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From Dynamical to Hybrid Systems, informally

Dynamical system: smooth dynamics

x : R→ Rn

solution of the IVP{
f (ẋ , x , t) = 0
x(t0) = x0

Can we capture Hybrid Systems trajectories as x : R→ Rn?
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From Dynamical to Hybrid Systems, informally
dom(x) = R

real time
x+(t2)

x(t)

t2t

x−(t2)

x+(t1)

t1

x−(t1)
Simple Hybrid Sys-
tems: smooth dynamics
almost all the time, except
for state jumps x+ = g(x−)
at some discrete t.

x : R→ Rn still works.

How general is this?
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From Dynamical to Hybrid Systems, informally
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
ẋ = −sgn(x) + 2sgn(y)
ẏ = −2sgn(x)− sgn(y)
ż = sgn(x) + sgn(y)

Non-Smooth Dynamical
Systems: right-hand of
differential equations is
non-smooth.
I Filippov Differential

Inclusions
I Complementarity

Systems
I Siconos numerical

library [Acary et al.]

x : R→ Rn still works.

However...
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From Dynamical to Hybrid Systems, informally

real time

dom(x) = Rn

t1 t2t

In general, Hybrid Sys-
tems trajectory may have:
I Instantaneous cascades

of state jumps
I Chattering

Can not be captured as:

x : R→ Rn

Need a Time Do-
main “denser” than R
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Semantics of Hybrid Systems Modelers

Instrumental to design:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Need for a precise mathematical semantics

Focus of this talk:
I Comparison of Time Domains used to the define the semantics of

hybrid systems modelers
I Emphasis on compile-time analysis / simulation code generation
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Our Cabinet of Curiosities. . .
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Causality issue: the Simulink state port
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The output of the state port is the same as the output of the
block’s standard output port except for the following case. If
the block is reset in the current time step, the output of the
state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)
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t < 2: x(t) = t, y(t) = t2

2
t = 2: x = −3 · last y = −6,

y = −4 · last x = −8

y = −4 · x = 24 !

ExpectedActual
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Excerpt of C code produced by RTW (release R2009)
static void mdlOutputs(SimStruct * S, int_T tid)
{ _rtX = (ssGetContStates(S));

...
_rtB = (_ssGetBlockIO(S));
_rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0;
_rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;
if (ssIsMajorTimeStep (S))

{ ...
if (zcEvent || ...)

{ (ssGetContStates (S))->Integrator0_CSTATE =
_ssGetBlockIO (S))->B_0_1_0;

}
...

(_ssGetBlockIO (S))->B_0_2_0 =
(ssGetContStates (S))->Integrator0_CSTATE;
_rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;
if (ssIsMajorTimeStep (S))
{ ...

if (zcEvent || ...)
{ (ssGetContStates (S))-> Integrator1_CSTATE =

(ssGetBlockIO (S))->B_0_3_0;
}

... } ... }

x = −3 · last y

Before assignment:
integrator state con-
tains ‘last’ value

After assignment: integrator
state contains the new value

y = −4 · x
So, y is updated with the new value of x

There is a problem in the treatment of causality. 6 / 26



Causality: Modelica example

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when x >= 2 then
reinit(x, −3 ∗ y)

end when;
when x >= 2 then
reinit(y, −4 ∗ x);

end when;

end scheduling;

OpenModelica 1.9.2beta1 (r24372)
Also in Dymola
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Causality: Modelica example (cont.)

I A causal version (i.e., reinit(x, −3 ∗ pre y) is scheduled properly.
Normally, everything works correctly.

I But the non-causal program is accepted and the result is not well
defined.
What is the semantics of this program?

I It’s not about forbidding algebraic loops, but the expressions here are
clocked and not relational.
Should the solver be left to resolve the non-determinism?

I Such problems are certainly not easy to solve, but
the semantics of a model must not depend on its layout

I Studying causality is needed to understand the interactions between
discrete and continuous-time behaviors.
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Background: Synchronous Languages
Syntax of a simple synchronous language (≈ Lustre)

d ::= let x = e | let f (p) = e whereE | d ; d

e ::= x | v | op(e) | e fby e | pre(e) | f (e) | (e, e)

p ::= (p, p) | x

E ::= () | E and E | x = e |
| if e thenE elseE

Examples
let min_max(x,y) = (a,b) where
if x<y
then a = x and b = y
else a = y and b = x

let sum(x) = cpt where
cpt = (0 fby pre(cpt)) + x
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Background: Semantics of Synhronous Languages
Chronograms

