Benveniste et al. 2012]

Time Domains

Aim:

- getting rid of the burden of smoothness assumptions
- making hybrid systems discrete
- getting the semantics by reusing techniques from discrete systems

Nonstandard Model of Time $\mathbb{T}=\left\{n \partial \mid n \in{ }^{\star} \mathbb{N}\right\}$
[Benveniste et al. 2012]

A Brief History of Non-Standard Analysis

- Infinitesimal numbers have been considered by Archimède, Newton, Fermat, Leibniz, ... but lacked rigorous foundations.
- Non-standard Analysis was proposed by Abraham Robinson in 1961, then developed by a small community of mathematicians.
- Defined as a conservative enhancement of Zermelo-Fränkel set theory; some fancy axioms and principles; nice for the addicts
- Subject of controversies: what does it do for you that you cannot do using our brave analysis with $\forall \varepsilon \exists \eta \ldots$?
- Instrumental to solve a few problems: Algebraic topology, Stochastic processes (Brownian motion), ...
- 1988: a nice presentation of the topic by T. Lindstrom, kind of a "paraphrase of the construction of reals"
- 2006: used in Simon Bliudze PhD where he proposes the counterpart of a "Turing machine" for hybrid systems (supervised by D. Krob)
- 2010: used by Benveniste et al. to define the operational semantics of the Zélus hybrid systems modeling language.

Non-Standard Analysis in 1^{\prime}

- * $\mathbb{R} \supset \mathbb{R} \cup\{-\infty,+\infty\}$
- Contains infinitely small numbers $\left(\exists \epsilon \in{ }^{\star} \mathbb{R}, \forall x \in \mathbb{R}_{+}^{*}, 0<\epsilon<x\right)$ and infinitely large numbers $1 / \epsilon$.
- Every non-standard number $x \in \mathbb{}^{*} \mathbb{R}$ admits a unique decomposition $x=s t(x)+\epsilon$ into a real part $s t(x) \in \mathbb{R}$ and an infinitesimal part ϵ
- Densification of the real line: for every $x \in \mathbb{R}$, there are infinitely many non-standard numbers y that are infinitely close to $y: y \sim x$
- $x \sim y$ iff $\operatorname{st}(x-y)=0$
- Infinite hierarchy of infinitesimals $\ldots<\epsilon^{2}<\epsilon$ and infinites $1 / \epsilon<1 / \epsilon^{2}<\ldots$.
- Almost as usual: internalizing real operators and functions $x+y$, $f(x), \ldots$
- Transfer principle: Given a first order formula ψ,

$$
\vDash_{\mathbb{R}} \psi \Longleftrightarrow \vDash_{\star \mathbb{R}} \psi
$$

A Toy Hybrid Systems Language

Syntax \approx Zélus [Bourke et al. 2013] \approx SCADE Hybrid [ANSYS 2015]

$$
\begin{aligned}
d & ::=\operatorname{let} x=e \mid \text { let } f(p)=e \text { where } E \mid d ; d \\
e & ::=x|v| \text { op }(e)|e f b y e| \text { pre }(e)|f(e)|(e, e) \\
p: & :=(p, p) \mid x \\
E: & :=() \mid E \text { and } E|x=e| \\
& \mid \text { init } x=e \mid \text { der } x=e \mid \\
& \mid \text { if ethen } E \text { else } E \\
& |\operatorname{der} x=e| \\
& \mid \text { init } x=e \mid \text { reinit } x=e \mid \\
& \mid \text { when } e \text { do } E
\end{aligned}
$$

Zélus

- Zélus \approx Lucid Synchrone [Pouzet 2006] + ODEs
- Dataflow equations, hierarchical state machines [Emsoft 2011], arrays, higher-order (coming soon)
- Precise semantics, based on non-standard analysis [JCSS 2012]
- Type inference (rejects incorrect composition of discrete-/continuous-time dynamics) [LCTES 2011]
- Causality analysis [HSCC 2014]
- Similar initiative: SCADE Hybrid (ANSYS) [CC 2015], required changing $\sim 5 \%$ of the KCG compiler

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{\times}$

when z do
reinit $x=b$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{\times}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{x}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$

when z do
reinit $x=b$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{\times}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{\times}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$

when z do

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{x}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{x}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{x}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{\times}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) ; \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{\times}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$
when z do reinit $x=b$	

The Superdense Model of Time as a semantic domain

- $\mathbb{T}={ }_{\text {def }} \mathbb{R}_{+} \times \mathbb{N}$; we identify $(t, 0) \in \mathbb{T}$ with $t \in \mathbb{R}_{+}$
- $x_{(t, n)}$ remains constant for $n \geq m_{t}^{x}$

equation	semantics
$\begin{align*} & \operatorname{der} x=f(x, u) \\ & \text { init } x=e \tag{1} \end{align*}$	$m_{t}^{u}=m_{t}^{x}=0$ and $\dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right)$ and $x_{0}=\llbracket e \rrbracket_{0}$
$\begin{align*} & \operatorname{der} x=f(x, u) \\ & \text { init } x=a ; \\ & \text { when } x \geq 1 \text { do } \\ & \text { reinit } x=b \tag{2} \end{align*}$	$\begin{aligned} t_{0}= & 0 \text { and } t_{n+1}= \\ & \inf \left\{s>t_{n} \mid \forall r \in(s-\varepsilon ; s), x_{r}<1 \wedge x_{s} \geq 1\right\} \end{aligned}$ reset effective at $\left(t_{n}, 1\right)$, hence $m_{t_{n}}^{x}=1$ $\begin{align*} & \dot{x}_{t}=\llbracket f \rrbracket_{t}\left(x_{t}, u_{t}\right), \text { for } t_{n}<t \leq t_{n+1}, \\ & x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}, x_{\left(t_{n}, 1\right)}=\llbracket b \rrbracket_{\left(t_{n}, 1\right)}, n \geq 1 \tag{1} \end{align*}$
when z do reinit $x=b$	reuse of (2) not possible since $m_{t_{n}}^{z} \neq 0$

The Superdense Model of Time as a semantic domain

Such piecewise-continuous signals coexist nicely with standard ODE solvers. At the time of discontinuity or discrete event, the final value signal provides the initial boundary condition for the solver. [...]

Lessons:

- Superdense time semantics seems simple as long as you keep it informal
- Actually, it is hard to formalize
- In addition to the problems shown:
- Smoothness assumptions are needed, and
- Must be stated on the global system
- Can not capture chattering (sliding modes).
- [Lee 2014]: getting rid of the above difficulties by moving to constructive semantics?

The Superdense Model of Time as a semantic domain

Moving to constructive semantics

- [Berry 1999] The constructive semantics gives a meaning to fixpoint problems specified via sets of equations
- does not rely on arguments of numerical analysis (convergence of approximation schemes)
- uses instead fixpoint theorems where the distance between signals is defined as the largest prefix of time in which the two signals coincide
- constructive \Rightarrow helps understanding causality issues
- No constructive semantics exists for continuous-time systems $\left(\mathbb{T}=\mathbb{R}_{+}\right)$[Matsikoudis and Lee 2014]
- [Lee 20141 invokes constructive semantics as given by the solver (which works by steps)
- Non compositional, not structural
- Depends on munerical convergence properties of discretization scheme

The Superdense Model of Time as a semantic domain

Moving to constructive semantics

- [Berry 1999] The constructive semantics gives a meaning to fixpoint problems specified via sets of equations
- does not rely on arguments of numerical analysis (convergence of approximation schemes)
- uses instead fixpoint theorems where the distance between signals is defined as the largest prefix of time in which the two signals coincide
- constructive \Rightarrow helps understanding causality issues
- No constructive semantics exists for continuous-time systems $\left(\mathbb{T}=\mathbb{R}_{+}\right)$[Matsikoudis and Lee 2014]
- [Lee 2014] invokes constructive semantics as given by the solver (which works by steps)
- Non compositional, not structural
- Depends on munerical convergence properties of discretization scheme

The Nonstandard Time Domain

$$
\begin{aligned}
& { }^{*} \mathbb{N},{ }^{*} \mathbb{R}={ }_{\text {def }} \quad \text { non-standard extensions of } \mathbb{N}, \mathbb{R} \\
& { }^{\star} \mathbb{R} \supseteq \mathbb{T}={ }_{\text {def }} \quad\left\{t_{n}=n \partial \mid n \in{ }^{\star} \mathbb{N}\right\} \text { where } \partial \text { is an infinitesimal time step } \\
& { }^{\bullet} t \quad=_{\text {def }} \max \{s \mid s \in \mathbb{T}, s<t\}=t-\partial \\
& t^{\bullet}={ }_{\text {def }} \min \{s \mid s \in \mathbb{T}, s>t\}=t+\partial \\
& \dot{x}_{t}=\operatorname{def} \frac{x_{t} \bullet-x_{t}}{\partial}(\text { explicit scheme }) \quad \text { or } \frac{x_{t}-x_{\bullet} t}{\partial} \text { (implicit scheme) }
\end{aligned}
$$

- with the non-standard interpretation, hybrid systems become "discrete time" and inherit a non-standard semantics
- no more difficult than Lustre semantics
- every syntactically correct program has a semantics
- the non-standard semantics is structural and compositional
- does not depend on the particular choice for the time base ∂