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = 3 6 5 1 1 9
min_max(x , y) = (2, 3) (4, 6) (2, 5) (1, 1) (1, 2) (3, 9)
pre(x) = nil 2 4 2 1 2
x fby y = 2 6 5 1 1 9
sum(x) = 2 6 8 9 11 14

Examples
let min_max(x,y) = (a,b) where
if x<y
then a = x and b = y
else a = y and b = x

let sum(x) = cpt where
cpt = (0 fby pre(cpt)) + x
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Background: Synchronous Languages
Chronograms

time = 0 1 2 3 4 5
x = 2 4 2 1 2 3
y = 3 6 5 1 1 9
min_max(x , y) = (2, 3) (4, 6) (2, 5) (1, 1) (1, 2) (3, 9)
pre(x) = nil 2 4 2 1 2
x fby y = 2 6 5 1 1 9
sum(x) = 2 6 8 9 11 14

Main features
I A signal is a sequence of values or stream
I A system is function from streams to streams.
I Operations apply pointwise to their arguments.
I All streams progress synchronously. 11 / 26



Background: Constructive Fixpoint Semantics
Define semantics as mutual least fixpoint of set of monotonous operators

(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
x = 2 4 2 ⊥ ⊥ ⊥
y = nil 2 6 ⊥ ⊥ ⊥
z = 0 2 6 ⊥ ⊥ ⊥
cpt = 2 6 8 ⊥ ⊥ ⊥

Program
let sum(x) = cpt where

y = pre(cpt)
and z = 0 fby y
and cpt = z + x

Extended domains and streams
I t ∈ N dicrete time
I v ∈ V ] {⊥} : ⊥ if

undefined, ⊥ < v ∈ V
I S(V ) = N→ (V ] {⊥})
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Requirements on Semantics

Recall, semantics to help designing:
1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:
I Every well-typed program E should have a semantics [[E ]]
I The semantics should be structural, i.e., roughly speaking:

[[E1 and E2]] = {[[E1]]; [[E2]]}
[[if e thenE1 elseE2]] = if [[e]] then [[E1]] else [[E2]], etc.

I The alternative is informal “mytool” semantics

13 / 26



Requirements on Semantics

Recall, semantics to help designing:
1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation
3. Numerical simulation environments (run-time)

Therefore:
I Every well-typed program E should have a semantics [[E ]]
I The semantics should be structural, i.e., roughly speaking:

[[E1 and E2]] = {[[E1]]; [[E2]]}
[[if e thenE1 elseE2]] = if [[e]] then [[E1]] else [[E2]], etc.

I The alternative is informal “mytool” semantics

13 / 26



Time Domains

real time

dom(x) = Rn

t1 t2t

Phases of continuous dy-
namics interleaved with
cascades of instantaneous
state-jumps

However:

I Cascades may be
complex or even
unbounded

I The Time Domain
should be such that
time may progress
during cascades of
state-jumps

14 / 26



Time Domains
dom(x) = R

real time
t

(t, 1)

(t, 0)

(t, 2)

(v , 0)
(v , 1)

(v , 3)

(u, 0)

v
(v , 2)

u

Superdense Model of Time:
T = R+ × N
[Pnueli et al. 1992]
[Lee et al. 2005]

T is equipped with lexicographic order (as shown on the figure).
Two approaches for capturing signals with finite cascades of changes:
1. x(t, n) defined for 0≤n≤mt and undefined for n>mt [the figure]
2. x(t, n) defined for every n but x(t, n)=x(t,mt) for n>mt [Lee]

where mt is the number of changes at time t.
In the figure: mt=2,mu=0,mv =3.
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Time Domains
dom(x) = R

real time
t
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v
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u

Superdense Model of Time:
T = R+ × N
[Pnueli et al. 1992]
[Lee et al. 2005]

[Lee 2014]:
Such piecewise-continuous signals coexist nicely with standard
ODE solvers. At the time of discontinuity or discrete event, the
final value signal provides the initial boundary condition for the
solver. [. . . ]
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Time Domains
Aim:
I getting rid of the burden of smoothness assumptions
I making hybrid systems discrete
I getting the semantics by reusing techniques from discrete systems

NS time

dom(x) = ?R

u

∂ ∂ ∂

t

t + 2∂

v
v + ∂

v + 3∂

v
v + 2∂

ut

t + ∂

Nonstandard Model of Time
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[Benveniste et al. 2012]
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A Brief History of Non-Standard Analysis
I Infinitesimal numbers have been considered by Archimède, Newton,

Fermat, Leibniz, ... but lacked rigorous foundations.
I Non-standard Analysis was proposed by Abraham Robinson in 1961,

then developed by a small community of mathematicians.
I Defined as a conservative enhancement of Zermelo-Fränkel set theory;

some fancy axioms and principles; nice for the addicts
I Subject of controversies: what does it do for you that you cannot do

using our brave analysis with ∀ε∃η . . . ?
I Instrumental to solve a few problems: Algebraic topology, Stochastic

processes (Brownian motion), ...
I 1988: a nice presentation of the topic by T. Lindstrom, kind of a

“paraphrase of the construction of reals”
I 2006: used in Simon Bliudze PhD where he proposes the counterpart

of a “Turing machine” for hybrid systems (supervised by D. Krob)
I 2010: used by Benveniste et al. to define the operational semantics of

the Zélus hybrid systems modeling language.
15 / 26



Non-Standard Analysis in 1’
I ?R ⊃ R ∪ {−∞,+∞}
I Contains infinitely small numbers (∃ε ∈ ?R,∀x ∈ R∗+, 0 < ε < x) and

infinitely large numbers 1/ε.
I Every non-standard number x ∈ ?R admits a unique decomposition

x = st(x) + ε into a real part st(x) ∈ R and an infinitesimal part ε
I Densification of the real line: for every x ∈ R, there are infinitely

many non-standard numbers y that are infinitely close to y : y ∼ x
I x ∼ y iff st(x − y) = 0
I Infinite hierarchy of infinitesimals . . . < ε2 < ε and infinites

1/ε < 1/ε2 < . . ..
I Almost as usual: internalizing real operators and functions x + y ,

f (x), . . .
I Transfer principle: Given a first order formula ψ,

�R ψ ⇐⇒ �?R ψ

16 / 26



A Toy Hybrid Systems Language

Syntax ≈ Zélus [Bourke et al. 2013] ≈ SCADE Hybrid [ANSYS 2015]

d ::= let x = e | let f (p) = e whereE | d ; d

e ::= x | v | op(e) | e fby e | pre(e) | f (e) | (e, e)

p ::= (p, p) | x

E ::= () | E and E | x = e |
| init x = e | der x = e |
| if e thenE elseE
| der x = e |
| init x = e | reinit x = e |
| when e do E
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Zélus zelus.dmi.ens.fr

I Zélus ≈ Lucid Synchrone [Pouzet 2006] + ODEs
I Dataflow equations, hierarchical state machines [Emsoft 2011], arrays,

higher-order (coming soon)
I Precise semantics , based on non-standard analysis [JCSS 2012]
I Type inference (rejects incorrect composition of

discrete-/continuous-time dynamics) [LCTES 2011]
I Causality analysis [HSCC 2014]
I Similar initiative: SCADE Hybrid (ANSYS) [CC 2015], required

changing ∼ 5% of the KCG compiler
18 / 26

zelus.dmi.ens.fr


The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx

t =0 and ẋt = [[f ]]t(xt , ut) and
x0 = [[e]]0 (1)

der x = f (x , u);
init x = a;
when x ≥ 1 do
reinit x = b

t0 = 0 and tn+1 =
inf{s > tn | ∀r ∈ (s − ε; s), xr < 1 ∧ xs ≥ 1}

reset effective at (tn, 1), hence mx
tn = 1

ẋt = [[f ]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0 , x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0
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ẋt = [[f ]]t(xt , ut), for tn < t ≤ tn+1, (2)
xt0 = [[a]]t0 , x(tn,1) = [[b]](tn,1), n ≥ 1 6= (1)

when z do
reinit x = b reuse of (2) not possible since mz

tn 6= 0

19 / 26



The Superdense Model of Time as a semantic domain
I T =def R+×N; we identify (t, 0) ∈ T with t ∈ R+
I x(t,n) remains constant for n ≥ mx

t

equation semantics

der x = f (x , u);
init x = e

mu
t =mx
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The Superdense Model of Time as a semantic domain

Such piecewise-continuous signals coexist nicely with standard
ODE solvers. At the time of discontinuity or discrete event, the
final value signal provides the initial boundary condition for the
solver. [. . . ]

Lessons:
I Superdense time semantics seems simple as long as you keep it

informal
I Actually, it is hard to formalize
I In addition to the problems shown:

I Smoothness assumptions are needed, and
I Must be stated on the global system
I Can not capture chattering (sliding modes).