Nonstandard Semantics

Set ${ }^{\bullet} x_{t}=x_{\bullet}, \quad x_{t}^{\bullet}=x_{t} \bullet$, and $\dot{x}_{t}=\frac{x_{t}^{\bullet}-x_{t}}{\partial}$ in:

equation	semantics
$\operatorname{der} x=e ;$ init $x=f$	$x_{t_{0}}=\llbracket f \rrbracket_{t_{0}}$ and $x_{t}^{\bullet}=x_{t}+\partial \llbracket e \rrbracket_{t}$ forall $t \in \mathbb{T}, t \geq t_{0}$
$\operatorname{der} x=e ;$ init $x=a ;$ when $x \geq 1$ do reinit $x=b$	$z=\bullet_{t}<1 \wedge x_{t} \geq 1$ $x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}$ $x_{t}^{\bullet}=$ if z then $\llbracket b \rrbracket_{t} \bullet$ else $x_{t}+\partial \llbracket e \rrbracket_{t}, t \geq t_{0}$

- Just as for Lustre
- Since the non-standard semantics is step-based, constructive semantics exists [Benveniste et al. 2012]
- Having ${ }^{\mathbb{N}}$ many steps instead of \mathbb{N} many ones is not an issue
- Of course, this semantics can not be used for simulation $(\neq$ programming languages)

Nonstandard Semantics

Set ${ }^{\bullet} x_{t}=x_{\bullet}, \quad x_{t}^{\bullet}=x_{t} \bullet$, and $\dot{x}_{t}=\frac{x_{t}^{\bullet}-x_{t}}{\partial}$ in:

equation	semantics
der $x=e ;$ init $x=f$	$x_{t_{0}}=\llbracket f \rrbracket_{t_{0}}$ and $x_{t}^{\bullet}=x_{t}+\partial \llbracket e \rrbracket_{t}$ forall $t \in \mathbb{T}, t \geq t_{0}$
$\operatorname{der} x=e ;$ $z=\bullet x_{t}<1 \wedge x_{t} \geq 1$ init $x=a ;$ when $x \geq 1$ do reinit $x=b$	$x_{t_{0}}=\llbracket a \rrbracket_{t_{0}}$ $x_{t}^{\bullet}=$ if z then $\llbracket b \rrbracket_{t \bullet \bullet}$

- Just as for Lustre
- Since the non-standard semantics is step-based, constructive semantics exists [Benveniste et al. 2012]
- Having ${ }^{\star} \mathbb{N}$ many steps instead of \mathbb{N} many ones is not an issue
- Of course, this semantics can not be used for simulation $(\neq$ programming languages)

There is no free lunch

Theorem [Benveniste et al. 2014]
The nonstandard semantics of every causally-correct program is:

1. standardizable,
2. independent of ∂,
3. continuous
on every compact set of dates not containing:

4. an event, or
5. an undefined value (\perp)

- When defined, the superdense semantics coincides with the nonstandard semantics
- The nonstandard semantics is not effective (cannot be executed)

There is no free lunch

DAE Hybrid Systems: index theory \& reduction

- With non-standard semantics, DAE become dAE (difference Algebraic Equations); define $x^{\bullet}=$ next x
- dAE may involve more equations than specified

$$
\begin{align*}
\begin{cases}x^{\bullet}=f(x, u) \\
0 & =g(x)\end{cases} & \stackrel{\text { shifting }}{\Longrightarrow}
\end{align*}\left\{\begin{array}{lll}
x^{\bullet} & =f(x, u) \\
0 & = & g(x) \tag{1}\\
0 & =g\left(x^{\bullet}\right)
\end{array}\right]
$$

Whence the constructive semantics (\sim execution scheme):

1. Given x such that $g(x)=0$
2. Use (3) to evaluate u (constraint solver needed)
3. Use (1) to evaluate x^{\bullet}, which satisfies $g\left(x^{\bullet}\right)=0$, and repeat

DAE Hybrid Systems: index theory \& reduction

- With non-standard semantics, DAE become dAE (difference Algebraic Equations); define $x^{\bullet}=$ next x
- dAE may involve more equations than specified

$$
\begin{align*}
\begin{cases}x^{\bullet}=f(x, u) \\
0 & =g(x)\end{cases} & \stackrel{\text { shifting }}{\Longrightarrow}
\end{align*}\left\{\begin{array}{lll}
x^{\bullet} & =f(x, u) \\
0 & =g(x) \tag{1}\\
0 & =g\left(x^{\bullet}\right)
\end{array}\right]
$$

Thm: the diff. index of a DAE coincides with the index of the dAE obtained with the non-standard semantics
Cor: Defining the index of DAE Hybrid Systems as the index of its non-standard semantics yields a conservative extension of DAE and dAE indexes

Conclusion

- The superdense model of time is useful as a simulation semantics:
- Even from this point of view it has limits
- No support for nonsmooth dynamical systems simulation (with possible chattering)
- More is needed for supporting compilation:
- Structural semantics
- Getting rid of smoothness assumptions
- The nonstandard model of time is a good candidate:
- Yields a structural semantics
- No smoothness assumption
- Coincides with superdense semantics, when defined
- Supports the slicing of execution engine into
- an event handler and
- a ODE/DAE/nonsmooth solver