I [Lee 2014]: getting rid of the above difficulties by moving to
constructive semantics?
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The Superdense Model of Time as a semantic domain

Moving to constructive semantics
I [Berry 1999] The constructive semantics gives a meaning to fixpoint

problems specified via sets of equations
I does not rely on arguments of numerical analysis (convergence of

approximation schemes)
I uses instead fixpoint theorems where the distance between signals is

defined as the largest prefix of time in which the two signals coincide
I constructive ⇒ helps understanding causality issues

I No constructive semantics exists for continuous-time systems
(T = R+) [Matsikoudis and Lee 2014]

I [Lee 2014] invokes constructive semantics as given by the solver
(which works by steps)

I Non compositional, not structural
I Depends on munerical convergence properties of discretization scheme
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The Nonstandard Time Domain

?N, ?R =def non-standard extensions of N,R
?R ⊇ T =def {tn = n∂ | n ∈ ?N} where ∂ is an infinitesimal time step

•t• =def max{s | s ∈ T, s < t} = t − ∂
t• =def min{s | s ∈ T, s > t} = t + ∂

ẋt =def
xt• − xt

∂
(explicit scheme) or xt − x•t

∂
(implicit scheme)

I with the non-standard interpretation, hybrid systems become
“discrete time” and inherit a non-standard semantics

I no more difficult than Lustre semantics
I every syntactically correct program has a semantics
I the non-standard semantics is structural and compositional

I does not depend on the particular choice for the time base ∂
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Nonstandard Semantics
Set •xt = x•t , x•t = xt• , and ẋt = x•t − xt

∂
in:

equation semantics

der x = e;
init x = f

xt0 = [[f ]]t0 and
x•t = xt + ∂[[e]]t forall t ∈ T, t ≥ t0

der x = e;
init x = a;
when x ≥ 1 do
reinit x = b

z = •x t<1 ∧ xt≥1
xt0 = [[a]]t0
x•t = if z then [[b]]t• else xt + ∂[[e]]t , t ≥ t0

I Just as for Lustre
I Since the non-standard semantics is step-based, constructive

semantics exists [Benveniste et al. 2012]
I Having ?N many steps instead of N many ones is not an issue
I Of course, this semantics can not be used for simulation ( 6=

programming languages)
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There is no free lunch
Theorem [Benveniste et al. 2014]
The nonstandard semantics of every
causally-correct program is:
1. standardizable,
2. independent of ∂,
3. continuous

on every compact set of dates not
containing:
1. an event, or
2. an undefined value (⊥)

⊥⊥⊥

t

z

I When defined, the superdense semantics coincides with the
nonstandard semantics

I The nonstandard semantics is not effective (cannot be executed)
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There is no free lunch

run-time

Nonstandard
Semantics

Program
Superdense
Semantics

structural standardization

assumptions:

no chattering
smoothness

compile-time
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DAE Hybrid Systems: index theory & reduction
I With non-standard semantics, DAE become dAE

(difference Algebraic Equations); define x• = next x
I dAE may involve more equations than specified{

x• = f (x , u)
0 = g(x)

shifting=⇒


x• = f (x , u)
0 = g(x)
0 = g(x•)

substituting=⇒


x• = f (x , u) (1)
0 = g(x) (2)
0 = g(f (x , u)) (3)

Whence the constructive semantics (∼ execution scheme):
1. Given x such that g(x) = 0
2. Use (3) to evaluate u (constraint solver needed)
3. Use (1) to evaluate x•, which satisfies g(x•) = 0, and repeat
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substituting=⇒
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x• = f (x , u) (1)
0 = g(x) (2)
0 = g(f (x , u)) (3)

Thm: the diff. index of a DAE coincides with the index of the dAE obtained
with the non-standard semantics

Cor: Defining the index of DAE Hybrid Systems as the index of its
non-standard semantics yields a conservative extension of DAE and
dAE indexes
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Conclusion

I The superdense model of time is useful as a simulation semantics:
I Even from this point of view it has limits
I No support for nonsmooth dynamical systems simulation (with possible

chattering)

I More is needed for supporting compilation:
I Structural semantics
I Getting rid of smoothness assumptions

I The nonstandard model of time is a good candidate:
I Yields a structural semantics
I No smoothness assumption
I Coincides with superdense semantics, when defined
I Supports the slicing of execution engine into

I an event handler and
I a ODE/DAE/nonsmooth solver
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